1
|
Bao YF, Zhu MY, Zhao XJ, Chen HX, Wang X, Ren B. Nanoscale chemical characterization of materials and interfaces by tip-enhanced Raman spectroscopy. Chem Soc Rev 2024; 53:10044-10079. [PMID: 39229965 DOI: 10.1039/d4cs00588k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Materials and their interfaces are the core for the development of a large variety of fields, including catalysis, energy storage and conversion. In this case, tip-enhanced Raman spectroscopy (TERS), which combines scanning probe microscopy with plasmon-enhanced Raman spectroscopy, is a powerful technique that can simultaneously obtain the morphological information and chemical fingerprint of target samples at nanometer spatial resolution. It is an ideal tool for the nanoscale chemical characterization of materials and interfaces, correlating their structures with chemical performances. In this review, we begin with a brief introduction to the nanoscale characterization of materials and interfaces, followed by a detailed discussion on the recent theoretical understanding and technical improvements of TERS, including the origin of enhancement, TERS instruments, TERS tips and the application of algorithms in TERS. Subsequently, we list the key experimental issues that need to be addressed to conduct successful TERS measurements. Next, we focus on the recent progress of TERS in the study of various materials, especially the novel low-dimensional materials, and the progresses of TERS in studying different interfaces, including both solid-gas and solid-liquid interfaces. Finally, we provide an outlook on the future developments of TERS in the study of materials and interfaces.
Collapse
Affiliation(s)
- Yi-Fan Bao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Meng-Yuan Zhu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiao-Jiao Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hong-Xuan Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiang Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Bin Ren
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
2
|
Amano R, Nishizawa D, Taketsugu T, Iwasa T. Optical force and torque in near-field excitation of C3H6: A first-principles study using RT-TDDFT. J Chem Phys 2024; 161:124110. [PMID: 39325997 DOI: 10.1063/5.0223371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Optical trapping is an effective tool for manipulating micrometer-sized particles, although its application to nanometer-sized particles remains difficult. The field of optical trapping has advanced significantly, incorporating more advanced techniques such as plasmonic structures. However, single-molecule trapping remains a challenge. To achieve a deeper understanding of optical forces acting on molecular systems, a first-principles approach to analyze the optical force on molecules interacting with a plasmonic field is crucial. In our study, the optical force and torque induced by the near-field excitation of C3H6 were investigated using real-time time-dependent density functional theory calculations on real-space grids. The near field from the scanning tunneling probe was adopted as the excitation source for the molecule. The optical force was calculated using the polarization charges induced in the molecule based on Lorentz force. While the optical force and torque calculated as functions of the light energy were in moderate agreement with the oscillator strengths obtained from the far-field excitation of C3H6, a closer correspondence was achieved with the power spectrum of the induced dipole moment using near-field excitation. Time-domain analysis of the optical force suggests that the simultaneous excitation of multiple excited states generally weakens the force because of mismatches between the directions of the induced polarization and the electric field. This study revealed a subtle damping mechanism for the optical force arising from intrinsic electronic states and the influence of beating.
Collapse
Affiliation(s)
- Risa Amano
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Daisuke Nishizawa
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- WPI-ICReDD, Hokkaido University, Sapporo 001-0021, Japan
| | - Takeshi Iwasa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- WPI-ICReDD, Hokkaido University, Sapporo 001-0021, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| |
Collapse
|
3
|
Mateos D, Jover O, Varea M, Lauwaet K, Granados D, Miranda R, Fernandez-Dominguez AI, Martin-Jimenez A, Otero R. Directional picoantenna behavior of tunnel junctions formed by an atomic-scale surface defect. SCIENCE ADVANCES 2024; 10:eadn2295. [PMID: 39321296 PMCID: PMC11423879 DOI: 10.1126/sciadv.adn2295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Plasmonic nanoantennas have attracted much attention lately, among other reasons because of the directionality of light emitted by fluorophores coupled to their localized surface plasmon resonances. Plasmonic picocavities, i.e., cavities with mode volumes below 1 nm3, could act as enhanced antennas due to their extreme field confinement, but the directionality on their emission is difficult to control. In this work, we show that the plasmonic picocavity formed between the tip of a scanning tunneling microscope and a metal surface with a monoatomic step shows directional emission profiles and, thus, can be considered as a realization of a picoantenna. Electromagnetic calculations demonstrate that the observed directionality arises from the reshaping and tilting of the surface charges induced at the scanning tip due to the atomic step. Our results pave the way to exploiting picoantennas as an efficient way for the far-field probing and control of light-matter interactions below the nanoscale.
Collapse
Affiliation(s)
- David Mateos
- IMDEA Nanociencia, Madrid, Spain
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Oscar Jover
- IMDEA Nanociencia, Madrid, Spain
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Varea
- IMDEA Nanociencia, Madrid, Spain
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Rodolfo Miranda
- IMDEA Nanociencia, Madrid, Spain
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio I Fernandez-Dominguez
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Roberto Otero
- IMDEA Nanociencia, Madrid, Spain
- Departamento de Física de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Temperini ME, Polito R, Venanzi T, Baldassarre L, Hu H, Ciracì C, Pea M, Notargiacomo A, Mattioli F, Ortolani M, Giliberti V. An Infrared Nanospectroscopy Technique for the Study of Electric-Field-Induced Molecular Dynamics. NANO LETTERS 2024; 24:9808-9815. [PMID: 39089683 PMCID: PMC11328210 DOI: 10.1021/acs.nanolett.4c01387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Static electric fields play a considerable role in a variety of molecular nanosystems as diverse as single-molecule junctions, molecules supporting electrostatic catalysis, and biological cell membranes incorporating proteins. External electric fields can be applied to nanoscale samples with a conductive atomic force microscopy (AFM) probe in contact mode, but typically, no structural information is retrieved. Here we combine photothermal expansion infrared (IR) nanospectroscopy with electrostatic AFM probes to measure nanometric volumes where the IR field enhancement and the static electric field overlap spatially. We leverage the vibrational Stark effect in the polymer poly(methyl methacrylate) for calibrating the local electric field strength. In the relevant case of membrane protein bacteriorhodopsin, we observe electric-field-induced changes of the protein backbone conformation and residue protonation state. The proposed technique also has the potential to measure DC currents and IR spectra simultaneously, insofar enabling the monitoring of the possible interplay between charge transport and other effects.
Collapse
Affiliation(s)
- Maria Eleonora Temperini
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Roma, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, I-00161 Roma, Italy
| | - Raffaella Polito
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Tommaso Venanzi
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, I-00161 Roma, Italy
| | - Leonetta Baldassarre
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Huatian Hu
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, I-73010 Arnesano, Italy
| | - Cristian Ciracì
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, I-73010 Arnesano, Italy
| | - Marialilia Pea
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere 100, I-00133 Roma, Italy
| | - Andrea Notargiacomo
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere 100, I-00133 Roma, Italy
| | - Francesco Mattioli
- Istituto di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche, Via del Fosso del Cavaliere 100, I-00133 Roma, Italy
| | - Michele Ortolani
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Roma, Italy
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, I-00161 Roma, Italy
| | - Valeria Giliberti
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, I-00161 Roma, Italy
| |
Collapse
|
5
|
Luo Y, Sheng S, Pisarra M, Martin-Jimenez A, Martin F, Kern K, Garg M. Selective excitation of vibrations in a single molecule. Nat Commun 2024; 15:6983. [PMID: 39143046 PMCID: PMC11324655 DOI: 10.1038/s41467-024-51419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
The capability to excite, probe, and manipulate vibrational modes is essential for understanding and controlling chemical reactions at the molecular level. Recent advancements in tip-enhanced Raman spectroscopies have enabled the probing of vibrational fingerprints in a single molecule with Ångström-scale spatial resolution. However, achieving controllable excitation of specific vibrational modes in individual molecules remains challenging. Here, we demonstrate the selective excitation and probing of vibrational modes in single deprotonated phthalocyanine molecules utilizing resonance Raman spectroscopy in a scanning tunneling microscope. Selective excitation is achieved by finely tuning the excitation wavelength of the laser to be resonant with the vibronic transitions between the molecular ground electronic state and the vibrational levels in the excited electronic state, resulting in the state-selective enhancement of the resonance Raman signal. Our approach contributes to setting the stage for steering chemical transformations in molecules on surfaces by selective excitation of molecular vibrations.
Collapse
Affiliation(s)
- Yang Luo
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
| | - Shaoxiang Sheng
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Michele Pisarra
- Dipartimento di Fisica, Università della Calabria, Via P. Bucci, Cubo 30C, 87036, Rende, CS, Italy
- INFN-LNF, Gruppo Collegato di Cosenza, Via P. Bucci, Cubo 31C, 87036, Rende, CS, Italy
| | - Alberto Martin-Jimenez
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nano), Faraday 9, Cantoblanco, 28049, Madrid, Spain
| | - Fernando Martin
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nano), Faraday 9, Cantoblanco, 28049, Madrid, Spain.
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Klaus Kern
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
- Institut de Physique, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Manish Garg
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
| |
Collapse
|
6
|
Nishizawa D, Amano R, Taketsugu T, Iwasa T. Near-field induced local excitation dynamics of Na10 and Na10-N2 from real-time TDDFT. J Chem Phys 2024; 161:054309. [PMID: 39101535 DOI: 10.1063/5.0211353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024] Open
Abstract
Electron dynamics of the Na10 chain and the Na10-N2 complex locally excited by an atomistic optical near-field are investigated using real-time time-dependent density functional theory calculations on real-space grids. Ultrafast laser pulses were used to simulate the near-field excitation under on- and off-resonance conditions. Off-resonance excitation did not lead to the propagation of the excitation through the Na10 chain. In contrast, under the resonance conditions, the excited state is delocalized over the entire Na chain. Analysis of the local dipole moment of each atom in Na10 indicates that this behavior is consistent with the transition density. Adding an N2 molecule to the opposite end of the local excitation region results in energy transfer via the Na10 chain. The energy transfer efficiency of the N2 molecule is well correlated with the absorption spectrum of Na10. The present study paves the way for realizing remote excitation and photonic devices at the atomic scale.
