1
|
Richter ML, Peris E, Gonell S. Influence of the Bis-Carbene Ligand on Manganese Catalysts for CO 2 Electroreduction. CHEMSUSCHEM 2024; 17:e202401007. [PMID: 38962948 PMCID: PMC11660741 DOI: 10.1002/cssc.202401007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
First row transition metal complexes have attracted attention as abundant and affordable electrocatalysts for CO2 reduction. Manganese complexes bearing bis-N-heterocyclic carbene ligands defining 6-membered ring metallacycles have proven to reduce CO2 to CO selectively at very high rates. Herein, we report the synthesis of manganese carbonyl complexes supported by a rigid ortho-phenylene bridged bis-N-heterocyclic carbene ligand (ortho-phenylene-bis(N-methylimidazol-2-ylidene), Ph-bis-mim), which defines a 7-membered ring metallacycle. We performed a comparative study with the analogues complexes bearing an ethylene-bis(N-methylimidazol-2-ylidene) ligand (C2H4-bis-mim) and a methylene-bis(N-methylimidazol-2-ylidene) ligand (CH2-bis-mim), and found that catalysts comprising a seven-membered metallacycle retain similar selectivity and activity as those with six-membered metallacycles, while reducing the overpotential by 120-190 mV. Our findings reveal general design principles for manganese bis-N-heterocyclic carbene electrocatalysts, which can guide further designs of affordable, fast and low overpotential catalysts for CO2 electroreduction.
Collapse
Affiliation(s)
- Marvin L. Richter
- Institute of Advanced Materials (INAM)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Jaume IAv. Vicente Sos Baynat s/n.E-12071CastellónSpain
| | - Eduardo Peris
- Institute of Advanced Materials (INAM)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Jaume IAv. Vicente Sos Baynat s/n.E-12071CastellónSpain
| | - Sergio Gonell
- Institute of Advanced Materials (INAM)Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Jaume IAv. Vicente Sos Baynat s/n.E-12071CastellónSpain
| |
Collapse
|
2
|
Li X, Warren JJ. Solvents and their hydrogen bonding properties as general considerations in carbon dioxide reduction by molecular catalysts. Dalton Trans 2024. [PMID: 39703013 DOI: 10.1039/d4dt02682a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Improvements to the understanding of how reaction conditions influence the performance of molecular electrocatalysts are important. There exists a wide range of solution conditions that are used in the investigation of the properties and performance of electrocatalysts, from the choice of solvent or electrolyte to the identity and nature of other additives, like Brønsted acids. Herein, we demonstrate how the choice of solvent can have a significant impact on the observed rate constants for CO2-to-CO conversion by a series of rhenium(I) diimine complexes. In comparison with the observed rate constants in acetonitrile solvent, the use of a strong hydrogen bond-accepting solvent (N,N-dimethylformamide, DMFf) dramatically decreases the observed rate constants in the presence of added phenol (as a proton donor). Based on previous work from our lab and from others, we conclude that such solvent effects are a general phenomenon and are a crucial consideration for investigation of molecular catalysts. Finally, a simple H-bonding model is presented to account for solvent effects in these rhenium(I) CO2 reduction systems. The model is general for H-bonding solvents and Brønsted acids and provides a first principles means to estimate the magnitude of solvent effects on CO2 reduction kinetics.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Chemistry, Simon Fraser University, 8888 University Way, Burnaby BC V5A 1S6, Canada.
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Way, Burnaby BC V5A 1S6, Canada.
| |
Collapse
|
3
|
Hsiao SC, Chuang TY, Kumbhar SV, Yang T, Wang YH. Thermodynamic Assessment of Sacrificial Oxidant Potential, H 2O/O 2 Potential, and Rate-Overpotential Relationship to Examine Catalytic Water Oxidation in Nonaqueous Solvents. Inorg Chem 2024; 63:22523-22531. [PMID: 39526986 PMCID: PMC11600503 DOI: 10.1021/acs.inorgchem.4c03897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
The water oxidation reaction (WOR), which is pivotal to storing energy in chemical bonds, requires a catalyst to overcome its inherent kinetic barrier. In bulk solutions, sacrificial oxidants (SOs) can regenerate the catalysts to ensure that the homogeneous WOR can be operated with long-term consistent performance. To implement this strategy for organic WOR systems, we modified four common SOs with tetra-n-butylammonium ([NBu4]+)─[NBu4]2[Ce(NO3)6], [NBu4][IO4], [NBu4][HSO5], and [NBu4]2[S2O8]─and examined their chemical stability and electrochemical behaviors in various organic solvents. We also derived the organic-solvent-associated redox potential of H2O/O2 in organic media (EH2O/O2(org)) using open-circuit potential measurements of the H+/H2 redox couple and the related thermochemical cycle. Our findings indicate that the EH2O/O2(org) varies with solvent identity and can be adjusted by changing the [H2O], [acid], and [base] levels; thus, the SO should be carefully selected for WOR, because the innate redox potentials of SOs are not always higher than EH2O/O2(org) under the studied conditions. Lastly, we obtained catalyst-performance-related insights via a rate-overpotential free-energy relationship by calculating the overpotentials of previously studied WOR systems in organic media.
Collapse
Affiliation(s)
- Shun-Chien Hsiao
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ting-Yi Chuang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sharad V. Kumbhar
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tzuhsiung Yang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Heng Wang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
4
|
Warren JJ. Examining the Importance of Hydrogen Bonding and Proton Transfer in Iron Porphyrin-Mediated Carbon Dioxide Upconversion. Acc Chem Res 2024; 57:2512-2521. [PMID: 39163548 DOI: 10.1021/acs.accounts.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
ConspectusThe title should give a sense of the "big picture" of this Account, but what is it really about? An unexpected change in research direction? A series of courageous and creative students? A team taking on challenging problems in chemistry? The answer is a definite "yes" to all of the above. More specifically, the problem in which we are interested is the upconversion or valorization of carbon dioxide. This problem has captured the attention of a great many chemists in earnest following the gas crisis of the 1970s and more recently galvanized due to climate concerns arising from the ongoing release of anthropogenic carbon. Addressing the problem of atmospheric carbon accumulation requires effort in two very broad areas: capture and conversion. Storage is an alternative to conversion, but this eliminates the opportunity to use what might be otherwise a waste product. Our group has investigated a series of modified versions of iron(III)-5,10,15,20-tetraphenylporphyrin (FeTPP) that can convert CO2 to carbon monoxide, which is a versatile and useful precursor for other syntheses. Following pioneering work from Savéant and his colleagues in the 1990s and thereafter, we started with a simple question: how many pendent ancillary groups that can donate H-bonds or protons are needed to support efficient CO2-to-CO conversion? Using a molecule with only one 2-hydroxylphenyl group, we demonstrated that the single prepositioned -OH group gave rise to efficient turnover, but only when experiments were carried out in a weakly H-bond-accepting solvent system. In other words, the ability of a solvent to accept H-bonds can impede CO2 reduction. We followed up with a deeper investigation of the influence of H-bonding interactions with external acids in FeTPP-mediated CO2 reduction. Savéant's framework mechanism appears to be independent of solvent, and rate differences can be approximated by considering H-bonding equilibria. Following that work, we sought to better understand the minimum catalyst design requirements with respect to internal H-bond/proton donors. To that end, we produced all possible isomers of tetraarylpoprhyrins with 2,6-dihydroxyphenyl + phenyl groups. All else being equal, the complexes with a formally trans orientation of the 2,6-dihydroxyphenyl groups performed the best. Most recently, we surveyed the roles of internal and external Brønsted acids with different pKa values. Surprisingly, the best-performing catalysts have more weakly acidic internal groups. Overall, our work has demonstrated that CO2 reduction mediated by porphyrin catalysts can be improved by considering solvent H-bonding, the orientation of internal H-bonding groups, and the balance of the pKa values of internal and external acids. The future for molecular electrocatalysts is promising as more ideas emerge about how to design molecules and conditions for CO2 reduction.
Collapse
Affiliation(s)
- Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
5
|
Lawson SE, Roberts RJ, Leznoff DB, Warren JJ. Dramatic Improvement of Homogeneous Carbon Dioxide and Bicarbonate Electroreduction Using a Tetracationic Water-Soluble Cobalt Phthalocyanine. J Am Chem Soc 2024; 146:22306-22317. [PMID: 39083751 DOI: 10.1021/jacs.4c04878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Electrochemical conversion of carbon dioxide (CO2) offers the opportunity to transform a greenhouse gas into valuable starting materials, chemicals, or fuels. Since many CO2 capture strategies employ aqueous alkaline solutions, there is interest in catalyst systems that can act directly on such capture solutions. Herein, we demonstrate new catalyst designs where the electroactive molecules readily mediate the CO2-to-CO conversion in aqueous solutions between pH 4.5 and 10.5. Likewise, the production of CO directly from 2 M KHCO3 solutions (pH 8.2) is possible. The improved molecular architectures are based on cobalt(II) phthalocyanine and contain four cationic trimethylammonium groups that confer water solubility and contribute to the stabilization of activated intermediates via a concentrated positive charge density around the active core. Turnover frequencies larger than 103 s-1 are possible at catalyst concentrations of down to 250 nM in CO2-saturated solutions. The observed rates are substantially larger than the related cobalt phthalocyanine-containing catalysts. Density functional theory calculations support the idea that the excellent catalytic properties are attributed to the ability of the cationic groups to stabilize CO2-bound reduced intermediates in the catalytic cycle. The homogeneous, aqueous CO2 reduction that these molecules perform opens new frontiers for further development of the CoPc platform and sets a greatly improved baseline for CoPc-mediated CO2 upconversion. Ultimately, this discovery uncovers a strategy for the generation of platforms for practical CO2 reduction catalysts in alkaline solutions.
