1
|
Li Z, Hernández FJ, Salguero C, Lopez SA, Crespo-Otero R, Li J. Machine learning photodynamics decode multiple singlet fission channels in pentacene crystal. Nat Commun 2025; 16:1194. [PMID: 39885157 PMCID: PMC11782655 DOI: 10.1038/s41467-025-56480-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Crystalline pentacene is a model solid-state light-harvesting material because its quantum efficiencies exceed 100% via ultrafast singlet fission. The singlet fission mechanism in pentacene crystals is disputed due to insufficient electronic information in time-resolved experiments and intractable quantum mechanical calculations for simulating realistic crystal dynamics. Here we combine a multiscale multiconfigurational approach and machine learning photodynamics to understand competing singlet fission mechanisms in crystalline pentacene. Our simulations reveal coexisting charge-transfer-mediated and coherent mechanisms via the competing channels in the herringbone and parallel dimers. The predicted singlet fission time constants (61 and 33 fs) are in excellent agreement with experiments (78 and 35 fs). The trajectories highlight the essential role of intermolecular stretching between monomers in generating the multi-exciton state and explain the anisotropic phenomenon. The machine-learning-photodynamics resolved the elusive interplay between electronic structure and vibrational relations, enabling fully atomistic excited-state dynamics with multiconfigurational quantum mechanical quality for crystalline pentacene.
Collapse
Affiliation(s)
- Zhendong Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, People's Republic of China
| | | | - Christian Salguero
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Steven A Lopez
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA.
| | | | - Jingbai Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
2
|
Souri S, Timmer D, Lünemann DC, Hadilou N, Winte K, De Sio A, Esmann M, Curdt F, Winklhofer M, Anhäuser S, Guerrini M, Valencia AM, Cocchi C, Witte G, Lienau C. Ultrafast Time-Domain Spectroscopy Reveals Coherent Vibronic Couplings upon Electronic Excitation in Crystalline Organic Thin Films. J Phys Chem Lett 2024; 15:11170-11181. [PMID: 39480142 PMCID: PMC11552073 DOI: 10.1021/acs.jpclett.4c02711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
The coherent coupling between electronic excitations and vibrational modes of molecules largely affects the optical and charge transport properties of organic semiconductors and molecular solids. To analyze these couplings by means of ultrafast spectroscopy, highly ordered crystalline films with large domains are particularly suitable because the domains can be addressed individually, hence allowing azimuthal polarization-resolved measurements. Impressive examples of this are highly ordered crystalline thin films of perfluoropentacene (PFP) molecules, which adopt different molecular orientations on different alkali halide substrates. Here, we report polarization-resolved time-domain vibrational spectroscopy with 10 fs time resolution and Raman spectroscopy of crystalline PFP thin films grown on NaF(100) and KCl(100) substrates. Coherent oscillations in the time-resolved spectra reveal vibronic coupling to a high-frequency, 25 fs, in-plane deformation mode that is insensitive to the optical polarization, while the coupling to a lower-frequency, 85 fs, out-of-plane ring bending mode depends significantly on the crystalline and molecular orientation. Comparison with calculated Raman spectra of isolated PFP molecules in vacuo supports this interpretation and indicates a dominant role of solid-state effects in the vibronic properties of these materials. Our results represent a first step toward uncovering the role of anisotropic vibronic couplings for singlet fission processes in crystalline molecular thin films.
