1
|
Zhang J, Wang Q, Liu J, Duan Y, Liu Z, Zhang Z, Li C. Active enhancers: recent research advances and insights into disease. Biol Direct 2024; 19:112. [PMID: 39533395 PMCID: PMC11556110 DOI: 10.1186/s13062-024-00559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Precise regulation of gene expression is crucial to development. Enhancers, the core of gene regulation, determine the spatiotemporal pattern of gene transcription. Since many disease-associated mutations are characterized in enhancers, the research on enhancer will provide clues to precise medicine. Rapid advances in high-throughput sequencing technology facilitate the characterization of enhancers at genome wide, but understanding the functional mechanisms of enhancers remains challenging. Herein, we provide a panorama of enhancer characteristics, including epigenetic modifications, enhancer transcripts, and enhancer-promoter interaction patterns. Furthermore, we outline the applications of high-throughput sequencing technology and functional genomics methods in enhancer research. Finally, we discuss the role of enhancers in human disease and their potential as targets for disease prevention and treatment strategies.
Collapse
Affiliation(s)
- Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Jiaxin Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Ziyi Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing, 100191, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
| |
Collapse
|
2
|
Ranjan G, Sehgal P, Scaria V, Sivasubbu S. SCAR-6 elncRNA locus epigenetically regulates PROZ and modulates coagulation and vascular function. EMBO Rep 2024; 25:4950-4978. [PMID: 39358551 PMCID: PMC11549340 DOI: 10.1038/s44319-024-00272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
In this study, we characterize a novel lncRNA-producing gene locus that we name Syntenic Cardiovascular Conserved Region-Associated lncRNA-6 (scar-6) and functionally validate its role in coagulation and cardiovascular function. A 12-bp deletion of the scar-6 locus in zebrafish (scar-6gib007Δ12/Δ12) results in cranial hemorrhage and vascular permeability. Overexpression, knockdown and rescue with the scar-6 lncRNA modulates hemostasis in zebrafish. Molecular investigation reveals that the scar-6 lncRNA acts as an enhancer lncRNA (elncRNA), and controls the expression of prozb, an inhibitor of factor Xa, through an enhancer element in the scar-6 locus. The scar-6 locus suppresses loop formation between prozb and scar-6 sequences, which might be facilitated by the methylation of CpG islands via the prdm14-PRC2 complex whose binding to the locus might be stabilized by the scar-6 elncRNA transcript. Binding of prdm14 to the scar-6 locus is impaired in scar-6gib007Δ12/Δ12 zebrafish. Finally, activation of the PAR2 receptor in scar-6gib007Δ12/Δ12 zebrafish triggers NF-κB-mediated endothelial cell activation, leading to vascular dysfunction and hemorrhage. We present evidence that the scar-6 locus plays a role in regulating the expression of the coagulation cascade gene prozb and maintains vascular homeostasis.
Collapse
Affiliation(s)
- Gyan Ranjan
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Paras Sehgal
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Vishwanath Cancer Care Foundation, Mumbai, India.
- Dr. D. Y Patil Medical College, Hospital and Research Centre, Pune, India.
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi, 110024, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Vishwanath Cancer Care Foundation, Mumbai, India.
- Dr. D. Y Patil Medical College, Hospital and Research Centre, Pune, India.