Collapse
Affiliation(s)
- Daisuke Nishizawa
- Department of Chemistry, School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Risa Amano
- Department of Chemistry, School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tetsuya Taketsugu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- WPI-ICReDD, Hokkaido University, Sapporo 001-0021, Japan
| | - Takeshi Iwasa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- WPI-ICReDD, Hokkaido University, Sapporo 001-0021, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| |
Collapse
|
7
|
Chaudhry I, Hu G, Ye H, Jensen L. Toward Modeling the Complexity of the Chemical Mechanism in SERS. ACS NANO 2024. [PMID: 39087679 DOI: 10.1021/acsnano.4c07198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Surface-enhanced Raman scattering (SERS) provides detailed information about the binding of molecules at interfaces and their interactions with the local environment due to the large enhancement of Raman scattering. This enhancement arises from a combination of the electromagnetic mechanism (EM) and chemical mechanism (CM). While it is commonly accepted that EM gives rise to most of the enhancement, large spectral changes originate from CM. To elucidate the rich information contained in SERS spectra about molecules at interfaces, a comprehensive understanding of the enhancement mechanisms is necessary. In this Perspective, we discuss the current understanding of the enhancement mechanisms and highlight their interplay in complex local environments. We will also discuss emerging areas where the development of computational and theoretical models is needed with specific attention given to how the CM contributes to the spectral changes. Future efforts in modeling should focus on overcoming the challenges presented in this review in order to capture the complexity of CM in SERS.
Collapse
Affiliation(s)
- Imran Chaudhry
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Gaohe Hu
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Hepeng Ye
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
8
|
Liu D, Li L, Jiang N. Nanoscale Chemical Probing of Metal-Supported Ultrathin Ferrous Oxide via Tip-Enhanced Raman Spectroscopy and Scanning Tunneling Microscopy. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:345-351. [PMID: 38817320 PMCID: PMC11134605 DOI: 10.1021/cbmi.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 06/01/2024]
Abstract
Metal-supported ultrathin ferrous oxide (FeO) has attracted immense interest in academia and industry due to its widespread applications in heterogeneous catalysis. However, chemical insight into the local structural characteristics of FeO, despite its critical importance in elucidating structure-property relationships, remains elusive. In this work, we report the nanoscale chemical probing of gold (Au)-supported ultrathin FeO via ultrahigh-vacuum tip-enhanced Raman spectroscopy (UHV-TERS) and scanning tunneling microscopy (STM). For comparative analysis, single-crystal Au(111) and Au(100) substrates are used to tune the interfacial properties of FeO. Although STM images show distinctly different moiré superstructures on FeO nanoislands on Au(111) and Au(100), TERS demonstrates the same chemical nature of FeO by comparable vibrational features. In addition, combined TERS and STM measurements identify a unique wrinkled FeO structure on Au(100), which is correlated to the reassembly of the intrinsic Au(100) surface reconstruction due to FeO deposition. Beyond revealing the morphologies of ultrathin FeO on Au substrates, our study provides a thorough understanding of the local interfacial properties and interactions of FeO on Au, which could shed light on the rational design of metal-supported FeO catalysts. Furthermore, this work demonstrates the promising utility of combined TERS and STM in chemically probing the structural properties of metal-supported ultrathin oxides on the nanoscale.
Collapse
Affiliation(s)
- Dairong Liu
- Department
of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Linfei Li
- Department
of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Nan Jiang
- Department
of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
- Department
of Physics, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
9
|
de Campos Ferreira R, Sagwal A, Doležal J, Canola S, Merino P, Neuman T, Švec M. Resonant Tip-Enhanced Raman Spectroscopy of a Single-Molecule Kondo System. ACS NANO 2024; 18:13164-13170. [PMID: 38711331 PMCID: PMC11112976 DOI: 10.1021/acsnano.4c02105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
Tip-enhanced Raman spectroscopy (TERS) under ultrahigh vacuum and cryogenic conditions enables exploration of the relations between the adsorption geometry, electronic state, and vibrational fingerprints of individual molecules. TERS capability of reflecting spin states in open-shell molecular configurations is yet unexplored. Here, we use the tip of a scanning probe microscope to lift a perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecule from a metal surface to bring it into an open-shell spin one-half anionic state. We reveal a correlation between the appearance of a Kondo resonance in differential conductance spectroscopy and concurrent characteristic changes captured by the TERS measurements. Through a detailed investigation of various adsorbed and tip-contacted PTCDA scenarios, we infer that the Raman scattering on suspended PTCDA is resonant with a higher excited state. Theoretical simulation of the vibrational spectra enables a precise assignment of the individual TERS peaks to high-symmetry Ag modes, including the fingerprints of the observed spin state. These findings highlight the potential of TERS in capturing complex interactions between charge, spin, and photophysical properties in nanoscale molecular systems and suggest a pathway for designing single-molecule spin-optical devices.
Collapse
Affiliation(s)
| | - Amandeep Sagwal
- Institute
of Physics, Czech Academy of Sciences; Cukrovarnická 10/112, Praha 6 CZ16200, Czech Republic
- Faculty
of Mathematics and Physics, Charles University; Ke Karlovu 3, Praha 2 CZ12116. Czech Republic
| | - Jiří Doležal
- Institute
of Physics, Czech Academy of Sciences; Cukrovarnická 10/112, Praha 6 CZ16200, Czech Republic
- Institute
of Physics, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Sofia Canola
- Institute
of Physics, Czech Academy of Sciences; Cukrovarnická 10/112, Praha 6 CZ16200, Czech Republic
| | - Pablo Merino
- Instituto
de Ciencia de Materiales de Madrid; CSIC, Sor Juana Inés de la Cruz 3, Madrid E28049, Spain
| | - Tomáš Neuman
- Institute
of Physics, Czech Academy of Sciences; Cukrovarnická 10/112, Praha 6 CZ16200, Czech Republic
| | - Martin Švec
- Institute
of Physics, Czech Academy of Sciences; Cukrovarnická 10/112, Praha 6 CZ16200, Czech Republic
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences; Flemingovo náměstí 542/2. Praha 6 CZ16000, Czech Republic
| |
Collapse
|
10
|
Li J, Li M, Wuethrich A, Guan R, Zhao L, Hu C, Trau M, Sun Y. Molecular Stratification and Treatment Monitoring of Lung Cancer Using a Small Extracellular Vesicle-Activated Nanocavity Architecture. Anal Chem 2024; 96:7651-7660. [PMID: 38690989 DOI: 10.1021/acs.analchem.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Development of molecular diagnostics for lung cancer stratification and monitoring is crucial for the rational planning and timely adjustment of treatments to improve clinical outcomes. In this regard, we propose a nanocavity architecture to sensitively profile the protein signature on small extracellular vesicles (sEVs) to enable accurate, noninvasive staging and treatment monitoring of lung cancer. The nanocavity architecture is formed by molecular recognition through the binding of sEVs with the nanobox-based core-shell surface-enhanced Raman scattering (SERS) barcodes and mirrorlike, asymmetric gold microelectrodes. By imposing an alternating current on the gold microelectrodes, a nanofluidic shear force was stimulated that supported the binding of sEVs and the efficient assembly of the nanoboxes. The binding of sEVs further induced a nanocavity between the nanobox and the gold microelectrode that significantly amplified the electromagnetic field to enable the simultaneous enhancement of Raman signals from four SERS barcodes and generate patient-specific molecular sEV signatures. Importantly, evaluated on a cohort of clinical samples (n = 76) on the nanocavity architecture, the acquired patient-specific sEV molecular signatures achieved accurate identification, stratification, and treatment monitoring of lung cancer patients, highlighting its potential for transition to clinical utility.
Collapse
Affiliation(s)
- Junrong Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Meiqin Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rui Guan
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lihui Zhao
- Wuhan Pulmonary Hospital, Wuhan 430079, P. R. China
| | - Cong Hu
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yao Sun
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
11
|
Zhang X, Li Z, Ji S, Xu W, Chen L, Xiao Z, Liu J, Hong W. Plasmon-Molecule Interactions in Single-Molecule Junctions. Chempluschem 2024; 89:e202300556. [PMID: 38050755 DOI: 10.1002/cplu.202300556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Single-molecule optoelectronics offers opportunities for advancing integrated photonics and electronics, which also serves as a tool to elucidate the underlying mechanism of light-matter interaction. Plasmonics, which plays pivotal role in the interaction of photons and matter, have became an emerging area. A comprehensive understanding of the plasmonic excitation and modulation mechanisms within single-molecule junctions (SMJs) lays the foundation for optoelectronic devices. Consequently, this review primarily concentrates on illuminating the fundamental principles of plasmonics within SMJs, delving into their research methods and modulation factors of plasmon-exciton. Moreover, we underscore the interaction phenomena within SMJs, including the enhancement of molecular fluorescence by plasmonics, Fano resonance and Rabi splitting caused by the interaction of plasmon-exciton. Finally, by emphasizing the potential applications of plasmonics within SMJs, such as their roles in optical tweezers, single-photon sources, super-resolution imaging, and chemical reactions, we elucidate the future prospects and current challenges in this domain.
Collapse
Affiliation(s)
- Xiangui Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhengyu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Shurui Ji
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Wei Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Lijue Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Zongyuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
12
|
Duverger E, Riedel D. Optoelectronic Readout of Single Er Adatom's Electronic States Adsorbed on the Si(100) Surface at Low Temperature (9 K). ACS NANO 2024; 18:9656-9669. [PMID: 38502103 DOI: 10.1021/acsnano.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Integrating nanoscale optoelectronic functions is vital for applications such as optical emitters, detectors, and quantum information. Lanthanide atoms show great potential in this endeavor due to their intrinsic transitions. Here, we investigate Er adatoms on Si(100)-2×1 at 9 K using a scanning tunneling microscope (STM) coupled to a tunable laser. Er adatoms display two main adsorption configurations that are optically excited between 800 and 1200 nm while the STM reads the resulting photocurrents. Our spectroscopic method reveals that various photocurrent signals stem from the bare silicon surface or Er adatoms. Additional photocurrent peaks appear as the signature of the Er adatom relaxation, triggering efficient dissociation of nearby trapped excitons. Calculations using density functional theory with spin-orbit coupling correction highlight the origin of the observed photocurrent peaks as specific 4f→4f or 4f→5d transitions. This spectroscopic technique can facilitate optoelectronic analysis of atomic and molecular assemblies by offering insight into their intrinsic quantum properties.