Collapse
Affiliation(s)
- Somayeh Souri
- Institut
für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Daniel Timmer
- Institut
für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Daniel C. Lünemann
- Institut
für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Naby Hadilou
- Institut
für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Katrin Winte
- Institut
für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Antonietta De Sio
- Institut
für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Martin Esmann
- Institut
für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Franziska Curdt
- Institut
für Biologie, Carl von Ossietzky
Universität, Carl-von-Ossietzky
Str. 9-11, 26129 Oldenburg, Germany
| | - Michael Winklhofer
- Institut
für Biologie, Carl von Ossietzky
Universität, Carl-von-Ossietzky
Str. 9-11, 26129 Oldenburg, Germany
| | - Sebastian Anhäuser
- Fachbereich
Physik, Philipps-Universität Marburg, Renthof 7, 35032 Marburg, Germany
| | - Michele Guerrini
- Institut
für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Ana M. Valencia
- Institut
für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Caterina Cocchi
- Institut
für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| | - Gregor Witte
- Fachbereich
Physik, Philipps-Universität Marburg, Renthof 7, 35032 Marburg, Germany
| | - Christoph Lienau
- Institut
für Physik, Carl von Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
- Research
Centre for Neurosensory Sciences, Carl von
Ossietzky Universität, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
3
|
Zhao S, Tang D, Xiao X, Wang R, Sun Q, Chen Z, Cai X, Li Z, Yu H, Fang WH. Quantum Computation of Conical Intersections on a Programmable Superconducting Quantum Processor. J Phys Chem Lett 2024; 15:7244-7253. [PMID: 38976358 DOI: 10.1021/acs.jpclett.4c01314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Conical intersections (CIs) are pivotal in many photochemical processes. Traditional quantum chemistry methods, such as the state-average multiconfigurational methods, face computational hurdles in solving the electronic Schrödinger equation within the active space on classical computers. While quantum computing offers a potential solution, its feasibility in studying CIs, particularly on real quantum hardware, remains largely unexplored. Here, we present the first successful realization of a hybrid quantum-classical state-average complete active space self-consistent field method based on the variational quantum eigensolver (VQE-SA-CASSCF) on a superconducting quantum processor. This approach is applied to investigate CIs in two prototypical systems─ethylene (C2H4) and triatomic hydrogen (H3). We illustrate that VQE-SA-CASSCF, coupled with ongoing hardware and algorithmic enhancements, can lead to a correct description of CIs on existing quantum devices. These results lay the groundwork for exploring the potential of quantum computing to study CIs in more complex systems in the future.
Collapse
Affiliation(s)
- Shoukuan Zhao
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Diandong Tang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaoxiao Xiao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ruixia Wang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Qiming Sun
- Quantum Engine LLC, Lacey, Washington 98516, United States
| | - Zhen Chen
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Xiaoxia Cai
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Zhendong Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Haifeng Yu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- Hefei National Laboratory, Hefei 230088, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Zheng Y, Rojas-Gatjens E, Lee M, Reichmanis E, Silva-Acuña C. Unveiling Multiquantum Excitonic Correlations in Push-Pull Polymer Semiconductors. J Phys Chem Lett 2024; 15:3705-3712. [PMID: 38546242 PMCID: PMC11017317 DOI: 10.1021/acs.jpclett.4c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024]
Abstract
Bound and unbound Frenkel-exciton pairs are essential transient precursors for a variety of photophysical and biochemical processes. In this work, we identify bound and unbound Frenkel-exciton complexes in an electron push-pull polymer semiconductor using coherent two-dimensional spectroscopy. We find that the dominant A0-1 peak of the absorption vibronic progression is accompanied by a subpeak, each dressed by distinct vibrational modes. By considering the Liouville pathways within a two-exciton model, the imbalanced cross-peaks in one-quantum rephasing and nonrephasing spectra can be accounted for by the presence of pure biexcitons. The two-quantum nonrephasing spectra provide direct evidence for unbound exciton pairs and biexcitons with dominantly attractive force. In addition, the spectral features of unbound exciton pairs show mixed absorptive and dispersive character, implying many-body interactions within the correlated Frenkel-exciton pairs. Our work offers novel perspectives on the Frenkel-exciton complexes in semiconductor polymers.
Collapse
Affiliation(s)
- Yulong Zheng
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Esteban Rojas-Gatjens
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Myeongyeon Lee
- Department
of Chemical & Biomolecular Engineering, Lehigh University, 124 E. Morton Street, Bethlehem, Pennsylvania 18015, United States
| | - Elsa Reichmanis
- Department
of Chemical & Biomolecular Engineering, Lehigh University, 124 E. Morton Street, Bethlehem, Pennsylvania 18015, United States
| | - Carlos Silva-Acuña
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, United States
- Institut
Courtois & Département de physique, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
5
|
Guo Z, Zhang M, Dong X, Wang J, Li Z, Liu Y. Probing Conical Intersection in the Multipathway Isomerization of CH 3Cl Using Coulomb Explosion. J Phys Chem Lett 2024; 15:2369-2374. [PMID: 38393833 DOI: 10.1021/acs.jpclett.3c03404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Ubiquitous ultrafast isomerization is paramount in photoexcited molecules, in which non-adiabatic coupling among multiple electronic states can occur. We use the pump-probe Coulomb explosion imaging method to study the isomerization of CH3Cl molecules. We find that the isomerization under our strong field pump-probe scheme proceeds along multiple pathways, which are encoded in several distinct branches of the time-resolved kinetic energy release spectra for the CH2++HCl+ Coulomb explosion channel. Apart from the isomerized dissociative pathway in neutral and cationic excited states, the pump laser can also induce coherent vibrational dynamics in two coupled intermediate states and set up the initial conditions for the two concurrently proceeding isomerization pathways. The isomerization of CH3Cl provides an intriguing example of a chemical reaction consisting of multiple pathways and non-adiabatic dynamics.