Collapse
Affiliation(s)
- Scheryn E Lawson
- Department of Chemistry, Simon Fraser University, 8888 University Drive Burnaby BC, Burnaby V5A1S6, Canada
| | - Ryan J Roberts
- Department of Chemistry, Simon Fraser University, 8888 University Drive Burnaby BC, Burnaby V5A1S6, Canada
| | - Daniel B Leznoff
- Department of Chemistry, Simon Fraser University, 8888 University Drive Burnaby BC, Burnaby V5A1S6, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive Burnaby BC, Burnaby V5A1S6, Canada
| |
Collapse
|
6
|
Obisesan SV, Parvin M, Tao M, Ramos E, Saunders AC, Farnum BH, Goldsmith CR. Installing Quinol Proton/Electron Mediators onto Non-Heme Iron Complexes Enables Them to Electrocatalytically Reduce O 2 to H 2O at High Rates and Low Overpotentials. Inorg Chem 2024; 63:14126-14141. [PMID: 39008564 DOI: 10.1021/acs.inorgchem.4c01977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
We prepare iron(II) and iron(III) complexes with polydentate ligands that contain quinols, which can act as electron proton transfer mediators. Although the iron(II) complex with N-(2,5-dihydroxybenzyl)-N,N',N'-tris(2-pyridinylmethyl)-1,2-ethanediamine (H2qp1) is inactive as an electrocatalyst, iron complexes with N,N'-bis(2,5-dihydroxybenzyl)-N,N'-bis(2-pyridinylmethyl)-1,2-ethanediamine (H4qp2) and N-(2,5-dihydroxybenzyl)-N,N'-bis(2-pyridinylmethyl)-1,2-ethanediamine (H2qp3) were found to be much more active and more selective for water production than a previously reported cobalt-H2qp1 electrocatalyst while operating at low overpotentials. The catalysts with H2qp3 can enter the catalytic cycle as either Fe(II) or Fe(III) species; entering the cycle through Fe(III) lowers the effective overpotential. On the basis of their TOF0 values, the successful iron-quinol complexes are better electrocatalysts for oxygen reduction than previously reported iron-porphyrin compounds, with the Fe(III)-H2qp3 arguably being the best homogeneous electrocatalyst for this reaction. With iron, the quinol-for-phenol substitution shifts the product selectivity from H2O2 to water with little impact on the overpotential, but unlike cobalt, this substitution also greatly improves the activity, as assessed by TOFmax, by hastening the protonation and oxygen binding steps. The addition of a second quinol further enhances the activity and selectivity for water but modestly increases the effective overpotential.
Collapse
Affiliation(s)
- Segun V Obisesan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Maksuda Parvin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Matthew Tao
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Eric Ramos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Alexander C Saunders
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Byron H Farnum
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Christian R Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
7
|
Branch K, Johnson ER, Nichols EM. Porphyrin Aggregation under Homogeneous Conditions Inhibits Electrocatalysis: A Case Study on CO 2 Reduction. ACS CENTRAL SCIENCE 2024; 10:1251-1261. [PMID: 38947202 PMCID: PMC11212130 DOI: 10.1021/acscentsci.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024]
Abstract
Metalloporphyrins are widely used as homogeneous electrocatalysts for transformations relevant to clean energy and sustainable organic synthesis. Metalloporphyrins are well-known to aggregate due to π-π stacking, but surprisingly, the influence of aggregation on homogeneous electrocatalytic performance has not been investigated previously. Herein, we present three structurally related iron meso-phenylporphyrins whose aggregation properties are different in commonly used N,N-dimethylformamide (DMF) electrolyte. Both spectroscopy and light scattering provide evidence of extensive porphyrin aggregation under conventional electrocatalytic conditions. Using the electrocatalytic reduction of CO2 to CO as a test reaction, cyclic voltammetry reveals an inverse dependence of the kinetics on the catalyst concentration. The inhibition extends to bulk performance, where up to 75% of the catalyst at 1 mM is inactive compared to at 0.25 mM. We additionally report how aggregation is perturbed by organic additives, axial ligands, and redox state. Periodic boundary calculations provide additional insights into aggregate stability as a function of metalloporphyrin structure. Finally, we generalize the aggregation phenomenon by surveying metalloporphyrins with different metals and substituents. This study demonstrates that homogeneous metalloporphyrins can aggregate severely in well-solubilizing organic electrolytes, that aggregation can be easily modulated through experimental conditions, and that the extent of aggregation must be considered for accurate catalytic benchmarking.
Collapse
Affiliation(s)
- Kaitlin
L. Branch
- Department
of Chemistry, The University of British
Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Erin R. Johnson
- Department
of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Eva M. Nichols
- Department
of Chemistry, The University of British
Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
8
|
Wu YT, Kumbhar SV, Tsai RF, Yang YC, Zeng WQ, Wang YH, Hsu WC, Chiang YW, Yang T, Lu IC, Wang YH. Manipulating the Rate and Overpotential for Electrochemical Water Oxidation: Mechanistic Insights for Cobalt Catalysts Bearing Noninnocent Bis(benzimidazole)pyrazolide Ligands. ACS ORGANIC & INORGANIC AU 2024; 4:306-318. [PMID: 38855334 PMCID: PMC11157513 DOI: 10.1021/acsorginorgau.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 06/11/2024]
Abstract
Electrochemical water oxidation is known as the anodic reaction of water splitting. Efficient design and earth-abundant electrocatalysts are crucial to this process. Herein, we report a family of catalysts (1-3) bearing bis(benzimidazole)pyrazolide ligands (H 2 L1-H 2 L3). H 2 L3 contains electron-donating substituents and noninnocent components, resulting in catalyst 3 exhibiting unique performance. Kinetic studies show first-order kinetic dependence on [3] and [H2O] under neutral and alkaline conditions. In contrast to previously reported catalyst 1, catalyst 3 exhibits an insignificant kinetic isotope effect of 1.25 and zero-order dependence on [NaOH]. Based on various spectroscopic methods and computational findings, the L3Co2 III(μ-OH) species is proposed to be the catalyst resting state and the nucleophilic attack of water on this species is identified as the turnover-limiting step of the catalytic reaction. Computational studies provided insights into how the interplay between the electronic effect and ligand noninnocence results in catalyst 3 acting via a different reaction mechanism. The variation in the turnover-limiting step and catalytic potentials of species 1-3 leads to their catalytic rates being independent of the overpotential, as evidenced by Eyring analysis. Overall, we demonstrate how ligand design may be utilized to retain good water oxidation activity at low overpotentials.
Collapse
Affiliation(s)
- Yu-Ting Wu
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Sharad V. Kumbhar
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ruei-Feng Tsai
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yung-Ching Yang
- Department
of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Wan-Qin Zeng
- Department
of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yu-Han Wang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wan-Chi Hsu
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yun-Wei Chiang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tzuhsiung Yang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - I-Chung Lu
- Department
of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yu-Heng Wang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
9
|
Surendran A, Pereverzev AY, Roithová J. Intricacies of Mass Transport during Electrocatalysis: A Journey through Iron Porphyrin-Catalyzed Oxygen Reduction. J Am Chem Soc 2024; 146:15619-15626. [PMID: 38778765 PMCID: PMC11157527 DOI: 10.1021/jacs.4c04989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Electrochemical steps are increasingly attractive for green chemistry. Understanding reactions at the electrode-solution interface, governed by kinetics and mass transport, is crucial. Traditional insights into these mechanisms are limited, but our study bridges this gap through an integrated approach combining voltammetry, electrochemical impedance spectroscopy, and electrospray ionization mass spectrometry. This technique offers real-time monitoring of the chemical processes at the electrode-solution interface, tracking changes in intermediates and products during reactions. Applied to the electrochemical reduction of oxygen catalyzed by the iron(II) tetraphenyl porphyrin complex, it successfully reveals various reaction intermediates and degradation pathways under different kinetic regimes. Our findings illuminate complex electrocatalytic processes and propose new ways for studying reactions in alternating current and voltage-pulse electrosynthesis. This advancement enhances our capacity to optimize electrochemical reactions for more sustainable chemical processes.
Collapse
Affiliation(s)
- Adarsh
Koovakattil Surendran
- Department of Spectroscopy and Catalysis,
Institute for Molecules and Materials, Radboud
University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Aleksandr Y. Pereverzev
- Department of Spectroscopy and Catalysis,
Institute for Molecules and Materials, Radboud
University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jana Roithová
- Department of Spectroscopy and Catalysis,
Institute for Molecules and Materials, Radboud
University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
10
|
Yang J, Zhang C, He R, Yao J, Wang J. Insight into Impacts of π-π Assembly on Phthalocyanine Based Heterogeneous Molecular Electrocatalysis. J Phys Chem Lett 2024; 15:4705-4710. [PMID: 38656800 DOI: 10.1021/acs.jpclett.4c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Electrochemical CO2 reduction (CO2R) to feedstocks competes with the hydrogen evolution reaction (HER). Cobalt phthalocyanine (CoPc) immobilized onto carbon driven by π-π interaction represents a classical type of heterogeneous molecular catalyst for CO2R. However, the impacts of π conjugation on the electrocatalysis have not been clarified. Herein, the electrochemical properties of CoPc were investigated by comparison of its analogue to 2,3-naphthalocyanine cobalt (NapCo) having extended π conjugation. It is found that CoPc is redox-active on carbon to provide low oxidized Co sites for improving the CO2R activity and selectivity, while NapCo on carbon turned out to be redox-inert leading to lower performance. In addition, the redox-mediated mechanism for CO2R on CoPc tends to operate with increasing electrolyte alkalinity, which further enhances the reaction selectivity. We speculated that moderate π conjugation allows the redox-mediated mechanism on CoPc, which is critical to promote CO2R performance while depressing the competing HER.