| |
Collapse
|
3
|
Serio S, Pagiatakis C, Musolino E, Felicetta A, Carullo P, Laura Frances J, Papa L, Rozzi G, Salvarani N, Miragoli M, Gornati R, Bernardini G, Condorelli G, Papait R. Cardiac Aging Is Promoted by Pseudohypoxia Increasing p300-Induced Glycolysis. Circ Res 2023; 133:687-703. [PMID: 37681309 DOI: 10.1161/circresaha.123.322676] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Heart failure is typical in the elderly. Metabolic remodeling of cardiomyocytes underlies inexorable deterioration of cardiac function with aging: glycolysis increases at the expense of oxidative phosphorylation, causing an energy deficit contributing to impaired contractility. Better understanding of the mechanisms of this metabolic switching could be critical for reversing the condition. METHODS To investigate the role of 3 histone modifications (H3K27ac, H3K27me3, and H3K4me1) in the metabolic remodeling occurring in the aging heart, we cross-compared epigenomic, transcriptomic, and metabolomic data from mice of different ages. In addition, the role of the transcriptional coactivator p300 (E1A-associated binding protein p300)/CBP (CREB binding protein) in cardiac aging was investigated using a specific inhibitor of this histone acetyltransferase enzyme. RESULTS We report a set of species-conserved enhancers associated with transcriptional changes underlying age-related metabolic remodeling in cardiomyocytes. Activation of the enhancer region of Hk2-a key glycolysis pathway gene-was fostered in old age-onset mouse heart by pseudohypoxia, wherein hypoxia-related genes are expressed under normal O2 levels, via increased activity of P300/CBP. Pharmacological inhibition of this transcriptional coactivator before the onset of cardiac aging led to a more aerobic, less glycolytic, metabolic state, improved heart contractility, and overall blunting of cardiac decline. CONCLUSIONS Taken together, our results suggest how epigenetic dysregulation of glycolysis pathway enhancers could potentially be targeted to treat heart failure in the elderly.
Collapse
Affiliation(s)
- Simone Serio
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy (S.S., G.C.)
| | - Christina Pagiatakis
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy (C.P., E.M., R.G., G.B., R.P.)
| | - Elettra Musolino
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy (C.P., E.M., R.G., G.B., R.P.)
| | - Arianna Felicetta
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
| | - Pierluigi Carullo
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
| | - Javier Laura Frances
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
| | - Laura Papa
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
| | - Giacomo Rozzi
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
| | - Nicolò Salvarani
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
- Institute of Genetic and Biomedical Research, UOS of Milan, National Research Council of Italy (N.S.)
| | - Michele Miragoli
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
- Department of Medicine and Surgery, University of Parma, Italy (M.M.)
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy (C.P., E.M., R.G., G.B., R.P.)
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy (C.P., E.M., R.G., G.B., R.P.)
| | - Gianluigi Condorelli
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy (S.S., G.C.)
| | - Roberto Papait
- Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano (MI), Italy (S.S., C.P., A.F., P.C., J.L.F., L.P., G.R., N.S., M.M., G.C., R.P.)
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy (C.P., E.M., R.G., G.B., R.P.)
| |
Collapse
|
4
|
Lee SM, Shivakumar M, Xiao B, Jung SH, Nam Y, Yun JS, Choe EK, Jung YM, Oh S, Park JS, Jun JK, Kim D. Genome-wide polygenic risk scores for hypertensive disease during pregnancy can also predict the risk for long-term cardiovascular disease. Am J Obstet Gynecol 2023; 229:298.e1-298.e19. [PMID: 36933686 PMCID: PMC10504416 DOI: 10.1016/j.ajog.2023.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Hypertensive disorders during pregnancy are associated with the risk of long-term cardiovascular disease after pregnancy, but it has not yet been determined whether genetic predisposition for hypertensive disorders during pregnancy can predict the risk for long-term cardiovascular disease. OBJECTIVE This study aimed to evaluate the risk for long-term atherosclerotic cardiovascular disease according to polygenic risk scores for hypertensive disorders during pregnancy. STUDY DESIGN Among UK Biobank participants, we included European-descent women (n=164,575) with at least 1 live birth. Participants were divided according to genetic risk categorized by polygenic risk scores for hypertensive disorders during pregnancy (low risk, score ≤25th percentile; medium risk, score 25th∼75th percentile; high risk, score >75th percentile), and were evaluated for incident atherosclerotic cardiovascular disease, defined as the new occurrence of one of the following: coronary artery disease, myocardial infarction, ischemic stroke, or peripheral artery disease. RESULTS Among the study population, 2427 (1.5%) had a history of hypertensive disorders during pregnancy, and 8942 (5.6%) developed incident atherosclerotic cardiovascular disease after enrollment. Women with high genetic risk for hypertensive disorders during pregnancy had a higher prevalence of hypertension at enrollment. After enrollment, women with high genetic risk for hypertensive disorders during pregnancy had an increased risk for incident atherosclerotic cardiovascular disease, including coronary artery disease, myocardial infarction, and peripheral artery disease, compared with those with low genetic risk, even after adjustment for history of hypertensive disorders during pregnancy. CONCLUSION High genetic risk for hypertensive disorders during pregnancy was associated with increased risk for atherosclerotic cardiovascular disease. This study provides evidence on the informative value of polygenic risk scores for hypertensive disorders during pregnancy in prediction of long-term cardiovascular outcomes later in life.