Collapse
Affiliation(s)
- Zhenning Guo
- State Key Laboratory for Mesoscopic Physics and Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Ming Zhang
- State Key Laboratory for Mesoscopic Physics and Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Xiaolong Dong
- State Key Laboratory for Mesoscopic Physics and Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Jiguo Wang
- State Key Laboratory for Mesoscopic Physics and Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics and Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Yangtze Delta Institute of Optoelectronics, Peking University, Nantong, Jiangsu 226010, China
| | - Yunquan Liu
- State Key Laboratory for Mesoscopic Physics and Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Timmer D, Lünemann DC, Riese S, Sio AD, Lienau C. Full visible range two-dimensional electronic spectroscopy with high time resolution. OPTICS EXPRESS 2024; 32:835-847. [PMID: 38175103 DOI: 10.1364/oe.511906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Two-dimensional electronic spectroscopy (2DES) is a powerful method to study coherent and incoherent interactions and dynamics in complex quantum systems by correlating excitation and detection energies in a nonlinear spectroscopy experiment. Such dynamics can be probed with a time resolution limited only by the duration of the employed laser pulses and in a spectral range defined by the pulse spectrum. In the blue spectral range (<500 nm), the generation of sufficiently broadband ultrashort pulses with pulse durations of 10 fs or less has been challenging so far. Here, we present a 2DES setup based on a hollow-core fiber supercontinuum covering the full visible range (400-700 nm). Pulse compression via custom-made chirped mirrors yields a time resolution of <10 fs. The broad spectral coverage, in particular the extension of the pulse spectra into the blue spectral range, unlocks new possibilities for coherent investigations of blue-light absorbing and multichromophoric compounds, as demonstrated by a 2DES measurement of chlorophyll a.
Collapse
|
7
|
Timmer D, Gittinger M, Quenzel T, Stephan S, Zhang Y, Schumacher MF, Lützen A, Silies M, Tretiak S, Zhong JH, De Sio A, Lienau C. Plasmon mediated coherent population oscillations in molecular aggregates. Nat Commun 2023; 14:8035. [PMID: 38052786 DOI: 10.1038/s41467-023-43578-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
The strong coherent coupling of quantum emitters to vacuum fluctuations of the light field offers opportunities for manipulating the optical and transport properties of nanomaterials, with potential applications ranging from ultrasensitive all-optical switching to creating polariton condensates. Often, ubiquitous decoherence processes at ambient conditions limit these couplings to such short time scales that the quantum dynamics of the interacting system remains elusive. Prominent examples are strongly coupled exciton-plasmon systems, which, so far, have mostly been investigated by linear optical spectroscopy. Here, we use ultrafast two-dimensional electronic spectroscopy to probe the quantum dynamics of J-aggregate excitons collectively coupled to the spatially structured plasmonic fields of a gold nanoslit array. We observe rich coherent Rabi oscillation dynamics reflecting a plasmon-driven coherent exciton population transfer over mesoscopic distances at room temperature. This opens up new opportunities to manipulate the coherent transport of matter excitations by coupling to vacuum fields.
Collapse
Affiliation(s)
- Daniel Timmer
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Moritz Gittinger
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Thomas Quenzel
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Sven Stephan
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg, Germany
- Institute for Lasers and Optics, University of Applied Sciences, Emden, Germany
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Marvin F Schumacher
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Arne Lützen
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Martin Silies
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg, Germany
- Institute for Lasers and Optics, University of Applied Sciences, Emden, Germany
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Jin-Hui Zhong
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg, Germany
- Department of Materials Science and Engineering, Southern University of Science and Technology, Guangdong, China
| | - Antonietta De Sio
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg, Germany
- Center for Nanoscale Dynamics (CeNaD), Carl von Ossietzky Universität, Oldenburg, Germany
| | - Christoph Lienau
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg, Germany.
- Center for Nanoscale Dynamics (CeNaD), Carl von Ossietzky Universität, Oldenburg, Germany.