Collapse
Affiliation(s)
- Eric Duverger
- Institut FEMTO-ST, Univ. Franche-Comté, CNRS, F-25030 Besançon, France
| | - Damien Riedel
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris Sud, Université Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
13
|
You X, Maharjan S, Vinodgopal K, Atkin JM. Nanoscale insights into graphene oxide reduction by tip-enhanced Raman spectroscopy. Phys Chem Chem Phys 2024; 26:9871-9879. [PMID: 38168951 DOI: 10.1039/d3cp04711c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Graphene oxide (GO) has attracted substantial interest for its tunable properties and as a possible intermediate for the bulk manufacture of graphene. GO and its reduced derivatives display electronic and optical properties that depend strongly on their chemical structure, and with proper functionalization, GO can have a desirable bandgap for semiconductor applications. However, its chemical activity leads to a series of unclear chemical changes under ambient conditions, resulting in changes in color and solubility upon exposure to light. In this paper, we study the properties of fresh and spontaneously reduced GO under ambient conditions using tip-enhanced Raman spectroscopy (TERS) to map its nanometer scale chemical and structural heterogeneity. We observe different types of defect sites on reduced GO (rGO) by spatially mapping the D to G band peak ratio and D and G band spectral positions. The higher spatial resolution and out-of-plane polarization compared to conventional micro-Raman spectroscopy enables us to resolve unusual features, including D-band shifting on rGO. Based on statistical analysis of the spatial variations in modes and theoretical calculations for different functional groups, we conclude the reduction mechanism of GO is a self-photocatalytic reduction with the participation of water and visible light, in which the rate determining step is electron transport through the metal substrate and ion diffusion on the GO surface. These results demonstrate that TERS can reveal structural and chemical details elucidating reduction mechanisms, through the examination of samples at different time points.
Collapse
Affiliation(s)
- Xiao You
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| | - Sangita Maharjan
- Department of Chemistry, North Carolina Central University, Durham, USA
| | | | - Joanna M Atkin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| |
Collapse
|
14
|
Peng W, Zhou JW, Li ML, Sun L, Zhang YJ, Li JF. Construction of nanoparticle-on-mirror nanocavities and their applications in plasmon-enhanced spectroscopy. Chem Sci 2024; 15:2697-2711. [PMID: 38404398 PMCID: PMC10882497 DOI: 10.1039/d3sc05722d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/11/2024] [Indexed: 02/27/2024] Open
Abstract
Plasmonic nanocavities exhibit exceptional capabilities in visualizing the internal structure of a single molecule at sub-nanometer resolution. Among these, an easily manufacturable nanoparticle-on-mirror (NPoM) nanocavity is a successful and powerful platform for demonstrating various optical phenomena. Exciting advances in surface-enhanced spectroscopy using NPoM nanocavities have been developed and explored, including enhanced Raman, fluorescence, phosphorescence, upconversion, etc. This perspective emphasizes the construction of NPoM nanocavities and their applications in achieving higher enhancement capabilities or spatial resolution in dark-field scattering spectroscopy and plasmon-enhanced spectroscopy. We describe a systematic framework that elucidates how to meet the requirements for studying light-matter interactions through the creation of well-designed NPoM nanocavities. Additionally, it provides an outlook on the challenges, future development directions, and practical applications in the field of plasmon-enhanced spectroscopy.
Collapse
Affiliation(s)
- Wei Peng
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jing-Wen Zhou
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Mu-Lin Li
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Lan Sun
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yue-Jiao Zhang
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jian-Feng Li
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University Zhangzhou 363000 China
| |
Collapse
|
15
|
Suganami Y, Oshikiri T, Mitomo H, Sasaki K, Liu YE, Shi X, Matsuo Y, Ijiro K, Misawa H. Spatially Uniform and Quantitative Surface-Enhanced Raman Scattering under Modal Ultrastrong Coupling Beyond Nanostructure Homogeneity Limits. ACS NANO 2024; 18:4993-5002. [PMID: 38299996 PMCID: PMC10867886 DOI: 10.1021/acsnano.3c10959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024]
Abstract
We developed a substrate that enables highly sensitive and spatially uniform surface-enhanced Raman scattering (SERS). This substrate comprises densely packed gold nanoparticles (d-AuNPs)/titanium dioxide/Au film (d-ATA). The d-ATA substrate demonstrates modal ultrastrong coupling between localized surface plasmon resonances (LSPRs) of AuNPs and Fabry-Pérot nanocavities. d-ATA exhibits a significant enhancement of the near-field intensity, resulting in a 78-fold increase in the SERS signal for crystal violet (CV) compared to that of d-AuNP/TiO2 substrates. Importantly, high sensitivity and a spatially uniform signal intensity can be obtained without precise control of the shape and arrangement of the nanoscale AuNPs, enabling quantitative SERS measurements. Additionally, SERS measurements of rhodamine 6G (R6G) on this substrate under ultralow adsorption conditions (0.6 R6G molecules/AuNP) show a spatial variation in the signal intensity within 3%. These findings suggest that the SERS signal under modal ultrastrong coupling originates from multiple plasmonic particles with quantum coherence.
Collapse
Affiliation(s)
- Yoshiki Suganami
- Research
Institute for Electronic Science, Hokkaido
University, Sapporo 001-0021, Japan
| | - Tomoya Oshikiri
- Research
Institute for Electronic Science, Hokkaido
University, Sapporo 001-0021, Japan
- Institute
of Multidisciplinary Research, Tohoku University, Sendai 980-8577, Japan
| | - Hideyuki Mitomo
- Research
Institute for Electronic Science, Hokkaido
University, Sapporo 001-0021, Japan
- Institute
of Multidisciplinary Research, Tohoku University, Sendai 980-8577, Japan
| | - Keiji Sasaki
- Research
Institute for Electronic Science, Hokkaido
University, Sapporo 001-0021, Japan
| | - Yen-En Liu
- Research
Institute for Electronic Science, Hokkaido
University, Sapporo 001-0021, Japan
| | - Xu Shi
- Creative
Research Institution, Hokkaido University, Sapporo 001-0021, Japan
| | - Yasutaka Matsuo
- Research
Institute for Electronic Science, Hokkaido
University, Sapporo 001-0021, Japan
| | - Kuniharu Ijiro
- Research
Institute for Electronic Science, Hokkaido
University, Sapporo 001-0021, Japan
| | - Hiroaki Misawa
- Research
Institute for Electronic Science, Hokkaido
University, Sapporo 001-0021, Japan
- Research
Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
- Center
for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
16
|
Huang Z, McCray ARC, Li Y, Morrow DJ, Qian EK, Young Chung D, Kanatzidis MG, Phatak C, Ma X. Raman Shifts in Two-Dimensional van der Waals Magnets Reveal Magnetic Texture Evolution. NANO LETTERS 2024; 24:1531-1538. [PMID: 38286029 DOI: 10.1021/acs.nanolett.3c03923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Two-dimensional (2D) van der Waals magnets comprise rich physics that can be exploited for spintronic applications. We investigate the interplay between spin-phonon coupling and spin textures in a 2D van der Waals magnet by combining magneto-Raman spectroscopy with cryogenic Lorentz transmission electron microscopy. We find that when stable skyrmion bubbles are formed in the 2D magnet, a field-dependent Raman shift can be observed, and this shift is absent for the 2D magnet prepared in its ferromagnetic state. Correlating these observations with numerical simulations that take into account field-dependent magnetic textures and spin--phonon coupling in the 2D magnet, we associate the Raman shift to field-induced modulations of the skyrmion bubbles and derive the existence of inhomogeneity in the skyrmion textures over the film thickness.
Collapse
Affiliation(s)
- Zhengjie Huang
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Arthur R C McCray
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Applied Physics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Yue Li
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Darien J Morrow
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Eric K Qian
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Duck Young Chung
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Mercouri G Kanatzidis
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Charudatta Phatak
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xuedan Ma
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Northwestern-Argonne Institute of Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Doležal J, Sagwal A, de Campos Ferreira RC, Švec M. Single-Molecule Time-Resolved Spectroscopy in a Tunable STM Nanocavity. NANO LETTERS 2024; 24:1629-1634. [PMID: 38286028 PMCID: PMC10853955 DOI: 10.1021/acs.nanolett.3c04314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
Spontaneous fluorescence rates of single-molecule emitters are typically on the order of nanoseconds. However, coupling them with plasmonic nanostructures can substantially increase their fluorescence yields. The confinement between a tip and sample in a scanning tunneling microscope creates a tunable nanocavity, an ideal platform for exploring the yields and excitation decay rates of single-molecule emitters, depending on their coupling strength to the nanocavity. With such a setup, we determine the excitation lifetimes from the direct time-resolved measurements of phthalocyanine fluorescence decays, decoupled from the metal substrates by ultrathin NaCl layers. We find that when the tip is approached to single molecules, their lifetimes are reduced to the picosecond range due to the effect of coupling with the tip-sample nanocavity. On the other hand, ensembles of the adsorbed molecules measured without the nanocavity manifest nanosecond-range lifetimes. This approach overcomes the drawbacks associated with the estimation of lifetimes for single molecules from their respective emission line widths.