Collapse
Affiliation(s)
- Seung Mi Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, Korea
| | - Manu Shivakumar
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brenda Xiao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sang-Hyuk Jung
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Yonghyun Nam
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jae-Seung Yun
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Internal Medicine, Catholic University of Korea School of Medicine, Seoul, Korea
| | - Eun Kyung Choe
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Department of Surgery, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea
| | - Young Mi Jung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Sohee Oh
- Department of Biostatistics, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Dokyoon Kim
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
5
|
Singh S, Tian W, Severance ZC, Chaudhary SK, Anokhina V, Mondal B, Pergu R, Singh P, Dhawa U, Singha S, Choudhary A. Proximity-inducing modalities: the past, present, and future. Chem Soc Rev 2023; 52:5485-5515. [PMID: 37477631 DOI: 10.1039/d2cs00943a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Living systems use proximity to regulate biochemical processes. Inspired by this phenomenon, bifunctional modalities that induce proximity have been developed to redirect cellular processes. An emerging example of this class is molecules that induce ubiquitin-dependent proteasomal degradation of a protein of interest, and their initial development sparked a flurry of discovery for other bifunctional modalities. Recent advances in this area include modalities that can change protein phosphorylation, glycosylation, and acetylation states, modulate gene expression, and recruit components of the immune system. In this review, we highlight bifunctional modalities that perform functions other than degradation and have great potential to revolutionize disease treatment, while also serving as important tools in basic research to explore new aspects of biology.
Collapse
Affiliation(s)
- Sameek Singh
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Wenzhi Tian
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Zachary C Severance
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Santosh K Chaudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Viktoriya Anokhina
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Basudeb Mondal
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Rajaiah Pergu
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Prashant Singh
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Uttam Dhawa
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Santanu Singha
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
6
|
Mamouei M, Fisher T, Rao S, Li Y, Salimi-Khorshidi G, Rahimi K. A comparative study of model-centric and data-centric approaches in the development of cardiovascular disease risk prediction models in the UK Biobank. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2023; 4:337-346. [PMID: 37538143 PMCID: PMC10393888 DOI: 10.1093/ehjdh/ztad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/01/2023] [Indexed: 08/05/2023]
Abstract
Aims A diverse set of factors influence cardiovascular diseases (CVDs), but a systematic investigation of the interplay between these determinants and the contribution of each to CVD incidence prediction is largely missing from the literature. In this study, we leverage one of the most comprehensive biobanks worldwide, the UK Biobank, to investigate the contribution of different risk factor categories to more accurate incidence predictions in the overall population, by sex, different age groups, and ethnicity. Methods and results The investigated categories include the history of medical events, behavioural factors, socioeconomic factors, environmental factors, and measurements. We included data from a cohort of 405 257 participants aged 37-73 years and trained various machine learning and deep learning models on different subsets of risk factors to predict CVD incidence. Each of the models was trained on the complete set of predictors and subsets where each category was excluded. The results were benchmarked against QRISK3. The findings highlight that (i) leveraging a more comprehensive medical history substantially improves model performance. Relative to QRISK3, the best performing models improved the discrimination by 3.78% and improved precision by 1.80%. (ii) Both model- and data-centric approaches are necessary to improve predictive performance. The benefits of using a comprehensive history of diseases were far more pronounced when a neural sequence model, BEHRT, was used. This highlights the importance of the temporality of medical events that existing clinical risk models fail to capture. (iii) Besides the history of diseases, socioeconomic factors and measurements had small but significant independent contributions to the predictive performance. Conclusion These findings emphasize the need for considering broad determinants and novel modelling approaches to enhance CVD incidence prediction.