- Forschungszentrum Neurosensorik, Carl von Ossietzky Universität, Oldenburg, Germany.
| |
Collapse
|
8
|
Tuovinen R, Pavlyukh Y, Perfetto E, Stefanucci G. Time-Linear Quantum Transport Simulations with Correlated Nonequilibrium Green's Functions. PHYSICAL REVIEW LETTERS 2023; 130:246301. [PMID: 37390445 DOI: 10.1103/physrevlett.130.246301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/15/2023] [Indexed: 07/02/2023]
Abstract
We present a time-linear scaling method to simulate open and correlated quantum systems out of equilibrium. The method inherits from many-body perturbation theory the possibility to choose selectively the most relevant scattering processes in the dynamics, thereby paving the way to the real-time characterization of correlated ultrafast phenomena in quantum transport. The open system dynamics is described in terms of an "embedding correlator" from which the time-dependent current can be calculated using the Meir-Wingreen formula. We show how to efficiently implement our approach through a simple grafting into recently proposed time-linear Green's function methods for closed systems. Electron-electron and electron-phonon interactions can be treated on equal footing while preserving all fundamental conservation laws.
Collapse
Affiliation(s)
- R Tuovinen
- QTF Centre of Excellence, Department of Physics, University of Helsinki, Helsinki, P.O. Box 64, 00014, Finland
- Department of Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä, P.O. Box 35, 40014, Finland
| | - Y Pavlyukh
- Institute of Theoretical Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - E Perfetto
- Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - G Stefanucci
- Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
9
|
Kim T, Feng Y, O'Connor JP, Stoddart JF, Young RM, Wasielewski MR. Coherent Vibronic Wavepackets Show Structure-Directed Charge Flow in Host-Guest Donor-Acceptor Complexes. J Am Chem Soc 2023. [PMID: 37018535 DOI: 10.1021/jacs.2c13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Designing and controlling charge transfer (CT) pathways in organic semiconductors are important for solar energy applications. To be useful, a photogenerated, Coulombically bound CT exciton must further separate into free charge carriers; direct observations of the detailed CT relaxation pathways, however, are lacking. Here, photoinduced CT and relaxation dynamics in three host-guest complexes, where a perylene (Per) electron donor guest is incorporated into two symmetric and one asymmetric extended viologen cyclophane acceptor hosts, are presented. The central ring in the extended viologen is either p-phenylene (ExV2+) or electron-rich 2,5-dimethoxy-p-phenylene (ExMeOV2+), resulting in two symmetric cyclophanes with unsubstituted or methoxy-substituted central rings, ExBox4+ and ExMeOBox4+, respectively, and an asymmetric cyclophane with one of the central viologen rings being methoxylated ExMeOVBox4+. Upon photoexcitation, the asymmetric host-guest ExMeOVBox4+ ⊃ Per complex exhibits directional CT toward the energetically unfavorable methoxylated side due to structural restrictions that facilitate strong interactions between the Per donor and the ExMeOV2+ side. The CT state relaxation pathways are probed using ultrafast optical spectroscopy by focusing on coherent vibronic wavepackets, which are used to identify CT relaxations along charge localization and vibronic decoherence coordinates. Specific low- and high-frequency nuclear motions are direct indicators of a delocalized CT state and the degree of CT character. Our results show that the CT pathway can be controlled by subtle chemical modifications of the acceptor host in addition to illustrating how coherent vibronic wavepackets can be used to probe the nature and time evolution of the CT states.
Collapse
Affiliation(s)
- Taeyeon Kim
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - James P O'Connor
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - J Fraser Stoddart
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
10
|
Intermolecular-Type Conical Intersections in Benzene Dimer. Int J Mol Sci 2023; 24:ijms24032906. [PMID: 36769227 PMCID: PMC9917476 DOI: 10.3390/ijms24032906] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The equilibrium and conical intersection geometries of the benzene dimer were computed in the framework of the conventional, linear-response time-dependent and spin-flipped time-dependent density functional theories (known as DFT, TDDFT and SF-TDDFT) as well as using the multiconfigurational complete active space self-consistent field (CASSCF) method considering the minimally augmented def2-TZVPP and the 6-31G(d,p) basis sets. It was found that the stacking distance between the benzene monomers decreases by about 0.5 Å in the first electronic excited state, due to the stronger intermolecular interaction energy, bringing the two monomers closer together. Intermolecular-type conical intersection (CI) geometries can be formed between the two benzene molecules, when (i) both monomer rings show planar deformation and (ii) weaker (approximately 1.6-1.8 Å long) C-C bonds are formed between the two monomers, with parallel and antiparallel orientation with respect to the monomer. These intermolecular-type CIs look energetically more favorable than dimeric CIs containing only one deformed monomer. The validity of the dimer-type CI geometries obtained by SF-TDDFT was confirmed by the CASSCF method. The nudged elastic band method used for finding the optimal relaxation path has confirmed both the accessibility of these intermolecular-type CIs and the possibility of the radiationless deactivation of the electronic excited states through these CI geometries. Although not as energetically favorable as the previous two CI geometries, there are other CI geometries characterized by the relative rotation of monomers at different angles around a vertical C-C axis.
