1
|
Palounek D, Vala M, Bujak Ł, Kopal I, Jiříková K, Shaidiuk Y, Piliarik M. Surpassing the Diffraction Limit in Label-Free Optical Microscopy. ACS PHOTONICS 2024; 11:3907-3921. [PMID: 39429866 PMCID: PMC11487630 DOI: 10.1021/acsphotonics.4c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 10/22/2024]
Abstract
Super-resolution optical microscopy has enhanced our ability to visualize biological structures on the nanoscale. Fluorescence-based techniques are today irreplaceable in exploring the structure and dynamics of biological matter with high specificity and resolution. However, the fluorescence labeling concept narrows the range of observed interactions and fundamentally limits the spatiotemporal resolution. In contrast, emerging label-free imaging methods are not inherently limited by speed and have the potential to capture the entirety of complex biological processes and dynamics. While pushing a complex unlabeled microscopy image beyond the diffraction limit to single-molecule resolution and capturing dynamic processes at biomolecular time scales is widely regarded as unachievable, recent experimental strides suggest that elements of this vision might be already in place. These techniques derive signals directly from the sample using inherent optical phenomena, such as elastic and inelastic scattering, thereby enabling the measurement of additional properties, such as molecular mass, orientation, or chemical composition. This perspective aims to identify the cornerstones of future label-free super-resolution imaging techniques, discuss their practical applications and theoretical challenges, and explore directions that promise to enhance our understanding of complex biological systems through innovative optical advancements. Drawing on both traditional and emerging techniques, label-free super-resolution microscopy is evolving to offer detailed and dynamic imaging of living cells, surpassing the capabilities of conventional methods for visualizing biological complexities without the use of labels.
Collapse
Affiliation(s)
- David Palounek
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
- Department
of Physical Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Milan Vala
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
| | - Łukasz Bujak
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
| | - Ivan Kopal
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
- Department
of Physical Chemistry, University of Chemistry
and Technology Prague, Technická 5, Prague 6 16628, Czech Republic
| | - Kateřina Jiříková
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
| | - Yevhenii Shaidiuk
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
| | - Marek Piliarik
- Institute
of Photonics and Electronics, Czech Academy
of Sciences, Chaberská
1014/57, Prague 8 18200, Czech Republic
| |
Collapse
|
2
|
Luo Y, Sheng S, Pisarra M, Martin-Jimenez A, Martin F, Kern K, Garg M. Selective excitation of vibrations in a single molecule. Nat Commun 2024; 15:6983. [PMID: 39143046 PMCID: PMC11324655 DOI: 10.1038/s41467-024-51419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
The capability to excite, probe, and manipulate vibrational modes is essential for understanding and controlling chemical reactions at the molecular level. Recent advancements in tip-enhanced Raman spectroscopies have enabled the probing of vibrational fingerprints in a single molecule with Ångström-scale spatial resolution. However, achieving controllable excitation of specific vibrational modes in individual molecules remains challenging. Here, we demonstrate the selective excitation and probing of vibrational modes in single deprotonated phthalocyanine molecules utilizing resonance Raman spectroscopy in a scanning tunneling microscope. Selective excitation is achieved by finely tuning the excitation wavelength of the laser to be resonant with the vibronic transitions between the molecular ground electronic state and the vibrational levels in the excited electronic state, resulting in the state-selective enhancement of the resonance Raman signal. Our approach contributes to setting the stage for steering chemical transformations in molecules on surfaces by selective excitation of molecular vibrations.
Collapse
Affiliation(s)
- Yang Luo
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
| | - Shaoxiang Sheng
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Michele Pisarra
- Dipartimento di Fisica, Università della Calabria, Via P. Bucci, Cubo 30C, 87036, Rende, CS, Italy
- INFN-LNF, Gruppo Collegato di Cosenza, Via P. Bucci, Cubo 31C, 87036, Rende, CS, Italy
| | - Alberto Martin-Jimenez
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nano), Faraday 9, Cantoblanco, 28049, Madrid, Spain
| | - Fernando Martin
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nano), Faraday 9, Cantoblanco, 28049, Madrid, Spain.
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Klaus Kern
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
- Institut de Physique, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Manish Garg
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany.
| |
Collapse
|
3
|
Lemes EM. Raman spectroscopy - a visit to the literature on plant, food, and agricultural studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39132989 DOI: 10.1002/jsfa.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
Raman spectroscopy, a fast, non-invasive, and label-free optical technique, has significantly advanced plant and food studies and precision agriculture by providing detailed molecular insights into biological tissues. Utilizing the Raman scattering effect generates unique spectral fingerprints that comprehensively analyze tissue composition, concentration, and molecular structure. These fingerprints are obtained without chemical additives or extensive sample preparation, making Raman spectroscopy particularly suitable for in-field applications. Technological enhancements such as surface-enhanced Raman scattering, Fourier-transform-Raman spectroscopy, and chemometrics have increased Raman spectroscopy sensitivity and precision. These and other advancements enable real-time monitoring of compound translocation within plants and improve the detection of chemical and biological contaminants, essential for food safety and crop optimization. Integrating Raman spectroscopy into agronomic practices is transformative and marks a shift toward more sustainable farming activities. It assesses crop quality - as well as the quality of the food that originated from crop production - early plant stress detection and supports targeted breeding programs. Advanced data processing techniques and machine learning integration efficiently handle complex spectral data, providing a dynamic and detailed view of food conditions and plant health under varying environmental and biological stresses. As global agriculture faces the dual challenges of increasing productivity and sustainability, Raman spectroscopy stands out as an indispensable tool, enhancing farming practices' precision, food safety, and environmental compatibility. This review is intended to select and briefly comment on outstanding literature to give researchers, students, and consultants a reference for works of literature in Raman spectroscopy mainly focused on plant, food, and agronomic sciences. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ernane Miranda Lemes
- Instituto de Ciências Agrárias (ICIAG), Universidade Federal de Uberlândia (UFU), Uberlândia, Brazil
| |
Collapse
|
4
|
Schultz C, Wegner T, Heusel C, Gallagher T, Zheng Y, Werner M, Wegner SV, Meyer-Zedler T, Werz O, Schmitt M, Popp J, Glorius F. Alkyne-tagged imidazolium-based membrane cholesterol analogs for Raman imaging applications. Chem Sci 2024:d4sc03155e. [PMID: 39156930 PMCID: PMC11325193 DOI: 10.1039/d4sc03155e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
Cholesterol is an important lipid playing a crucial role in mediating essential cellular processes as well as maintaining the basic structural integrity of biological membranes. Given its vast biological importance, there is an unabated need for sophisticated strategies to investigate cholesterol-mediated biological processes. Raman-tagged sterol analogs offer the advantage of being visualizable without the need for a bulky dye that potentially affects natural membrane integration and cellular interactions as it is the case for many conventionally used fluorescent analogs. Herein, we report a series of alkyne-tagged imidazolium-based cholesterol analogs (CHIMs) with large Raman scattering cross-sections that readily integrate into HEK cells and primary monocyte-derived macrophages and allow (multiplexed) cellular Raman imaging. We envision Raman-tagged CHIM analogs to be a powerful platform for the investigation of cholesterol-mediated cellular processes complementary to other established methods, such as the use of fluorescent analogs.
Collapse
Affiliation(s)
- Constanze Schultz
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infection Research (LPI) Albert-Einstein-Str. 9 07745 Jena Germany
| | - Tristan Wegner
- University of Münster, Institute of Organic Chemistry Corrensstraße 40 48149 Münster Germany
| | - Corinna Heusel
- University of Münster, Institute of Organic Chemistry Corrensstraße 40 48149 Münster Germany
| | - Tim Gallagher
- University of Münster, Institute of Organic Chemistry Corrensstraße 40 48149 Münster Germany
| | - Yanjun Zheng
- University of Münster, Institute of Physiological Chemistry and Pathobiochemistry Waldeyerstraße 15 48149 Münster Germany
| | - Markus Werner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena Philosophenweg 14 07743 Jena Germany
| | - Seraphine V Wegner
- University of Münster, Institute of Physiological Chemistry and Pathobiochemistry Waldeyerstraße 15 48149 Münster Germany
| | - Tobias Meyer-Zedler
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infection Research (LPI) Albert-Einstein-Str. 9 07745 Jena Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI), Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena Philosophenweg 14 07743 Jena Germany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI), Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Juergen Popp
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infection Research (LPI) Albert-Einstein-Str. 9 07745 Jena Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI), Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Frank Glorius
- University of Münster, Institute of Organic Chemistry Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
5
|
Li Y, Sun Y, Shi L. Viewing 3D spatial biology with highly-multiplexed Raman imaging: from spectroscopy to biotechnology. Chem Commun (Camb) 2024. [PMID: 39041798 DOI: 10.1039/d4cc02319f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Understansding complex biological systems requires the simultaneous characterization of a large number of interacting components in their native 3D environment with high spatial resolution. Highly-multiplexed Raman imaging is an emerging general strategy for detecting biomarkers with scalable multiplexity and ultra-sensitivity based on a series of stimulated Raman scattering (SRS) techniques. Here we review recent advances in highly-multiplexed Raman imaging and how they contribute to the technological revolution in 3D spatial biology, focusing on the developmental pathway from spectroscopy study to biotechnology invention. We envision highly-multiplexed Raman imaging is taking off, which will greatly facilitate our understanding in biological and medical research fields.