Collapse
Affiliation(s)
- Jiří Doležal
- Institute of Physics, Czech Academy of Sciences; Cukrovarnická 10/112, CZ16200 Praha 6, Czech Republic
| | - Amandeep Sagwal
- Institute of Physics, Czech Academy of Sciences; Cukrovarnická 10/112, CZ16200 Praha 6, Czech Republic
- Faculty of Mathematics and Physics, Charles University; Ke Karlovu 3, CZ12116 Praha 2, Czech Republic
| | | | - Martin Švec
- Institute of Physics, Czech Academy of Sciences; Cukrovarnická 10/112, CZ16200 Praha 6, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, CZ16000 Praha 6, Czech Republic
| |
Collapse
|
18
|
Kazuma E. Key Factors for Controlling Plasmon-Induced Chemical Reactions on Metal Surfaces. J Phys Chem Lett 2024; 15:59-67. [PMID: 38131658 DOI: 10.1021/acs.jpclett.3c03120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Plasmon-induced chemical reactions based on direct interactions between the plasmons of metal nanostructures and molecules have attracted increasing attention as a means of efficiently utilizing sunlight. In recent years, achievements in complex synthetic reactions as well as simple dissociation reactions of gaseous molecules using plasmons have been reported. However, recent research progress has revealed that multiple factors govern plasmon-induced chemical reactions. This perspective provides an overview of the key factors that influence plasmon-induced chemical reactions on metal surfaces and discusses the difficulty of controlling the reactions, which is caused by the entanglement of the key factors. A strategy for designing plasmonic metal catalysts to achieve the desired reactions is also discussed based on the current understanding, and directions for further research are provided.
Collapse
Affiliation(s)
- Emiko Kazuma
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Surface and Interface Science Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
19
|
Zhang C, Hu H, Ma C, Li Y, Wang X, Li D, Movsesyan A, Wang Z, Govorov A, Gan Q, Ding T. Quantum plasmonics pushes chiral sensing limit to single molecules: a paradigm for chiral biodetections. Nat Commun 2024; 15:2. [PMID: 38169462 PMCID: PMC10762144 DOI: 10.1038/s41467-023-42719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/19/2023] [Indexed: 01/05/2024] Open
Abstract
Chiral sensing of single molecules is vital for the understanding of chirality and their applications in biomedicine. However, current technologies face severe limitations in achieving single-molecule sensitivity. Here we overcome these limitations by designing a tunable chiral supramolecular plasmonic system made of helical oligoamide sequences (OS) and nanoparticle-on-mirror (NPoM) resonator, which works across the classical and quantum regimes. Our design enhances the chiral sensitivity in the quantum tunnelling regime despite of the reduced local E-field, which is due to the strong Coulomb interactions between the chiral OSs and the achiral NPoMs and the additional enhancement from tunnelling electrons. A minimum of four molecules per single-Au particle can be detected, which allows for the detection of an enantiomeric excess within a monolayer, manifesting great potential for the chiral sensing of single molecules.
Collapse
Affiliation(s)
- Chi Zhang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, 430072, Wuhan, China
| | - Huatian Hu
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, 430205, Wuhan, China
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, Arnesano, LE, 73010, Italy
| | - Chunmiao Ma
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Yawen Li
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, 430072, Wuhan, China
| | - Xujie Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, 430072, Wuhan, China
| | - Dongyao Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Artur Movsesyan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, China
- Department of Physics and Astronomy, Ohio University, Athens, OH, 45701, USA
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Alexander Govorov
- Department of Physics and Astronomy, Ohio University, Athens, OH, 45701, USA
| | - Quan Gan
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
20
|
Li N, Sheng H, Sun Y, Wang J. Spectroscopic study on size-dependent optoelectronics of N-type ultra-high conductive polymer PBFDO. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 298:122744. [PMID: 37116369 DOI: 10.1016/j.saa.2023.122744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 05/26/2023]
Abstract
Single-molecule plasmas are widely used in spectroscopic studies and plasma devices, and the organic conjugated molecular chain of poly (benzodifurandione) (PBFDO) has excellent electrical conductivity and unique electronic structure. Therefore, an in-depth theoretical study of the spectroscopic, charge transfer and electron transport properties of PBFDO polymers and the analysis of physical mechanisms are essential. In this work, the absorption spectra of neutral and charged PBFDO polymers of different sizes and periodic systems of PBFDO polymers are studied theoretically. The charge transfer modes of the different absorption peaks are also given. The Raman and resonance Raman properties of long-chain PBFDO polymers under 514 nm laser were revealed. The electron transport properties and Current-Voltage Characteristic (I-V) Curves of PBFDO devices were also investigated. This work will provide the necessary theoretical guidance for the application of PBFDO in the field of nanoscale optoelectronics and the design of devices.
Collapse
Affiliation(s)
- Ning Li
- Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials, College of Science, Liaoning Petrochemical University, Fushun 113001, PR China
| | - Hao Sheng
- Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials, College of Science, Liaoning Petrochemical University, Fushun 113001, PR China.
| | - Ying Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang 110036, PR China.
| | - Jingang Wang
- Liaoning Provincial Key Laboratory of Novel Micro-Nano Functional Materials, College of Science, Liaoning Petrochemical University, Fushun 113001, PR China
| |
Collapse
|
21
|
Wang H, Wang T, Yuan X, Wang Y, Yue X, Wang L, Zhang J, Wang J. Plasmonic Nanostructure Biosensors: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:8156. [PMID: 37836985 PMCID: PMC10575025 DOI: 10.3390/s23198156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Plasmonic nanostructure biosensors based on metal are a powerful tool in the biosensing field. Surface plasmon resonance (SPR) can be classified into localized surface plasmon resonance (LSPR) and propagating surface plasmon polariton (PSPP), based on the transmission mode. Initially, the physical principles of LSPR and PSPP are elaborated. In what follows, the recent development of the biosensors related to SPR principle is summarized. For clarity, they are categorized into three groups according to the sensing principle: (i) inherent resonance-based biosensors, which are sensitive to the refractive index changes of the surroundings; (ii) plasmon nanoruler biosensors in which the distances of the nanostructure can be changed by biomolecules at the nanoscale; and (iii) surface-enhanced Raman scattering biosensors in which the nanostructure serves as an amplifier for Raman scattering signals. Moreover, the advanced application of single-molecule detection is discussed in terms of metal nanoparticle and nanopore structures. The review concludes by providing perspectives on the future development of plasmonic nanostructure biosensors.
Collapse
Affiliation(s)
- Huimin Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Tao Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Xuyang Yuan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Yuandong Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Xinzhao Yue
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Lu Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Jinyan Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Jian Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| |
Collapse
|
22
|
Chen X, Xu S, Shabani S, Zhao Y, Fu M, Millis AJ, Fogler MM, Pasupathy AN, Liu M, Basov DN. Machine Learning for Optical Scanning Probe Nanoscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2109171. [PMID: 36333118 DOI: 10.1002/adma.202109171] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/09/2022] [Indexed: 06/16/2023]
Abstract
The ability to perform nanometer-scale optical imaging and spectroscopy is key to deciphering the low-energy effects in quantum materials, as well as vibrational fingerprints in planetary and extraterrestrial particles, catalytic substances, and aqueous biological samples. These tasks can be accomplished by the scattering-type scanning near-field optical microscopy (s-SNOM) technique that has recently spread to many research fields and enabled notable discoveries. Herein, it is shown that the s-SNOM, together with scanning probe research in general, can benefit in many ways from artificial-intelligence (AI) and machine-learning (ML) algorithms. Augmented with AI- and ML-enhanced data acquisition and analysis, scanning probe optical nanoscopy is poised to become more efficient, accurate, and intelligent.
Collapse
Affiliation(s)
- Xinzhong Chen
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Suheng Xu
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Sara Shabani
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Yueqi Zhao
- Department of Physics, University of California at San Diego, La Jolla, CA, 92093-0319, USA
| | - Matthew Fu
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Andrew J Millis
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Michael M Fogler
- Department of Physics, University of California at San Diego, La Jolla, CA, 92093-0319, USA
| | - Abhay N Pasupathy
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - D N Basov
- Department of Physics, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
23
|
Grewal A, Leon CC, Kuhnke K, Kern K, Gunnarsson O. Character of Electronic States in the Transport Gap of Molecules on Surfaces. ACS NANO 2023. [PMID: 37387521 PMCID: PMC10373518 DOI: 10.1021/acsnano.2c12447] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
We report on scanning tunneling microscopy (STM) topographs of individual metal phthalocyanines (MPc) on a thin salt (NaCl) film adsorbed on a gold substrate, at tunneling energies within the molecule's electronic transport gap. Theoretical models of increasing complexity are discussed. The calculations for MPcs adsorbed on a thin NaCl layer on Au(111) demonstrate that the STM pattern rotates with the molecule's orientations─in excellent agreement with the experimental data. Thus, even the STM topography obtained for energies in the transport gap represent the structure of a one atom thick molecule. It is shown that the electronic states inside the transport gap can be rather accurately approximated by linear combinations of bound molecular orbitals (MOs). The gap states include not only the frontier orbitals but also surprisingly large contributions from energetically much lower MOs. These results will be essential for understanding processes, such as exciton creation, which can be induced by electrons tunneling through the transport gap of a molecule.
Collapse
Affiliation(s)
- Abhishek Grewal
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Christopher C Leon
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Klaus Kuhnke
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Klaus Kern
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Institut de Physique, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Olle Gunnarsson
- Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
24
|
Chen Y, Sun M. Plexcitonics: plasmon-exciton coupling for enhancing spectroscopy, optical chirality, and nonlinearity. NANOSCALE 2023. [PMID: 37377142 DOI: 10.1039/d3nr01388j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Plexcitonics is a rapidly developing interdisciplinary field that holds immense potential for the creation of innovative optical technologies and devices. This field focuses on investigating the interactions between plasmons and excitons in hybrid systems. In this review, we provide an overview of the fundamental principles of plasmonics and plexcitonics and discuss the latest advancements in plexcitonics. Specifically, we highlight the ability to manipulate plasmon-exciton interactions, the emerging field of tip-enhanced spectroscopy, and advancements in optical chirality and nonlinearity. These recent developments have spurred further research in the field of plexcitonics and offer inspiration for the design of advanced materials and devices with enhanced optical properties and functionalities.
Collapse
Affiliation(s)
- Yichuan Chen
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, P. R. China.