Collapse
|
11
|
Piryatinski YP, Malynovskyi MB, Sevryukova MM, Verbitsky AB, Kapush OA, Rozhin AG, Lutsyk PM. Mixing of Excitons in Nanostructures Based on a Perylene Dye with CdTe Quantum Dots. MATERIALS (BASEL, SWITZERLAND) 2023; 16:552. [PMID: 36676289 PMCID: PMC9861622 DOI: 10.3390/ma16020552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Semiconductor quantum dots of the A2B6 group and organic semiconductors have been widely studied and applied in optoelectronics. This study aims to combine CdTe quantum dots and perylene-based dye molecules into advanced nanostructure system targeting to improve their functional properties. In such systems, new electronic states, a mixture of Wannier-Mott excitons with charge-transfer excitons, have appeared at the interface of CdTe quantum dots and the perylene dye. The nature of such new states has been analyzed by absorption and photoluminescence spectroscopy with picosecond time resolution. Furthermore, aggregation of perylene dye on the CdTe has been elucidated, and contribution of Förster resonant energy transfer has been observed between aggregated forms of the dye and CdTe quantum dots in the hybrid CdTe-perylene nanostructures. The studied nanostructures have strongly quenched emission of quantum dots enabling potential application of such systems in dissociative sensing.
Collapse
Affiliation(s)
- Yuri P. Piryatinski
- Institute of Physics, National Academy of Sciences of Ukraine, 46 Prospekt Nauky, 03680 Kyiv, Ukraine
| | - Markiian B. Malynovskyi
- Institute of Physics, National Academy of Sciences of Ukraine, 46 Prospekt Nauky, 03680 Kyiv, Ukraine
| | - Maryna M. Sevryukova
- Institute of Physics, National Academy of Sciences of Ukraine, 46 Prospekt Nauky, 03680 Kyiv, Ukraine
| | - Anatoli B. Verbitsky
- Institute of Physics, National Academy of Sciences of Ukraine, 46 Prospekt Nauky, 03680 Kyiv, Ukraine
| | - Olga A. Kapush
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, 41 Prospekt Nauky, 03680 Kyiv, Ukraine
| | - Aleksey G. Rozhin
- Aston Institute of Photonic Technologies, College of Engineering and Physical Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Petro M. Lutsyk
- Aston Institute of Photonic Technologies, College of Engineering and Physical Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| |
Collapse
|
12
|
Boeije Y, Olivucci M. From a one-mode to a multi-mode understanding of conical intersection mediated ultrafast organic photochemical reactions. Chem Soc Rev 2023; 52:2643-2687. [PMID: 36970950 DOI: 10.1039/d2cs00719c] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
This review discusses how ultrafast organic photochemical reactions are controlled by conical intersections, highlighting that decay to the ground-state at multiple points of the intersection space results in their multi-mode character.