Collapse
Affiliation(s)
- Jiahui Yang
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chenjie Zhang
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Runze He
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jianlin Yao
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jiong Wang
- Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
11
|
Guan X, Xie Y, Liu C. Performance evaluation and multidisciplinary analysis of catalytic fixation reactions by material-microbe hybrids. Nat Catal 2024; 7:475-482. [PMID: 39524322 PMCID: PMC11546438 DOI: 10.1038/s41929-024-01151-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/20/2024] [Indexed: 11/16/2024]
Abstract
Hybrid systems that integrate synthetic materials with biological machinery offer opportunities for sustainable and efficient catalysis. However, the multidisciplinary and unique nature of the materials-biology interface requires researchers to draw insights from different fields. In this Perspective, using examples from the area of N2 and CO2 fixation, we provide a unified discussion of critical aspects of the material-microbe interface, simultaneously considering the requirements of physical and biological sciences that have a tangible impact on the performance of biohybrids. We first discuss the figures of merit and caveats for the evaluation of catalytic performance. Then, we reflect on the interactions and potential synergies at the materials-biology interface, as well as the challenges and opportunities for a deepened fundamental understanding of abiotic-biotic catalysis.
Collapse
Affiliation(s)
- Xun Guan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- These authors contributed equally: Xun Guan, Yongchao Xie
| | - Yongchao Xie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- These authors contributed equally: Xun Guan, Yongchao Xie
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
12
|
Nishiori D, Menzel JP, Armada N, Reyes Cruz EA, Nannenga BL, Batista VS, Moore GF. Breaking a Molecular Scaling Relationship Using an Iron-Iron Fused Porphyrin Electrocatalyst for Oxygen Reduction. J Am Chem Soc 2024; 146:11622-11633. [PMID: 38639470 DOI: 10.1021/jacs.3c08586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The design of efficient electrocatalysts is limited by scaling relationships governing trade-offs between thermodynamic and kinetic performance metrics. This ″iron law″ of electrocatalysis arises from synthetic design strategies, where structural alterations to a catalyst must balance nucleophilic versus electrophilic character. Efforts to circumvent this fundamental impasse have focused on bioinspired applications of extended coordination spheres and charged sites proximal to a catalytic center. Herein, we report evidence for breaking a molecular scaling relationship involving electrocatalysis of the oxygen reduction reaction (ORR) by leveraging ligand design. We achieve this using a binuclear catalyst (a diiron porphyrin), featuring a macrocyclic ligand with extended electronic conjugation. This ligand motif delocalizes electrons across the molecular scaffold, improving the catalyst's nucleophilic and electrophilic character. As a result, our binuclear catalyst exhibits low overpotential and high catalytic turnover frequency, breaking the traditional trade-off between these two metrics.
Collapse
Affiliation(s)
- Daiki Nishiori
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
- Center for Applied Structural Discovery (CASD), The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Jan Paul Menzel
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Nicholas Armada
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
- Center for Applied Structural Discovery (CASD), The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Edgar A Reyes Cruz
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
- Center for Applied Structural Discovery (CASD), The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Brent L Nannenga
- Center for Applied Structural Discovery (CASD), The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
- Chemical Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Gary F Moore
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, United States
- Center for Applied Structural Discovery (CASD), The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
13
|
Chirila A, Hu Y, Linehan JC, Dixon DA, Wiedner ES. Thermodynamic and Kinetic Activity Descriptors for the Catalytic Hydrogenation of Ketones. J Am Chem Soc 2024; 146:6866-6879. [PMID: 38437011 DOI: 10.1021/jacs.3c13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Activity descriptors are a powerful tool for the design of catalysts that can efficiently utilize H2 with minimal energy losses. In this study, we develop the use of hydricity and H- self-exchange rates as thermodynamic and kinetic descriptors for the hydrogenation of ketones by molecular catalysts. Two complexes with known hydricity, HRh(dmpe)2 and HCo(dmpe)2, were investigated for the catalytic hydrogenation of ketones under mild conditions (1.5 atm and 25 °C). The rhodium catalyst proved to be an efficient catalyst for a wide range of ketones, whereas the cobalt catalyst could only hydrogenate electron-deficient ketones. Using a combination of experiment and electronic structure theory, thermodynamic hydricity values were established for 46 alkoxide/ketone pairs in both acetonitrile and tetrahydrofuran solvents. Through comparison of the hydricities of the catalysts and substrates, it was determined that catalysis was observed only for catalyst/ketone pairs with an exergonic H- transfer step. Mechanistic studies revealed that H- transfer was the rate-limiting step for catalysis, allowing for the experimental and computation construction of linear free-energy relationships (LFERs) for H- transfer. Further analysis revealed that the LFERs could be reproduced using Marcus theory, in which the H- self-exchange rates for the HRh/Rh+ and ketone/alkoxide pairs were used to predict the experimentally measured catalytic barriers within 2 kcal mol-1. These studies significantly expand the scope of catalytic reactions that can be analyzed with a thermodynamic hydricity descriptor and firmly establish Marcus theory as a valid approach to develop kinetic descriptors for designing catalysts for H- transfer reactions.
Collapse
Affiliation(s)
- Andrei Chirila
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yiqin Hu
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - John C Linehan
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - David A Dixon
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Eric S Wiedner
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
14
|
Su J, Huang X, Shao Q. Emerging two dimensional metastable-phase oxides: insights and prospects in synthesis and catalysis. Angew Chem Int Ed Engl 2024; 63:e202318028. [PMID: 38179810 DOI: 10.1002/anie.202318028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Since the discovery of graphene, the development of new two-dimensional (2D) materials has received considerable interest. Recently, as a newly emerging member of the 2D family, 2D metastable-phase oxides that combine the unique advantages of metal oxides, 2D structures, and metastable-phase materials have shown enormous potential in various catalytic reactions. In this review, the potential of various 2D materials to form a metastable-phase is predicted. The advantages of 2D metastable-phase oxides for advanced applications, reliable methods of synthesizing 2D metastable-phase oxides, and the application of these oxides in different catalytic reactions are presented. Finally, the challenges associated with 2D metastable-phase oxides and future perspectives are discussed.
Collapse
Affiliation(s)
- Jiaqi Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Jiangsu, 215123, P. R. China
| |
Collapse
|
15
|
Zhang H, Liang Q, Xie K. How to rationally design homogeneous catalysts for efficient CO 2 electroreduction? iScience 2024; 27:108973. [PMID: 38327791 PMCID: PMC10847752 DOI: 10.1016/j.isci.2024.108973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
Abstract
Electrified converting CO2 into valuable fuels and chemicals using a homogeneous electrochemical CO2 reduction (CO2ER) approach simplifies the operation, providing a potential option for decoupling energy harvesting and renewable chemical production. These merits benefit the scenarios where decentralization and intermittent power are key factors. This perspective aims to provide an overview of recent progress in homogeneous CO2ER. We introduce firstly the fundamentals chemistry of the homogeneous CO2ER, followed by a summary of the crucial factors and the important criteria broadly employed for evaluating the performance. We then highlight the recent advances in the most widely explored transition-metal coordinate complexes for the C1 and multicarbon (C2+) products from homogeneous CO2ER. Finally, we summarize the remaining challenges and opportunities for developing homogeneous electrocatalysts for efficient CO2ER. This perspective is expected to favor the rational design of efficient homogeneous electrocatalysts for selective CO2ER toward renewable fuels and feedstocks.
Collapse
Affiliation(s)
- Hui Zhang
- International Center for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Qinghua Liang
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, P.R. China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, P.R. China
| | - Ke Xie
- Department of Chemistry, Northwestern Universiy, Evanston, IL 60208, USA
| |
Collapse
|
16
|
Sonea A, Crudo NR, Warren JJ. Understanding the Interplay of the Brønsted Acidity of Catalyst Ancillary Groups and the Solution Components in Iron-porphyrin-Mediated Carbon Dioxide Reduction. J Am Chem Soc 2024; 146:3721-3731. [PMID: 38307036 DOI: 10.1021/jacs.3c10127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
The rapid and efficient conversion of carbon dioxide (CO2) to carbon monoxide (CO) is an ongoing challenge. Catalysts based on iron-porphyrin cores have emerged as excellent electrochemical mediators of the two proton + two electron reduction of CO2 to CO, and many of the design features that promote function are known. Of those design features, the incorporation of Brønsted acids in the second coordination sphere of the iron ion has a significant impact on catalyst turnover kinetics. The Brønsted acids are often in the form of hydroxyphenyl groups. Herein, we explore how the acidity of an ancillary 2-hydroxyphenyl group affects the performance of CO2 reduction electrocatalysts. A series of meso-5,10,15,20-tetraaryl porphyrins were prepared where only the functional group at the 5-meso position has an ionizable proton. A series of cyclic voltammetry (CV) experiments reveal that the complex with -OMe positioned para to the ionizable -OH shows the largest CO2 reduction rate constants in acetonitrile solvent. This is the least acidic -OH of the compounds surveyed. The turnover frequency of the -OMe derivative can be further improved with the addition of 4-trifluoromethylphenol to the solution. In contrast, the iron-porphyrin complex with -CF3 positioned opposite the ionizable -OH shows the smallest CO2 reduction rate constants, and its turnover frequency is less enhanced with the addition of phenols to the reaction solutions. The origin of this effect is rationalized based on kinetic isotope effect experiments and density functional calculations. We conclude that catalysts with weaker internal acids coupled with stronger external acid additives provide superior CO2 reduction kinetics.