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, P. R. China.
| |
Collapse
|
25
|
Luo Y, Martin-Jimenez A, Pisarra M, Martin F, Garg M, Kern K. Imaging and controlling coherent phonon wave packets in single graphene nanoribbons. Nat Commun 2023; 14:3484. [PMID: 37311753 DOI: 10.1038/s41467-023-39239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
The motion of atoms is at the heart of any chemical or structural transformation in molecules and materials. Upon activation of this motion by an external source, several (usually many) vibrational modes can be coherently coupled, thus facilitating the chemical or structural phase transformation. These coherent dynamics occur on the ultrafast timescale, as revealed, e.g., by nonlocal ultrafast vibrational spectroscopic measurements in bulk molecular ensembles and solids. Tracking and controlling vibrational coherences locally at the atomic and molecular scales is, however, much more challenging and in fact has remained elusive so far. Here, we demonstrate that the vibrational coherences induced by broadband laser pulses on a single graphene nanoribbon (GNR) can be probed by femtosecond coherent anti-Stokes Raman spectroscopy (CARS) when performed in a scanning tunnelling microscope (STM). In addition to determining dephasing (~440 fs) and population decay times (~1.8 ps) of the generated phonon wave packets, we are able to track and control the corresponding quantum coherences, which we show to evolve on time scales as short as ~70 fs. We demonstrate that a two-dimensional frequency correlation spectrum unequivocally reveals the quantum couplings between different phonon modes in the GNR.
Collapse
Affiliation(s)
- Yang Luo
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Alberto Martin-Jimenez
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Michele Pisarra
- INFN-LNF, Gruppo Collegato di Cosenza, Via P. Bucci, cubo 31C, 87036, Rende (CS), Italy
| | - Fernando Martin
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nano), Faraday 9, Cantoblanco, 28049, Madrid, Spain
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Manish Garg
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
| | - Klaus Kern
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
- Institut de Physique, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
26
|
Liang K, Bi L, Zhu Q, Zhou H, Li S. Ultrafast Dynamics Revealed with Time-Resolved Scanning Tunneling Microscopy: A Review. ACS APPLIED OPTICAL MATERIALS 2023; 1:924-938. [PMID: 37260467 PMCID: PMC10227725 DOI: 10.1021/acsaom.2c00169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/23/2023] [Indexed: 06/02/2023]
Abstract
A scanning tunneling microscope (STM) capable of performing pump-probe spectroscopy integrates unmatched atomic-scale resolution with high temporal resolution. In recent years, the union of electronic, terahertz, or visible/near-infrared pulses with STM has contributed to our understanding of the atomic-scale processes that happen between milliseconds and attoseconds. This time-resolved STM (TR-STM) technique is evolving into an unparalleled approach for exploring the ultrafast nuclear, electronic, or spin dynamics of molecules, low-dimensional structures, and material surfaces. Here, we review the recent advancements in TR-STM; survey its application in measuring the dynamics of three distinct systems, nucleus, electron, and spin; and report the studies on these transient processes in a series of materials. Besides the discussion on state-of-the-art techniques, we also highlight several emerging research topics about the ultrafast processes in nanoscale objects where we anticipate that the TR-STM can help broaden our knowledge.
Collapse
Affiliation(s)
- Kangkai Liang
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Liya Bi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Qingyi Zhu
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
| | - Hao Zhou
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Shaowei Li
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| |
Collapse
|
27
|
Meng B, Xie Y, Chen L, Wang H, Li M, Dong Z. Apex-Confined Plasmonic Tip for High Resolution Tip-Enhanced Raman Spectroscopic Imaging of Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16984-16990. [PMID: 36946568 DOI: 10.1021/acsami.2c22624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This paper reports a handy technical scheme to decorate atomic force microscopy (AFM) tips toward tip-enhanced Raman spectroscopy (TERS) applications. The major attraction of these homemade tips lies in that silver decoration can be confined at the apex of commercial tips by the means of an AFM-controlled electrochemical reaction. The reduction of Ag+ occurs in a highly sealed environment to secure the metal coating efficiency. Key factors include silver nitrate solution to provide Ag+, ambient relative humidity and temperature in a humidity cell, electric potential bias, and tip-surface distance. Subsequently, these silver-coated tips are evaluated for TERS measurement of carbon nanotubes (CNTs) so that both morphological and chemical characteristics of CNTs are concurrently obtained. The Raman spectra reveal that our plasmonic tip competently possesses an ∼30-fold local field signal increase and the corresponding TERS image laterally resolves at the single-pixel level.
Collapse
Affiliation(s)
- Bin Meng
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yong Xie
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Le Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Haitao Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhuxin Dong
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
28
|
Yang B, Chen G, Ghafoor A, Zhang YF, Zhang XB, Li H, Dong XR, Wang RP, Zhang Y, Zhang Y, Dong ZC. Chemical Enhancement and Quenching in Single-Molecule Tip-Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2023; 62:e202218799. [PMID: 36719175 DOI: 10.1002/anie.202218799] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Despite intensive research in surface enhanced Raman spectroscopy (SERS), the influence mechanism of chemical effects on Raman signals remains elusive. Here, we investigate such chemical effects through tip-enhanced Raman spectroscopy (TERS) of a single planar ZnPc molecule with varying but controlled contact environments. TERS signals are found dramatically enhanced upon making a tip-molecule point contact. A combined physico-chemical mechanism is proposed to explain such an enhancement via the generation of a ground-state charge-transfer induced vertical Raman polarizability that is further enhanced by the strong vertical plasmonic field in the nanocavity. In contrast, TERS signals from ZnPc chemisorbed flatly on substrates are found strongly quenched, which is rationalized by the Raman polarizability screening effect induced by interfacial dynamic charge transfer. Our results provide deep insights into the understanding of the chemical effects in TERS/SERS enhancement and quenching.
Collapse
Affiliation(s)
- Ben Yang
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Gong Chen
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Atif Ghafoor
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu-Fan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xian-Biao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hang Li
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiao-Ru Dong
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Rui-Pu Wang
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.,School of Physics and Department of Chemical Physics, University of Science and Technology of China Hefei, Anhui, 230026, China.,Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Yao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.,School of Physics and Department of Chemical Physics, University of Science and Technology of China Hefei, Anhui, 230026, China.,Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| | - Zhen-Chao Dong
- Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.,School of Physics and Department of Chemical Physics, University of Science and Technology of China Hefei, Anhui, 230026, China.,Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| |
Collapse
|
29
|
Itoh T, Procházka M, Dong ZC, Ji W, Yamamoto YS, Zhang Y, Ozaki Y. Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications. Chem Rev 2023; 123:1552-1634. [PMID: 36745738 PMCID: PMC9952515 DOI: 10.1021/acs.chemrev.2c00316] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Indexed: 02/08/2023]
Abstract
Surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) have opened a variety of exciting research fields. However, although a vast number of applications have been proposed since the two techniques were first reported, none has been applied to real practical use. This calls for an update in the recent fundamental and application studies of SERS and TERS. Thus, the goals and scope of this review are to report new directions and perspectives of SERS and TERS, mainly from the viewpoint of combining their mechanism and application studies. Regarding the recent progress in SERS and TERS, this review discusses four main topics: (1) nanometer to subnanometer plasmonic hotspots for SERS; (2) Ångström resolved TERS; (3) chemical mechanisms, i.e., charge-transfer mechanism of SERS and semiconductor-enhanced Raman scattering; and (4) the creation of a strong bridge between the mechanism studies and applications.
Collapse
Affiliation(s)
- Tamitake Itoh
- Health
and Medical Research Institute, National
Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, 761-0395Kagawa, Japan
| | - Marek Procházka
- Faculty
of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, 121 16Prague 2, Czech Republic
| | - Zhen-Chao Dong
- Hefei
National Research Center for Physical Sciences at the Microscale, University of Science and Technique of China, Hefei230026, China
| | - Wei Ji
- College
of Chemistry, Chemical Engineering, and Resource Utilization, Northeast Forestry University, Harbin145040, China
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology (JAIST), Nomi, 923-1292Ishikawa, Japan
| | - Yao Zhang
- Hefei
National Research Center for Physical Sciences at the Microscale, University of Science and Technique of China, Hefei230026, China
| | - Yukihiro Ozaki
- School of
Biological and Environmental Sciences, Kwansei
Gakuin University, 2-1,
Gakuen, Sanda, 669-1330Hyogo, Japan
- Toyota
Physical and Chemical Research Institute, Nagakute, 480-1192Aichi, Japan
| |
Collapse
|
30
|
Mahapatra S, Jiang N. Precise tracking of tip-induced structural variation at the single-chemical-bond limit. LIGHT, SCIENCE & APPLICATIONS 2023; 12:21. [PMID: 36627289 PMCID: PMC9832007 DOI: 10.1038/s41377-022-01055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sub-nanometer-resolved TERS provides a systematic way for investigating tip-molecule interaction and molecular motions, enabling a promising approach to examine on-surface reaction mechanisms and catalysis at the microscopic level.
Collapse
Affiliation(s)
- Sayantan Mahapatra
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA
| | - Nan Jiang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
31
|
Kawaguchi R, Hashimoto K, Kakudate T, Katoh K, Yamashita M, Komeda T. Spatially Resolving Electron Spin Resonance of π-Radical in Single-molecule Magnet. NANO LETTERS 2023; 23:213-219. [PMID: 36585948 PMCID: PMC9838557 DOI: 10.1021/acs.nanolett.2c04049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The spintronic properties of magnetic molecules have attracted significant scientific attention. Special emphasis has been placed on the qubit for quantum information processing. The single-molecule magnet bis(phthalocyaninato (Pc)) Tb(III) (TbPc2) is one of the best examined cases in which the delocalized π-radical electron spin of the Pc ligand plays the key role in reading and intermediating the localized Tb spin qubits. We utilized the electron spin resonance (ESR) technique implemented on a scanning tunneling microscope (STM) and use it to measure local the ESR of a single TbPc2 molecule decoupled from the Cu(100) substrate by a two-monolayer NaCl film to identify the π-radical spin. We detected the ESR signal at the ligand positions under the resonance condition expected for an S = 1/2 spin. The results reveal that the π-radical electron is delocalized within the ligands and exhibits intramolecular coupling susceptible to the chemical environment.