Collapse
Affiliation(s)
- Yingying Li
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Yuchen Sun
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Lixue Shi
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
Min W, Gao X. The Duality of Raman Scattering. Acc Chem Res 2024; 57:1896-1905. [PMID: 38916989 DOI: 10.1021/acs.accounts.4c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
ConspectusFirst predicted more than 100 years ago, Raman scattering is a cornerstone of photonics, spectroscopy, and imaging. The conventional framework of understanding Raman scattering was built on Raman cross section σRaman. Carrying a dimension of area, σRaman characterizes the interaction strength between light and molecules during inelastic scattering. The numerical values of σRaman turn out to be many orders of magnitude smaller in comparison to the linear absorption cross sections σAbsorption of similar molecular systems. Such an enormous gap has been the reason for researchers to believe the extremely feeble Raman scattering ever since its discovery. However, this prevailing picture is conceptually problematic or at least incomplete due to the fact that Raman scattering and linear absorption belong to different orders of light-matter interaction.In this Account, we will summarize an alternate way to think about Raman scattering, which we term stimulated response formulation. To capture the third-order interaction nature of Raman scattering, we introduced stimulated Raman cross section, σSRS, defined as the intrinsic molecular property in response to the external photon fluxes. Foremost, experimental measurement of σSRS turns out to be not weak at all or even larger when fairly compared with electronic counterparts of the same order. The analytical expression for σSRS derived from quantum electrodynamics also supports the measurement and proves that σSRS is intrinsically strong. Hence, σRaman and σSRS can be extremely small and large, respectively, for the same molecule at the same time. Our subsequent theoretical studies show that stimulated response formulation can unify spontaneous emission, stimulated emission, spontaneous Raman, and stimulated Raman via eq 10, in a coherent and symmetric way. In particular, an Einstein-coefficient-like equation, eq 12a, was derived, showing that σRaman can be explicitly expressed as σSRS multiplied by an effective photon flux arising from zero-point fluctuation of the vacuum. The feeble vacuum fluctuation hence explains how σSRS can be intrinsically strong while, at the same time, σRaman ends up being many orders of magnitude smaller when both compared to the electronic counterparts. These two sides of the same coin prompted us to propose "the duality of Raman scattering" (Table 1). Finally, this formulation naturally leads to a quantitative treatment of stimulated Raman scattering (SRS) microscopy, providing an intuitive, molecule-centric explanation as to how SRS microscopy can outperform regular Raman microscopy. Hence, as unveiled by the new formulation, a duality of Raman scattering has emerged, with implications for both fundamental science and practical technology.
Collapse
Affiliation(s)
- Wei Min
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xin Gao
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
7
|
Guo X, Farag M, Qian N, Yu X, Ni A, Ma Y, Yu W, King MR, Liu V, Lee J, Zare RN, Min W, Pappu RV, Dai Y. Biomolecular condensates can function as inherent catalysts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602359. [PMID: 39026887 PMCID: PMC11257451 DOI: 10.1101/2024.07.06.602359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
We report the discovery that chemical reactions such as ATP hydrolysis can be catalyzed by condensates formed by intrinsically disordered proteins (IDPs), which themselves lack any intrinsic ability to function as enzymes. This inherent catalytic feature of condensates derives from the electrochemical environments and the electric fields at interfaces that are direct consequences of phase separation. The condensates we studied were capable of catalyzing diverse hydrolysis reactions, including hydrolysis and radical-dependent breakdown of ATP whereby ATP fully decomposes to adenine and multiple carbohydrates. This distinguishes condensates from naturally occurring ATPases, which can only catalyze the dephosphorylation of ATP. Interphase and interfacial properties of condensates can be tuned via sequence design, thus enabling control over catalysis through sequence-dependent electrochemical features of condensates. Incorporation of hydrolase-like synthetic condensates into live cells enables activation of transcriptional circuits that depend on products of hydrolysis reactions. Inherent catalytic functions of condensates, which are emergent consequences of phase separation, are likely to affect metabolic regulation in cells.
Collapse
Affiliation(s)
- Xiao Guo
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Mina Farag
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Xia Yu
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Anton Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Yuefeng Ma
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Wen Yu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Matthew R. King
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Vicky Liu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Joonho Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| | - Yifan Dai
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
8
|
Wang Z, Han K, Liu W, Wang Z, Shi C, Liu X, Huang M, Sun G, Liu S, Guo Q. Fast Real-Time Brain Tumor Detection Based on Stimulated Raman Histology and Self-Supervised Deep Learning Model. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1160-1176. [PMID: 38326533 PMCID: PMC11169153 DOI: 10.1007/s10278-024-01001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024]
Abstract
In intraoperative brain cancer procedures, real-time diagnosis is essential for ensuring safe and effective care. The prevailing workflow, which relies on histological staining with hematoxylin and eosin (H&E) for tissue processing, is resource-intensive, time-consuming, and requires considerable labor. Recently, an innovative approach combining stimulated Raman histology (SRH) and deep convolutional neural networks (CNN) has emerged, creating a new avenue for real-time cancer diagnosis during surgery. While this approach exhibits potential, there exists an opportunity for refinement in the domain of feature extraction. In this study, we employ coherent Raman scattering imaging method and a self-supervised deep learning model (VQVAE2) to enhance the speed of SRH image acquisition and feature representation, thereby enhancing the capability of automated real-time bedside diagnosis. Specifically, we propose the VQSRS network, which integrates vector quantization with a proxy task based on patch annotation for analysis of brain tumor subtypes. Training on images collected from the SRS microscopy system, our VQSRS demonstrates a significant speed enhancement over traditional techniques (e.g., 20-30 min). Comparative studies in dimensionality reduction clustering confirm the diagnostic capacity of VQSRS rivals that of CNN. By learning a hierarchical structure of recognizable histological features, VQSRS classifies major tissue pathological categories in brain tumors. Additionally, an external semantic segmentation method is applied for identifying tumor-infiltrated regions in SRH images. Collectively, these findings indicate that this automated real-time prediction technique holds the potential to streamline intraoperative cancer diagnosis, providing assistance to pathologists in simplifying the process.
Collapse
Affiliation(s)
- Zijun Wang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Kaitai Han
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Wu Liu
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Zhenghui Wang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Chaojing Shi
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Xi Liu
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Mengyuan Huang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Guocheng Sun
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Shitou Liu
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Qianjin Guo
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing, 102617, China.
| |
Collapse
|
9
|
Ma L, Luo K, Liu Z, Ji M. Stain-Free Histopathology with Stimulated Raman Scattering Microscopy. Anal Chem 2024; 96:7907-7925. [PMID: 38713830 DOI: 10.1021/acs.analchem.4c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Affiliation(s)
- Liyang Ma
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Kuan Luo
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Zhijie Liu
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Kocheril PA, Wang H, Lee D, Naji N, Wei L. Nitrile Vibrational Lifetimes as Probes of Local Electric Fields. J Phys Chem Lett 2024; 15:5306-5314. [PMID: 38722706 PMCID: PMC11486452 DOI: 10.1021/acs.jpclett.4c00597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Optical measurements of electric fields have wide-ranging applications in the fields of chemistry and biology. Previously, such measurements focused on shifts in intensity or frequency. Here, we show that nitrile vibrational lifetimes can report local electric fields through ultrasensitive picosecond mid-infrared-near-infrared double-resonance fluorescence spectro-microscopy on Rhodamine 800. Using a robust convolution fitting approach, we observe that the nitrile vibrational lifetimes are strongly linearly correlated (R2 = 0.841) with solvent reaction fields. Supported by density functional theory, we rationalize this trend through a doorway model of intramolecular vibrational energy redistribution. This work provides new fundamental insights into the nature of vibrational energy flow in large polyatomic molecular systems and establishes a theoretical basis for electric field sensing with vibrational lifetimes, offering a new experimental dimension for probing intracellular electrostatics.
Collapse
Affiliation(s)
- Philip A. Kocheril
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Haomin Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dongkwan Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Noor Naji
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
11
|
Tamura T, McCann PC, Nishiyama R, Hiramatsu K, Goda K. Fluorescence-Encoded Time-Domain Coherent Raman Spectroscopy in the Visible Range. J Phys Chem Lett 2024:4940-4947. [PMID: 38686981 DOI: 10.1021/acs.jpclett.4c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Fluorescence-encoded vibrational spectroscopy has attracted increasing attention by virtue of its high sensitivity and high chemical specificity. We recently demonstrated fluorescence-encoded time-domain coherent Raman spectroscopy (FLETCHERS), which enables low-frequency vibrational spectroscopy of low-concentration fluorophores using near-infrared (800-900 nm) light excitation. However, the feasibility of this study was constrained by the scarcity of excitable molecules in the near-infrared range. Consequently, the broader applicability of FLETCHERS has not been investigated. Here we extend the capabilities of FLETCHERS into the visible range by employing a noncollinear optical parametric amplifier as a light source, significantly enhancing its versatility. Specifically, we use the method, which we refer to as visible FLETCHERS (vFLETCHERS), to individually acquire Raman spectra from five visible fluorophores that have absorption peaks in the 600-700 nm region. These results not only confirm the versatility of vFLETCHERS for a wide range of molecules but also allude to its widespread applicability in biological research through highly sensitive supermultiplexed imaging.