Collapse
Affiliation(s)
- Ana Sonea
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Nicholas R Crudo
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
17
|
Zhao Q, Zhao B, Long X, Feng R, Shakouri M, Paterson A, Xiao Q, Zhang Y, Fu XZ, Luo JL. Interfacial Electronic Modulation of Dual-Monodispersed Pt-Ni 3S 2 as Efficacious Bi-Functional Electrocatalysts for Concurrent H 2 Evolution and Methanol Selective Oxidation. NANO-MICRO LETTERS 2024; 16:80. [PMID: 38206434 PMCID: PMC10784266 DOI: 10.1007/s40820-023-01282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/08/2023] [Indexed: 01/12/2024]
Abstract
Constructing the efficacious and applicable bi-functional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction (OER) are critical to the development of electrochemically-driven technologies for efficient hydrogen production and avoid CO2 emission. Herein, the hetero-nanocrystals between monodispersed Pt (~ 2 nm) and Ni3S2 (~ 9.6 nm) are constructed as active electrocatalysts through interfacial electronic modulation, which exhibit superior bi-functional activities for methanol selective oxidation and H2 generation. The experimental and theoretical studies reveal that the asymmetrical charge distribution at Pt-Ni3S2 could be modulated by the electronic interaction at the interface of dual-monodispersed heterojunctions, which thus promote the adsorption/desorption of the chemical intermediates at the interface. As a result, the selective conversion from CH3OH to formate is accomplished at very low potentials (1.45 V) to attain 100 mA cm-2 with high electronic utilization rate (~ 98%) and without CO2 emission. Meanwhile, the Pt-Ni3S2 can simultaneously exhibit a broad potential window with outstanding stability and large current densities for hydrogen evolution reaction (HER) at the cathode. Further, the excellent bi-functional performance is also indicated in the coupled methanol oxidation reaction (MOR)//HER reactor by only requiring a cell voltage of 1.60 V to achieve a current density of 50 mA cm-2 with good reusability.
Collapse
Affiliation(s)
- Qianqian Zhao
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Bin Zhao
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Xin Long
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Renfei Feng
- Canadian Light Source Inc., Saskatoon, SK, S7N 0X4, Canada
| | | | - Alisa Paterson
- Canadian Light Source Inc., Saskatoon, SK, S7N 0X4, Canada
| | - Qunfeng Xiao
- Canadian Light Source Inc., Saskatoon, SK, S7N 0X4, Canada
| | - Yu Zhang
- Instrumental Analysis Center of Shenzhen University (Lihu Campus), Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Xian-Zhu Fu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jing-Li Luo
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
18
|
Jin J, Wang X, Hu Y, Zhang Z, Liu H, Yin J, Xi P. Precisely Control Relationship between Sulfur Vacancy and H Absorption for Boosting Hydrogen Evolution Reaction. NANO-MICRO LETTERS 2024; 16:63. [PMID: 38168843 PMCID: PMC10761665 DOI: 10.1007/s40820-023-01291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Effective and robust catalyst is the core of water splitting to produce hydrogen. Here, we report an anionic etching method to tailor the sulfur vacancy (VS) of NiS2 to further enhance the electrocatalytic performance for hydrogen evolution reaction (HER). With the VS concentration change from 2.4% to 8.5%, the H* adsorption strength on S sites changed and NiS2-VS 5.9% shows the most optimized H* adsorption for HER with an ultralow onset potential (68 mV) and has long-term stability for 100 h in 1 M KOH media. In situ attenuated-total-reflection Fourier transform infrared spectroscopy (ATR-FTIRS) measurements are usually used to monitor the adsorption of intermediates. The S- H* peak of the NiS2-VS 5.9% appears at a very low voltage, which is favorable for the HER in alkaline media. Density functional theory calculations also demonstrate the NiS2-VS 5.9% has the optimal |ΔGH*| of 0.17 eV. This work offers a simple and promising pathway to enhance catalytic activity via precise vacancies strategy.
Collapse
Affiliation(s)
- Jing Jin
- College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xinyao Wang
- College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yang Hu
- College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhuang Zhang
- College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongbo Liu
- College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jie Yin
- College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Pinxian Xi
- College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
19
|
Sinha S, Chaturvedi A, Gautam RK, Jiang JJ. Molecular Cu Electrocatalyst Escalates Ambient Perfluorooctanoic Acid Degradation. J Am Chem Soc 2023; 145:27390-27396. [PMID: 38064755 DOI: 10.1021/jacs.3c08352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Groundwater reservoirs contaminated with perfluoroalkyl and polyfluoroalkyl substances (PFASs) need purifying remedies. Perfluorooctanoic acid (PFOA) is the most abundant PFAS in drinking water. Although different degradation strategies for PFOA have been explored, none of them disintegrates the PFOA backbone rapidly under mild conditions. Herein, we report a molecular copper electrocatalyst that assists in the degradation of PFOA up to 93% with a 99% defluorination rate within 4 h of cathodic controlled-current electrolysis. The current-normalized pseudo-first-order rate constant has been estimated to be quite high for PFOA decomposition (3.32 L h-1 A-1), indicating its fast degradation at room temperature. Furthermore, comparatively, rapid decarboxylation over the first 2 h of electrolysis has been suggested to be the rate-determining step in PFOA degradation. The related Gibbs free energy of activation has been calculated as 22.6 kcal/mol based on the experimental data. In addition, we did not observe the formation of short-alkyl-chain PFASs as byproducts that are typically found in chain-shortening PFAS degradation routes. Instead, free fluoride (F-), trifluoroacetate (CF3COO-), trifluoromethane (CF3H), and tetrafluoromethane (CF4) were detected as fragmented PFOA products along with the evolution of CO2 using gas chromatography (GC), ion chromatography (IC), and gas chromatography-mass spectrometry (GC-MS) techniques, suggesting comprehensive cleavage of C-C bonds in PFOA. Hence, this study presents an effective method for the rapid degradation of PFOA into small ions/molecules.
Collapse
Affiliation(s)
- Soumalya Sinha
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ashwin Chaturvedi
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Rajeev K Gautam
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
20
|
Jeong DS, Lee HJ, Park YJ, Hwang H, Ma KY, Kim M, Lim JS, Joo SH, Yang J, Shin HS. Langmuir-Blodgett Monolayer of Cobalt Phthalocyanine as Ultralow Loading Single-Atom Catalyst for Highly Efficient H 2O 2 Production. ACS NANO 2023. [PMID: 37991883 DOI: 10.1021/acsnano.3c08424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The electrochemical production of H2O2 via the two-electron oxygen-reduction reaction (2e- ORR) has been actively studied using systems with atomically dispersed metal-nitrogen-carbon (M-N-C) structures. However, the development of well-defined M-N-C structures that restrict the migration and agglomeration of single-metal sites remains elusive. Herein, we demonstrate a Langmuir-Blodgett (LB) monolayer of cobalt phthalocyanine (CoPc) on monolayer graphene (LB CoPc/G) as a single-metal catalyst for the 2e- ORR. The as-prepared CoPc LB monolayer has a β-form crystalline structure with a lattice space for the facile adsorption of oxygen molecules on the cobalt active sites. The CoPc LB monolayer system provides highly exposed Co atoms in a well-defined structure without agglomeration, resulting in significantly improved catalytic activity, which is manifested by a very high H2O2 production rate per catalyst (31.04 mol gcat-1 h-1) and TOF (36.5 s-1) with constant production stability for 24 hours. To the best of our knowledge, the CoPc LB monolayer system exhibits the highest H2O2 production rate per active site. This fundamental study suggests that an LB monolayer of molecules with single-metal atoms as a well-defined structure works for single-atom catalysts.
Collapse
Affiliation(s)
- Da Sol Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hoon Ju Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Young Jin Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hyuntae Hwang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Kyung Yeol Ma
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Minsu Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - June Sung Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Hoon Joo
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jieun Yang
- Department of Chemistry, College of Science, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hyeon Suk Shin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
21
|
Nguyen BX, Sonea A, Warren JJ. Further Understanding the Roles of Solvent, Brønsted Acids, and Hydrogen Bonding in Iron Porphyrin-Mediated Carbon Dioxide Reduction. Inorg Chem 2023; 62:17602-17611. [PMID: 37847220 DOI: 10.1021/acs.inorgchem.3c01855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Improving our understanding of how molecules and materials mediate the electrochemical reduction of carbon dioxide (CO2) to upgraded products is of great interest as a means to address climate change. A leading class of molecules that can facilitate the electrochemical conversion of CO2 to carbon monoxide (CO) is iron porphyrins. These molecules can have high rate constants for CO2-to-CO conversion; they are robust, and they rely on abundant and inexpensive synthetic building blocks. Important foundational work has been conducted using chloroiron 5,10,15,20-tetraphenylporphyrin (FeTPPCl) in N,N-dimethylformamide (DMF) solvent. A related and recent report points out that the corresponding perchlorate complex, FeTPPClO4, can have superior function due to its solubility in other organic solvents. However, the importance of hydrogen bonding and solvent effects was not discussed. Herein, we present a detailed kinetic study of the triflate (CF3SO3-) complex of FeTPP in DMF and in MeCN using a range of phenol Brønsted acid additives. We also detected the formation of Fe(III)TPP-phenolate complexes using cyclic voltammetry experiments. Importantly, our new analysis of apparent rate constants with different added phenols allows for a modification to the established mechanistic model for CO2-to-CO conversion. Critically, our improved model accounts for hydrogen bonding and solvent effects by using simple hydrogen bond acidity and basicity descriptors. We use this augmented model to rationalize function in other reported porphyrin systems and to make predictions about operational conditions that can enhance the CO2 reduction chemistry.