Collapse
Affiliation(s)
- Ryo Kawaguchi
- Institute
of Multidisciplinary Research for Advanced Materials (IMRAM, Tagen), Tohoku University, Sendai980-0877, Japan
| | - Katsushi Hashimoto
- Department
of Physics, Graduate School of Sciences, Tohoku University, Sendai980-8578, Japan
- Center
for Science and Innovation in Spintronics (Core Research Cluster), Tohoku University, Sendai980-8577, Japan
| | - Toshiyuki Kakudate
- Department
of Industrial Systems Engineering, National
Institute of Technology (KOSEN), Hachinohe
College, 16-1 Uwanotai, Tamonoki, Hachinohe039-1192, Japan
| | - Keiichi Katoh
- Department
of Chemistry, Graduate School of Science, Josai University, Sakado, Saitama350-0295, Japan
| | - Masahiro Yamashita
- Department
of Chemistry, Graduate School of Science, Tohoku University, Sendai980-8578, Japan
- School
of Materials Science and Engineering, Nankai
University, Tianjin300350, People’s Republic of China
| | - Tadahiro Komeda
- Institute
of Multidisciplinary Research for Advanced Materials (IMRAM, Tagen), Tohoku University, Sendai980-0877, Japan
- Center
for Science and Innovation in Spintronics (Core Research Cluster), Tohoku University, Sendai980-8577, Japan
| |
Collapse
|
32
|
Nian LL, Wang T, Lü JT. Plasmon Squeezing in Single-Molecule Junctions. NANO LETTERS 2022; 22:9418-9423. [PMID: 36449564 DOI: 10.1021/acs.nanolett.2c03371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Scanning tunneling microscope (STM)-induced luminescence provides an ideal platform for electrical generation and the atomic-scale manipulation of nonclassical states of light. However, despite its extreme importance in quantum technologies, squeezed light emission with reduced quantum fluctuations has hitherto not been demonstrated in such a platform. Here, we theoretically predict that the emitted light from the plasmon mode can be squeezed in an STM single molecular junction subject to an external laser drive. Going beyond the traditional paradigm that generates squeezing with the quadratic interaction of photons, our prediction explores the molecular coherence involved in an anharmonic energy spectrum of a coupled plasmon-molecule-exciton system. Furthermore, we show that, by selectively exciting the energy ladder, the squeezed plasmon can show either sub- or super-Poissonian statistical properties. We also demonstrate that, following the same principle, the molecular excitonic mode can be squeezed simultaneously.
Collapse
Affiliation(s)
- Lei-Lei Nian
- School of Physics and Astronomy, Yunnan University, 650091Kunming, People's Republic of China
| | - Tao Wang
- School of Physics, Institute for Quantum Science and Engineering, and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074Wuhan, People's Republic of China
| | - Jing-Tao Lü
- School of Physics, Institute for Quantum Science and Engineering, and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074Wuhan, People's Republic of China
| |
Collapse
|
33
|
Doležal J, Canola S, Hapala P, de Campos Ferreira RC, Merino P, Švec M. Evidence of exciton-libron coupling in chirally adsorbed single molecules. Nat Commun 2022; 13:6008. [PMID: 36224183 PMCID: PMC9556530 DOI: 10.1038/s41467-022-33653-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022] Open
Abstract
Interplay between motion of nuclei and excitations has an important role in molecular photophysics of natural and artificial structures. Here we provide a detailed analysis of coupling between quantized librational modes (librons) and charged excited states (trions) on single phthalocyanine dyes adsorbed on a surface. By means of tip-induced electroluminescence performed with a scanning probe microscope, we identify libronic signatures in spectra of chirally adsorbed phthalocyanines and find that these signatures are absent from spectra of symmetrically adsorbed species. We create a model of the libronic coupling based on the Franck-Condon principle to simulate the spectral features. Experimentally measured librational spectra match very well the theoretically calculated librational eigenenergies and peak intensities (Franck-Condon factors). Moreover, the comparison reveals an unexpected depopulation channel for the zero libron of the excited state that can be effectively controlled by tuning the size of the nanocavity. Our results showcase the possibility of characterizing the dynamics of molecules by their low-energy molecular modes using µeV-resolved tip-enhanced spectroscopy. Vibronic coupling in molecules plays an essential role in photophysics. Here, the authors observe optical fingerprints of the coupling between librational states and charged excited states in a single phthalocyanine molecule chirally absorbed on a surface.
Collapse
Affiliation(s)
- Jiří Doležal
- Institute of Physics, Czech Academy of Sciences, CZ16200, Praha 6, Czech Republic. .,Faculty of Mathematics and Physics, Charles University, CZ12116, Praha 2, Czech Republic.
| | - Sofia Canola
- Institute of Physics, Czech Academy of Sciences, CZ16200, Praha 6, Czech Republic
| | - Prokop Hapala
- Institute of Physics, Czech Academy of Sciences, CZ16200, Praha 6, Czech Republic
| | | | - Pablo Merino
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, E08193, Barcelona, Spain.,Instituto de Ciencia de Materiales de Madrid; CSIC, E28049, Madrid, Spain
| | - Martin Švec
- Institute of Physics, Czech Academy of Sciences, CZ16200, Praha 6, Czech Republic. .,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, CZ16000, Praha 6, Czech Republic.
| |
Collapse
|
34
|
Plasmonic phenomena in molecular junctions: principles and applications. Nat Rev Chem 2022; 6:681-704. [PMID: 37117494 DOI: 10.1038/s41570-022-00423-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Molecular junctions are building blocks for constructing future nanoelectronic devices that enable the investigation of a broad range of electronic transport properties within nanoscale regions. Crossing both the nanoscopic and mesoscopic length scales, plasmonics lies at the intersection of the macroscopic photonics and nanoelectronics, owing to their capability of confining light to dimensions far below the diffraction limit. Research activities on plasmonic phenomena in molecular electronics started around 2010, and feedback between plasmons and molecular junctions has increased over the past years. These efforts can provide new insights into the near-field interaction and the corresponding tunability in properties, as well as resultant plasmon-based molecular devices. This Review presents the latest advancements of plasmonic resonances in molecular junctions and details the progress in plasmon excitation and plasmon coupling. We also highlight emerging experimental approaches to unravel the mechanisms behind the various types of light-matter interactions at molecular length scales, where quantum effects come into play. Finally, we discuss the potential of these plasmonic-electronic hybrid systems across various future applications, including sensing, photocatalysis, molecular trapping and active control of molecular switches.
Collapse
|
35
|
First-principles study on the luminescence property of a single-molecule near metallic nanoclusters. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Kato R, Moriyama T, Umakoshi T, Yano TA, Verma P. Ultrastable tip-enhanced hyperspectral optical nanoimaging for defect analysis of large-sized WS 2 layers. SCIENCE ADVANCES 2022; 8:eabo4021. [PMID: 35857514 PMCID: PMC9286508 DOI: 10.1126/sciadv.abo4021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/03/2022] [Indexed: 05/25/2023]
Abstract
Optical nanoimaging techniques, such as tip-enhanced Raman spectroscopy (TERS), are nowadays indispensable for chemical and optical characterization in the entire field of nanotechnology and have been extensively used for various applications, such as visualization of nanoscale defects in two-dimensional (2D) materials. However, it is still challenging to investigate micrometer-sized sample with nanoscale spatial resolution because of severe limitation of measurement time due to drift of the experimental system. Here, we achieved long-duration TERS imaging of a micrometer-sized WS2 sample for 6 hours in a reproducible manner. Our ultrastable TERS system enabled to reveal the defect density on the surface of tungsten disulfide layers in large area equivalent to the device scale. It also helped us to detect rare defect-related optical signals from the sample. The present study paves ways to evaluate nanoscale defects of 2D materials in large area and to unveil remarkable optical and chemical properties of large-sized nanostructured materials.
Collapse
Affiliation(s)
- Ryo Kato
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima, Tokushima, Tokushima 770-8506, Japan
| | - Toki Moriyama
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takayuki Umakoshi
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Taka-aki Yano
- Institute of Post-LED Photonics, Tokushima University, 2-1 Minamijosanjima, Tokushima, Tokushima 770-8506, Japan
| | - Prabhat Verma
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
37
|
Conformational heterogeneity of molecules physisorbed on a gold surface at room temperature. Nat Commun 2022; 13:4133. [PMID: 35840568 PMCID: PMC9287342 DOI: 10.1038/s41467-022-31576-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
A quantitative single-molecule tip-enhanced Raman spectroscopy (TERS) study at room temperature remained a challenge due to the rapid structural dynamics of molecules exposed to air. Here, we demonstrate the hyperspectral TERS imaging of single or a few brilliant cresyl blue (BCB) molecules at room temperature, along with quantitative spectral analyses. Robust chemical imaging is enabled by the freeze-frame approach using a thin Al2O3 capping layer, which suppresses spectral diffusions and inhibits chemical reactions and contamination in air. For the molecules resolved spatially in the TERS image, a clear Raman peak variation up to 7.5 cm−1 is observed, which cannot be found in molecular ensembles. From density functional theory-based quantitative analyses of the varied TERS peaks, we reveal the conformational heterogeneity at the single-molecule level. This work provides a facile way to investigate the single-molecule properties in interacting media, expanding the scope of single-molecule vibrational spectroscopy studies. Tip-enhanced vibrational spectroscopy at room temperature is complicated by molecular conformational dynamics, photobleaching, contaminations, and chemical reactions in air. This study demonstrates that a sub-nm protective layer of Al2O3 provides robust conditions for probing single-molecule conformations.