Collapse
Affiliation(s)
- Tetsu Tamura
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Phillip C McCann
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryo Nishiyama
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kotaro Hiramatsu
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
- Research Center for Spectrochemisty, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Bioengineering, University of California, Los Angeles 90095, California, United States
- Institute of Technological Sciences, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
12
|
Yang Y, Bai X, Hu F. Photoswitchable polyynes for multiplexed stimulated Raman scattering microscopy with reversible light control. Nat Commun 2024; 15:2578. [PMID: 38519503 PMCID: PMC10959996 DOI: 10.1038/s41467-024-46904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Optical imaging with photo-controllable probes has greatly advanced biological research. With superb chemical specificity of vibrational spectroscopy, stimulated Raman scattering (SRS) microscopy is particularly promising for super-multiplexed optical imaging with rich chemical information. Functional SRS imaging in response to light has been recently demonstrated, but multiplexed SRS imaging with reversible photocontrol remains unaccomplished. Here, we create a multiplexing palette of photoswitchable polyynes with 16 Raman frequencies by coupling asymmetric diarylethene with super-multiplexed Carbow (Carbow-switch). Through optimization of both electronic and vibrational spectroscopy, Carbow-switch displays excellent photoswitching properties under visible light control and SRS response with large frequency change and signal enhancement. Reversible and spatial-selective multiplexed SRS imaging of different organelles are demonstrated in living cells. We further achieve photo-selective time-lapse imaging of organelle dynamics during oxidative stress and protein phase separation. The development of Carbow-switch for photoswitchable SRS microscopy will open up new avenues to study complex interactions and dynamics in living cells with high spatiotemporal precision and multiplexing capability.
Collapse
Affiliation(s)
- Yueli Yang
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084, Beijing, China
| | - Xueyang Bai
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084, Beijing, China
| | - Fanghao Hu
- Department of Chemistry, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
13
|
Guha A, Whaley-Mayda L, Lee SY, Tokmakoff A. Molecular factors determining brightness in fluorescence-encoded infrared vibrational spectroscopy. J Chem Phys 2024; 160:104202. [PMID: 38456530 DOI: 10.1063/5.0190231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
Fluorescence-encoded infrared (FEIR) spectroscopy is a recently developed technique for solution-phase vibrational spectroscopy with detection sensitivity at the single-molecule level. While its spectroscopic information content and important criteria for its practical experimental optimization have been identified, a general understanding of the electronic and nuclear properties required for highly sensitive detection, i.e., what makes a molecule a "good FEIR chromophore," is lacking. This work explores the molecular factors that determine FEIR vibrational activity and assesses computational approaches for its prediction. We employ density functional theory (DFT) and its time-dependent version (TD-DFT) to compute vibrational and electronic transition dipole moments, their relative orientation, and the Franck-Condon factors involved in FEIR activity. We apply these methods to compute the FEIR activities of normal modes of chromophores from the coumarin family and compare these predictions with experimental FEIR cross sections. We discuss the extent to which we can use computational models to predict the FEIR activity of individual vibrations in a candidate molecule. The results discussed in this work provide the groundwork for computational strategies for choosing FEIR vibrational probes or informing the structure of designer chromophores for single-molecule spectroscopic applications.
Collapse
Affiliation(s)
- Abhirup Guha
- Department of Chemistry, James Franck Institute, and Institute of Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Lukas Whaley-Mayda
- Department of Chemistry, James Franck Institute, and Institute of Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Seung Yeon Lee
- Department of Chemistry, James Franck Institute, and Institute of Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute of Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
14
|
Yan C, Wang C, Wagner JC, Ren J, Lee C, Wan Y, Wang SE, Xiong W. Multidimensional Widefield Infrared-Encoded Spontaneous Emission Microscopy: Distinguishing Chromophores by Ultrashort Infrared Pulses. J Am Chem Soc 2024; 146:1874-1886. [PMID: 38085547 PMCID: PMC10811677 DOI: 10.1021/jacs.3c07251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/25/2024]
Abstract
Photoluminescence (PL) imaging has broad applications in visualizing biological activities, detecting chemical species, and characterizing materials. However, the chemical information encoded in the PL images is often limited by the overlapping emission spectra of chromophores. Here, we report a PL microscopy based on the nonlinear interactions between mid-infrared and visible excitations on matters, which we termed MultiDimensional Widefield Infrared-encoded Spontaneous Emission (MD-WISE) microscopy. MD-WISE microscopy can distinguish chromophores that possess nearly identical emission spectra via conditions in a multidimensional space formed by three independent variables: the temporal delay between the infrared and the visible pulses (t), the wavelength of visible pulses (λvis), and the frequencies of the infrared pulses (ωIR). This method is enabled by two mechanisms: (1) modulating the optical absorption cross sections of molecular dyes by exciting specific vibrational functional groups and (2) reducing the PL quantum yield of semiconductor nanocrystals, which was achieved through strong field ionization of excitons. Importantly, MD-WISE microscopy operates under widefield imaging conditions with a field of view of tens of microns, other than the confocal configuration adopted by most nonlinear optical microscopies, which require focusing the optical beams tightly. By demonstrating the capacity of registering multidimensional information into PL images, MD-WISE microscopy has the potential of expanding the number of species and processes that can be simultaneously tracked in high-speed widefield imaging applications.
Collapse
Affiliation(s)
- Chang Yan
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Center
for Ultrafast Science and Technology, School of Chemistry and Chemical
Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Zhangjiang
Institute for Advanced Study, Shanghai Jiao
Tong University, Shanghai 200240, China
| | - Chenglai Wang
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Jackson C. Wagner
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Jianyu Ren
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Carlynda Lee
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Yuhao Wan
- Department
of Pathology, University of California San
Diego, La Jolla, California 92093, United States
| | - Shizhen E. Wang
- Department
of Pathology, University of California San
Diego, La Jolla, California 92093, United States
| | - Wei Xiong
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
- Materials
Science and Engineering Program, University
of California San Diego, La Jolla, California 92093, United States
- Department
of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
15
|
Debnath S, Schäfer A, Ito S, Strelnikov D, Schneider R, Haupa KA, Kappes MM. Vibrationally Resolved Absorption, Fluorescence, and Preresonance Raman Spectroscopy of Isolated Pyronin Y Cation at 5 K. J Phys Chem Lett 2023; 14:10553-10560. [PMID: 37975705 DOI: 10.1021/acs.jpclett.3c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Exploring how charge-changing affects the photoluminescence of small organic dyes presents challenges. Here, helium tagging photodissociation (PD) action spectroscopy in the gas phase and dispersed laser-induced fluorescence (DF) spectroscopy in the solid Ne matrix are used to compare the intrinsic photophysical properties of pyronin Y cation [PY]+ and its one electron-reduced neutral radical [PY]• at 5 K. Whereas the cation shows efficient visible photoluminescence, no emission from the neutral, in line with theoretical predictions, was detected. B3LYP/aug-cc-pVDZ calculations based on the TD-DFT/FCHT method allow for unambiguous assignment of recorded vibrationally resolved absorption and emission spectra. Surprisingly, our experimental sensitivity was high enough to also observe electronic preresonance Raman (ePR-Raman) spectra of [PY]+, with a significant efficiency factor (EF). These characteristics of the [PY]•/[PY]+ pair suggest that appropriately functionalized derivatives may open new perspectives in the area of in vivo bioimagining microscopy and find applications in various sophisticated stimulated-Raman spectroscopies.
Collapse
Affiliation(s)
- Sreekanta Debnath
- Institute of Physical Chemistry II, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Alexander Schäfer
- Institute of Physical Chemistry II, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Shun Ito
- Department of Chemistry, Graduate School of Science, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Dmitry Strelnikov
- Institute of Physical Chemistry II, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Rabea Schneider
- Institute of Physical Chemistry II, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Karolina A Haupa
- Institute of Physical Chemistry II, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Manfred M Kappes
- Institute of Physical Chemistry II, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
16
|
Whaley-Mayda L, Guha A, Tokmakoff A. Multimode vibrational dynamics and orientational effects in fluorescence-encoded infrared spectroscopy. I. Response function theory. J Chem Phys 2023; 159:194201. [PMID: 37966137 DOI: 10.1063/5.0171939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
Fluorescence-encoded infrared (FEIR) spectroscopy is an emerging technique for performing vibrational spectroscopy in solution with detection sensitivity down to single molecules. FEIR experiments use ultrashort pulses to excite a fluorescent molecule's vibrational and electronic transitions in a sequential, time-resolved manner, and are therefore sensitive to intervening vibrational dynamics on the ground state, vibronic coupling, and the relative orientation of vibrational and electronic transition dipole moments. This series of papers presents a theoretical treatment of FEIR spectroscopy that describes these phenomena and examines their manifestation in experimental data. This first paper develops a nonlinear response function description of Fourier-transform FEIR experiments for a two-level electronic system coupled to multiple vibrations, which is then applied to interpret experimental measurements in the second paper [L. Whaley-Mayda et al., J. Chem. Phys. 159, 194202 (2023)]. Vibrational coherence between pairs of modes produce oscillatory features that interfere with the vibrations' population response in a manner dependent on the relative signs of their respective Franck-Condon wavefunction overlaps, leading to time-dependent distortions in FEIR spectra. The orientational response of population and coherence contributions are analyzed and the ability of polarization-dependent experiments to extract relative transition dipole angles is discussed. Overall, this work presents a framework for understanding the full spectroscopic information content of FEIR measurements to aid data interpretation and inform optimal experimental design.