Collapse
Affiliation(s)
- Bach Xuan Nguyen
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British Columbia, Canada
| | - Ana Sonea
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British Columbia, Canada
| | - Jeffrey J Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby V5A 1S6, British Columbia, Canada
| |
Collapse
|
22
|
Lawson SE, Leznoff DB, Warren JJ. Contemporary Strategies for Immobilizing Metallophthalocyanines for Electrochemical Transformations of Carbon Dioxide. Molecules 2023; 28:5878. [PMID: 37570849 PMCID: PMC10421282 DOI: 10.3390/molecules28155878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Metallophthalocyanine (PcM) coordination complexes are well-known mediators of the electrochemical reduction of carbon dioxide (CO2). They have many properties that show promise for practical applications in the energy sector. Such properties include synthetic flexibility, a high stability, and good efficiencies for the reduction of CO2 to useful feedstocks, such as carbon monoxide (CO). One of the ongoing challenges that needs to be met is the incorporation of PcM into the heterogeneous materials that are used in a great many CO2-reduction devices. Much progress has been made in the last decade and there are now several promising approaches to incorporate PcM into a range of materials, from simple carbon-adsorbed preparations to extended polymer networks. These approaches all have important advantages and drawbacks. In addition, investigations have led to new proposals regarding CO2 reduction catalytic cycles and other operational features that are crucial to function. Here, we describe developments in the immobilization of PcM CO2 reduction catalysts in the last decade (2013 to 2023) and propose promising avenues and strategies for future research.
Collapse
Affiliation(s)
| | - Daniel B. Leznoff
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A1S6, Canada;
| | - Jeffrey J. Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A1S6, Canada;
| |
Collapse
|
23
|
Gotico P, Halime Z, Leibl W, Aukauloo A. Bimetallic Molecular Catalyst Design for Carbon Dioxide Reduction. Chempluschem 2023; 88:e202300222. [PMID: 37466131 DOI: 10.1002/cplu.202300222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/20/2023]
Abstract
The core challenge in developing cost-efficient catalysts for carbon dioxide (CO2 ) conversion mainly lies in controlling its complex reaction pathways. One such strategy exploits bimetallic cooperativity, which relies on the synergistic interaction between two metal centers to activate and convert the CO2 substrate. While this approach has seen an important trend in heterogeneous catalysis as a handle to control stabilities of surface intermediates, it has not often been utilized in molecular and heterogenized molecular catalytic systems. In this review, we gather general principles on how natural CO2 activating enzymes take advantage of bimetallic strategy and how phosphines, cyclams, polypyridyls, porphyrins, and cryptates-based homo- and hetero-bimetallic molecular catalysts can help understand the synergistic effect of two metal centers.
Collapse
Affiliation(s)
- Philipp Gotico
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, 91198, Gif Sur Yvette, France
| | - Zakaria Halime
- Université Paris Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
| | - Winfried Leibl
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, 91198, Gif Sur Yvette, France
| | - Ally Aukauloo
- Université Paris Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, 91198, Gif Sur Yvette, France
- Université Paris Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405, Orsay, France
| |
Collapse
|
24
|
Mukhopadhyay S, Kottaichamy AR, Chame PV, Ghosh P, Vinod CP, Makri Nimbegondi Kotresh H, Kanade SC, Thotiyl MO. Unusual Ligand Assistance in Molecular Electrocatalysis via Interfacial Proton Charge Assembly. J Phys Chem Lett 2023; 14:5377-5385. [PMID: 37278536 DOI: 10.1021/acs.jpclett.3c01262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We show that the ability of the ligand to reorganize the electric double layer (EDL) often dominates the electrocatalysis contrary to their inductive effect in the spectrochemical series, leading to counterintuitive electrocatalysis. With water oxidation and chlorine evolution as the probe reactions, the same catalytic entity with carboxy functionalized ligand exhibited surprisingly higher electrochemical activity in comparison to the aggressively electron-withdrawing nitro functionalized ligands, which is contrary to their actual location in the spectrochemical series. Spectroscopic and electrochemical analyses suggest the enrichment of catalytically active species in the carboxy substituted ligand via proton charge assembly in the EDL that in turn enhances the kinetics of the overall electrochemical process. This demonstration of less obvious ligands becoming indispensable in electrocatalysis suggests a blind designing of ligands solely based on their inductive effect should be reconsidered as it will prevent the utilization of the maximum potential of the molecule in electrocatalysis.
Collapse
Affiliation(s)
- Sanchayita Mukhopadhyay
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Alagar Raja Kottaichamy
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Pallavi Vyankuram Chame
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Prasenjit Ghosh
- Department of Physics, Indian Institute of Science Education and Research, Pune, Pune 411008, India
| | | | | | - Sandeep C Kanade
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| | - Musthafa Ottakam Thotiyl
- Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
25
|
Mitchell N, Elgrishi N. Investigation of Iron(III) Tetraphenylporphyrin as a Redox Flow Battery Anolyte: Unexpected Side Reactivity with the Electrolyte. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:10938-10946. [PMID: 37342204 PMCID: PMC10278133 DOI: 10.1021/acs.jpcc.3c01763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/12/2023] [Indexed: 06/22/2023]
Abstract
Redox flow batteries (RFBs) present an opportunity to bridge the gap between the intermittent availability of green energy sources and the need for on-demand grid level energy storage. While aqueous vanadium-based redox flow batteries have been commercialized, they are limited by the constraints of using water as an electrochemical solvent. Nonaqueous redox flow battery systems can be used to produce high voltage batteries due to the larger electrochemical window in nonaqueous solvents and the ability to tune the redox properties of active materials through functionalization. Iron porphyrins, a class of organometallic macrocycles, have been the subject of many studies for their photocatalytic and electrocatalytic properties in nonaqueous solvents. Often, iron porphyrins can undergo multiple redox events making them interesting candidates for use as anolytes in asymmetrical redox flow batteries or as both catholyte and anolyte in symmetrical redox flow battery systems. Here the electrochemical properties of Fe(III)TPP species relevant to redox flow battery electrolytes are investigated including solubility, electrochemical properties, and charge/discharge cycling. Commonly used support electrolyte salts can have reactivities that are often overlooked beyond their conductivity properties in nonaqueous solvents. Parasitic reactions with the cations of common support electrolytes are highlighted herein, which underscore the careful balance required to fully assess the potential of novel RFB electrolytes.
Collapse
|
26
|
Faustino LA, Machado AEH, Maia PIS, Concepcion JJ, Patrocinio AOT. Electrocatalytic properties of a novel ruthenium(II) terpyridine-based complex towards CO 2 reduction. Dalton Trans 2023; 52:4442-4455. [PMID: 36917192 DOI: 10.1039/d3dt00121k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The electrocatalytic properties of Ru complexes are of great technological interest given their potential application in reactions such water splitting and CO2 reduction. In this work, a novel terpyridine-based Ru(II) complex, [RuCl(trpy)(acpy)], trpy = 2,2':6',2''-terpyridine, acpy- = 2-pyridylacetate was synthesized and its spectroscopic, electrochemical and catalytic properties were explored in detail. In dry acetonitrile, the complex exhibits two reduction peaks at -1.95 V and -2.20 V vs. Fc/Fc+, attributed to consecutive 1 e- reduction. Under CO2 atmosphere, a catalytic wave is observed (Eonset = 2.1 V vs. Fc/Fc+), with CO as the main reduction product. Bulk electrolysis reveals a turnover number (TON) of 12 (kobs = 1.5 s-1). In the presence of 1% water, an improvement in the catalytic activity is observed (TONCO = 21 and kobs = 2.0 s-1) and, additionally, formate was also detected (TONHCOO = 7). Spectroelectrochemical experiments allowed the identification of a metallocarboxylate (Ru-COO-) intermediate under anhydrous conditions, while in water, the partial labilization of the acpy- ligand was observed in the course of the catalytic cycle. The experimental data was combined with DFT calculations, allowing the proposal of a catalytic cycle. The results establish important relationships between selectivity, ligand structure and reaction conditions.
Collapse
Affiliation(s)
- Leandro A Faustino
- Laboratory of Photochemistry and Materials Science, Universidade Federal de Uberlândia - UFU, Av. João Naves de Ávila 212, 38400-902, Uberlândia, Minas Gerais, Brazil.
