1
|
Li L, Leutzsch M, Hesse P, Wang C, Wang B, Schüth F. Polyethylene Recycling via Water Activation by Ball Milling. Angew Chem Int Ed Engl 2025; 64:e202413132. [PMID: 39435641 DOI: 10.1002/anie.202413132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Polyethylene (PE) is the most prevalent type of plastic waste and also the most challenging to depolymerize because of its inert carbon-carbon (C-C) bonds.[1] High temperature and noble metals are usually required for depolymerization.[2] To avoid using noble metals, costly reagents and harsh reaction conditions, it is worthwhile but challenging to explore new reaction pathways.[3] We report an unprecedented mechanochemical reaction of PE and water to result in shorter-chain alkanes, alkenes, alcohols, and ketones (Cn, where n≲50), with above 80 % of starting carbon converted into these products, which could be a valuable feedstock for re-entering chemical value chains. This reaction is driven solely by ball milling, without heating and pressurizing. No costly catalysts are used. Instead, only earth-abundant Al2O3 was milled with reactants.
Collapse
Affiliation(s)
- Linfeng Li
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Phil Hesse
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Chuanhao Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Bolun Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Ferdi Schüth
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
2
|
Wang H, Huang S, Tsang SCE. Heterogeneous catalysis strategies for polyolefin plastic upcycling: co-reactant-assisted and direct transformation under mild conditions. Chem Commun (Camb) 2024. [PMID: 39711333 DOI: 10.1039/d4cc05471g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The large-scale production and inadequate disposal of polyolefin (PO) plastics pose significant environmental challenges. Traditional recycling methods are energy-intensive and often ineffective, prompting a need for more sustainable approaches. In recent years, catalytic upcycling under mild conditions has emerged as a promising strategy to transform PO plastics into valuable products. Co-reactants such as hydrogen, short-chain alkanes or alkenes, oxygen, and CO2 play a crucial role in driving these transformations, influencing reaction mechanisms and broadening the range of possible products. This review categorizes recent advancements in PO plastic upcycling based on the type of co-reactant employed and compares these with direct, co-reactant-free processes. Despite these advances, challenges remain in improving catalytic stability, product selectivity, and overcoming diffusion limitations in viscous plastic feedstocks. This review underscores the catalytic chemistry underpinning the development of efficient PO plastic upcycling processes with co-reactants, offering insights into future directions for sustainable plastic chemical management.
Collapse
Affiliation(s)
- Haokun Wang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, UK.
| | - Sijie Huang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, UK.
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, UK.
| |
Collapse
|
3
|
Han H, Yan P, Li Q, Zhang S, Jiao B, Wei G, Wang Z, Cao M, Xu P, Zhang Q, Chen J. Photothermal Upcycling of Waste Polyvinyl Chloride Plastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21861-21870. [PMID: 39602778 DOI: 10.1021/acs.est.4c07350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Upgrading the most difficult-to-recycle waste polyvinyl chloride remains a significant challenge due to the potential formation of highly toxic substances, such as polychlorinated biphenyls. Here, we introduce a paradigm shift with a mild photothermal dechlorination-carbonization process that converts waste polyvinyl chloride plastics into valuable carbon materials. Through detailed techno-economic assessment (TEA) process modeling, based on recycling 96,000 tons of plastics, we demonstrate that utilizing clean solar energy for photothermal conversion can save approximately 2.34 × 1012 kJ electricity and reduce the carbon footprint by 261,912.2 tons compared to traditional thermal-driven methods, offering clear environmental benefits. Notably, this photothermal recycling method can process more than 10 types of postconsumer and mixed waste polyvinyl chloride plastics, yielding carbon materials that exhibit excellent performance as components in sodium-ion energy storage batteries. Photothermal catalytic recycling of plastics thus emerges as a green and sustainable technology with promising applications.
Collapse
Affiliation(s)
- Hao Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Penglei Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Qingye Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Shuyi Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Binglei Jiao
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Gaolei Wei
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Zhao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Muhan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Panpan Xu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Qiao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Jinxing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
4
|
Kwon T, Ahn B, Kang KH, Won W, Ro I. Unraveling the role of water in mechanism changes for economically viable catalytic plastic upcycling. Nat Commun 2024; 15:10239. [PMID: 39613753 DOI: 10.1038/s41467-024-54495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024] Open
Abstract
The surge in global plastic production, reaching 400.3 million tons in 2022, has exacerbated environmental pollution, with only 11% of plastic being recycled. Catalytic recycling, particularly through hydrogenolysis and hydrocracking, offers a promising avenue for upcycling polyolefin plastic, comprising 55% of global plastic waste. This study investigates the influence of water on polyolefin depolymerization using Ru catalysts, revealing a promotional effect only when both metal and acid sites, particularly Brønsted acid site, are present. Findings highlight the impact of Ru content, metal-acid balance, and their proximity on this interaction, as well as their role in modulating the isomerization process, affecting product selectivity. Additionally, the interaction facilitates the suppression of coke formation, ultimately enhancing catalyst stability. A comprehensive techno-economic and life cycle assessment underscores the viability and environmental benefits of the process, particularly in the presence of water. These insights advance understanding and offer strategies for optimizing polyolefin plastic recycling processes.