Collapse
Affiliation(s)
- Lukas Whaley-Mayda
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Abhirup Guha
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
17
|
Zhu Y, Ge X, Ni H, Yin J, Lin H, Wang L, Tan Y, Prabhu Dessai CV, Li Y, Teng X, Cheng JX. Stimulated Raman photothermal microscopy toward ultrasensitive chemical imaging. SCIENCE ADVANCES 2023; 9:eadi2181. [PMID: 37889965 PMCID: PMC10610916 DOI: 10.1126/sciadv.adi2181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Stimulated Raman scattering (SRS) microscopy has shown enormous potential in revealing molecular structures, dynamics, and couplings in complex systems. However, the sensitivity of SRS is fundamentally limited to the millimolar level due to shot noise and the small modulation depth. To overcome this barrier, we revisit SRS from the perspective of energy deposition. The SRS process pumps molecules to their vibrationally excited states. The subsequent relaxation heats up the surroundings and induces refractive index changes. By probing the refractive index changes with a laser beam, we introduce stimulated Raman photothermal (SRP) microscopy, where a >500-fold boost of modulation depth is achieved. The versatile applications of SRP microscopy on viral particles, cells, and tissues are demonstrated. SRP microscopy opens a way to perform vibrational spectroscopic imaging with ultrahigh sensitivity.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Xiaowei Ge
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Hongli Ni
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Jiaze Yin
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Haonan Lin
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Le Wang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
| | - Yuying Tan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | - Yueming Li
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Xinyan Teng
- Department of Chemistry, Boston University, Boston, MA 02215, USA
| | - Ji-Xin Cheng
- Department of Chemistry, Boston University, Boston, MA 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
| |
Collapse
|
18
|
Wang H, Lee D, Cao Y, Bi X, Du J, Miao K, Wei L. Bond-selective fluorescence imaging with single-molecule sensitivity. NATURE PHOTONICS 2023; 17:846-855. [PMID: 38162388 PMCID: PMC10756635 DOI: 10.1038/s41566-023-01243-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/25/2023] [Indexed: 01/03/2024]
Abstract
Bioimaging harnessing optical contrasts and chemical specificity is of vital importance in probing complex biology. Vibrational spectroscopy based on mid-infrared (mid-IR) excitation can reveal rich chemical information about molecular distributions. However, its full potential for bioimaging is hindered by the achievable sensitivity. Here, we report bond selective fluorescence-detected infrared-excited (BonFIRE) spectral microscopy. BonFIRE employs two-photon excitation in the mid-IR and near-IR to upconvert vibrational excitations to electronic states for fluorescence detection, thus encoding vibrational information into fluorescence. The system utilizes tuneable narrowband picosecond pulses to ensure high sensitivity, biocompatibility, and robustness for bond-selective biological interrogations over a wide spectrum of reporter molecules. We demonstrate BonFIRE spectral imaging in both fingerprint and cell-silent spectroscopic windows with single-molecule sensitivity for common fluorescent dyes. We then demonstrate BonFIRE imaging on various intracellular targets in fixed and live cells, neurons, and tissues, with promises for further vibrational multiplexing. For dynamic bioanalysis in living systems, we implement a high-frequency modulation scheme and demonstrate time-lapse BonFIRE microscopy of live HeLa cells. We expect BonFIRE to expand the bioimaging toolbox by providing a new level of bond-specific vibrational information and facilitate functional imaging and sensing for biological investigations.
Collapse
Affiliation(s)
- Haomin Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Dongkwan Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yulu Cao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Xiaotian Bi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Jiajun Du
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Kun Miao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
19
|
Zhu Y, Ge X, Ni H, Yin J, Lin H, Wang L, Tan Y, Prabhu Dessai CV, Li Y, Teng X, Cheng JX. Stimulated Raman Photothermal Microscopy towards Ultrasensitive Chemical Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531387. [PMID: 36945642 PMCID: PMC10028842 DOI: 10.1101/2023.03.06.531387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Stimulated Raman scattering (SRS) microscopy has shown enormous potential in revealing molecular structures, dynamics and coupling in a complex system. However, the bond-detection sensitivity of SRS microscopy is fundamentally limited to milli-molar level due to the shot noise and the small modulation depth in either pump or Stokes beam4. Here, to overcome this barrier, we revisit SRS from the perspective of energy deposition. The SRS process pumps molecules to their vibrational excited states. The thereafter relaxation heats up the surrounding and induces a change in refractive index. By probing the refractive index change with a continuous wave beam, we introduce stimulated Raman photothermal (SRP) microscopy, where a >500-fold boost of modulation depth is achieved on dimethyl sulfide with conserved average power. Versatile applications of SRP microscopy on viral particles, cells, and tissues are demonstrated. With much improved signal to noise ratio compared to SRS, SRP microscopy opens a new way to perform vibrational spectroscopic imaging with ultrahigh sensitivity and minimal water absorption.
Collapse
|
20
|
Huang GJ, Li CW, Lee PY, Su JX, Chao KC, Chu LA, Chiang AS, Cheng JX, Chen BH, Lu CH, Chu SW, Yang SD. Electronic Preresonance Stimulated Raman Scattering Spectromicroscopy Using Multiple-Plate Continuum. J Phys Chem B 2023; 127:6896-6902. [PMID: 37494414 DOI: 10.1021/acs.jpcb.3c02629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Stimulated Raman scattering (SRS) spectromicroscopy is a powerful technique that enables label-free detection of chemical bonds with high specificity. However, the low Raman cross section due to typical far-electronic resonance excitation seriously restricts the sensitivity and undermines its application to bio-imaging. To address this bottleneck, the electronic preresonance (EPR) SRS technique has been developed to enhance the Raman signals by shifting the excitation frequency toward the molecular absorption. A fundamental weakness of the previous demonstration is the lack of dual-wavelength tunability, making EPR-SRS only applicable to a limited number of species in the proof-of-concept experiment. Here, we demonstrate the EPR-SRS spectromicroscopy using a multiple-plate continuum (MPC) light source able to examine a single vibration mode with independently adjustable pump and Stokes wavelengths. In our experiments, the C═C vibration mode of Alexa 635 is interrogated by continuously scanning the pump-to-absorption frequency detuning throughout the entire EPR region enabled by MPC. The results exhibit 150-fold SRS signal enhancement and good agreement with the Albrecht A-term preresonance model. Signal enhancement is also observed in EPR-SRS images of the whole Drosophila brain stained with Alexa 635. With the improved sensitivity and potential to implement hyperspectral measurement, we envision that MPC-EPR-SRS spectromicroscopy can bring the Raman techniques closer to a routine in bio-imaging.
Collapse
Affiliation(s)
- Guan-Jie Huang
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Wei Li
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Po-Yi Lee
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Jia-Xuan Su
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Kuo-Chuan Chao
- Brain Research Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Li-An Chu
- Brain Research Center, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Biomedical Engineering & Environmental Sciences, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Systems Neuroscience and Department of Life Science, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Bo-Han Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chih-Hsuan Lu
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Shi-Wei Chu
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 300044, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 300044, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
21
|
Du J, Tao X, Begušić T, Wei L. Computational Design of Molecular Probes for Electronic Preresonance Raman Scattering Microscopy. J Phys Chem B 2023; 127:4979-4988. [PMID: 37226966 PMCID: PMC10676804 DOI: 10.1021/acs.jpcb.3c00699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recently developed electronic preresonance stimulated Raman scattering (epr-SRS) microscopy, in which the Raman signal of a dye is significantly boosted by setting the incident laser frequency near the electronic excitation energy, has pushed the sensitivity of SRS microscopy close to that offered by confocal fluorescence microscopy. Prominently, the maintained narrow line-width of epr-SRS also offers high multiplexity that breaks the "color barrier" in optical microscopy. However, detailed understanding of the fundamental mechanism in these epr-SRS dyes still remains elusive. Here, we combine experiments with theoretical modeling to investigate the structure-function relationship, aiming to facilitate the design of new probes and expanding epr-SRS palettes. Our ab initio approach employing the displaced harmonic oscillator (DHO) model provides a consistent agreement between simulated and experimental SRS intensities of various triple-bond bearing epr-SRS probes with distinct scaffolds. We further review two popular approximate expressions for epr-SRS, namely the short-time and Albrecht A-term equations, and compare them to the DHO model. Overall, the theory allows us to illustrate how the observed intensity differences between molecular scaffolds stem from the coupling strength between the electronic excitation and the targeted vibrational mode, leading to a general design strategy for highly sensitive next-generation vibrational imaging probes.
