1
|
Huang Z, Bai Y, Zhao Y, Liu L, Zhao X, Wu J, Watanabe K, Taniguchi T, Yang W, Shi D, Xu Y, Zhang T, Zhang Q, Tan PH, Sun Z, Meng S, Wang Y, Du L, Zhang G. Observation of phonon Stark effect. Nat Commun 2024; 15:4586. [PMID: 38811589 PMCID: PMC11137145 DOI: 10.1038/s41467-024-48992-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Stark effect, the electric-field analogue of magnetic Zeeman effect, is one of the celebrated phenomena in modern physics and appealing for emergent applications in electronics, optoelectronics, as well as quantum technologies. While in condensed matter it has prospered only for excitons, whether other collective excitations can display Stark effect remains elusive. Here, we report the observation of phonon Stark effect in a two-dimensional quantum system of bilayer 2H-MoS2. The longitudinal acoustic phonon red-shifts linearly with applied electric fields and can be tuned over ~1 THz, evidencing giant Stark effect of phonons. Together with many-body ab initio calculations, we uncover that the observed phonon Stark effect originates fundamentally from the strong coupling between phonons and interlayer excitons (IXs). In addition, IX-mediated electro-phonon intensity modulation up to ~1200% is discovered for infrared-active phonon A2u. Our results unveil the exotic phonon Stark effect and effective phonon engineering by IX-mediated mechanism, promising for a plethora of exciting many-body physics and potential technological innovations.
Collapse
Affiliation(s)
- Zhiheng Huang
- Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yunfei Bai
- Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yanchong Zhao
- Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Le Liu
- Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuan Zhao
- Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiangbin Wu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Wei Yang
- Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Dongxia Shi
- Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yang Xu
- Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Tiantian Zhang
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qingming Zhang
- Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Ping-Heng Tan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Zhipei Sun
- QTF Centre of Excellence, Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, FI-02150, Espoo, Finland
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong Province, 523808, China
| | - Yaxian Wang
- Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Luojun Du
- Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Guangyu Zhang
- Beijing National Laboratory for Condensed Matter Physics; Key Laboratory for Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China.
- Songshan Lake Materials Laboratory, Dongguan, Guangdong Province, 523808, China.
| |
Collapse
|
2
|
Yan Q, Weng Y, Wang S, Zhou Z, Hu Y, Li Q, Xue J, Feng Z, Luo Z, Feng R, You L, Fang L. Ambient Degradation Anisotropy and Mechanism of van der Waals Ferroelectric NbOI 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9051-9059. [PMID: 38348475 DOI: 10.1021/acsami.3c18018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The spontaneous centrosymmetry-breaking and robust room-temperature ferroelectricity in niobium oxide dihalides spurs a flurry of explorations into its promising second-order nonlinear optical properties, and promises potential applications in nonvolatile electro-optical and optoelectronic devices. However, the ambient stability of the niobium oxide dihalides remains questionable, which overshadows their future development. In this work, the chemical degradation of NbOI2 is comprehensively investigated using combined chemical and optical microscopies in conjunction with spectroscopies. We unveil the highly anisotropic degradation kinetics of NbOI2 driven by the hydrolysis process of the unstable dangling iodine bonds dominantly on the (010) facet and progressing along the c axis. Knowing its degradation mechanism, the NbOI2 flake can then be stabilized by the hexagonal boron nitride encapsulation, which isolates the air moisture. These findings provide direct insights into the ambient instability of NbOI2, and they deliver possible solutions to circumvent this issue, which are essential for its practical integration in photonic and electronic devices.
Collapse
Affiliation(s)
- Qingyu Yan
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Yuyan Weng
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Shun Wang
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Zhou Zhou
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Yiqi Hu
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Qiankun Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Jinshuo Xue
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Zhijian Feng
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Zhongshen Luo
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Runcang Feng
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Lu You
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| | - Liang Fang
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
| |
Collapse
|
3
|
Obaidulla SM, Supina A, Kamal S, Khan Y, Kralj M. van der Waals 2D transition metal dichalcogenide/organic hybridized heterostructures: recent breakthroughs and emerging prospects of the device. NANOSCALE HORIZONS 2023; 9:44-92. [PMID: 37902087 DOI: 10.1039/d3nh00310h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The near-atomic thickness and organic molecular systems, including organic semiconductors and polymer-enabled hybrid heterostructures, of two-dimensional transition metal dichalcogenides (2D-TMDs) can modulate their optoelectronic and transport properties outstandingly. In this review, the current understanding and mechanism of the most recent and significant breakthrough of novel interlayer exciton emission and its modulation by harnessing the band energy alignment between TMDs and organic semiconductors in a TMD/organic (TMDO) hybrid heterostructure are demonstrated. The review encompasses up-to-date device demonstrations, including field-effect transistors, detectors, phototransistors, and photo-switchable superlattices. An exploration of distinct traits in 2D-TMDs and organic semiconductors delves into the applications of TMDO hybrid heterostructures. This review provides insights into the synthesis of 2D-TMDs and organic layers, covering fabrication techniques and challenges. Band bending and charge transfer via band energy alignment are explored from both structural and molecular orbital perspectives. The progress in emission modulation, including charge transfer, energy transfer, doping, defect healing, and phase engineering, is presented. The recent advancements in 2D-TMDO-based optoelectronic synaptic devices, including various 2D-TMDs and organic materials for neuromorphic applications are discussed. The section assesses their compatibility for synaptic devices, revisits the operating principles, and highlights the recent device demonstrations. Existing challenges and potential solutions are discussed. Finally, the review concludes by outlining the current challenges that span from synthesis intricacies to device applications, and by offering an outlook on the evolving field of emerging TMDO heterostructures.
Collapse
Affiliation(s)
- Sk Md Obaidulla
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India
| | - Antonio Supina
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
- Chair of Physics, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| | - Sherif Kamal
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
| | - Yahya Khan
- Department of Physics, Karakoram International university (KIU), Gilgit 15100, Pakistan
| | - Marko Kralj
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička Cesta 46, HR-10000 Zagreb, Croatia.
| |
Collapse
|