Collapse
Affiliation(s)
- Taeeun Kwon
- Department of Chemical and Biomolecular Engineering, Seoul National, University of Science and Technology, Seoul, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Byeongchan Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Ki Hyuk Kang
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Wangyun Won
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea.
| | - Insoo Ro
- Department of Chemical and Biomolecular Engineering, Seoul National, University of Science and Technology, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Sun B, Xu H, Li T, Guan W, Wang K. Hydrogen-free upcycling of polyethylene waste to methylated aromatics over Ni/ZSM-5 under mild conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 482:136564. [PMID: 39577290 DOI: 10.1016/j.jhazmat.2024.136564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Upcycling waste plastic into aromatics presents an attractive strategy to tackle both plastic pollution and energy challenges. However, previous studies often rely on high temperatures, precious metals, and have broad product distributions. In this study, we reported that a Ni/ZSM-5 bifunctional catalyst can directly convert polyethylene (PE) into methylated aromatics with high selectivity under mild conditions, while eliminating the requirement for hydrogen gas and solvents. The liquid yield could attain up to 70.3 %, and the aromatics yield could achieve up to 51.7 %. Over 78.4 % of the aromatics were methylated aromatics including toluene, xylene, and mesitylene. Polymer chains underwent dehydrogenation over Ni and the acid sites in ZSM-5, forming CC bonds. Certain of these bonds evolved into carbenium ions through the process of proton transfer at the acid sites. The optimization of Ni and acid sites enhanced the oligomerization, cyclization, and aromatization process. The extra mesopores created by Ni on the molecular sieve aid in the generation of aromatics. Furthermore, the Ni/ZSM-5 catalyst demonstrated the ability to convert typical commercial grades of PE plastic, such as gloves and bottles, into aromatics with a selectivity of up to 61.1 %. It offers an economically feasible and environmentally friendly upcycling avenue for the circular economy of plastics.
Collapse
Affiliation(s)
- Bingyan Sun
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Haifeng Xu
- School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Tan Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Wenjie Guan
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Kaige Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
6
|
Gu R, Wang T, Ma Y, Wang TX, Yao RQ, Zhao Y, Wen Z, Han GF, Lang XY, Jiang Q. Upcycling Polyethylene to High-Purity Hydrogen under Ambient Conditions via Mechanocatalysis. Angew Chem Int Ed Engl 2024:e202417644. [PMID: 39526995 DOI: 10.1002/anie.202417644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/15/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Polyethylene (PE) is the most abundant plastic waste, and its conversion to hydrogen (H2) offers a promising route for clean energy generation. However, PE decomposition typically requires high temperatures due to its strong chemical bonds, leading to significant carbon emissions and low H2 selectivity (theoretically less than 75 vol % after accounting for further steam-reforming reactions). Here, we report a mechanocatalytic strategy that upcycles PE into high-purity H2 (99.4 vol %) with an exceptional H2 recovery ratio of 98.5 % (versus 15.7 % via thermocatalysis), using manganese as a catalyst at a low temperature of 45 °C. This method achieves a reaction rate 3 orders of magnitude higher than thermocatalysis. The marked improvement in H2 recovery ratio is mainly due to metal carbides formation induced by the mechanocatalytic process, which does not catalyze hydrocarbons formation. This work is expected to advance studies of the conversion of polyolefins to high-purity H2 with net-zero carbon emissions.
Collapse
Affiliation(s)
- Ruiqian Gu
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Tonghui Wang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Yue Ma
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Tong-Xing Wang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Rui-Qi Yao
- Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yingnan Zhao
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Zi Wen
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Gao-Feng Han
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Xing-You Lang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
7
|
Zhao B, Hu Z, Sun Y, Hajiayi R, Wang T, Jiao N. Selective Upcycling of Polyolefins into High-Value Nitrogenated Chemicals. J Am Chem Soc 2024; 146:28605-28611. [PMID: 39241040 DOI: 10.1021/jacs.4c07965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
The selective upcycling of polyolefins to create products of increased value has emerged as an innovative approach to carbon resource stewardship, drawing significant scientific and industrial interest. Although recent advancements in recycling technology have facilitated the direct conversion of polyolefins to hydrocarbons or oxygenated compounds, the synthesis of nitrogenated compounds from such waste polyolefins has not yet been disclosed. Herein, we demonstrate a novel approach for the upcycling of waste polyolefins by efficiently transforming a range of postconsumer plastic products into nitriles and amides. This process leverages the catalytic properties of manganese dioxide in combination with an inexpensive nitrogen source, urea, to make it both practical and economically viable. Our approach not only opens new avenues for the creation of nitrogenated chemicals from polyolefin waste but also underscores the critical importance of recycling and valorizing carbon resources originally derived from fossil fuels. This study provides a new upcycling strategy for the sustainable conversion of waste polyolefins.
Collapse
Affiliation(s)
- Binzhi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhibin Hu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yichen Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Rehemuhali Hajiayi
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Teng Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Peking University, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
8
|
Cao D, Chan MK. Enhancing chemical synthesis research with NLP: Word embeddings for chemical reagent identification-A case study on nano-FeCu. iScience 2024; 27:110780. [PMID: 39319268 PMCID: PMC11417335 DOI: 10.1016/j.isci.2024.110780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/11/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
Nanoparticle synthesis is complex, influenced by multiple variables including reagent selection. This study introduces a specialized corpus focused on "Fe, Cu, synthesis" to train a domain-specific word embedding model using natural language processing (NLP) in an unsupervised environment. Evaluation metrics included average cosine similarity, visual analysis via t-distributed stochastic neighbor embedding (t-SNE), synonym analysis, and analogy reasoning analysis. Results indicate a strong correlation between learning rate and cosine similarity, with enhanced chemical specificity in the tailored model compared to general models. The framework facilitates rapid identification of potential reagents for nano-FeCu synthesis, enhancing precision in nanomaterial research. This innovative approach offers a data-driven pathway for chemical material synthesis, demonstrating significant interdisciplinary applications.