Collapse
Affiliation(s)
- Mohammad Mamouei
- Corresponding author. Tel: +44 1865 617200, Fax: +44 1865 617202,
| | - Thomas Fisher
- Deep Medicine, Oxford Martin School, University of Oxford, 1st Floor, Hayes House, 75 George Street, Oxford OX1 2BQ, UK
- Nuffield Department of Women’s and Reproductive Health, Medical Science Division, University of Oxford, Oxford, UK
| | - Shishir Rao
- Deep Medicine, Oxford Martin School, University of Oxford, 1st Floor, Hayes House, 75 George Street, Oxford OX1 2BQ, UK
- Nuffield Department of Women’s and Reproductive Health, Medical Science Division, University of Oxford, Oxford, UK
| | - Yikuan Li
- Deep Medicine, Oxford Martin School, University of Oxford, 1st Floor, Hayes House, 75 George Street, Oxford OX1 2BQ, UK
- Nuffield Department of Women’s and Reproductive Health, Medical Science Division, University of Oxford, Oxford, UK
| | - Ghomalreza Salimi-Khorshidi
- Deep Medicine, Oxford Martin School, University of Oxford, 1st Floor, Hayes House, 75 George Street, Oxford OX1 2BQ, UK
- Nuffield Department of Women’s and Reproductive Health, Medical Science Division, University of Oxford, Oxford, UK
| | - Kazem Rahimi
- Deep Medicine, Oxford Martin School, University of Oxford, 1st Floor, Hayes House, 75 George Street, Oxford OX1 2BQ, UK
- Nuffield Department of Women’s and Reproductive Health, Medical Science Division, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
7
|
Phan LT, Oh C, He T, Manavalan B. A comprehensive revisit of the machine-learning tools developed for the identification of enhancers in the human genome. Proteomics 2023; 23:e2200409. [PMID: 37021401 DOI: 10.1002/pmic.202200409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023]
Abstract
Enhancers are non-coding DNA elements that play a crucial role in enhancing the transcription rate of a specific gene in the genome. Experiments for identifying enhancers can be restricted by their conditions and involve complicated, time-consuming, laborious, and costly steps. To overcome these challenges, computational platforms have been developed to complement experimental methods that enable high-throughput identification of enhancers. Over the last few years, the development of various enhancer computational tools has resulted in significant progress in predicting putative enhancers. Thus, researchers are now able to use a variety of strategies to enhance and advance enhancer study. In this review, an overview of machine learning (ML)-based prediction methods for enhancer identification and related databases has been provided. The existing enhancer-prediction methods have also been reviewed regarding their algorithms, feature selection processes, validation techniques, and software utility. In addition, the advantages and drawbacks of these ML approaches and guidelines for developing bioinformatic tools have been highlighted for a more efficient enhancer prediction. This review will serve as a useful resource for experimentalists in selecting the appropriate ML tool for their study, and for bioinformaticians in developing more accurate and advanced ML-based predictors.