Collapse
|
38
|
Luo Y, Martin-Jimenez A, Gutzler R, Garg M, Kern K. Ultrashort Pulse Excited Tip-Enhanced Raman Spectroscopy in Molecules. NANO LETTERS 2022; 22:5100-5106. [PMID: 35704454 PMCID: PMC9284611 DOI: 10.1021/acs.nanolett.2c00485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Vibrational fingerprints of molecules and low-dimension materials can be traced with subnanometer resolution by performing Tip-enhanced Raman spectroscopy (TERS) in a scanning tunneling microscope (STM). Strong atomic-scale localization of light in the plasmonic nanocavity of the STM enables high spatial resolution in STM-TERS; however, the temporal resolution is so far limited. Here, we demonstrate stable TERS measurements from subphthalocyanine (SubPc) molecules excited by ∼500 fs long laser pulses in a low-temperature (LT) ultrahigh-vacuum (UHV) STM. The intensity of the TERS signal excited with ultrashort pulses scales linearly with the increasing flux of the laser pulses and exponentially with the decreasing gap-size of the plasmonic nanocavity. Furthermore, we compare the characteristic features of TERS excited with ultrashort pulses and with a continuous-wave (CW) laser. Our work lays the foundation for future experiments of time-resolved femtosecond TERS for the investigation of molecular dynamics with utmost spatial, temporal, and energy resolutions simultaneously.
Collapse
Affiliation(s)
- Yang Luo
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Alberto Martin-Jimenez
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Rico Gutzler
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Manish Garg
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Klaus Kern
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
- Institut
de Physique, Ecole Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
39
|
Fu H, Liu W, Li J, Wu W, Zhao Q, Bao H, Zhou L, Zhu S, Kong J, Zhang H, Cai W. High-Density-Nanotips-Composed 3D Hierarchical Au/CuS Hybrids for Sensitive, Signal-Reproducible, and Substrate-Recyclable SERS Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2359. [PMID: 35889585 PMCID: PMC9318914 DOI: 10.3390/nano12142359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022]
Abstract
Surface-enhanced Raman scattering (SERS) provides an unprecedented opportunity for fingerprinting identification and trace-level detection in chemistry, biomedicine, materials, and so on. Although great efforts have been devoted to fabricating sensitive plasmonic nanomaterials, it is still challenging to batch-produce a SERS substrate with high sensitivity, good reproducibility, and perfect recyclability. Here, we describe a facile fabrication of three-dimensional (3D) hierarchical Au/CuS nanocomposites, in which high-density Au nanotips enable highly SERS-active sensing, and the well-defined microflower (MF) geometry produces perfect signal reproducibility (RSD < 5%) for large laser spot excitations (>50 μm2), which is particularly suitable for practical on-site detection with a handheld Raman spectrometer. In addition, a self-cleaning ability of this Au/CuS Schottky junction photocatalyst under sunlight irradiation allows complete removal of the adsorbed analytes, realizing perfect regeneration of the SERS substrates over many cycles. The mass-production, ultra-sensitive, high-reproducibility, and fast-recyclability features of hierarchical Au/CuS MFs greatly facilitate cost-effective and field SERS detection of trace analytes in practice.
Collapse
Affiliation(s)
- Hao Fu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institues of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei 230031, China; (H.F.); (H.B.); (L.Z.); (S.Z.); (H.Z.); (W.C.)
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Weiwei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China;
| | - Junqing Li
- Dongying City Center for Disease Control and Prevention, Dongying 257000, China;
| | - Wenguang Wu
- Shandong Shouguang Testing Group Co., Ltd., Weifang 262700, China;
| | - Qian Zhao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institues of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei 230031, China; (H.F.); (H.B.); (L.Z.); (S.Z.); (H.Z.); (W.C.)
| | - Haoming Bao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institues of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei 230031, China; (H.F.); (H.B.); (L.Z.); (S.Z.); (H.Z.); (W.C.)
| | - Le Zhou
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institues of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei 230031, China; (H.F.); (H.B.); (L.Z.); (S.Z.); (H.Z.); (W.C.)
| | - Shuyi Zhu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institues of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei 230031, China; (H.F.); (H.B.); (L.Z.); (S.Z.); (H.Z.); (W.C.)
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Jinglin Kong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China;
| | - Hongwen Zhang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institues of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei 230031, China; (H.F.); (H.B.); (L.Z.); (S.Z.); (H.Z.); (W.C.)
| | - Weiping Cai
- Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institues of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei 230031, China; (H.F.); (H.B.); (L.Z.); (S.Z.); (H.Z.); (W.C.)
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
40
|
Single-Molecule Surface-Enhanced Raman Spectroscopy. SENSORS 2022; 22:s22134889. [PMID: 35808385 PMCID: PMC9269420 DOI: 10.3390/s22134889] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022]
Abstract
Single-molecule surface-enhanced Raman spectroscopy (SM-SERS) has the potential to detect single molecules in a non-invasive, label-free manner with high-throughput. SM-SERS can detect chemical information of single molecules without statistical averaging and has wide application in chemical analysis, nanoelectronics, biochemical sensing, etc. Recently, a series of unprecedented advances have been realized in science and application by SM-SERS, which has attracted the interest of various fields. In this review, we first elucidate the key concepts of SM-SERS, including enhancement factor (EF), spectral fluctuation, and experimental evidence of single-molecule events. Next, we systematically discuss advanced implementations of SM-SERS, including substrates with ultra-high EF and reproducibility, strategies to improve the probability of molecules being localized in hotspots, and nonmetallic and hybrid substrates. Then, several examples for the application of SM-SERS are proposed, including catalysis, nanoelectronics, and sensing. Finally, we summarize the challenges and future of SM-SERS. We hope this literature review will inspire the interest of researchers in more fields.
Collapse
|
41
|
Banerjee D, Akkanaboina M, Ghosh S, Soma VR. Picosecond Bessel Beam Fabricated Pure, Gold-Coated Silver Nanostructures for Trace-Level Sensing of Multiple Explosives and Hazardous Molecules. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4155. [PMID: 35744214 PMCID: PMC9228845 DOI: 10.3390/ma15124155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022]
Abstract
A zeroth-order, non-diffracting Bessel beam, generated by picosecond laser pulses (1064 nm, 10 Hz, 30 ps) through an axicon, was utilized to perform pulse energy-dependent (12 mJ, 16 mJ, 20 mJ, 24 mJ) laser ablation of silver (Ag) substrates in air. The fabrication resulted in finger-like Ag nanostructures (NSs) in the sub-200 nm domain and obtained structures were characterized using the FESEM and AFM techniques. Subsequently, we employed those Ag NSs in surface-enhanced Raman spectroscopy (SERS) studies achieving promising sensing results towards trace-level detection of six different hazardous materials (explosive molecules of picric acid (PA) and ammonium nitrate (AN), a pesticide thiram (TH) and the dye molecules of Methylene Blue (MB), Malachite Green (MG), and Nile Blue (NB)) along with a biomolecule (hen egg white lysozyme (HEWL)). The remarkably superior plasmonic behaviour exhibited by the AgNS corresponding to 16 mJ pulse ablation energy was further explored. To accomplish a real-time application-oriented understanding, time-dependent studies were performed utilizing the AgNS prepared with 16 mJ and TH molecule by collecting the SERS data periodically for up to 120 days. The coated AgNSs were prepared with optimized gold (Au) deposition, accomplishing a much lower trace detection in the case of thiram (~50 pM compared to ~50 nM achieved prior to the coating) as well as superior EF up to ~108 (~106 before Au coating). Additionally, these substrates have demonstrated superior stability compared to those obtained before Au coating.
Collapse
Affiliation(s)
- Dipanjan Banerjee
- Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, Telangana, India;
| | | | - Subhasree Ghosh
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India;
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, Telangana, India;
| |
Collapse
|
42
|
Zhang P, Chen L, Sheng S, Hu W, Liu H, Ma C, Liu Z, Feng B, Cheng P, Zhang Y, Chen L, Zhao J, Wu K. Melamine self-assembly and dehydrogenation on Ag(111) studied by tip-enhanced Raman spectroscopy. J Chem Phys 2022; 156:204301. [DOI: 10.1063/5.0091353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The adsorption and self-assembly structures of melamine molecules on an Ag(111) surface are studied by low temperature scanning tunneling microscopy (STM) combined with tip-enhanced Raman spectroscopy (TERS). Two ordered self-assembly phases of melamine molecules on Ag(111) were studied by STM and TERS, combining with first-principles simulations. The α-phase consists of flat-lying melamine molecules, while the β-phase consists of mixed up-standing/tilted melamine molecules. Moreover, dehydrogenation of melamine can be controlled by annealing the sample as well as by a tip-enhanced photo-catalytic effect. Our work demonstrates TERS as a powerful tool not only for investigating the configuration and vibration properties of molecules on a metal surface with high spatial resolution but also for manipulating the chemical reactions with tip and photo-induced effects.
Collapse
Affiliation(s)
- Ping Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Linjie Chen
- Department of Chemical Physics, School of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shaoxiang Sheng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wenqi Hu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Huiru Liu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Chen Ma
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zijia Liu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Baojie Feng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Peng Cheng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yiqi Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lan Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jin Zhao
- Department of Physics, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kehui Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
43
|
O'Callahan BT, El-Khoury PZ. A Closer Look at Tip-Enhanced Raman Chemical Reaction Nanoimages. J Phys Chem Lett 2022; 13:3886-3889. [PMID: 35470671 DOI: 10.1021/acs.jpclett.2c00574] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) is a powerful technique that enables ultrahigh spatial resolution and ultrasensitive chemical imaging. This technique's ability to track plasmon-induced/enhanced chemical reactions in real space has gained increasing popularity in recent years. In this study, we expose inherent difficulties associated with assigning TERS signatures that accompany chemical transformations. Namely, distinct selection rules as well as the possibility of multiple physical processes/chemical reaction pathways complicate spectral assignments and necessitate caution in assigning the experimental observables. We illustrate the latter using 4,4'-dimercaptostilbene-functionalized plasmonic silver nanocubes, wherein we identify the TERS signatures of product formation, molecular charging, multipolar Raman scattering, and preferred molecular orientations that all lead to distinct and assignable spectral patterns.