Collapse
Affiliation(s)
- Dingding Cao
- Centre for Water Research, Faculty of Engineering, Built Environment and Information Technology, SEGi University. Jalan Teknologi, Kota Damansara, Petaling Jaya 47810, Selangor Darul Ehsan, Malaysia
- Department of Electrical and Electronic Engineering, Guangdong Technology College, Zhaoqing 526100, China
| | - Mieow Kee Chan
- Centre for Water Research, Faculty of Engineering, Built Environment and Information Technology, SEGi University. Jalan Teknologi, Kota Damansara, Petaling Jaya 47810, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
9
|
Gao L, Zhong X, Liu J, Chen J, Wang Z, Zhang Y, Wang D, Shakeri M, Zhang X, Zhang B. Selective Upcycling of Polyethylene over Ru/H-ZSM-5 Bifunctional Catalyst into High-Quality Liquid Fuel at Mild Conditions. CHEMSUSCHEM 2024; 17:e202400598. [PMID: 38697954 DOI: 10.1002/cssc.202400598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
It has been known that plastics with undegradability and long half-times have caused serious environmental and ecological issues. Considering the devastating effects, the development of efficient plastic upcycling technologies with low energy consumption is absolutely imperative. Catalytic hydrogenolysis of single-use polyethylene over Ru-based catalysts to produce high-quality liquid fuel has been one of the current top priority strategies, but it is restricted by some tough challenges, such as the tendency towards methanation resulting from terminal C-C cleavage. Herein, we introduced Ru nanoparticles supported on hollow ZSM-5 zeolite (Ru/H-ZSM-5) for hydrocracking of high-density polyethylene (HDPE) under mild reaction conditions. The implication of experimental results is that the 1Ru/H-ZSM-5 (~1 wt % Ru) acted as an effective and reusable bifunctional catalyst providing higher conversion rate (82.53 %) and liquid fuel (C5-C21) yield (62.87 %). Detailed characterization demonstrated that the optimal performance in hydrocracking of PE could be attributed to the moderate acidity and appropriate positively charged Ru species resulting from the metal-zeolite interaction. This work proposes a promising catalyst for plastic upcycling and reveals its structure-performance relationship, which has guiding significance for catalyst design to improve the yield of high-value liquid fuels.
Collapse
Affiliation(s)
- Li Gao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, Liaoning, China
| | - Xia Zhong
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, Liaoning, China
| | - Jie Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, Liaoning, China
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, China
| | - Junnan Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, Liaoning, China
| | - Ziru Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, Liaoning, China
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, China
| | - Ying Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, Liaoning, China
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, 113001, China
| | - Deli Wang
- Bilahe Forestry Bureau Bilahe, 165474, Inner Mongolia, China
| | - Mozaffar Shakeri
- Laboratory of Heterogeneous Catalysis, Department of Chemical and Petroleum Engineering, Chemistry and Chemical Engineering Research Center of Iran, Tehran, 16363, Iran
| | - Xia Zhang
- Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, Liaoning, China
| |
Collapse
|
10
|
Sun J, Dong J, Gao L, Zhao YQ, Moon H, Scott SL. Catalytic Upcycling of Polyolefins. Chem Rev 2024; 124:9457-9579. [PMID: 39151127 PMCID: PMC11363024 DOI: 10.1021/acs.chemrev.3c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 08/18/2024]
Abstract
The large production volumes of commodity polyolefins (specifically, polyethylene, polypropylene, polystyrene, and poly(vinyl chloride)), in conjunction with their low unit values and multitude of short-term uses, have resulted in a significant and pressing waste management challenge. Only a small fraction of these polyolefins is currently mechanically recycled, with the rest being incinerated, accumulating in landfills, or leaking into the natural environment. Since polyolefins are energy-rich materials, there is considerable interest in recouping some of their chemical value while simultaneously motivating more responsible end-of-life management. An emerging strategy is catalytic depolymerization, in which a portion of the C-C bonds in the polyolefin backbone is broken with the assistance of a catalyst and, in some cases, additional small molecule reagents. When the products are small molecules or materials with higher value in their own right, or as chemical feedstocks, the process is called upcycling. This review summarizes recent progress for four major catalytic upcycling strategies: hydrogenolysis, (hydro)cracking, tandem processes involving metathesis, and selective oxidation. Key considerations include macromolecular reaction mechanisms relative to small molecule mechanisms, catalyst design for macromolecular transformations, and the effect of process conditions on product selectivity. Metrics for describing polyolefin upcycling are critically evaluated, and an outlook for future advances is described.
Collapse
Affiliation(s)
- Jiakai Sun
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
| | - Jinhu Dong
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Lijun Gao
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Yu-Quan Zhao
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
| | - Hyunjin Moon
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Susannah L. Scott
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| |
Collapse
|
11
|
Yang S, Li Y, Nie M, Liu X, Wang Q, Chen N, Zhang C. Lifecycle Management for Sustainable Plastics: Recent Progress from Synthesis, Processing to Upcycling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404115. [PMID: 38869422 DOI: 10.1002/adma.202404115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Plastics, renowned for their outstanding properties and extensive applications, assume an indispensable and irreplaceable role in modern society. However, the ubiquitous consumption of plastic items has led to a growing accumulation of plastic waste. Unreasonable practices in the production, utilization, and recycling of plastics have led to substantial energy resource depletion and environmental pollution. Herein, the state-of-the-art advancements in the lifecycle management of plastics are timely reviewed. Unlike typical reviews focused on plastic recycling, this work presents an in-depth analysis of the entire lifecycle of plastics, covering the whole process from synthesis, processing, to ultimate disposal. The primary emphasis lies on selecting judicious strategies and methodologies at each lifecycle stage to mitigate the adverse environmental impact of waste plastics. Specifically, the article delineates the rationale, methods, and advancements realized in various lifecycle stages through both physical and chemical recycling pathways. The focal point is the attainment of optimal recycling rates for waste plastics, thereby alleviating the ecological burden of plastic pollution. By scrutinizing the entire lifecycle of plastics, the article aims to furnish comprehensive solutions for reducing plastic pollution and fostering sustainability across all facets of plastic production, utilization, and disposal.