Collapse
Affiliation(s)
- Yorrick Boeije
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Massimo Olivucci
- Chemistry Department, University of Siena, Via Aldo Moro n. 2, 53100 Siena, Italy
- Chemistry Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, USA
| |
Collapse
|
13
|
Gelin MF, Chen L, Domcke W. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and N-Wave-Mixing Signals. Chem Rev 2022; 122:17339-17396. [PMID: 36278801 DOI: 10.1021/acs.chemrev.2c00329] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lipeng Chen
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching,Germany
| |
Collapse
|
14
|
Timmer D, Zheng F, Gittinger M, Quenzel T, Lünemann DC, Winte K, Zhang Y, Madjet ME, Zablocki J, Lützen A, Zhong JH, De Sio A, Frauenheim T, Tretiak S, Lienau C. Charge Delocalization and Vibronic Couplings in Quadrupolar Squaraine Dyes. J Am Chem Soc 2022; 144:19150-19162. [PMID: 36206456 DOI: 10.1021/jacs.2c08682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Squaraines are prototypical quadrupolar charge-transfer chromophores that have recently attracted much attention as building blocks for solution-processed photovoltaics, fluorescent probes with large two-photon absorption cross sections, and aggregates with large circular dichroism. Their optical properties are often rationalized in terms of phenomenological essential state models, considering the coupling of two zwitterionic excited states to a neutral ground state. As a result, optical transitions to the lowest S1 excited state are one-photon allowed, whereas the next higher S2 state can only be accessed by two-photon transitions. A further implication of these models is a substantial reduction of vibronic coupling to the ubiquitous high-frequency vinyl-stretching modes of organic materials. Here, we combine time-resolved vibrational spectroscopy, two-dimensional electronic spectroscopy, and quantum-chemical simulations to test and rationalize these predictions for nonaggregated molecules. We find small Huang-Rhys factors below 0.01 for the high-frequency, 1500 cm-1 modes in particular, as well as a noticeable reduction for those of lower frequency modes in general for the electronic S0 → S1 transition. The two-photon allowed state S2 is well separated energetically from S1 and has weak vibronic signatures as well. Thus, the resulting pronounced concentration of the oscillator strength in a narrow region relevant to the lowest electronic transition makes squaraines and their aggregates exceptionally interesting for strong and ultrastrong coupling of excitons to localized light modes in external resonators with chiral properties that can largely be controlled by the molecular architecture.
Collapse
Affiliation(s)
- Daniel Timmer
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany
| | - Fulu Zheng
- Bremen Center for Computational Materials Science, University of Bremen, Bremen28359, Germany
| | - Moritz Gittinger
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany
| | - Thomas Quenzel
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany
| | - Daniel C Lünemann
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany
| | - Katrin Winte
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany
| | - Yu Zhang
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Mohamed E Madjet
- Bremen Center for Computational Materials Science, University of Bremen, Bremen28359, Germany
| | - Jennifer Zablocki
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn53121, Germany
| | - Arne Lützen
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn53121, Germany
| | - Jin-Hui Zhong
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany.,Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong518055, China
| | - Antonietta De Sio
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany.,Center for Nanoscale Dynamics (CeNaD), Carl von Ossietzky Universität, Oldenburg26129, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, Bremen28359, Germany.,Beijing Computational Science Research Center (CSRC), Beijing100193, China.,Shenzhen Computational Science and Applied Research (CSAR) Institute, Shenzhen518110, China
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Christoph Lienau
- Institut für Physik, Carl von Ossietzky Universität, Oldenburg26129, Germany.,Center for Nanoscale Dynamics (CeNaD), Carl von Ossietzky Universität, Oldenburg26129, Germany.,Forschungszentrum Neurosensorik, Carl von Ossietzky Universität, Oldenburg26129, Germany
| |
Collapse
|
15
|
Quenzel T, Timmer D, Gittinger M, Zablocki J, Zheng F, Schiek M, Lützen A, Frauenheim T, Tretiak S, Silies M, Zhong JH, De Sio A, Lienau C. Plasmon-Enhanced Exciton Delocalization in Squaraine-Type Molecular Aggregates. ACS NANO 2022; 16:4693-4704. [PMID: 35188735 DOI: 10.1021/acsnano.1c11398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Enlarging exciton coherence lengths in molecular aggregates is critical for enhancing the collective optical and transport properties of molecular thin film nanostructures or devices. We demonstrate that the exciton coherence length of squaraine aggregates can be increased from 10 to 24 molecular units at room temperature when preparing the aggregated thin film on a metallic rather than a dielectric substrate. Two-dimensional electronic spectroscopy measurements reveal a much lower degree of inhomogeneous line broadening for aggregates on a gold film, pointing to a reduced disorder. The result is corroborated by simulations based on a Frenkel exciton model including exciton-plasmon coupling effects. The simulation shows that localized, energetically nearly resonant excitons on spatially well separated segments can be radiatively coupled via delocalized surface plasmon polariton modes at a planar molecule-gold interface. Such plasmon-enhanced delocalization of the exciton wave function is of high importance for improving the coherent transport properties of molecular aggregates on the nanoscale. Additionally, it may help tailor the collective optical response of organic materials for quantum optical applications.