| | - Antonio E H Machado
- Laboratory of Photochemistry and Materials Science, Universidade Federal de Uberlândia - UFU, Av. João Naves de Ávila 212, 38400-902, Uberlândia, Minas Gerais, Brazil. .,Programa de Doutorado em Ciências Exatas e Tecnológicas, Universidade Federal de Catalão - UFCat, Av. Dr. Lamartine Pinto de Avelar 1120, Catalão, Goiás, Brazil
| | - Pedro I S Maia
- Núcleo de Desenvolvimento de Compostos Bioativos (NDCBio), Universidade Federal do Triângulo Mineiro, Av. Dr. Randolfo Borges 1400, 38025-440, Uberaba, Minas Gerais, Brazil
| | - Javier J Concepcion
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - Antonio Otavio T Patrocinio
- Laboratory of Photochemistry and Materials Science, Universidade Federal de Uberlândia - UFU, Av. João Naves de Ávila 212, 38400-902, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
27
|
Domingo-Tafalla B, Chatterjee T, Franco F, Perez Hernandez J, Martinez-Ferrero E, Ballester P, Palomares E. Electro- and Photoinduced Interfacial Charge Transfers in Nanocrystalline Mesoporous TiO 2 and TiO 2/Iron Porphyrin Sensitized Films under CO 2 Reduction Catalysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 36881406 PMCID: PMC10037241 DOI: 10.1021/acsami.2c22458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Electro- and photochemical CO2 reduction (CO2R) is the quintessence of modern-day sustainable research. We report our studies on the electro- and photoinduced interfacial charge transfer occurring in a nanocrystalline mesoporous TiO2 film and two TiO2/iron porphyrin hybrid films (meso-aryl- and β-pyrrole-substituted porphyrins, respectively) under CO2R conditions. We used transient absorption spectroscopy (TAS) to demonstrate that, under 355 nm laser excitation and an applied voltage bias (0 to -0.8 V vs Ag/AgCl), the TiO2 film exhibited a diminution in the transient absorption (at -0.5 V by 35%), as well as a reduction of the lifetime of the photogenerated electrons (at -0.5 V by 50%) when the experiments were conducted under a CO2 atmosphere changing from inert N2. The TiO2/iron porphyrin films showed faster charge recombination kinetics, featuring 100-fold faster transient signal decays than that of the TiO2 film. The electro-, photo-, and photoelectrochemical CO2R performance of the TiO2 and TiO2/iron porphyrin films are evaluated within the bias range of -0.5 to -1.8 V vs Ag/AgCl. The bare TiO2 film produced CO and CH4 as well as H2, depending on the applied voltage bias. In contrast, the TiO2/iron porphyrin films showed the exclusive formation of CO (100% selectivity) under identical conditions. During the CO2R, a gain in the overpotential values is obtained under light irradiation conditions. This finding was indicative of a direct transfer of the photogenerated electrons from the film to absorbed CO2 molecules and an observed decrease in the decay of the TAS signals. In the TiO2/iron porphyrin films, we identified the interfacial charge recombination processes between the oxidized iron porphyrin and the electrons of the TiO2 conduction band. These competitive processes are considered to be responsible for the diminution of direct charge transfer between the film and the adsorbed CO2 molecules, explaining the moderate performances of the hybrid films for the CO2R.
Collapse
Affiliation(s)
- Beatriu Domingo-Tafalla
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Universitat
Rovira i Virgili (URV), Departament D’enginyeria
electrònica Elèctrica i Automàtica, Avinguda
Països Catalans, 26 - Campus Sescelades, 43007 Tarragona, Spain
| | - Tamal Chatterjee
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Federico Franco
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Javier Perez Hernandez
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Eugenia Martinez-Ferrero
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Pablo Ballester
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Catalan
Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys, 23, 08018 Barcelona, Spain
| | - Emilio Palomares
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Catalan
Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys, 23, 08018 Barcelona, Spain
| |
Collapse
|
28
|
Abdinejad M, Yuan T, Tang K, Duangdangchote S, Farzi A, Iglesias van Montfort HP, Li M, Middelkoop J, Wolff M, Seifitokaldani A, Voznyy O, Burdyny T. Electroreduction of Carbon Dioxide to Acetate using Heterogenized Hydrophilic Manganese Porphyrins. Chemistry 2023; 29:e202203977. [PMID: 36576084 DOI: 10.1002/chem.202203977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022]
Abstract
The electrochemical reduction of carbon dioxide (CO2 ) to value-added chemicals is a promising strategy to mitigate climate change. Metalloporphyrins have been used as a promising class of stable and tunable catalysts for the electrochemical reduction reaction of CO2 (CO2 RR) but have been primarily restricted to single-carbon reduction products. Here, we utilize functionalized earth-abundant manganese tetraphenylporphyrin-based (Mn-TPP) molecular electrocatalysts that have been immobilized via electrografting onto a glassy carbon electrode (GCE) to convert CO2 with overall 94 % Faradaic efficiencies, with 62 % being converted to acetate. Tuning of Mn-TPP with electron-withdrawing sulfonate groups (Mn-TPPS) introduced mechanistic changes arising from the electrostatic interaction between the sulfonate groups and water molecules, resulting in better surface coverage, which facilitated higher conversion rates than the non-functionalized Mn-TPP. For Mn-TPP only carbon monoxide and formate were detected as CO2 reduction products. Density-functional theory (DFT) calculations confirm that the additional sulfonate groups could alter the C-C coupling pathway from *CO→*COH→*COH-CO to *CO→*CO-CO→*COH-CO, reducing the free energy barrier of C-C coupling in the case of Mn-TPPS. This opens a new approach to designing metalloporphyrin catalysts for two carbon products in CO2 RR.
Collapse
Affiliation(s)
- Maryam Abdinejad
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft (the, Netherlands
| | - Tiange Yuan
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1 C 1 A4, Canada
| | - Keith Tang
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1 C 1 A4, Canada
| | - Salatan Duangdangchote
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1 C 1 A4, Canada
| | - Amirhossein Farzi
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, H3 A 0 C5 QC, Canada
| | | | - Mengran Li
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft (the, Netherlands
| | - Joost Middelkoop
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft (the, Netherlands
| | - Mädchen Wolff
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft (the, Netherlands
| | - Ali Seifitokaldani
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, H3 A 0 C5 QC, Canada
| | - Oleksandr Voznyy
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1 C 1 A4, Canada
| | - Thomas Burdyny
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft (the, Netherlands
| |
Collapse
|
29
|
Sonea A, Branch KL, Warren JJ. The Pattern of Hydroxyphenyl-Substitution Influences CO 2 Reduction More Strongly than the Number of Hydroxyphenyl Groups in Iron-Porphyrin Electrocatalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Ana Sonea
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Kaitlin L. Branch
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Jeffrey J. Warren
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
30
|
Pattanayak S, Loewen ND, Berben LA. Using Substituted [Fe 4N(CO) 12] - as a Platform To Probe the Effect of Cation and Lewis Acid Location on Redox Potential. Inorg Chem 2023; 62:1919-1925. [PMID: 36006454 DOI: 10.1021/acs.inorgchem.2c01556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The impact of cationic and Lewis acidic functional groups installed in the primary or secondary coordination sphere (PCS or SCS) of an (electro)catalyst is known to vary depending on the precise positioning of those groups. However, it is difficult to systematically probe the effect of that position. In this report, we probe the effect of the functional group position and identity on the observed reduction potentials (Ep,c) using substituted iron clusters, [Fe4N(CO)11R]n, where R = NO+, PPh2-CH2CH2-9BBN, (MePTA+)2, (MePTA+)4, and H+ and n = 0, -1, +1, or +3 (9-BBN is 9-borabicyclo(3.3.1)nonane; MePTA+ is 1-methyl-1-azonia-3,5-diaza-7-phosphaadamantane). The cationic NO+ and H+ ligands cause anodic shifts of 700 and 320 mV, respectively, in Ep,c relative to unsubstituted [Fe4N(CO)12]-. Infrared absorption band data, νCO, suggests that some of the 700 mV shift by NO+ results from electronic changes to the cluster core. This contrasts with the effects of cationic MePTA+ and H+ which cause primarily electrostatic effects on Ep,c. Lewis acidic 9-BBN in the SCS had almost no effect on Ep,c.
Collapse
Affiliation(s)
- Santanu Pattanayak
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Natalia D Loewen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Louise A Berben
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
31
|
Hernandez-Tovar JV, López-Tenés M, Gonzalez J. Square Wave Voltcoulommetry of two-electron molecular electrocatalytic processes with adsorbed species. Application to the surface O2 reduction in acetonitrile at anthraquinone-modified glassy carbon electrodes. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
32
|
Masood Z, Ge Q. Mechanism and Selectivity of Electrochemical Reduction of CO 2 on Metalloporphyrin Catalysts from DFT Studies. Molecules 2023; 28:molecules28010375. [PMID: 36615568 PMCID: PMC9823635 DOI: 10.3390/molecules28010375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Electrochemical reduction of CO2 to value-added chemicals has been hindered by poor product selectivity and competition from hydrogen evolution reactions. This study aims to unravel the origin of the product selectivity and competitive hydrogen evolution reaction on [MP]0 catalysts (M = Fe, Co, Rh and Ir; P is porphyrin ligand) by analyzing the mechanism of CO2 reduction and H2 formation based on the results of density functional theory calculations. Reduction of CO2 to CO and HCOO- proceeds via the formation of carboxylate adduct ([MP-COOH]0 and ([MP-COOH]-) and metal-hydride [MP-H]-, respectively. Competing proton reduction to gaseous hydrogen shares the [MP-H]- intermediate. Our results show that the pKa of [MP-H]0 can be used as an indicator of the CO or HCOO-/H2 preference. Furthermore, an ergoneutral pH has been determined and used to determine the minimum pH at which selective CO2 reduction to HCOO- becomes favorable over the H2 production. These analyses allow us to understand the product selectivity of CO2 reduction on [FeP]0, [CoP]0, [RhP]0 and [IrP]0; [FeP]0 and [CoP]0 are selective for CO whereas [RhP]0 and [IrP]0 are selective for HCOO- while suppressing H2 formation. These descriptors should be applicable to other catalysts in an aqueous medium.