Collapse
Affiliation(s)
- Shuangqiao Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Yijun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Min Nie
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
| | - Xingang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| |
Collapse
|
12
|
Sun X, Hou X, Dong A, Tian C, Yin L, Huang J, Cui T, Yuan E. Fabrication of Fe-Zr, Co-Zr, and Ni-Zr Catalysts to Boost CNTs Synthesis from Plastic Wastes and the Electrocatalytic Oxygen Evolution Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39018430 DOI: 10.1021/acs.langmuir.4c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
The efficient conversion of plastic wastes to high-value carbon materials like carbon nanotubes (CNTs) is one important issue about the rational recycling, reduction, and reuse of solid wastes. Herein, Fe-, Co-, and Ni-Zr catalysts were prepared and used for CNTs synthesis from polyethylene (PE) waste via a two-stage reaction system. At the same time, the effects of the PE/catalyst ratio and reaction temperature on CNTs synthesis have been studied. Compared with Co-Zr and Ni-Zr, Fe-Zr exhibited the best activity in CNTs synthesis from PE, and it achieved the highest CNTs yield of 806.3 mg/g (per gram of Fe-Zr) at 800 °C with a PE/catalyst ratio of 4. Furthermore, the obtained Fe-Zr/CNTs composite exhibited a low overpotential of 267 mV for the electrocatalytic oxygen evolution reaction (OER) at 20 mA/cm2 in 1 M KOH electrolyte solution, which was 21 mV lower than commercial RuO2 (288 mV) and 50 mV lower than Fe-Zr (317 mV). It was deduced that the in situ growth of CNTs reduced the charge transfer resistance and improved the electron transport efficiency of the Fe-Zr/CNTs composite, leading to superior activity in the electrocatalytic OER. This work provided detailed information for the preparation of the metal/CNTs composite from plastic wastes, which contributed positively to alleviate the environment and energy crisis.
Collapse
Affiliation(s)
- Xinyao Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin 130012, P. R. China
| | - Xu Hou
- School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin 130012, P. R. China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun, Jilin 130012, P. R. China
| | - Ao Dong
- School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin 130012, P. R. China
| | - Changchang Tian
- School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin 130012, P. R. China
| | - Li Yin
- School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin 130012, P. R. China
| | - Jing Huang
- School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin 130012, P. R. China
| | - Tingting Cui
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, P. R. China
| | - Enxian Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
| |
Collapse
|
13
|
Liu S, Hou X, Tian C, Dong A, Sun X, Yin L, Huang J, Yuan E. Role of the hydrocarbon molecular structure in CNT growth on Fe-Al catalysts. Phys Chem Chem Phys 2024; 26:19187-19194. [PMID: 38956985 DOI: 10.1039/d4cp01395f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Upgrading plastic wastes into high-value products via the thermochemical process is one of the most attractive topics. Although carbon nanotubes (CNTs) have been successfully synthesized from plastic pyrolysis gas over Fe-, Co-, or Ni-based catalysts, a deep discussion about the reaction mechanism was seldom mentioned in the literature. Herein, this work was intended to study the growth mechanism of CNTs from hydrocarbons on Fe-Al2O3 catalysts. C5-C7 hydrocarbons were used to synthesize CNTs in a high-temperature fixed-bed reactor, and the carbon products and cracked gas were analyzed in detail. The CNT yield was in the order of cyclohexane, cyclohexene > n-hexane > n-heptane > n-pentane, 1-hexene. It was proposed that CNT growth on Fe-Al2O3 catalysts was mainly determined by the yield and structure of six-membered cyclic species, which was tailored by the carbon chain length, C-C/CC bonds, and linear/cyclic structures of C5-C7 hydrocarbons. Compared with n-hexane, the six-membered rings of cyclohexane and cyclohexene promoted six-membered cyclic species formation, increasing CNT and benzene yields; the seven-membered carbon chain of n-heptane promoted methyl-six-membered cyclic species formation, decreasing CNT and benzene yields while increasing the toluene yield; the five-membered carbon chain of n-pentane and the CC bond of 1-hexene inhibited six-membered cyclic species formation, decreasing CNT and benzene yields. This work revealed the structure-activity relationship between C5-C7 hydrocarbons and CNT growth, which may direct the process design and optimization of CNT synthesis from plastic pyrolysis gas.
Collapse
Affiliation(s)
- Siqi Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, P. R. China.
| | - Xu Hou
- School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, P. R. China.
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun, Jilin, P. R. China
| | - Changchang Tian
- School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, P. R. China.
| | - Ao Dong
- School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, P. R. China.
| | - Xinyao Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, P. R. China.
| | - Li Yin
- School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, P. R. China.
| | - Jing Huang
- School of Chemical Engineering, Changchun University of Technology, Changchun, Jilin, P. R. China.
| | - Enxian Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, P. R. China.
| |
Collapse
|
14
|
Li J, Zhang D, Guo Z, Chen Z, Jiang X, Larson JM, Zhu H, Zhang T, Gu Y, Blankenship BW, Chen M, Wu Z, Huang S, Kostecki R, Minor AM, Grigoropoulos CP, Akinwande D, Terrones M, Redwing JM, Li H, Zheng Y. Light-driven C-H activation mediated by 2D transition metal dichalcogenides. Nat Commun 2024; 15:5546. [PMID: 38956055 PMCID: PMC11219765 DOI: 10.1038/s41467-024-49783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
C-H bond activation enables the facile synthesis of new chemicals. While C-H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C-H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C-C coupling mediated by 2D TMDCs to promote C-H activation and carbon dots synthesis. Our results shed light on 2D materials for C-H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials.