Collapse
Affiliation(s)
- Le Thi Phan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Changmin Oh
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Tao He
- Beidahuang Industry Group General Hospital, Harbin, China
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| |
Collapse
|
8
|
Htet M, Lei S, Bajpayi S, Zoitou A, Chamakioti M, Tampakakis E. The role of noncoding genetic variants in cardiomyopathy. Front Cardiovasc Med 2023; 10:1116925. [PMID: 37283586 PMCID: PMC10239966 DOI: 10.3389/fcvm.2023.1116925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Cardiomyopathies remain one of the leading causes of morbidity and mortality worldwide. Environmental risk factors and genetic predisposition account for most cardiomyopathy cases. As with all complex diseases, there are significant challenges in the interpretation of the molecular mechanisms underlying cardiomyopathy-associated genetic variants. Given the technical improvements and reduced costs of DNA sequence technologies, an increasing number of patients are now undergoing genetic testing, resulting in a continuously expanding list of novel mutations. However, many patients carry noncoding genetic variants, and although emerging evidence supports their contribution to cardiac disease, their role in cardiomyopathies remains largely understudied. In this review, we summarize published studies reporting on the association of different types of noncoding variants with various types of cardiomyopathies. We focus on variants within transcriptional enhancers, promoters, intronic sites, and untranslated regions that are likely associated with cardiac disease. Given the broad nature of this topic, we provide an overview of studies that are relatively recent and have sufficient evidence to support a significant degree of causality. We believe that more research with additional validation of noncoding genetic variants will provide further mechanistic insights on the development of cardiac disease, and noncoding variants will be increasingly incorporated in future genetic screening tests.
Collapse
Affiliation(s)
- Myo Htet
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| | - Shunyao Lei
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Sheetal Bajpayi
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| | - Asimina Zoitou
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | | | - Emmanouil Tampakakis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
9
|
Safabakhsh S, Ma WF, Miller CL, Laksman Z. Cardiovascular utility of single cell RNA-Seq. Curr Opin Cardiol 2023; 38:193-200. [PMID: 36728943 DOI: 10.1097/hco.0000000000001014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Cardiovascular diseases remain the leading causes of morbidity and mortality globally. Single-cell RNA sequencing has the potential to improve diagnostics, risk stratification, and provide novel therapeutic targets that have the potential to improve patient outcomes. RECENT FINDINGS Here, we provide an overview of the basic processes underlying single-cell RNA sequencing, including library preparation, data processing, and downstream analyses. We briefly discuss how the technique has been adapted to related medical disciplines, including hematology and oncology, with short term translational impact. We discuss potential applications of this technology within cardiology as well as recent innovative research within the field. We also discuss future directions to translate this technology to other high impact clinical areas. SUMMARY The use of single-cell RNA sequencing technology has made significant advancements in the field of cardiology, with ongoing growth in terms of applications and uptake. Most of the current research has focused on structural or atherosclerotic heart disease. Future areas that stand to benefit from this technology include cardiac electrophysiology and cardio-oncology.
Collapse
Affiliation(s)
- Sina Safabakhsh
- Division of Cardiology
- Centre for Heart Lung Innovation
- Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Wei Feng Ma
- Center for Public Health Genomics, Department of Public Health Sciences
- Medical Scientist Training Program, University of Virginia, Charlottesville, Virginia, USA
| | - Clint L Miller
- Center for Public Health Genomics, Department of Public Health Sciences
| | - Zachary Laksman
- Division of Cardiology
- Centre for Heart Lung Innovation
- Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Ding C, Zhou Y. Insights into circular
RNAs
: Biogenesis, function and their regulatory roles in cardiovascular disease. J Cell Mol Med 2023; 27:1299-1314. [PMID: 37002786 PMCID: PMC10183707 DOI: 10.1111/jcmm.17734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
As a distinctive member of the noncoding RNA family, circular RNAs (circRNAs) are generated from single-stranded, covalently closed structures and are ubiquitous in mammalian cells and tissues. Due to its atypical circular architecture, it was conventionally deemed insignificant dark matter for a prolonged duration. Nevertheless, studies conducted over the last decade have demonstrated that this abundant, structurally stable and tissue-specific RNA has been increasingly relevant in diverse diseases, including cancer, neurological disorders, diabetes mellitus and cardiovascular diseases (CVDs). Therefore, regulatory pathways controlled by circRNAs are widely involved in the occurrence and pathological processes of CVDs through their function as miRNA sponges, protein sponges and protein scaffolds. To better understand the role of circRNAs and their complex regulatory networks in CVDs, we summarize current knowledge of their biogenesis and function and the latest research on circRNAs in CVDs, with the hope of paving the way for the identification of promising biomarkers and therapeutic strategies for CVDs.