Collapse
|
33
|
Obisesan SV, Rose C, Farnum BH, Goldsmith CR. Co(II) Complex with a Covalently Attached Pendent Quinol Selectively Reduces O 2 to H 2O. J Am Chem Soc 2022; 144:22826-22830. [DOI: 10.1021/jacs.2c08315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | | | - Christian R. Goldsmith
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama36849, United States
| |
Collapse
|
34
|
Zhang H, Jin X, Lee JM, Wang X. Tailoring of Active Sites from Single to Dual Atom Sites for Highly Efficient Electrocatalysis. ACS NANO 2022; 16:17572-17592. [PMID: 36331385 PMCID: PMC9706812 DOI: 10.1021/acsnano.2c06827] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/01/2022] [Indexed: 05/27/2023]
Abstract
Single atom catalysts (SACs) have been attracting extensive attention in electrocatalysis because of their unusual structure and extreme atom utilization, but the low metal loading and unified single site induced scaling relations may limit their activity and practical application. Tailoring of active sites at the atomic level is a sensible approach to break the existing limits in SACs. In this review, SACs were first discussed regarding carbon or non-carbon supports. Then, five tailoring strategies were elaborated toward improving the electrocatalytic activity of SACs, namely strain engineering, spin-state tuning engineering, axial functionalization engineering, ligand engineering, and porosity engineering, so as to optimize the electronic state of active sites, tune d orbitals of transition metals, adjust adsorption strength of intermediates, enhance electron transfer, and elevate mass transport efficiency. Afterward, from the angle of inducing electron redistribution and optimizing the adsorption nature of active centers, the synergistic effect from adjacent atoms and recent advances in tailoring strategies on active sites with binuclear configuration which include simple, homonuclear, and heteronuclear dual atom catalysts (DACs) were summarized. Finally, a summary and some perspectives for achieving efficient and sustainable electrocatalysis were presented based on tailoring strategies, design of active sites, and in situ characterization.
Collapse
Affiliation(s)
- Hongwei Zhang
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge
Centre for Advanced Research and Education in Singapore Ltd (Cambridge
CARES), CREATE Tower, Singapore 138602, Singapore
| | - Xindie Jin
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Jong-Min Lee
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xin Wang
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
- Cambridge
Centre for Advanced Research and Education in Singapore Ltd (Cambridge
CARES), CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
35
|
Lin S, Banerjee S, Fortunato MT, Xue C, Huang J, Sokolov AY, Turro C. Electrochemical Strategy for Proton Relay Installation Enhances the Activity of a Hydrogen Evolution Electrocatalyst. J Am Chem Soc 2022; 144:20267-20277. [DOI: 10.1021/jacs.2c06011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shaoyang Lin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| | - Samragni Banerjee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| | - Matthew T. Fortunato
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| | - Congcong Xue
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| | - Jie Huang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43214, United States
| |
Collapse
|
36
|
Assaf EA, Gonell S, Chen CH, Miller AJM. Accessing and Photo-Accelerating Low-Overpotential Pathways for CO 2 Reduction: A Bis-Carbene Ruthenium Terpyridine Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric A. Assaf
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599-3290, United States
| | - Sergio Gonell
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599-3290, United States
| | - Chun-Hsing Chen
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599-3290, United States
| | - Alexander J. M. Miller
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina27599-3290, United States
| |
Collapse
|
37
|
Reyes Cruz EA, Nishiori D, Wadsworth BL, Nguyen NP, Hensleigh LK, Khusnutdinova D, Beiler AM, Moore GF. Molecular-Modified Photocathodes for Applications in Artificial Photosynthesis and Solar-to-Fuel Technologies. Chem Rev 2022; 122:16051-16109. [PMID: 36173689 DOI: 10.1021/acs.chemrev.2c00200] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nature offers inspiration for developing technologies that integrate the capture, conversion, and storage of solar energy. In this review article, we highlight principles of natural photosynthesis and artificial photosynthesis, drawing comparisons between solar energy transduction in biology and emerging solar-to-fuel technologies. Key features of the biological approach include use of earth-abundant elements and molecular interfaces for driving photoinduced charge separation reactions that power chemical transformations at global scales. For the artificial systems described in this review, emphasis is placed on advancements involving hybrid photocathodes that power fuel-forming reactions using molecular catalysts interfaced with visible-light-absorbing semiconductors.
Collapse
Affiliation(s)
- Edgar A Reyes Cruz
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Daiki Nishiori
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Brian L Wadsworth
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Nghi P Nguyen
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Lillian K Hensleigh
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Diana Khusnutdinova
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - Anna M Beiler
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| | - G F Moore
- School of Molecular Sciences and the Biodesign Institute Center for Applied Structural Discovery (CASD), Arizona State University, Tempe, Arizona 85287-1604, United States
| |
Collapse
|
38
|
Guyot M, Lalloz MN, Aguirre-Araque JS, Rogez G, Costentin C, Chardon-Noblat S. Rhenium Carbonyl Molecular Catalysts for CO 2 Electroreduction: Effects on Catalysis of Bipyridine Substituents Mimicking Anchorage Functions to Modify Electrodes. Inorg Chem 2022; 61:16072-16080. [PMID: 36166597 DOI: 10.1021/acs.inorgchem.2c02473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heterogenization of molecular catalysts on (photo)electrode surfaces is required to design devices performing processes enabling to store renewable energy in chemical bonds. Among the various strategies to immobilize molecular catalysts, direct chemical bonding to conductive surfaces presents some advantages because of the robustness of the linkage. When the catalyst is, as it is often the case, a transition metal complex, the anchoring group has to be connected to the complex through the ligands, and an important question is thus raised on the influence of this function on the redox and on the catalytic properties of the complex. Herein, we analyze the effect of conjugated and non conjugated substituents, structurally close to anchoring functions previously used to immobilize a rhenium carbonyl bipyridyl molecular catalyst for supported CO2 electroreduction. We show that carboxylic ester groups, mimicking anchoring the catalyst via carboxylate binding to the surface, have a drastic effect on the catalytic activity of the complex toward CO2 electroreduction. The reasons for such an effect are revealed via a combined spectro-electrochemical analysis showing that the reducing equivalents are mainly accumulated on the electron-withdrawing ester on the bipyridine ligand preventing the formation of the rhenium(0) center and its interaction with CO2. Alternatively, alkyl-phosphonic ester substituents, not conjugated with the bpy ligand, mimicking anchoring the catalyst via phosphonate binding to the surface, allow preserving the catalytic activity of the complex.
Collapse
Affiliation(s)
- Mélanie Guyot
- DCM, CNRS, Univ Grenoble Alpes, Grenoble 38000, France
| | | | | | - Guillaume Rogez
- CNRS, IPCMS, University of Strasbourg, Strasbourg 67034, France
| | | | | |
Collapse
|
39
|
Quantitative analysis of the electrochemical performance of multi-redox molecular electrocatalysts. A mechanistic study of chlorate electrocatalytic reduction in presence of a molybdenium polyoxometalate. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Lai J, Gan L, Zhang K, Xiao J. Defect Engineering of a Mott‐Schottky‐Type Self‐Supporting Electrode for Rechargeable Zinc‐Air Battery. ChemistrySelect 2022. [DOI: 10.1002/slct.202201291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jingyuan Lai
- School of Metallurgy and Environment Central South University Changsha 410083 China
| | - Lang Gan
- School of Energy and Power Engineering Key Laboratory of Efficient and Clean Energy Utilization Changsha University of Science and Technology Changsha 410076 China
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Institute of Microscale Optoelectronics Shenzhen University Shenzhen 518060 P. R. China
| | - Kai Zhang
- School of Metallurgy and Environment Central South University Changsha 410083 China
- Engineering Research Center of Advanced Battery Materials the Ministry of Education Changsha China
| | - Jin Xiao
- School of Metallurgy and Environment Central South University Changsha 410083 China
- Engineering Research Center of Advanced Battery Materials the Ministry of Education Changsha China
| |
Collapse
|
41
|
Geetha BM, Yhobu Z, Monica V, Małecki JG, Nagaraju DH, Azam M, Al-Resayes SI, Budagumpi S. Coordination chemistry of silver(I), gold(I) and nickel(II) with bis N-heterocyclic carbenes: applications in electrocatalytic hydrogen evolution reaction. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2107428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- B. M. Geetha
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | - Zhoveta Yhobu
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | - V. Monica
- Centre for Nano and Material Sciences, Jain University, Bangalore, India
| | | | - D. H. Nagaraju
- Department of Chemistry, School of Applied Sciences, Reva University, Bangalore, India
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, Riyadh, Riyadh, Saudi Arabia
| | - Saud I. Al-Resayes
- Department of Chemistry, College of Science, King Saud University, Riyadh, Riyadh, Saudi Arabia
| | | |
Collapse
|
42
|
|
43
|
Amanullah S, Saha P, Dey A. Recent developments in the synthesis of bio-inspired iron porphyrins for small molecule activation. Chem Commun (Camb) 2022; 58:5808-5828. [PMID: 35474535 DOI: 10.1039/d2cc00430e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nature utilizes a diverse set of tetrapyrrole-based macrocycles (referred to as porphyrinoids) for catalyzing various biological processes. Investigation of the differences in electronic structure and reactivity in these reactions have revealed striking differences that lead to diverse reactivity from, apparently, similar looking active sites. Therefore, the role of the different heme cofactors as well as the distal superstructure in the proteins is important to understand. This article summarizes the role of a few synthetic metallo-porphyrinoids towards catalyzing several small molecule activation reactions, such as the ORR, NiRR, CO2RR, etc. The major focus of the article is to enlighten the synthetic routes to the well-decorated active-site mimic in a tailor-made fashion pursuing a retrosynthetic approach, learning from the biosynthesis of the cofactors. Techniques and the role of the second-sphere residues on the reaction rate, selectivity, etc. are incorporated emulating the basic amino acid residues fencing the active sites. These bioinspired mimics play an important role towards understanding the role of the prosthetic groups as well as the basic residues towards any reaction occurring in Nature.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Paramita Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB 700032, India.