Collapse
Affiliation(s)
- Jingang Li
- Materials Science & Engineering Program, Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Di Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
| | - Zhongyuan Guo
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
| | - Zhihan Chen
- Materials Science & Engineering Program, Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Xi Jiang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jonathan M Larson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Haoyue Zhu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Tianyi Zhang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Yuqian Gu
- Chandra Family Department of Electrical & Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Brian W Blankenship
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Min Chen
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Zilong Wu
- Materials Science & Engineering Program, Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Suichu Huang
- Materials Science & Engineering Program, Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Robert Kostecki
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrew M Minor
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Costas P Grigoropoulos
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Deji Akinwande
- Chandra Family Department of Electrical & Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Mauricio Terrones
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
- Center for Two-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, USA
- Department of Physics, Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Joan M Redwing
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
- 2D Crystal Consortium, Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan.
| | - Yuebing Zheng
- Materials Science & Engineering Program, Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
15
|
Sun S, Huang W. Chemical Upcycling of Polyolefin Plastics Using Structurally Well-defined Catalysts. JACS AU 2024; 4:2081-2098. [PMID: 38938810 PMCID: PMC11200224 DOI: 10.1021/jacsau.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024]
Abstract
Single-use polyolefins are widely used in our daily life and industrial production due to their light weight, low cost, superior stability, and durability. However, the rapid accumulation of plastic waste and low-profit recycling methods resulted in a global plastic crisis. Catalytic hydrogenolysis is regarded as a promising technique, which can effectively and selectively convert polyolefin plastic waste to value-added products. In this perspective, we focus on the design and synthesis of structurally well-defined hydrogenolysis catalysts across mesoscopic, nanoscopic, and atomic scales, accompanied by our insights into future directions in catalyst design for further enhancing catalytic performance. These design principles can also be applied to the depolymerization of other polymers and ultimately realize the chemical upcycling of waste plastics.
Collapse
Affiliation(s)
- Simin Sun
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- US
Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| | - Wenyu Huang
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- US
Department of Energy, Ames National Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
16
|
Feng J, Duan J, Hung CT, Zhang Z, Li K, Ai Y, Yang C, Zhao Y, Yu Z, Zhang Y, Wang L, Zhao D, Li W. Micelles Cascade Assembly to Tandem Porous Catalyst for Waste Plastics Upcycling. Angew Chem Int Ed Engl 2024; 63:e202405252. [PMID: 38644634 DOI: 10.1002/anie.202405252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/23/2024]
Abstract
Catalytic upcycling of polyolefins into high-value chemicals represents the direction in end-of-life plastics valorization, but poses great challenges. Here, we report the synthesis of a tandem porous catalyst via a micelle cascade assembly strategy for selectively catalytic cracking of polyethylene into olefins at a low temperature. A hierarchically porous silica layer from mesopore to macropore is constructed on the surface of microporous ZSM-5 nanosheets through cascade assembly of dynamic micelles. The outer macropore arrays can adsorb bulky polyolefins quickly by the capillary and hydrophobic effects, enhancing the diffusion and access to active sites. The middle mesopores present a nanoconfinement space, pre-cracking polyolefins into intermediates by weak acid sites, which then transport into zeolites micropores for further cracking by strong Brønsted acid sites. The hierarchically porous and acidic structures, mimicking biomimetic protease catalytic clefts, ideally match the tandem cracking steps of polyolefins, thus suppressing coke formation and facilitating product escape. As a result, light hydrocarbons (C1-C7) are produced with a yield of 443 mmol gZSM-5 -1, where 74.3 % of them are C3-C6 olefins, much superior to ZSM-5 and porous silica catalysts. This tandem porous catalyst exemplifies a superstructure design of catalytic cracking catalysts for industrial and economical upcycling of plastic wastes.
Collapse
Affiliation(s)
- Jiayou Feng
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China
| | - Jindi Duan
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chin-Te Hung
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China
| | - Zhenghao Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China
| | - Kailin Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China
| | - Yan Ai
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China
| | - Chaochao Yang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China
| | - Yiyue Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China
| | - Zhengmin Yu
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., 116045, Dalian, China
| | - Yahong Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China
| | - Liang Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai, 200433, China
| |
Collapse
|
17
|
Zeng L, Yan T, Du J, Liu C, Dong B, Qian B, Xiao Z, Su G, Zhou T, Peng Z, Wang Z, Li H, Zeng J. Recycling Valuable Alkylbenzenes from Polystyrene through Methanol-Assisted Depolymerization. Angew Chem Int Ed Engl 2024; 63:e202404952. [PMID: 38588012 DOI: 10.1002/anie.202404952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
The vast bulk of polystyrene (PS), a major type of plastic polymers, ends up in landfills, which takes up to thousands of years to decompose in nature. Chemical recycling promises to enable lower-energy pathways and minimal environmental impacts compared with traditional incineration and mechanical recycling. Herein, we demonstrated that methanol as a hydrogen supplier assisted the depolymerization of PS (denoted as PS-MAD) into alkylbenzenes over a heterogeneous catalyst composed of Ru nanoparticles on SiO2. PS-MAD achieved a high yield of liquid products which accounted for 93.2 wt % of virgin PS at 280 °C for 6 h with the production rate of 118.1 mmolcarbon gcatal. -1 h-1. The major components were valuable alkylbenzenes (monocyclic aromatics and diphenyl alkanes), the sum of which occupied 84.3 wt % of liquid products. According to mechanistic studies, methanol decomposition dominates the hydrogen supply during PS-MAD, thereby restraining PS aromatization which generates by-products of fused polycyclic arenes and polyphenylenes.
Collapse
Affiliation(s)
- Lin Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Tao Yan
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Junjie Du
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory, State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bin Dong
- National Synchrotron Radiation Laboratory, State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bing Qian
- National Synchrotron Radiation Laboratory, State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhou Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guangning Su
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Tao Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zijun Peng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhandong Wang
- National Synchrotron Radiation Laboratory, State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| |
Collapse
|
18
|
Cen Z, Han X, Lin L, Yang S, Han W, Wen W, Yuan W, Dong M, Ma Z, Li F, Ke Y, Dong J, Zhang J, Liu S, Li J, Li Q, Wu N, Xiang J, Wu H, Cai L, Hou Y, Cheng Y, Daemen LL, Ramirez-Cuesta AJ, Ferrer P, Grinter DC, Held G, Liu Y, Han B. Upcycling of polyethylene to gasoline through a self-supplied hydrogen strategy in a layered self-pillared zeolite. Nat Chem 2024; 16:871-880. [PMID: 38594366 PMCID: PMC11164678 DOI: 10.1038/s41557-024-01506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Conversion of plastic wastes to valuable carbon resources without using noble metal catalysts or external hydrogen remains a challenging task. Here we report a layered self-pillared zeolite that enables the conversion of polyethylene to gasoline with a remarkable selectivity of 99% and yields of >80% in 4 h at 240 °C. The liquid product is primarily composed of branched alkanes (selectivity of 72%), affording a high research octane number of 88.0 that is comparable to commercial gasoline (86.6). In situ inelastic neutron scattering, small-angle neutron scattering, solid-state nuclear magnetic resonance, X-ray absorption spectroscopy and isotope-labelling experiments reveal that the activation of polyethylene is promoted by the open framework tri-coordinated Al sites of the zeolite, followed by β-scission and isomerization on Brönsted acids sites, accompanied by hydride transfer over open framework tri-coordinated Al sites through a self-supplied hydrogen pathway to yield selectivity to branched alkanes. This study shows the potential of layered zeolite materials in enabling the upcycling of plastic wastes.