Collapse
Affiliation(s)
- Jiajun Du
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Xuecheng Tao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Tomislav Begušić
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
22
|
Wang H, Lee D, Wei L. Toward the Next Frontiers of Vibrational Bioimaging. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:3-17. [PMID: 37122829 PMCID: PMC10131268 DOI: 10.1021/cbmi.3c00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 05/02/2023]
Abstract
Chemical imaging based on vibrational contrasts can extract molecular information entangled in complex biological systems. To this end, nonlinear Raman scattering microscopy, mid-infrared photothermal (MIP) microscopy, and atomic force microscopy (AFM)-based force-detected photothermal microscopies are emerging with better chemical sensitivity, molecular specificity, and spatial resolution than conventional vibrational methods. Their utilization in bioimaging applications has provided biological knowledge in unprecedented detail. This Perspective outlines key methodological developments, bioimaging applications, and recent technical innovations of the three techniques. Representative biological demonstrations are also highlighted to exemplify the unique advantages of obtaining vibrational contrasts. With years of effort, these three methods compose an expanding vibrational bioimaging toolbox to tackle specific bioimaging needs, benefiting many biological investigations with rich information in both label-free and labeling manners. Each technique will be discussed and compared in the outlook, leading to possible future directions to accommodate growing needs in vibrational bioimaging.
Collapse
Affiliation(s)
- Haomin Wang
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Dongkwan Lee
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Lu Wei
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
23
|
Jeong JE, Sutton JJ, Ryu HS, Kang M, Tay EJ, Nguyen TL, Gordon KC, Shim SH, Woo HY. Resonant Raman-Active Polymer Dot Barcodes for Multiplex Cell Mapping. ACS NANO 2023; 17:4800-4812. [PMID: 36863001 DOI: 10.1021/acsnano.2c11240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Resonance Raman spectroscopy is an efficient tool for multiplex imaging because of the narrow bandwidth of the electronically enhanced vibrational signals. However, Raman signals are often overwhelmed by concurrent fluorescence. In this study, we synthesized a series of truxene-based conjugated Raman probes to show structure-specific Raman fingerprint patterns with a common 532 nm light source. The subsequent polymer dot (Pdot) formation of the Raman probes efficiently suppressed fluorescence via aggregation-induced quenching and improved the dispersion stability of particles without leakage of Raman probes or particle agglomeration for more than 1 year. Additionally, the Raman signal amplified by electronic resonance and increased probe concentration exhibited over 103 times higher relative Raman intensities versus 5-ethynyl-2'-deoxyuridine, enabling successful Raman imaging. Finally, multiplex Raman mapping was demonstrated with a single 532 nm laser using six Raman-active and biocompatible Pdots as barcodes for live cells. Resonant Raman-active Pdots may suggest a simple, robust, and efficient way for multiplex Raman imaging using a standard Raman spectrometer, suggesting the broad applicability of our strategy.
Collapse
Affiliation(s)
- Ji-Eun Jeong
- Department of Specialty Chemicals, Division of Specialty and Bio-based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Joshua J Sutton
- Department of Chemistry, University of Otago, Dunedin and MacDiarmid Institute, Dunedin 9016, New Zealand
| | - Hwa Sook Ryu
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Minsu Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Elliot J Tay
- Department of Chemistry, University of Otago, Dunedin and MacDiarmid Institute, Dunedin 9016, New Zealand
| | - Thanh Luan Nguyen
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Keith C Gordon
- Department of Chemistry, University of Otago, Dunedin and MacDiarmid Institute, Dunedin 9016, New Zealand
| | - Sang-Hee Shim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
24
|
Zhang J, Shin J, Tague N, Lin H, Zhang M, Ge X, Wong W, Dunlop MJ, Cheng J. Visualization of a Limonene Synthesis Metabolon Inside Living Bacteria by Hyperspectral SRS Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203887. [PMID: 36169112 PMCID: PMC9661820 DOI: 10.1002/advs.202203887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/21/2022] [Indexed: 06/16/2023]
Abstract
Monitoring biosynthesis activity at single-cell level is key to metabolic engineering but is still difficult to achieve in a label-free manner. Using hyperspectral stimulated Raman scattering imaging in the 670-900 cm-1 region, localized limonene synthesis are visualized inside engineered Escherichia coli. The colocalization of limonene and GFP-fused limonene synthase is confirmed by co-registered stimulated Raman scattering and two-photon fluorescence images. The finding suggests a limonene synthesis metabolon with a polar distribution inside the cells. This finding expands the knowledge of de novo limonene biosynthesis in engineered bacteria and highlights the potential of SRS chemical imaging in metabolic engineering research.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
- Photonics CenterBoston UniversityBostonMA02215USA
| | - Jonghyeon Shin
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
| | - Nathan Tague
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
- Biological Design CenterBoston UniversityBostonMA02215USA
| | - Haonan Lin
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
- Photonics CenterBoston UniversityBostonMA02215USA
| | - Meng Zhang
- Photonics CenterBoston UniversityBostonMA02215USA
- Department of Electrical and Computer EngineeringBoston UniversityBostonMA02215USA
| | - Xiaowei Ge
- Photonics CenterBoston UniversityBostonMA02215USA
- Department of Electrical and Computer EngineeringBoston UniversityBostonMA02215USA
| | - Wilson Wong
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
- Biological Design CenterBoston UniversityBostonMA02215USA
| | - Mary J. Dunlop
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
- Biological Design CenterBoston UniversityBostonMA02215USA
| | - Ji‐Xin Cheng
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
- Photonics CenterBoston UniversityBostonMA02215USA
- Department of Electrical and Computer EngineeringBoston UniversityBostonMA02215USA
| |
Collapse
|
25
|
Leighton RE, Alperstein AM, Frontiera RR. Label-Free Super-Resolution Imaging Techniques. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:37-55. [PMID: 35316608 PMCID: PMC9454238 DOI: 10.1146/annurev-anchem-061020-014723] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biological and material samples contain nanoscale heterogeneities that are unresolvable with conventional microscopy techniques. Super-resolution fluorescence methods can break the optical diffraction limit to observe these features, but they require samples to be fluorescently labeled. Over the past decade, progress has been made toward developing super-resolution techniques that do not require the use of labels. These label-free techniques span a variety of different approaches, including structured illumination, transient absorption, infrared absorption, and coherent Raman spectroscopies. Many draw inspiration from widely successful fluorescence-based techniques such as stimulated emission depletion (STED) microscopy, photoactivated localization microscopy (PALM), and stochastic optical reconstruction microscopy (STORM). In this review, we discuss the progress made in these fields along with the current challenges and prospects in reaching resolutions comparable to those achieved with fluorescence-based methods.
Collapse
Affiliation(s)
- Ryan E Leighton
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Ariel M Alperstein
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA;
| |
Collapse
|
26
|
Brzozowski K, Matuszyk E, Pieczara A, Firlej J, Nowakowska AM, Baranska M. Stimulated Raman scattering microscopy in chemistry and life science - Development, innovation, perspectives. Biotechnol Adv 2022; 60:108003. [PMID: 35690271 DOI: 10.1016/j.biotechadv.2022.108003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022]
Abstract
In this review, we present a summary of the basics of the Stimulated Raman Scattering (SRS) phenomenon, methods of detecting the signal, and collection of the SRS images. We demonstrate the advantages of SRS imaging, and recent developments, but also the limitations, especially in image capture speeds and spatial resolution. We also compare the use of SRS microscopy in biological system studies with other techniques such as fluorescence microscopy, second-harmonic generation (SHG)-based microscopy, coherent anti-Stokes Raman scattering (CARS), and spontaneous Raman, and we show the compatibility of SRS-based systems with other discussed methods. The review is also focused on indicating innovations in SRS microscopy, on the background of which we present the layout and performance of our homemade setup built from commercially available elements enabling for imaging of the molecular structure of single cells over the spectral range of 800-3600 cm-1. Methods of image analysis are discussed, including machine learning methods for obtaining images of the distribution of selected molecules and for the detection of pathological lesions in tissues or malignant cells in the context of clinical diagnosis of a wide range of diseases with the use of SRS microscopy. Finally, perspectives for the development of SRS microscopy are proposed.
Collapse
Affiliation(s)
- K Brzozowski
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - E Matuszyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - A Pieczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - J Firlej
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - A M Nowakowska
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - M Baranska
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland; Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.
| |
Collapse
|
27
|
Wang Y, Laforge F, Goun A, Rabitz H. Selective photo-excitation of molecules enabled by stimulated Raman pre-excitation. Phys Chem Chem Phys 2022; 24:10062-10068. [PMID: 35416205 DOI: 10.1039/d2cp00868h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Double resonance excitation, where the energies of vibrational and electronic molecular transitions are combined in a single, sequential excitation process, was introduced in the 1970s but has only been recently applied to microscopy due to the immense progress in Raman spectroscopy. The value of the technique is in combining the chemical selectivity of IR or Raman excitation with the much larger cross-sections of electronic transitions. Recently, it has been shown to be particularly suited for the detection and identification of chromophores at low concentrations and in the presence of spectral crosstalk. However, despite its low quantum yield per pulse sequence, we believe the technique has potential for selective photochemical transformations. There are some cases (e.g., the selective excitation of optogenetic switches) where the low yield may be overcome by repeated excitations to build up biochemically relevant concentrations. Here we show that double resonance excitation using general, non-resonant Raman pre-excitation is a viable candidate for selectively promoting molecules to chemically active energy levels. The use of non-resonant Raman pre-excitation is less constraining than resonant Raman (used in previous double resonance microscopy works) since the choice of Raman pump-Stokes frequencies may be rather freely chosen.