Collapse
Affiliation(s)
- Thomas Quenzel
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - Daniel Timmer
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - Moritz Gittinger
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - Jennifer Zablocki
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn 53121, Germany
| | - Fulu Zheng
- Bremen Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany
| | - Manuela Schiek
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
- Forschungszentrum Neurosensorik, Carl von Ossietzky University, Oldenburg 26111, Germany
| | - Arne Lützen
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn 53121, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany
- Beijing Computational Science Research Center (CSRC), Beijing 100193, China
- Shenzhen Computational Science and Applied Research (CSAR) Institute, Shenzhen 518110, China
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Martin Silies
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
- Institute for Lasers and Optics, University of Applied Sciences, Emden 26723, Germany
| | - Jin-Hui Zhong
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - Antonietta De Sio
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
| | - Christoph Lienau
- Institut of Physics and Center of Interface Science, Carl von Ossietzky University, Oldenburg 26129, Germany
- Forschungszentrum Neurosensorik, Carl von Ossietzky University, Oldenburg 26111, Germany
| |
Collapse
|
16
|
Shu Y, Zhang L, Chen X, Sun S, Huang Y, Truhlar DG. Nonadiabatic Dynamics Algorithms with Only Potential Energies and Gradients: Curvature-Driven Coherent Switching with Decay of Mixing and Curvature-Driven Trajectory Surface Hopping. J Chem Theory Comput 2022; 18:1320-1328. [PMID: 35104136 DOI: 10.1021/acs.jctc.1c01080] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Direct dynamics by mixed quantum-classical nonadiabatic methods is an important tool for understanding processes involving multiple electronic states. Very often, the computational bottleneck of such direct simulation comes from electronic structure theory. For example, at every time step of a trajectory, nonadiabatic dynamics requires potential energy surfaces, their gradients, and the matrix elements coupling the surfaces. The need for the couplings can be alleviated by employing the time derivatives of the wave functions, which can be evaluated from overlaps of electronic wave functions at successive time steps. However, evaluation of overlap integrals is still expensive for large systems. In addition, for electronic structure methods for which the wave functions or the coupling matrix elements are not available, nonadiabatic dynamics algorithms become inapplicable. In this work, building on recent work by Baeck and An, we propose new nonadiabatic dynamics algorithms that only require adiabatic potential energies and their gradients. The new methods are named curvature-driven coherent switching with decay of mixing (κCSDM) and curvature-driven trajectory surface hopping (κTSH). We show how powerful these new methods are in terms of computation time and accuracy as compared to previous mixed quantum-classical nonadiabatic dynamics algorithms. The lowering of the computational cost will allow longer nonadiabatic trajectories and greater ensemble averaging to be affordable, and the ability to calculate the dynamics without electronic structure coupling matrix elements extends the dynamics capability to new classes of electronic structure methods.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Linyao Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xiye Chen
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Shaozeng Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yudong Huang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|
17
|
Lünemann DC, Thomas AR, Xu J, Bartölke R, Mouritsen H, De Sio A, Lienau C. Distinguishing between coherent and incoherent signals in excitation-emission spectroscopy. OPTICS EXPRESS 2021; 29:24326-24337. [PMID: 34614680 DOI: 10.1364/oe.428850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The separation of incoherent emission signals from coherent light scattering often poses a challenge in (time-resolved) microscopy or excitation-emission spectroscopy. While in spectro-microscopy with narrowband excitation this is commonly overcome using spectral filtering, it is less straightforward when using broadband Fourier-transform techniques that are now becoming commonplace in, e.g., single molecule or ultrafast nonlinear spectroscopy. Here we show that such a separation is readily achieved using highly stable common-path interferometers for both excitation and detection. The approach is demonstrated for suppression of scattering from flavin adenine dinucleotide (FAD) and weakly emissive cryptochrome 4 (Cry4) protein samples. We expect that the approach will be beneficial, e.g., for fluorescence lifetime or Raman-based imaging and spectroscopy of various samples, including single quantum emitters.
Collapse
|
18
|
Weakly RB, Gaynor JD, Khalil M. Multimode two-dimensional vibronic spectroscopy. II. Simulating and extracting vibronic coupling parameters from polarization-selective spectra. J Chem Phys 2021; 154:184202. [PMID: 34241007 DOI: 10.1063/5.0047727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Experimental demonstrations of polarization-selection two-dimensional Vibrational-Electronic (2D VE) and 2D Electronic-Vibrational (2D EV) spectroscopies aim to map the magnitudes and spatial orientations of coupled electronic and vibrational coordinates in complex systems. The realization of that goal depends on our ability to connect spectroscopic observables with molecular structural parameters. In this paper, we use a model Hamiltonian consisting of two anharmonically coupled vibrational modes in electronic ground and excited states with linear and bilinear vibronic coupling terms to simulate polarization-selective 2D EV and 2D VE spectra. We discuss the relationships between the linear vibronic coupling and two-dimensional Huang-Rhys parameters and between the bilinear vibronic coupling term and Duschinsky mixing. We develop a description of the vibronic transition dipoles and explore how the Hamiltonian parameters and non-Condon effects impact their amplitudes and orientations. Using simulated polarization-selective 2D EV and 2D VE spectra, we show how 2D peak positions, amplitudes, and anisotropy can be used to measure parameters of the vibronic Hamiltonian and non-Condon effects. This paper, along with the first in the series, provides the reader with a detailed description of reading, simulating, and analyzing multimode, polarization-selective 2D EV and 2D VE spectra with an emphasis on extracting vibronic coupling parameters from complex spectra.