Collapse
Affiliation(s)
- Ziyu Cen
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Han
- College of Chemistry, Beijing Normal University, Beijing, China.
| | - Longfei Lin
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Sihai Yang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China.
- Department of Chemistry, University of Manchester, Manchester, UK.
| | - Wanying Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Weilong Wen
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenli Yuan
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Minghua Dong
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiye Ma
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yubin Ke
- China Spallation Neutron Source, Institute of High Energy Physics, Dongguan, China
| | - Juncai Dong
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Jin Zhang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Shuhu Liu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Jialiang Li
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- Center for Physicochemical Analysis Measurements, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Ningning Wu
- Center for Physicochemical Analysis Measurements, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Junfeng Xiang
- Center for Physicochemical Analysis Measurements, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Hao Wu
- SINOPEC Research Institute of Petroleum Processing, Beijing, China
| | - Lile Cai
- SINOPEC Research Institute of Petroleum Processing, Beijing, China
| | - Yanbo Hou
- SINOPEC Research Institute of Petroleum Processing, Beijing, China
| | - Yongqiang Cheng
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Luke L Daemen
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Anibal J Ramirez-Cuesta
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Pilar Ferrer
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - David C Grinter
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Georg Held
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Yueming Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
- Institute of Eco-Chongming, Shanghai, China.
| |
Collapse
|
19
|
Zhang G, Mao Q, Yue Y, Gao R, Duan Y, Du H. Ni-based catalysts supported on Hbeta zeolite for the hydrocracking of waste polyolefins. RSC Adv 2024; 14:15856-15861. [PMID: 38756856 PMCID: PMC11096778 DOI: 10.1039/d4ra02809k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Polyolefin plastics are the most popular polymer materials worldwide, and the catalytic degradation of post-consumer polyolefins has attracted increased attention as a viable process. In this study, two types of Ni-based catalysts supported on Hbeta zeolite, Ni-Hbeta and NiS2-Hbeta, have been successfully synthesized for the hydrocracking of waste polyolefin. The experimental results indicated that the synergistic effect between Ni or NiS2 and the acidic sites of Hbeta zeolites can significantly enhance the tandem cracking and hydrogenation of polyolefin plastics, which suppresses the formation of gas products and coke. Ni-Hbeta employed as a catalyst can effectively degrade HDPE into high value liquid and gas products with high yield of 94% under 523 K and 3 MPa H2, while also exhibiting excellent cycle stability. In particular, Ni-Hbeta shows better catalytic performance than NiS2-Hbeta during the hydrocracking of HDPE at a relatively low temperature of 523 K. Furthermore, Ni-Hbeta catalyst also exhibits a remarkable capability for efficient depolymerization of unsorted post-consumer polyolefin plastics (HDPE, LDPE, PP) containing various additives and pollutants. These findings underscore the application potential of employing noble metal-free and recyclable catalysts for hydrocracking plastic waste, thereby facilitating the realization of a circular economy for plastics.
Collapse
Affiliation(s)
- Guoqing Zhang
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University Qingdao 266071 Shandong P. R. China
| | - Qingguo Mao
- Liaoning Bora Bioenergy Co. Ltd Panjin 124000 Liaoning P. R. China
| | - Yiqun Yue
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University Qingdao 266071 Shandong P. R. China
| | - Ruitong Gao
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University Qingdao 266071 Shandong P. R. China
| | - Yajing Duan
- College of Physics, Qingdao University Qingdao 266071 Shandong P. R. China
| | - Hui Du
- College of Chemistry and Chemical Engineering, Institute for Sustainable Energy and Resources, Qingdao University Qingdao 266071 Shandong P. R. China
| |
Collapse
|
20
|
Ding Y, Zhang S, Liu C, Shao Y, Pan X, Bao X. CO 2-facilitated upcycling of polyolefin plastics to aromatics at low temperature. Natl Sci Rev 2024; 11:nwae097. [PMID: 38660412 PMCID: PMC11042496 DOI: 10.1093/nsr/nwae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 04/26/2024] Open
Abstract
Plastics are one of the most produced synthetic materials and largest commodities, used in numerous sectors of human life. To upcycle waste plastics into value-added chemicals is a global challenge. Despite significant progress in pyrolysis and hydrocracking, which mainly leads to the formation of pyrolysis oil, catalytic upcycling to value-added aromatics, including benzene, toluene and xylene (BTX), in one step, is still limited by high reaction temperatures (>500°C) and a low yield. We report herein CO2-facilitated upcycling of polyolefins and their plastic products to aromatics below 300°C, enabled by a bifunctional Pt/MnOx-ZSM-5 catalyst. ZSM-5 catalyzes cracking of polyolefins and aromatization, generating hydrogen at the same time, while Pt/MnOx catalyzes the reaction of hydrogen with CO2, consequently driving the reaction towards aromatization. Isotope experiments reveal that 0.2 kg CO2 is consumed per 1.0 kg polyethylene and 90% of the consumed CO2 is incorporated into the aromatic products. Furthermore, this new process yields 0.63 kg aromatics (BTX accounting for 60%), comparing favorably with the conventional pyrolysis or hydrocracking processes, which produce only 0.33 kg aromatics. In this way, both plastic waste and the greenhouse gas CO2 are turned into carbon resources, providing a new strategy for combined waste plastics upcycling and carbon dioxide utilization.