Collapse
Affiliation(s)
- Yisen Wang
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510535, China
| | - Francois Laforge
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
| | - Alexei Goun
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
| | - Herschel Rabitz
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
28
|
Whaley-Mayda L, Guha A, Tokmakoff A. Resonance conditions, detection quality, and single-molecule sensitivity in fluorescence-encoded infrared vibrational spectroscopy. J Chem Phys 2022; 156:174202. [DOI: 10.1063/5.0088435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fluorescence-encoded Infrared (FEIR) spectroscopy is a vibrational spectroscopy technique that has recently demonstrated the capability of single-molecule sensitivity in solution without near-field enhancement. This work explores the practical experimental factors that are required for successful FEIR measurements in both the single-molecule and bulk regimes. We investigate the role of resonance conditions by performing measurements on a series of coumarin fluorophores of varying electronic transition frequencies. To analyze variations in signal strength and signal to background between molecules, we introduce an FEIR brightness metric that normalizes out measurement-specific parameters. We find that the effect of the resonance condition on FEIR brightness can be reasonably well described by the electronic absorption spectrum. We discuss strategies for optimizing detection quality and sensitivity in bulk and single-molecule experiments.
Collapse
Affiliation(s)
| | - Abhirup Guha
- The University of Chicago, United States of America
| | - Andrei Tokmakoff
- Department of Chemistry, University of Chicago, United States of America
| |
Collapse
|
29
|
Qian N, Min W. Super-multiplexed vibrational probes: Being colorful makes a difference. Curr Opin Chem Biol 2022; 67:102115. [PMID: 35077919 PMCID: PMC8940683 DOI: 10.1016/j.cbpa.2021.102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022]
Abstract
Biological systems with intrinsic complexity require multiplexing techniques to comprehensively describe the phenotype, interaction, and heterogeneity. Recent years have witnessed the development of super-multiplexed vibrational microscopy, overcoming the 'color barrier' of fluorescence-based optical techniques. Here, we will review the recent progress in the design and applications of super-multiplexed vibrational probes. We hope to illustrate how rainbow-like vibrational colors can be generated from systematic studies on structure-spectroscopy relationships and how being colorful makes a difference to various biomedical applications.
Collapse
Affiliation(s)
- Naixin Qian
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
30
|
Abstract
Tailored nanoscale quantum light sources, matching the specific needs of use cases, are crucial building blocks for photonic quantum technologies. Several different approaches to realize solid-state quantum emitters with high performance have been pursued and different concepts for energy tuning have been established. However, the properties of the emitted photons are always defined by the individual quantum emitter and can therefore not be controlled with full flexibility. Here we introduce an all-optical nonlinear method to tailor and control the single photon emission. We demonstrate a laser-controlled down-conversion process from an excited state of a semiconductor quantum three-level system. Based on this concept, we realize energy tuning and polarization control of the single photon emission with a control-laser field. Our results mark an important step towards tailored single photon emission from a photonic quantum system based on quantum optical principles.
Collapse
|
31
|
Wang L, Liu Q, Wackenhut F, Brecht M, Adam PM, Gierschner J, Meixner AJ. Monitoring tautomerization of single hypericin molecules in a tunable optical λ/2 microcavity. J Chem Phys 2022; 156:014203. [PMID: 34998354 DOI: 10.1063/5.0078117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hypericin tautomerization that involves the migration of the labile protons is believed to be the primary photophysical process relevant to its light-activated antiviral activity. Despite the difficulty in isolating individual tautomers, it can be directly observed in single-molecule experiments. We show that the tautomerization of single hypericin molecules in free space is observed as an abrupt flipping of the image pattern accompanied with fluorescence intensity fluctuations, which are not correlated with lifetime changes. Moreover, the study can be extended to a λ/2 Fabry-Pérot microcavity. The modification of the local photonic environment by a microcavity is well simulated with a theoretical model that shows good agreement with the experimental data. Inside a microcavity, the excited state lifetime and fluorescence intensity of single hypericin molecules are correlated, and a distinct jump of the lifetime and fluorescence intensity reveals the temporal behavior of the tautomerization with high sensitivity and high temporal resolution. The observed changes are also consistent with time-dependent density functional theory calculations. Our approach paves the way to monitor and even control reactions for a wider range of molecules at the single molecule level.
Collapse
Affiliation(s)
- Liangxuan Wang
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Quan Liu
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Frank Wackenhut
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Marc Brecht
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Pierre-Michel Adam
- Laboratoire Lumiére, Nanomatériaux et Nanotechnologies (L2n), CNRS ERL 7004, Université de Technologie de Troyes, 10004 Troyes, France
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA in Nanoscience, C/ Faraday 9, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | - Alfred J Meixner
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
32
|
Blackburn TJ, Tyler SM, Pemberton JE. Optical Spectroscopy of Surfaces, Interfaces, and Thin Films. Anal Chem 2022; 94:515-558. [DOI: 10.1021/acs.analchem.1c05323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Thomas J. Blackburn
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Sarah M. Tyler
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Jeanne E. Pemberton
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
33
|
Xia F, Gao X, Shen X, Xu H, Zhong S. Preparation of a gold@europium-based coordination polymer nanocomposite with excellent photothermal properties and its potential for four-mode imaging. NEW J CHEM 2022. [DOI: 10.1039/d2nj01021f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nanocomposite was synthesized by replacing the toxic CTAB on the surface of GNRs with a europium-based hyaluronic acid coordination polymer. The nanocomposite exhibits excellent photothermal performance and also has potential for four-mode imaging.
Collapse
Affiliation(s)
- Faming Xia
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xuejiao Gao
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiaomei Shen
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Hualan Xu
- Analytical and Testing Center, Jiangxi Normal University, Nanchang 330022, China
| | - Shengliang Zhong
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| |
Collapse
|
34
|
Cialla-May D, Krafft C, Rösch P, Deckert-Gaudig T, Frosch T, Jahn IJ, Pahlow S, Stiebing C, Meyer-Zedler T, Bocklitz T, Schie I, Deckert V, Popp J. Raman Spectroscopy and Imaging in Bioanalytics. Anal Chem 2021; 94:86-119. [PMID: 34920669 DOI: 10.1021/acs.analchem.1c03235] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dana Cialla-May
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany.,InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Christoph Krafft
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Tanja Deckert-Gaudig
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Torsten Frosch
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Izabella J Jahn
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Susanne Pahlow
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany.,InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Clara Stiebing
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Tobias Meyer-Zedler
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Thomas Bocklitz
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Iwan Schie
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Ernst-Abbe-Hochschule Jena, University of Applied Sciences, Department of Biomedical Engineering and Biotechnology, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Volker Deckert
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Jürgen Popp
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany.,InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
35
|
McCann PC, Hiramatsu K, Goda K. Highly Sensitive Low-Frequency Time-Domain Raman Spectroscopy via Fluorescence Encoding. J Phys Chem Lett 2021; 12:7859-7865. [PMID: 34382803 DOI: 10.1021/acs.jpclett.1c01741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fluorescence-encoded vibrational spectroscopy has become increasingly more popular by virtue of its high chemical specificity and sensitivity. However, current fluorescence-encoded vibrational spectroscopy methods lack sensitivity in the low-frequency region, which if addressed could further enhance their capabilities. Here, we present a method for highly sensitive low-frequency fluorescence-encoded vibrational spectroscopy, termed fluorescence-encoded time-domain coherent Raman spectroscopy (FLETCHERS). By first exciting molecules into vibrationally excited states and then promoting the vibrating molecules to electronic states at varying times, the molecular vibrations can be encoded onto the emitted time-domain fluorescence intensity. We demonstrate the sensitive low-frequency detection capability of FLETCHERS by measuring vibrational spectra in the lower fingerprint region of rhodamine 800 solutions as dilute as 250 nM, which is ∼1000 times more sensitive than conventional vibrational spectroscopy. These results, along with further improvement of the method, open up the prospect of performing single-molecule vibrational spectroscopy in the low-frequency region.