Collapse
Affiliation(s)
- Chen Ding
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University Suzhou Dushu Lake Hospital Suzhou Jiangsu China
- Institute for Hypertension of Soochow University Suzhou Jiangsu China
| | - Yafeng Zhou
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University Suzhou Dushu Lake Hospital Suzhou Jiangsu China
- Institute for Hypertension of Soochow University Suzhou Jiangsu China
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
11
|
Gromova T, Gehred ND, Vondriska TM. Single-cell transcriptomes in the heart: when every epigenome counts. Cardiovasc Res 2023; 119:64-78. [PMID: 35325060 PMCID: PMC10233279 DOI: 10.1093/cvr/cvac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The response of an organ to stimuli emerges from the actions of individual cells. Recent cardiac single-cell RNA-sequencing studies of development, injury, and reprogramming have uncovered heterogeneous populations even among previously well-defined cell types, raising questions about what level of experimental resolution corresponds to disease-relevant, tissue-level phenotypes. In this review, we explore the biological meaning behind this cellular heterogeneity by undertaking an exhaustive analysis of single-cell transcriptomics in the heart (including a comprehensive, annotated compendium of studies published to date) and evaluating new models for the cardiac function that have emerged from these studies (including discussion and schematics that depict new hypotheses in the field). We evaluate the evidence to support the biological actions of newly identified cell populations and debate questions related to the role of cell-to-cell variability in development and disease. Finally, we present emerging epigenomic approaches that, when combined with single-cell RNA-sequencing, can resolve basic mechanisms of gene regulation and variability in cell phenotype.
Collapse
Affiliation(s)
- Tatiana Gromova
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Natalie D Gehred
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Thomas M Vondriska
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Wang H, Xiao F, Qian Y, Wu B, Dong X, Lu Y, Cheng G, Wang L, Yan K, Yang L, Chen L, Kang W, Li L, Pan X, Wei Q, Zhuang D, Chen D, Yin Z, Yang L, Ni Q, Liu R, Li G, Zhang P, Li X, Peng X, Wang Y, Chen H, Ma X, Liu F, Cao Y, Huang G, Zhou W. Genetic architecture in neonatal intensive care unit patients with congenital heart defects: a retrospective study from the China Neonatal Genomes Project. J Med Genet 2023; 60:247-253. [PMID: 35595280 DOI: 10.1136/jmedgenet-2021-108354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/02/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Congenital heart defects (CHDs) are the most common type of birth defects. The genetic aetiology of CHD is complex and incompletely understood. The overall distribution of genetic causes in patients with CHD from neonatal intensive care units (NICUs) needs to be studied. METHODS CHD cases were extracted from the China Neonatal Genomes Project (2016-2021). Next-generation sequencing results and medical records were retrospectively evaluated to note the frequency of genetic diagnosis and the respective patient outcomes. RESULTS In total, 1795 patients were included. The human phenotype ontology term of atrial septal defect, patent ductus arteriosus and ventricular septal defect account for a large portion of the CHD subtype. Co-occurring extracardiac anomalies were observed in 35.1% of patients. 269 of the cases received genetic diagnoses that could explain the phenotype of CHDs, including 172 copy number variations and 97 pathogenic variants. The detection rate of trio-whole-exome sequencing was higher than clinical exome sequencing (21.8% vs 14.5%, p<0.05). Further follow-up analysis showed the genetic diagnostic rate was higher in the deceased group than in the surviving group (29.0% vs 11.9%, p<0.05). CONCLUSION This is the largest cohort study to explore the genetic spectrum of patients with CHD in the NICU in China. Our findings may benefit future work on improving genetic screening and counselling for NICU patients with CHD.