Collapse
Affiliation(s)
- Brian T O'Callahan
- Earth and Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Patrick Z El-Khoury
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
44
|
Chauhan P, Bhargava A, Kumari R, Ratre P, Tiwari R, Kumar Srivastava R, Yu Goryacheva I, Kumar Mishra P. Surface-enhanced Raman scattering biosensors for detection of oncomiRs in breast cancer. Drug Discov Today 2022; 27:2121-2136. [PMID: 35460892 DOI: 10.1016/j.drudis.2022.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 12/16/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has emerged as one of the most promising platforms for various biosensing applications. These sensing systems encompass the advantages of specificity, ultra-high sensitivity, stability, low cost, repeatability, and easy-to-use methods. Moreover, their ability to offer a molecular fingerprint and identify the target analyte at low levels make SERS a promising technique for detecting circulating cancer biomarkers with greater sensitivity and reliability. Among the various circulating biomolecules, oncomiRs are emerging as prominent biomarkers for the early screening of breast cancers (BCs). In this review, we provide a comprehensive understanding of different SERS-based biosensors and their application to identify BC-specific oncomiRs. We also discuss different SERS-based sensing strategies, nano-analytical frameworks, and challenges to be addressed for effective clinical translation.
Collapse
Affiliation(s)
- Prachi Chauhan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pooja Ratre
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
45
|
Pienpinijtham P, Kitahama Y, Ozaki Y. Progress of tip-enhanced Raman scattering for the last two decades and its challenges in very recent years. NANOSCALE 2022; 14:5265-5288. [PMID: 35332899 DOI: 10.1039/d2nr00274d] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tip-enhanced Raman scattering (TERS) has recently attracted remarkable attention as a novel nano-spectroscopy technique. TERS, which provides site-specific information, can be performed on any material surface regardless of morphology. Moreover, it can be applied in various environments, such as ambient air, ultrahigh vacuum (UHV), solutions, and electrochemical environments. This review reports on one hand progress of TERS for the last two decades, and on the other hand, its challenges in very recent years. Part of the progress of TERS starts with the prehistory and history of TERS, and then, the characteristics and advantages of TERS are described. Significant emphasis is put on the development of TERS instrumentation and equipment such as ultrahigh vacuum TERS, liquid TERS, electrochemical-TERS, and tip-preparations. Applications of TERS, particularly those with nanocarbons, biological materials, and surface and interface analysis, are mentioned in some detail. In the part on challenges, we focus on the very recent advances in TERS; progress in spatial resolution to the angstrom scale is the hottest topic. Recent TERS studies performed under UHV, for example chemical imaging at the angstrom scale and Raman detection of bond breaking and making of a chemisorbed up-standing single molecules at single-bond level, are reviewed. Of course, there is no clear border between the two parts. In the last part the perspective of TERS is discussed.
Collapse
Affiliation(s)
- Prompong Pienpinijtham
- Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
- National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
- Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Yasutaka Kitahama
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan.
- Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
46
|
Chemically identifying single adatoms with single-bond sensitivity during oxidation reactions of borophene. Nat Commun 2022; 13:1796. [PMID: 35379784 PMCID: PMC8979967 DOI: 10.1038/s41467-022-29445-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/09/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractThe chemical interrogation of individual atomic adsorbates on a surface significantly contributes to understanding the atomic-scale processes behind on-surface reactions. However, it remains highly challenging for current imaging or spectroscopic methods to achieve such a high chemical spatial resolution. Here we show that single oxygen adatoms on a boron monolayer (i.e., borophene) can be identified and mapped via ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS) with ~4.8 Å spatial resolution and single bond (B–O) sensitivity. With this capability, we realize the atomically defined, chemically homogeneous, and thermally reversible oxidation of borophene via atomic oxygen in UHV. Furthermore, we reveal the propensity of borophene towards molecular oxygen activation at room temperature and phase-dependent chemical properties. In addition to offering atomic-level insights into the oxidation of borophene, this work demonstrates UHV-TERS as a powerful tool to probe the local chemistry of surface adsorbates in the atomic regime with widespread utilities in heterogeneous catalysis, on-surface molecular engineering, and low-dimensional materials.
Collapse
|
47
|
Wafer-Scale LSPR Substrate: Oblique Deposition of Gold on a Patterned Sapphire Substrate. BIOSENSORS 2022; 12:bios12030158. [PMID: 35323428 PMCID: PMC8946711 DOI: 10.3390/bios12030158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022]
Abstract
Label-free detection of biomolecules using localized surface plasmon resonance (LSPR) substrates is a highly attractive method for point-of-care (POC) testing. One of the remaining challenges to developing LSPR-based POC devices is to fabricate the LSPR substrates with large-scale, reproducible, and high-throughput. Herein, a fabrication strategy for wafer-scale LSPR substrates is demonstrated using reproducible, high-throughput techniques, such as nanoimprint lithography, wet-etching, and thin film deposition. A transparent sapphire wafer, on which SiO2-nanodot hard masks were formed via nanoimprint lithography, was anisotropically etched by a mixed solution of H2SO4 and H3PO4, resulting in a patterned sapphire substrate (PSS). An LSPR substrate was finally fabricated by oblique deposition of Au onto the PSS, which was then applied to label-free detection of the binding events of biomolecules. To the best of our knowledge, this paper is the first report on the application of the PSS used as an LSPR template by obliquely depositing a metal.
Collapse
|
48
|
Orbital-resolved visualization of single-molecule photocurrent channels. Nature 2022; 603:829-834. [PMID: 35354999 DOI: 10.1038/s41586-022-04401-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 01/03/2022] [Indexed: 11/08/2022]
Abstract
Given its central role in utilizing light energy, photoinduced electron transfer (PET) from an excited molecule has been widely studied1-6. However, even though microscopic photocurrent measurement methods7-11 have made it possible to correlate the efficiency of the process with local features, spatial resolution has been insufficient to resolve it at the molecular level. Recent work has, however, shown that single molecules can be efficiently excited and probed when combining a scanning tunnelling microscope (STM) with localized plasmon fields driven by a tunable laser12,13. Here we use that approach to directly visualize with atomic-scale resolution the photocurrent channels through the molecular orbitals of a single free-base phthalocyanine (FBPc) molecule, by detecting electrons from its first excited state tunnelling through the STM tip. We find that the direction and the spatial distribution of the photocurrent depend sensitively on the bias voltage, and detect counter-flowing photocurrent channels even at a voltage where the averaged photocurrent is near zero. Moreover, we see evidence of competition between PET and photoluminescence12, and find that we can control whether the excited molecule primarily relaxes through PET or photoluminescence by positioning the STM tip with three-dimensional, atomic precision. These observations suggest that specific photocurrent channels can be promoted or suppressed by tuning the coupling to excited-state molecular orbitals, and thus provide new perspectives for improving energy-conversion efficiencies by atomic-scale electronic and geometric engineering of molecular interfaces.
Collapse
|
49
|
Light-Driven Charge Transport and Optical Sensing in Molecular Junctions. NANOMATERIALS 2022; 12:nano12040698. [PMID: 35215024 PMCID: PMC8878161 DOI: 10.3390/nano12040698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022]
Abstract
Probing charge and energy transport in molecular junctions (MJs) has not only enabled a fundamental understanding of quantum transport at the atomic and molecular scale, but it also holds significant promise for the development of molecular-scale electronic devices. Recent years have witnessed a rapidly growing interest in understanding light-matter interactions in illuminated MJs. These studies have profoundly deepened our knowledge of the structure–property relations of various molecular materials and paved critical pathways towards utilizing single molecules in future optoelectronics applications. In this article, we survey recent progress in investigating light-driven charge transport in MJs, including junctions composed of a single molecule and self-assembled monolayers (SAMs) of molecules, and new opportunities in optical sensing at the single-molecule level. We focus our attention on describing the experimental design, key phenomena, and the underlying mechanisms. Specifically, topics presented include light-assisted charge transport, photoswitch, and photoemission in MJs. Emerging Raman sensing in MJs is also discussed. Finally, outstanding challenges are explored, and future perspectives in the field are provided.
Collapse
|
50
|
Foti A, Venkatesan S, Lebental B, Zucchi G, Ossikovski R. Comparing Commercial Metal-Coated AFM Tips and Home-Made Bulk Gold Tips for Tip-Enhanced Raman Spectroscopy of Polymer Functionalized Multiwalled Carbon Nanotubes. NANOMATERIALS 2022; 12:nano12030451. [PMID: 35159798 PMCID: PMC8840094 DOI: 10.3390/nano12030451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023]
Abstract
Tip-enhanced Raman spectroscopy (TERS) combines the high specificity and sensitivity of plasmon-enhanced Raman spectroscopy with the high spatial resolution of scanning probe microscopy. TERS has gained a lot of attention from many nanoscience fields, since this technique can provide chemical and structural information of surfaces and interfaces with nanometric spatial resolution. Multiwalled carbon nanotubes (MWCNTs) are very versatile nanostructures that can be dispersed in organic solvents or polymeric matrices, giving rise to new nanocomposite materials, showing improved mechanical, electrical and thermal properties. Moreover, MWCNTs can be easily functionalized with polymers in order to be employed as specific chemical sensors. In this context, TERS is strategic, since it can provide useful information on the cooperation of the two components at the nanoscale for the optimization of the macroscopic properties of the hybrid material. Nevertheless, efficient TERS characterization relies on the geometrical features and material composition of the plasmonic tip used. In this work, after comparing the TERS performance of commercial Ag coated nanotips and home-made bulk Au tips on bare MWCNTs, we show how TERS can be exploited for characterizing MWCNTs mixed with conjugated fluorene copolymers, thus contributing to the understanding of the polymer/CNT interaction process at the local scale.
Collapse
Affiliation(s)
- Antonino Foti
- CNR—IPCF, Istituto per I Processi Chimico-Fisici, Viale F. Stagno d’Alcontres 37, 98158 Messina, Italy
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.V.); (B.L.); (G.Z.)
- Correspondence: (A.F.); (R.O.)
| | - Suriya Venkatesan
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.V.); (B.L.); (G.Z.)
| | - Bérengère Lebental
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.V.); (B.L.); (G.Z.)
- COSYS-LISIS, Université Gustave Eiffel, IFSTTAR, 77454 Marne-la-Vallée, France
| | - Gaël Zucchi
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.V.); (B.L.); (G.Z.)
| | - Razvigor Ossikovski
- LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France; (S.V.); (B.L.); (G.Z.)
- Correspondence: (A.F.); (R.O.)
| |
Collapse
|