Collapse
Affiliation(s)
- Phillip C McCann
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kotaro Hiramatsu
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
- Research Center for Spectrochemistry, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
- Institute of Technological Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
36
|
Zhang Y, Zong H, Zong C, Tan Y, Zhang M, Zhan Y, Cheng JX. Fluorescence-Detected Mid-Infrared Photothermal Microscopy. J Am Chem Soc 2021; 143:11490-11499. [PMID: 34264654 PMCID: PMC8750559 DOI: 10.1021/jacs.1c03642] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mid-infrared photothermal microscopy is a new chemical imaging technology in which a visible beam senses the photothermal effect induced by a pulsed infrared laser. This technology provides infrared spectroscopic information at submicrometer spatial resolution and enables infrared spectroscopy and imaging of living cells and organisms. Yet, current mid-infrared photothermal imaging sensitivity suffers from a weak dependence of scattering on the temperature, and the image quality is vulnerable to the speckles caused by scattering. Here, we present a novel version of mid-infrared photothermal microscopy in which thermosensitive fluorescent probes are harnessed to sense the mid-infrared photothermal effect. The fluorescence intensity can be modulated at the level of 1% per Kelvin, which is 100 times larger than the modulation of scattering intensity. In addition, fluorescence emission is free of interference, thus much improving the image quality. Moreover, fluorophores can target specific organelles or biomolecules, thus augmenting the specificity of photothermal imaging. Spectral fidelity is confirmed through fingerprinting a single bacterium. Finally, the photobleaching issue is successfully addressed through the development of a wide-field fluorescence-detected mid-infrared photothermal microscope which allows video rate bond-selective imaging of biological specimens.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - Haonan Zong
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Cheng Zong
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Yuying Tan
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Meng Zhang
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Yuewei Zhan
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Ji-Xin Cheng
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
37
|
Schie IW, Stiebing C, Popp J. Looking for a perfect match: multimodal combinations of Raman spectroscopy for biomedical applications. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210137VR. [PMID: 34387049 PMCID: PMC8358667 DOI: 10.1117/1.jbo.26.8.080601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Raman spectroscopy has shown very promising results in medical diagnostics by providing label-free and highly specific molecular information of pathological tissue ex vivo and in vivo. Nevertheless, the high specificity of Raman spectroscopy comes at a price, i.e., low acquisition rate, no direct access to depth information, and limited sampling areas. However, a similar case regarding advantages and disadvantages can also be made for other highly regarded optical modalities, such as optical coherence tomography, autofluorescence imaging and fluorescence spectroscopy, fluorescence lifetime microscopy, second-harmonic generation, and others. While in these modalities the acquisition speed is significantly higher, they have no or only limited molecular specificity and are only sensitive to a small group of molecules. It can be safely stated that a single modality provides only a limited view on a specific aspect of a biological specimen and cannot assess the entire complexity of a sample. To solve this issue, multimodal optical systems, which combine different optical modalities tailored to a particular need, become more and more common in translational research and will be indispensable diagnostic tools in clinical pathology in the near future. These systems can assess different and partially complementary aspects of a sample and provide a distinct set of independent biomarkers. Here, we want to give an overview on the development of multimodal systems that use RS in combination with other optical modalities to improve the diagnostic performance.
Collapse
Affiliation(s)
- Iwan W. Schie
- Leibniz Institute of Photonic Technology, Jena, Germany
- University of Applied Sciences—Jena, Department for Medical Engineering and Biotechnology, Jena, Germany
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Jena, Germany
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
| |
Collapse
|
38
|
Zhang C, Aldana-Mendoza JA. Coherent Raman scattering microscopy for chemical imaging of biological systems. JPHYS PHOTONICS 2021. [DOI: 10.1088/2515-7647/abfd09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Coherent Raman scattering (CRS) processes, including both the coherent anti-Stokes Raman scattering and stimulated Raman scattering, have been utilized in state-of-the-art microscopy platforms for chemical imaging of biological samples. The key advantage of CRS microscopy over fluorescence microscopy is label-free, which is an attractive characteristic for modern biological and medical sciences. Besides, CRS has other advantages such as higher selectivity to metabolites, no photobleaching, and narrow peak width. These features have brought fast-growing attention to CRS microscopy in biological research. In this review article, we will first briefly introduce the history of CRS microscopy, and then explain the theoretical background of the CRS processes in detail using the classical approach. Next, we will cover major instrumentation techniques of CRS microscopy. Finally, we will enumerate examples of recent applications of CRS imaging in biological and medical sciences.
Collapse
|
39
|
Prince RC, Potma EO. Coherent Raman scattering microscopy: capable solution in search of a larger audience. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210102-PER. [PMID: 34085436 PMCID: PMC8174578 DOI: 10.1117/1.jbo.26.6.060601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/20/2021] [Indexed: 05/18/2023]
Abstract
SIGNIFICANCE Coherent Raman scattering (CRS) microscopy is an optical imaging technique with capabilities that could benefit a broad range of biomedical research studies. AIM We reflect on the birth, rapid rise, and inescapable growing pains of the technique and look back on nearly four decades of developments to examine where the CRS imaging approach might be headed in the next decade to come. APPROACH We provide a brief historical account of CRS microscopy, followed by a discussion of the challenges to disseminate the technique to a larger audience. We then highlight recent progress in expanding the capabilities of the CRS microscope and assess its current appeal as a practical imaging tool. RESULTS New developments in Raman tagging have improved the specificity and sensitivity of the CRS technique. In addition, technical advances have led to CRS microscopes that can capture hyperspectral data cubes at practical acquisition times. These improvements have broadened the application space of the technique. CONCLUSION The technical performance of the CRS microscope has improved dramatically since its inception, but these advances have not yet translated into a substantial user base beyond a strong core of enthusiasts. Nonetheless, new developments are poised to move the unique capabilities of the technique into the hands of more users.
Collapse
Affiliation(s)
- Richard C. Prince
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
| | - Eric O. Potma
- University of California, Irvine, Department of Biomedical Engineering, Irvine, California, United States
- University of California, Irvine, Department of Chemistry, Irvine, California, United States
- Address all correspondence to Eric O. Potma,
| |
Collapse
|
40
|
Switchable stimulated Raman scattering microscopy with photochromic vibrational probes. Nat Commun 2021; 12:3089. [PMID: 34035304 PMCID: PMC8149663 DOI: 10.1038/s41467-021-23407-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Photochromic probes with reversible fluorescence have revolutionized the fields of single molecule spectroscopy and super-resolution microscopy, but lack sufficient chemical specificity. In contrast, Raman probes with stimulated Raman scattering (SRS) microscopy provides superb chemical resolution for super-multiplexed imaging, but are relatively inert. Here we report vibrational photochromism by engineering alkyne tagged diarylethene to realize photo-switchable SRS imaging. The narrow Raman peak of the alkyne group shifts reversibly upon photoisomerization of the conjugated diarylethene when irradiated by ultraviolet (UV) or visible light, yielding “on” or “off” SRS images taken at the photoactive Raman frequency. We demonstrated photo-rewritable patterning and encryption on thin films, painting/erasing of cells with labelled alkyne-diarylethene, as well as pulse-chase experiments of mitochondria diffusion in living cells. The design principle provides potentials for super-resolution microscopy, optical memories and switches with vibrational specificity. Probes with reversible fluorescence are useful in super-resolution microscopy, but lack sufficient chemical specificity. Here, the authors engineer alkyne tagged diarylethene to realize photo-switchable stimulated Raman scattering probes with high chemical resolution, for applications in living cells.
Collapse
|
41
|
Xiong H, Qian N, Miao Y, Zhao Z, Chen C, Min W. Super-resolution vibrational microscopy by stimulated Raman excited fluorescence. LIGHT, SCIENCE & APPLICATIONS 2021; 10:87. [PMID: 33879766 PMCID: PMC8058038 DOI: 10.1038/s41377-021-00518-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 05/04/2023]
Abstract
Inspired by the revolutionary impact of super-resolution fluorescence microscopy, super-resolution Raman imaging has been long pursued because of its much higher chemical specificity than the fluorescence counterpart. However, vibrational contrasts are intrinsically less sensitive compared with fluorescence, resulting in only mild resolution enhancement beyond the diffraction limit even with strong laser excitation power. As such, it is still a great challenge to achieve biocompatible super-resolution vibrational imaging in the optical far-field. In 2019 Stimulated Raman Excited Fluorescence (SREF) was discovered as an ultrasensitive vibrational spectroscopy that combines the high chemical specificity of Raman scattering and the superb sensitivity of fluorescence detection. Herein we developed a novel super-resolution vibrational imaging method by harnessing SREF as the contrast mechanism. We first identified the undesired role of anti-Stokes fluorescence background in preventing direct adoption of super-resolution fluorescence technique. We then devised a frequency-modulation (FM) strategy to remove the broadband backgrounds and achieved high-contrast SREF imaging. Assisted by newly synthesized SREF dyes, we realized multicolor FM-SREF imaging with nanometer spectral resolution. Finally, by integrating stimulated emission depletion (STED) with background-free FM-SREF, we accomplished high-contrast super-resolution vibrational imaging with STED-FM-SREF whose spatial resolution is only determined by the signal-to-noise ratio. In our proof-of-principle demonstration, more than two times of resolution improvement is achieved in biological systems with moderate laser excitation power, which shall be further refined with optimized instrumentation and imaging probes. With its super resolution, high sensitivity, vibrational contrast, and mild laser excitation power, STED-FM-SREF microscopy is envisioned to aid a wide variety of applications.