Collapse
Affiliation(s)
- Huijun Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Feifan Xiao
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Division of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yanyan Qian
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yulan Lu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Guoqiang Cheng
- Division of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Laishuan Wang
- Division of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Kai Yan
- Division of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Lin Yang
- Department of Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Liping Chen
- Department of Neonatology, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Wenqing Kang
- Department of Neonatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Long Li
- Department of Neonatology, The People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Xinnian Pan
- Department of Neonatology, Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Qiufen Wei
- Department of Neonatology, Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Deyi Zhuang
- Department of Pediatrics, Xiamen Children's Hospital, Xiamen, Fujian, China
| | - Dongmei Chen
- Department of Neonatal Intensive Care Unit, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian, China
| | - Zhaoqing Yin
- Department of Neonatology, The People's Hospital of Dehong, Dehong, Yunnan, China
| | - Ling Yang
- Department of Neonatology, Hainan Women and Children's Medical Center, Haikou, Hainan, China
| | - Qi Ni
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Renchao Liu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Gang Li
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Ping Zhang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xu Li
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiaomin Peng
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yao Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Huiyao Chen
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiaojing Ma
- Cardiovascular Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Fang Liu
- Cardiovascular Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yun Cao
- Division of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Guoying Huang
- Cardiovascular Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China .,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Wenhao Zhou
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China .,Division of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| |
Collapse
|
13
|
McKinsey TA, Foo R, Anene-Nzelu CG, Travers JG, Vagnozzi RJ, Weber N, Thum T. Emerging epigenetic therapies of cardiac fibrosis and remodelling in heart failure: from basic mechanisms to early clinical development. Cardiovasc Res 2023; 118:3482-3498. [PMID: 36004821 DOI: 10.1093/cvr/cvac142] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases and specifically heart failure (HF) impact global health and impose a significant economic burden on society. Despite current advances in standard of care, the risks for death and readmission of HF patients remain unacceptably high and new therapeutic strategies to limit HF progression are highly sought. In disease settings, persistent mechanical or neurohormonal stress to the myocardium triggers maladaptive cardiac remodelling, which alters cardiac function and structure at both the molecular and cellular levels. The progression and magnitude of maladaptive cardiac remodelling ultimately leads to the development of HF. Classical therapies for HF are largely protein-based and mostly are targeted to ameliorate the dysregulation of neuroendocrine pathways and halt adverse remodelling. More recently, investigation of novel molecular targets and the application of cellular therapies, epigenetic modifications, and regulatory RNAs has uncovered promising new avenues to address HF. In this review, we summarize the current knowledge on novel cellular and epigenetic therapies and focus on two non-coding RNA-based strategies that reached the phase of early clinical development to counteract cardiac remodelling and HF. The current status of the development of translating those novel therapies to clinical practice, limitations, and future perspectives are additionally discussed.