Collapse
Affiliation(s)
- Robert B Weakly
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| | - James D Gaynor
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| | - Munira Khalil
- Department of Chemistry, University of Washington, P.O. Box 351700, Seattle, Washington 98195, USA
| |
Collapse
|
19
|
Darghouth AAMHM, Casida ME, Zhu X, Natarajan B, Su H, Humeniuk A, Titov E, Miao X, Mitrić R. Effect of varying the TD-lc-DFTB range-separation parameter on charge and energy transfer in a model pentacene/buckminsterfullerene heterojunction. J Chem Phys 2021; 154:054102. [PMID: 33557554 DOI: 10.1063/5.0024559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Atomistic modeling of energy and charge transfer at the heterojunction of organic solar cells is an active field with many remaining outstanding questions owing, in part, to the difficulties in performing reliable photodynamics calculations on very large systems. One approach to being able to overcome these difficulties is to design and apply an appropriate simplified method. Density-functional tight binding (DFTB) has become a popular form of approximate density-functional theory based on a minimal valence basis set and neglect of all but two center integrals. We report the results of our tests of a recent long-range correction (lc) [A. Humeniuk and R. Mitrić, J. Chem. Phys. 143, 134120 (2015)] for time-dependent (TD) lc-DFTB by carrying out TD-lc-DFTB fewest switches surface hopping calculations of energy and charge transfer times using the relatively new DFTBABY [A. Humeniuk and R. Mitrić, Comput. Phys. Commun. 221, 174 (2017)] program. An advantage of this method is the ability to run enough trajectories to get meaningful ensemble averages. Our interest in the present work is less in determining exact energy and charge transfer rates than in understanding how the results of these calculations vary with the value of the range-separation parameter (Rlc = 1/μ) for a model organic solar cell heterojunction consisting of a gas-phase van der Waals complex P/F made up of a single pentacene (P) molecule together with a single buckminsterfullerene (F) molecule. The default value of Rlc = 3.03 a0 is found to be much too small as neither energy nor charge transfer is observed until Rlc ≈ 10 a0. Tests at a single geometry show that the best agreement with high-quality ab initio spectra is obtained in the limit of no lc (i.e., very large Rlc). A plot of energy and charge transfer rates as a function of Rlc is provided, which suggests that a value of Rlc ≈ 15 a0 yields the typical literature (condensed-phase) charge transfer time of about 100 fs. However, energy and charge transfer times become as high as ∼300 fs for Rlc ≈ 25 a0. A closer examination of the charge transfer process P*/F → P+/F- shows that the initial electron transfer is accompanied by a partial delocalization of the P hole onto F, which then relocalizes back onto P, consistent with a polaron-like picture in which the nuclei relax to stabilize the resultant redistribution of charges.
Collapse
Affiliation(s)
| | - Mark E Casida
- Laboratoire de Spectrométrie, Interactions et Chimie Théorique (SITh), Département de Chimie Moléculaire (DCM), Institut de Chimie Moléculaire de Grenoble (ICMG), Université Grenoble-Alpes, 301 rue de la Chimie, CS 40700, 38058 Grenoble Cedex 9, France
| | - Xi Zhu
- Institute of Advanced Studies, Nanyang Technological University, 60 Nanyang View, 639673, Singapore
| | - Bhaarathi Natarajan
- Institute of Advanced Studies, Nanyang Technological University, 60 Nanyang View, 639673, Singapore
| | - Haibin Su
- Institute of Advanced Studies, Nanyang Technological University, 60 Nanyang View, 639673, Singapore
| | - Alexander Humeniuk
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, D-97074 Würzburg, Germany
| | - Evgenii Titov
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, D-97074 Würzburg, Germany
| | - Xincheng Miao
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, D-97074 Würzburg, Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, D-97074 Würzburg, Germany
| |
Collapse
|