Collapse
Affiliation(s)
- Hanqing Xiong
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Naixin Qian
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Yupeng Miao
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Zhilun Zhao
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Chen Chen
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
42
|
Lee D, Qian C, Wang H, Li L, Miao K, Du J, Shcherbakova DM, Verkhusha VV, Wang LV, Wei L. Toward photoswitchable electronic pre-resonance stimulated Raman probes. J Chem Phys 2021; 154:135102. [PMID: 33832245 PMCID: PMC8019356 DOI: 10.1063/5.0043791] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reversibly photoswitchable probes allow for a wide variety of optical imaging applications. In particular, photoswitchable fluorescent probes have significantly facilitated the development of super-resolution microscopy. Recently, stimulated Raman scattering (SRS) imaging, a sensitive and chemical-specific optical microscopy, has proven to be a powerful live-cell imaging strategy. Driven by the advances of newly developed Raman probes, in particular the pre-resonance enhanced narrow-band vibrational probes, electronic pre-resonance SRS (epr-SRS) has achieved super-multiplex imaging with sensitivity down to 250 nM and multiplexity up to 24 colors. However, despite the high demand, photoswitchable Raman probes have yet to be developed. Here, we propose a general strategy for devising photoswitchable epr-SRS probes. Toward this goal, we exploit the molecular electronic and vibrational coupling, in which we switch the electronic states of the molecules to four different states to turn their ground-state epr-SRS signals on and off. First, we showed that inducing transitions to both the electronic excited state and triplet state can effectively diminish the SRS peaks. Second, we revealed that the epr-SRS signals can be effectively switched off in red-absorbing organic molecules through light-facilitated transitions to a reduced state. Third, we identified that photoswitchable proteins with near-infrared photoswitchable absorbance, whose states are modulable with their electronic resonances detunable toward and away from the pump photon energy, can function as the photoswitchable epr-SRS probes with desirable sensitivity (<1 µM) and low photofatigue (>40 cycles). These photophysical characterizations and proof-of-concept demonstrations should advance the development of novel photoswitchable Raman probes and open up the unexplored Raman imaging capabilities.
Collapse
Affiliation(s)
- Dongkwan Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Chenxi Qian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Haomin Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Lei Li
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| | - Kun Miao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Jiajun Du
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Daria M. Shcherbakova
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | - Lihong V. Wang
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| | - Lu Wei
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA,Author to whom correspondence should be addressed:
| |
Collapse
|
43
|
Shi L, Fung AA, Zhou A. Advances in stimulated Raman scattering imaging for tissues and animals. Quant Imaging Med Surg 2021; 11:1078-1101. [PMID: 33654679 PMCID: PMC7829158 DOI: 10.21037/qims-20-712] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
Stimulated Raman scattering (SRS) microscopy has emerged in the last decade as a powerful optical imaging technology with high chemical selectivity, speed, and subcellular resolution. Since the invention of SRS microscopy, it has been extensively employed in life science to study composition, structure, metabolism, development, and disease in biological systems. Applications of SRS in research and the clinic have generated new insights in many fields including neurobiology, tumor biology, developmental biology, metabolomics, pharmacokinetics, and more. Herein we review the advances and applications of SRS microscopy imaging in tissues and animals, as well as envision future applications and development of SRS imaging in life science and medicine.
Collapse
Affiliation(s)
- Lingyan Shi
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Anthony A Fung
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Andy Zhou
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
44
|
Shim SH. Super-resolution microscopy of genome organization. Genes Genomics 2021; 43:281-287. [PMID: 33630271 DOI: 10.1007/s13258-021-01044-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 12/31/2022]
Abstract
Recent advancements in sequencing and imaging technologies are providing new perspectives in solving the mystery of three-dimensional folding of genome in a nucleus. Chromosome conformation capture sequencing has discovered new chromatin structures such as topologically associated domains and loops in hundreds of kilobases. Super-resolution fluorescence microscopy with nanometer resolutions, in particular multiplexed approaches with sequence-specificity, has visualized chromatin structures from the rough folds of whole chromosomes to the fine loops of cis-regulatory elements in intact individual nuclei. Here, recent advancements in genome visualization tools with highly multiplexed labeling and reading are introduced. These imaging technologies have found ensemble behavior consistent to sequencing results, while unveiling single-cell variations. But, they also generated contradictory results on the roles of architectural proteins (like cohesion and CTCF) and enhancer-promoter interactions. Live-cell labeling methods for imaging specific genomic loci, especially the CRISPR/dCas9 system, are reviewed in order to give perspectives in the emergence of tools for visualizing genome structural dynamics.
Collapse
Affiliation(s)
- Sang-Hee Shim
- Department of Chemistry, Korea University, Seoul, 02481, Korea.
| |
Collapse
|
45
|
Whaley-Mayda L, Guha A, Penwell SB, Tokmakoff A. Fluorescence-Encoded Infrared Vibrational Spectroscopy with Single-Molecule Sensitivity. J Am Chem Soc 2021; 143:3060-3064. [DOI: 10.1021/jacs.1c00542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lukas Whaley-Mayda
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Abhirup Guha
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Samuel B. Penwell
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
46
|
Li Y, Shen B, Li S, Zhao Y, Qu J, Liu L. Review of Stimulated Raman Scattering Microscopy Techniques and Applications in the Biosciences. Adv Biol (Weinh) 2020; 5:e2000184. [PMID: 33724734 DOI: 10.1002/adbi.202000184] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/17/2020] [Indexed: 01/10/2023]
Abstract
Stimulated Raman scattering (SRS) microscopy is a nonlinear optical imaging method for visualizing chemical content based on molecular vibrational bonds. Featuring high speed, high resolution, high sensitivity, high accuracy, and 3D sectioning, SRS microscopy has made tremendous progress toward biochemical information acquisition, cellular function investigation, and label-free medical diagnosis in the biosciences. In this review, the principle of SRS, system design, and data analysis are introduced, and the current innovations of the SRS system are reviewed. In particular, combined with various bio-orthogonal Raman tags, the applications of SRS microscopy in cell metabolism, tumor diagnosis, neuroscience, drug tracking, and microbial detection are briefly examined. The future prospects for SRS microscopy are also shared.
Collapse
Affiliation(s)
- Yanping Li
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Binglin Shen
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Shaowei Li
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Yihua Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, 518060, China
| |
Collapse
|
47
|
Xiong H, Min W. Combining the best of two worlds: Stimulated Raman excited fluorescence. J Chem Phys 2020; 153:210901. [PMID: 33291903 PMCID: PMC7986273 DOI: 10.1063/5.0030204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/06/2020] [Indexed: 11/14/2022] Open
Abstract
The pursuit of a hybrid spectroscopy that combines the superb sensitivity of fluorescence and the high chemical specificity of Raman scattering has lasted for 40 years, with multiple experimental and theoretical attempts in the literature. It was only recently that the stimulated Raman excited fluorescence (SREF) process was successfully observed in a broad range of fluorophores. SREF allows single-molecule vibrational spectroscopy and imaging in the optical far field without relying on plasmonic enhancement. In this perspective, we will first review the historical efforts that lead to the successful excitation and detection of SREF, followed by the underlying physical principles, then the remaining technical challenges will be discussed, and, at last, the future opportunities in this old but yet newly emerged spectroscopy are outlined.
Collapse
Affiliation(s)
- Hanqing Xiong
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
48
|
Takahashi H, Oue T, Sakai M. Resonance IR spectroscopy in aqueous solution by combining IR super-resolution with TFD-IR method. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Xiong H, Lee JK, Zare RN, Min W. Strong Electric Field Observed at the Interface of Aqueous Microdroplets. J Phys Chem Lett 2020; 11:7423-7428. [PMID: 32804510 DOI: 10.1021/acs.jpclett.0c02061] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chemical reactions in aqueous microdroplets often exhibit unusual kinetic and thermodynamic properties not observed in bulk solution. While an electric field has been implicated at the water interface, there has been no direct measurement in aqueous microdroplets, largely due to the lack of proper measurement tools. Herein, we employ newly developed stimulated Raman excited fluorescence microscopy to measure the electric field at the water-oil interface of microdroplets. As determined by the vibrational Stark effect of a nitrile-bearing fluorescent probe, the strength of the electric field is found to be on the order of 107 V/cm. This strong electric field aligns probe dipoles with respect to the interface. The formation of the electric field likely arises from charge separation caused by the adsorption of negative ions at the water-oil interface of microdroplets. We suggest that this strong electric field might account in part for the unique properties of chemical reactions reported in microdroplets.
Collapse
Affiliation(s)
- Hanqing Xiong
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jae Kyoo Lee
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Wei Min
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
50
|
Azemtsop Matanfack G, Rüger J, Stiebing C, Schmitt M, Popp J. Imaging the invisible-Bioorthogonal Raman probes for imaging of cells and tissues. JOURNAL OF BIOPHOTONICS 2020; 13:e202000129. [PMID: 32475014 DOI: 10.1002/jbio.202000129] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
A revolutionary avenue for vibrational imaging with super-multiplexing capability can be seen in the recent development of Raman-active bioortogonal tags or labels. These tags and isotopic labels represent groups of chemically inert and small modifications, which can be introduced to any biomolecule of interest and then supplied to single cells or entire organisms. Recent developments in the field of spontaneous Raman spectroscopy and stimulated Raman spectroscopy in combination with targeted imaging of biomolecules within living systems are the main focus of this review. After having introduced common strategies for bioorthogonal labeling, we present applications thereof for profiling of resistance patterns in bacterial cells, investigations of pharmaceutical drug-cell interactions in eukaryotic cells and cancer diagnosis in whole tissue samples. Ultimately, this approach proves to be a flexible and robust tool for in vivo imaging on several length scales and provides comparable information as fluorescence-based imaging without the need of bulky fluorescent tags.
Collapse
Affiliation(s)
- Georgette Azemtsop Matanfack
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany
- Research Campus Infectognostics e.V., Jena, Germany
| | - Jan Rüger
- Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany
| | - Clara Stiebing
- Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany
- Research Campus Infectognostics e.V., Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology - a member of the Leibniz Research Alliance Leibniz Health Technology (Leibniz-IPHT), Jena, Germany
- Research Campus Infectognostics e.V., Jena, Germany
| |
Collapse
|