Collapse
Affiliation(s)
- Timothy A McKinsey
- Department of Medicine, Division of Cardiology, and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, 12700 E.19th Ave, Aurora, CO, 80045-2507, USA
| | - Roger Foo
- NUHS Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, 117599 Singapore, Singapore.,Cardiovascular Research Institute, National University Heart Centre, 14 Medical Drive, Level 8, 117599 Singapore, Singapore
| | - Chukwuemeka George Anene-Nzelu
- NUHS Cardiovascular Disease Translational Research Programme, NUS Yong Loo Lin School of Medicine, 14 Medical Drive, Level 8, 117599 Singapore, Singapore.,Cardiovascular Research Institute, National University Heart Centre, 14 Medical Drive, Level 8, 117599 Singapore, Singapore.,Montreal Heart Institute, 5000 Rue Belanger, H1T 1C8, Montreal, Canada
| | - Joshua G Travers
- Department of Medicine, Division of Cardiology, and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, 12700 E.19th Ave, Aurora, CO, 80045-2507, USA
| | - Ronald J Vagnozzi
- Department of Medicine, Division of Cardiology, and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, 12700 E.19th Ave, Aurora, CO, 80045-2507, USA
| | - Natalie Weber
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.,REBIRTH Center for Translational Regenerative Therapies, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
14
|
Deviatiiarov RM, Gams A, Kulakovskiy IV, Buyan A, Meshcheryakov G, Syunyaev R, Singh R, Shah P, Tatarinova TV, Gusev O, Efimov IR. An atlas of transcribed human cardiac promoters and enhancers reveals an important role of regulatory elements in heart failure. NATURE CARDIOVASCULAR RESEARCH 2023; 2:58-75. [PMID: 39196209 DOI: 10.1038/s44161-022-00182-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/02/2022] [Indexed: 08/29/2024]
Abstract
A deeper knowledge of the dynamic transcriptional activity of promoters and enhancers is needed to improve mechanistic understanding of the pathogenesis of heart failure and heart diseases. In this study, we used cap analysis of gene expression (CAGE) to identify and quantify the activity of transcribed regulatory elements (TREs) in the four cardiac chambers of 21 healthy and ten failing adult human hearts. We identified 17,668 promoters and 14,920 enhancers associated with the expression of 14,519 genes. We showed how these regulatory elements are alternatively transcribed in different heart regions, in healthy versus failing hearts and in ischemic versus non-ischemic heart failure samples. Cardiac-disease-related single-nucleotide polymorphisms (SNPs) appeared to be enriched in TREs, potentially affecting the allele-specific transcription factor binding. To conclude, our open-source heart CAGE atlas will serve the cardiovascular community in improving the understanding of the role of the cardiac gene regulatory networks in cardiovascular disease and therapy.
Collapse
Affiliation(s)
- Ruslan M Deviatiiarov
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Anna Gams
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Ivan V Kulakovskiy
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Buyan
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | | | - Roman Syunyaev
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ramesh Singh
- Inova Heart and Vascular Institute, Falls Church, VA, USA
| | - Palak Shah
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
- Inova Heart and Vascular Institute, Falls Church, VA, USA
| | - Tatiana V Tatarinova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.
- Department of Biology, University of La Verne, La Verne, CA, USA.
| | - Oleg Gusev
- Laboratory of Regulatory Genomics, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
- Graduate School of Medicine, Juntendo University, Tokyo, Japan.
- RIKEN Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan.
- Endocrinology Research Center, Moscow, Russia.
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA.
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA.
- Department of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
15
|
Abstract
RNA is not always a faithful copy of DNA. Advances in tools enabling the interrogation of the exact RNA sequence have permitted revision of how genetic information is transferred. We now know that RNA is a dynamic molecule, amenable to chemical modifications of its four canonical nucleotides by dedicated RNA-binding enzymes. The ever-expanding catalogue of identified RNA modifications in mammals has led to a burst of studies in the past 5 years that have explored the biological relevance of the RNA modifications, also known as epitranscriptome. These studies concluded that chemical modification of RNA nucleotides alters several properties of RNA molecules including sequence, secondary structure, RNA-protein interaction, localization and processing. Importantly, a plethora of cellular functions during development, homeostasis and disease are controlled by RNA modification enzymes. Understanding the regulatory interface between a single-nucleotide modification and cellular function will pave the way towards the development of novel diagnostic, prognostic and therapeutic tools for the management of diseases, including cardiovascular disease. In this Review, we use two well-studied and abundant RNA modifications - adenosine-to-inosine RNA editing and N6-methyladenosine RNA methylation - as examples on which to base the discussion about the current knowledge on installation or removal of RNA modifications, their effect on biological processes related to cardiovascular health and disease, and the potential for development and application of epitranscriptome-based prognostic, diagnostic and therapeutic tools for cardiovascular disease.
Collapse
|