Collapse
Affiliation(s)
- Yi Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shuchi Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Shao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiulian Pan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
21
|
Kang Q, Zhang X, Feng Q, Zhang L, Chu M, Li C, Xu P, Cao M, He L, Zhang Q, Chen J. Hydrogen Bubbles: Harmonizing Local Hydrogen Transfer for Efficient Plastic Hydro-Depolymerization. ACS NANO 2024; 18:11438-11448. [PMID: 38627232 DOI: 10.1021/acsnano.4c02062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Hydro-depolymerization presents a promising avenue for transforming plastic waste into high-value hydrocarbons, offering significant potential for value-added recycling. However, a major challenge in this method arises from kinetic limitations due to insufficient hydrogen concentration near the active sites, requiring optimal catalytic performance only at higher hydrogen pressures. In this study, we address this hurdle by developing "hydrogen bubble catalysts" featuring Ru nanoparticles within mesoporous SBA-15 channels (Ru/SBA). The distinctive feature of Ru/SBA catalysts lies in their capacity for physical hydrogen storage and chemically reversible hydrogen spillover, ensuring a timely and ample hydrogen supply. Under identical reaction conditions, the catalytic activity of Ru/SBA surpassed that of Ru/SiO2 (no hydrogen storage capacity) by over 4-fold. This substantial enhancement in catalytic performance provides significant opportunities for near atmospheric pressure hydro-depolymerization of plastic waste.
Collapse
Affiliation(s)
- Qingyun Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Xiaofang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Qianyue Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Lin Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Mingyu Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Panpan Xu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Muhan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | | | | |
Collapse
|
22
|
Zhang W, Yao H, Khare R, Zhang P, Yang B, Hu W, Ray D, Hu J, Camaioni DM, Wang H, Kim S, Lee MS, Sarazen ML, Chen JG, Lercher JA. Chloride and Hydride Transfer as Keys to Catalytic Upcycling of Polyethylene into Liquid Alkanes. Angew Chem Int Ed Engl 2024; 63:e202319580. [PMID: 38433092 DOI: 10.1002/anie.202319580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Transforming polyolefin waste into liquid alkanes through tandem cracking-alkylation reactions catalyzed by Lewis-acid chlorides offers an efficient route for single-step plastic upcycling. Lewis acids in dichloromethane establish a polar environment that stabilizes carbenium ion intermediates and catalyzes hydride transfer, enabling breaking of polyethylene C-C bonds and forming C-C bonds in alkylation. Here, we show that efficient and selective deconstruction of low-density polyethylene (LDPE) to liquid alkanes is achieved with anhydrous aluminum chloride (AlCl3) and gallium chloride (GaCl3). Already at 60 °C, complete LDPE conversion was achieved, while maintaining the selectivity for gasoline-range liquid alkanes over 70 %. AlCl3 showed an exceptional conversion rate of 5000g L D P E m o l c a t - 1 h - 1 ${{{\rm g}}_{{\rm L}{\rm D}{\rm P}{\rm E}}{{\rm \ }{\rm m}{\rm o}{\rm l}}_{{\rm c}{\rm a}{\rm t}}^{-1}{{\rm \ }{\rm h}}^{-1}}$ , surpassing other Lewis acid catalysts by two orders of magnitude. Through kinetic and mechanistic studies, we show that the rates of LDPE conversion do not correlate directly with the intrinsic strength of the Lewis acids or steric constraints that may limit the polymer to access the Lewis acid sites. Instead, the rates for the tandem processes of cracking and alkylation are primarily governed by the rates of initiation of carbenium ions and the subsequent intermolecular hydride transfer. Both jointly control the relative rates of cracking and alkylation, thereby determining the overall conversion and selectivity.
Collapse
Affiliation(s)
- Wei Zhang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
- Department of Chemistry and Catalysis Research Center, Technical University of Munich (TUM), Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Hai Yao
- Department of Chemistry and Catalysis Research Center, Technical University of Munich (TUM), Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Rachit Khare
- Department of Chemistry and Catalysis Research Center, Technical University of Munich (TUM), Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peiran Zhang
- Department of Chemistry and Catalysis Research Center, Technical University of Munich (TUM), Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Boda Yang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Wenda Hu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Debmalya Ray
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Jianzhi Hu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, 99164, USA
| | - Donald M Camaioni
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Huamin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Sungmin Kim
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Mal-Soon Lee
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
| | - Michele L Sarazen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, 08544, USA
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, 10027, USA
| | - Johannes A Lercher
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory (PNNL), Richland, Washington, 99354, USA
- Department of Chemistry and Catalysis Research Center, Technical University of Munich (TUM), Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
23
|
Liu Y, Ma B, Tian J, Zhao C. Coupled conversion of polyethylene and carbon dioxide catalyzed by a zeolite-metal oxide system. SCIENCE ADVANCES 2024; 10:eadn0252. [PMID: 38608025 PMCID: PMC11014447 DOI: 10.1126/sciadv.adn0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
Zeolite-catalyzed polyethylene (PE) aromatization achieves reduction of the aromatic yield via hydrogenation and hydrogenolysis reactions. The hydrogen required for CO2 hydrogenation can be provided by H radicals formed during aromatization. In this study, we efficiently convert PE and CO2 into aromatics and CO using a zeolite-metal oxide catalyst (HZSM-5 + CuZnZrOx) at 380°C and under hydrogen- and solvent-free reaction conditions. Hydrogen, derived from the aromatization of PE over HZSM-5, diffuses through the Brønsted acidic sites of the zeolite to the adjacent CuZnZrOx, where it is captured in situ by CO2 to produce bicarbonate and further hydrogenated to CO. This favors aromatization while inhibiting hydrogenation and secondary hydrogenolysis reactions. An aromatic yield of 62.5 wt % is achieved, of which 60% consisted of benzene, toluene, and xylene (BTX). The conversion of CO2 reaches values as high as 0.55 mmol gPE-1. This aromatization-hydrogen capture pathway provides a feasible scheme for the comprehensive utilization of waste plastics and CO2.
Collapse
Affiliation(s)
- Yangyang Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Bing Ma
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jingqing Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Chen Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
24
|
Hu P, Zhang C, Chu M, Wang X, Wang L, Li Y, Yan T, Zhang L, Ding Z, Cao M, Xu P, Li Y, Cui Y, Zhang Q, Chen J, Chi L. Stable Interfacial Ruthenium Species for Highly Efficient Polyolefin Upcycling. J Am Chem Soc 2024; 146:7076-7087. [PMID: 38428949 DOI: 10.1021/jacs.4c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
The present polyolefin hydrogenolysis recycling cases acknowledge that zerovalent Ru exhibits high catalytic activity. A pivotal rationale behind this assertion lies in the propensity of the majority of Ru species to undergo reduction to zerovalent Ru within the hydrogenolysis milieu. Nonetheless, the suitability of zerovalent Ru as an optimal structural configuration for accommodating multiple elementary reactions remains ambiguous. Here, we have constructed stable Ru0-Ruδ+ complex species, even under reaction conditions, through surface ligand engineering of commercially available Ru/C catalysts. Our findings unequivocally demonstrate that surface-ligated Ru species can be stabilized in the form of a Ruδ+ state, which, in turn, engenders a perturbation of the σ bond electron distribution within the polyolefin carbon chain, ultimately boosting the rate-determining step of C-C scission. The optimized catalysts reach a solid conversion rate of 609 g·gRu-1·h-1 for polyethylene. This achievement represents a 4.18-fold enhancement relative to the pristine Ru/C catalyst while concurrently preserving a remarkable 94% selectivity toward valued liquid alkanes. Of utmost significance, this surface ligand engineering can be extended to the gentle mixing of catalysts in ligand solution at room temperature, thus rendering it amenable for swift integration into industrial processes involving polyolefin degradation.
Collapse
Affiliation(s)
- Ping Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Congyang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Department of Chemistry, University of Western Ontario, London N6A 5B7, Canada
| | - Mingyu Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Xianpeng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau 999078, P. R. China
| | - Lu Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau 999078, P. R. China
| | - Tianran Yan
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Liang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Zhifeng Ding
- Department of Chemistry, University of Western Ontario, London N6A 5B7, Canada
| | - Muhan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, P. R. China
| | - Panpan Xu
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Yifan Li
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Yi Cui
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Qiao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Jinxing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macau 999078, P. R. China
| |
Collapse
|
25
|
Lv H, Huang F, Zhang F. Upcycling Waste Plastics with a C-C Backbone by Heterogeneous Catalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5077-5089. [PMID: 38358312 DOI: 10.1021/acs.langmuir.3c03866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Plastics with an inert carbon-carbon (C-C) backbone, such as polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC), are the most widely used types of plastic in human activities. However, many of these polymers were directly discarded in nature after use, and few were appropriately recycled. This not only threatens the natural environment but also leads to the waste of carbon resources. Conventional chemical recycling of these plastics, including pyrolysis and catalytic cracking, requires a high energy input due to the chemical inertness of C-C bonds and C-H bonds and leads to complex product distribution. In recent years, significant progress has been made in the development of catalysts and the introduction of small molecules as additional coreactants, which could potentially overcome these challenges. In this Review, we summarize and highlight catalytic strategies that address these issues in upcycling C-C backbone plastics with small molecules, particularly in heterogeneous catalysis. We believe that this review will inspire the development of upcycling methods for C-C backbone plastics using small molecules and heterogeneous catalysis.
Collapse
Affiliation(s)
- Huidong Lv
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan People's Republic of China
| | - Fei Huang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan People's Republic of China
| | - Fan Zhang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan People's Republic of China
| |
Collapse
|
26
|
Ran H, Zhang S, Ni W, Jing Y. Precise activation of C-C bonds for recycling and upcycling of plastics. Chem Sci 2024; 15:795-831. [PMID: 38239692 PMCID: PMC10793209 DOI: 10.1039/d3sc05701a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
The rapid accumulation of plastic waste has led to a severe environmental crisis and a noticeable imbalance between manufacturing and recycling. Fortunately, chemical upgradation of plastic waste holds substantial promise for addressing these challenges posed by white pollution. During plastic upcycling and recycling, the key challenge is to activate and cleave the inert C-C bonds in plastic waste. Therefore, this perspective delves deeper into the upcycling and recycling of polyolefins from the angle of C-C activation-cleavage. We illustrate the importance of C-C bond activation in polyolefin depolymerization and integrate molecular-level catalysis, active site modulation, reaction networks and mechanisms to achieve precise activation-cleavage of C-C bonds. Notably, we draw potential inspiration from the accumulated wisdom of related fields, such as C-C bond activation in lignin chemistry, alkane dehydrogenation chemistry, C-Cl bond activation in CVOC removal, and C-H bond activation, to influence the landscape of plastic degradation through cross-disciplinary perspectives. Consequently, this perspective offers better insights into existing catalytic technologies and unveils new prospects for future advancements in recycling and upcycling of plastic.
Collapse
Affiliation(s)
- Hongshun Ran
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
- Institute for the Environment and Health, Nanjing University Suzhou Campus Suzhou 215163 China
| | - Shuo Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
- Institute for the Environment and Health, Nanjing University Suzhou Campus Suzhou 215163 China
| | - Wenyi Ni
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
- Institute for the Environment and Health, Nanjing University Suzhou Campus Suzhou 215163 China
| | - Yaxuan Jing
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University Nanjing 210023 China
- Institute for the Environment and Health, Nanjing University Suzhou Campus Suzhou 215163 China
| |
Collapse
|