| |
Collapse
|
44
|
Loipersberger M, Derrick JS, Chang CJ, Head-Gordon M. Deciphering Distinct Overpotential-Dependent Pathways for Electrochemical CO 2 Reduction Catalyzed by an Iron-Terpyridine Complex. Inorg Chem 2022; 61:6919-6933. [PMID: 35452213 DOI: 10.1021/acs.inorgchem.2c00279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
[Fe(tpyPY2Me)]2+ ([Fe]2+) is a homogeneous electrocatalyst for converting CO2 into CO featuring low overpotentials of <100 mV, near-unity selectivity, and high activity with turnover frequencies faster than 100 000 s-1. To identify the origins of its exceptional performance and inform future catalyst design, we report a combined computational and experimental study that establishes two distinct mechanistic pathways for electrochemical CO2 reduction catalyzed by [Fe]2+ as a function of applied overpotential. Electrochemical data shows the formation of two catalytic regimes at low (ηTOF/2 of 160 mV) and high (ηTOF/2 of 590 mV) overpotential plateaus. We propose that at low overpotentials [Fe]2+ undergoes a two-electron reduction, two-proton-transfer mechanism (electrochemical-electrochemical-chemical-chemical, EECC), where turnover occurs through the dicationic iron complex, [Fe]2+. Computational analysis supports the importance of the singlet ground-state electronic structure for CO2 binding and that the rate-limiting step is the second protonation in this low-overpotential regime. When more negative potentials are applied, an additional electron-transfer event occurs through either a stepwise or proton-coupled electron-transfer (PCET) pathway, enabling catalytic turnover from the monocationic iron complex ([Fe]+) via an electrochemical-chemical-electrochemical-chemical (ECEC) mechanism. Comparison of experimental kinetic data obtained from variable controlled potential electrolysis (CPE) experiments with direct product detection with calculated rates obtained from the energetic span model supports the PCET pathway as the most likely mechanism. Moreover, we build upon this mechanistic understanding to propose the design of an improved ligand framework that is predicted to stabilize the key transition states identified in our study and explore their electronic structures using an energy decomposition analysis. Taken together, this work highlights the value of synergistic computational/experimental approaches to decipher mechanisms of new electrocatalysts and direct the rational design of improved platforms.
Collapse
Affiliation(s)
- Matthias Loipersberger
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jeffrey S Derrick
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
45
|
Tan H, Tang B, Lu Y, Ji Q, Lv L, Duan H, Li N, Wang Y, Feng S, Li Z, Wang C, Hu F, Sun Z, Yan W. Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction. Nat Commun 2022; 13:2024. [PMID: 35440547 PMCID: PMC9019087 DOI: 10.1038/s41467-022-29710-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
Abstract
Tuning the local reaction environment is an important and challenging issue for determining electrochemical performances. Herein, we propose a strategy of intentionally engineering the local reaction environment to yield highly active catalysts. Taking Ptδ− nanoparticles supported on oxygen vacancy enriched MgO nanosheets as a prototypical example, we have successfully created a local acid-like environment in the alkaline medium and achieve excellent hydrogen evolution reaction performances. The local acid-like environment is evidenced by operando Raman, synchrotron radiation infrared and X-ray absorption spectroscopy that observes a key H3O+ intermediate emergence on the surface of MgO and accumulation around Ptδ− sites during electrocatalysis. Further analysis confirms that the critical factors of the forming the local acid-like environment include: the oxygen vacancy enriched MgO facilitates H2O dissociation to generate H3O+ species; the F centers of MgO transfers its unpaired electrons to Pt, leading to the formation of electron-enriched Ptδ− species; positively charged H3O+ migrates to negatively charged Ptδ− and accumulates around Ptδ− nanoparticles due to the electrostatic attraction, thus creating a local acidic environment in the alkaline medium. While catalysts have intrinsic activities toward reactions, such performances often require further optimization. Here, authors engineer an acid-like environment in alkaline media by fine-tuning the reaction environment of platinum nanoparticles on oxide nanosheets for H2 evolution electrocatalysis.
Collapse
Affiliation(s)
- Hao Tan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Bing Tang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Ying Lu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Qianqian Ji
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Liyang Lv
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Hengli Duan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Na Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Yao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Sihua Feng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Zhi Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Fengchun Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China.
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China.
| |
Collapse
|
46
|
Hsu WC, Wang YH. Homogeneous Water Oxidation Catalyzed by First-Row Transition Metal Complexes: Unveiling the Relationship between Turnover Frequency and Reaction Overpotential. CHEMSUSCHEM 2022; 15:e202102378. [PMID: 34881515 DOI: 10.1002/cssc.202102378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Indexed: 06/13/2023]
Abstract
The utilization of earth-abundant low-toxicity metal ions in the construction of highly active and efficient molecular catalysts promoting the water oxidation reaction is important for developing a sustainable artificial energy cycle. However, the kinetic and thermodynamic properties of the currently available molecular water oxidation catalysts (MWOCs) have not been comprehensively investigated. This Review summarizes the current status of MWOCs based on first-row transition metals in terms of their turnover frequency (TOF, a kinetic property) and overpotential (η, a thermodynamic property) and uses the relationship between log(TOF) and η to assess catalytic performance. Furthermore, the effects of the same ligand classes on these MWOCs are discussed in terms of TOF and η, and vice versa. The collective analysis of these relationships provides a metric for the direct comparison of catalyst systems and identifying factors crucial for catalyst design.
Collapse
Affiliation(s)
- Wan-Chi Hsu
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Yu-Heng Wang
- Department of Chemistry, National Tsing Hua University, 101, Sec 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| |
Collapse
|
47
|
Li X, Panetier JA. Mechanistic Study of Tungsten Bipyridyl Tetracarbonyl Electrocatalysts for CO 2 Fixation: Exploring the Roles of Explicit Proton Sources and Substituent Effects. Top Catal 2022; 65:325-340. [PMID: 37645456 PMCID: PMC10465121 DOI: 10.1007/s11244-021-01529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Tungsten bipyridyl tetracarbonyl complexes were shown to reduce CO2 to CO in acetonitrile [Chem. Sci., 2014, 5, 1894-1900]. Here, we employ density functional theory (DFT) calculations to investigate the electronic structure and reactivity of a series of tungsten electrocatalysts, [W(bpy-R)(CO)4] (where R = H, CH3, tBu, OCH3, CF3, and CN), for the CO2 reduction reaction (CO2RR). Our proposed mechanism suggests that initial reduction of the starting material by two electrons is required to access the active catalyst upon CO dissociation, which is slightly endergonic, consistent with the slow product release observed experimentally. The doubly reduced species, which has a closed-shell singlet ground state, can bind CO2 via an η2-CO2 binding mode to yield the metallocarboxylate intermediate. Based on the energy span model, CO2 addition is the TOF-determining transition state (TDTS) in the presence of water as the proton source. Different substituents at the 4,4'-positions of the bipyridine ligand in [W(bpy-R)(CO)4] (R = H, CH3, tBu, OCH3, CF3, and CN) were considered to comprehend the substituent effects for CO2RR. DFT results show that electron-withdrawing substituents, such as CN and CF3, do not yield efficient CO2 reduction catalysts due to the necessity of forming high energy intermediates for the protonation steps, resulting in low TOFs and high overpotentials. Among electron-donating groups, the parent compound and tert-butyl substituted complex are the most active catalysts for CO2RR due to higher TOFs at low overpotentials. Overall, based on the energy span model and theoretical Tafel plots, our computational approach provides quantitative information for designing CO2 reduction electrocatalysts.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Julien A. Panetier
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|
48
|
Abstract
Electrocatalysis is an indispensable technique for small-molecule transformations, which are essential for the sustainability of society. Electrocatalysis utilizes electricity as an energy source for chemical reactions. Hydrogen is considered the “fuel for the future,” and designing electrocatalysts for hydrogen production has thus become critical. Furthermore, fuel cells are promising energy solutions that require robust electrocatalysts for key fuel cell reactions such as the interconversion of oxygen to water. Concerns regarding the rising concentration of atmospheric carbon dioxide have prompted the search for CO2 conversion methods. One promising approach is the electrochemical conversion of CO2 into commodity chemicals and/or liquid fuels, but such chemistry is highly energy demanding because of the thermodynamic stability of CO2. All of the above-mentioned electrocatalytic processes rely on the selective input of multiple protons (H+) and electrons (e–) to yield the desired products. Biological enzymes evolved in nature to perform such redox catalysis and have inspired the design of catalysts at the molecular and atomic levels. While it is synthetically challenging to mimic the exact biological environment, incorporating functional outer coordination spheres into molecular catalysts has shown promise for advancing multi-H+ and multi-e– electrocatalysis. From this Perspective, herein, catalysts with outer coordination sphere(s) are selected as the inspiration for developing new catalysts, particularly for the reductive conversion of H+, O2, and CO2, which are highly relevant to sustainability. The recent progress in electrocatalysis and opportunities to explore beyond the second coordination sphere are also emphasized.
Collapse
Affiliation(s)
- Soumalya Sinha
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, USA
| | - Caroline K Williams
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, USA
| | - Jianbing Jimmy Jiang
- Department of Chemistry, University of Cincinnati, P.O. Box 210172, Cincinnati, OH 45221, USA
| |
Collapse
|
49
|
Nie W, McCrory C. Strategies for Breaking Molecular Scaling Relationships for the Electrochemical CO 2 Reduction Reaction. Dalton Trans 2022; 51:6993-7010. [DOI: 10.1039/d2dt00333c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrocatalytic CO2 reduction reaction (CO2RR) is a promising strategy for converting CO2 to fuels and value-added chemicals using renewable energy sources. Molecular electrocatalysts show promise for the selective conversion...
Collapse
|
50
|
Miró R, Fernández-Llamazares E, Godard C, Díaz de los Bernardos M, Gual A. Synergism between iron porphyrin and dicationic ionic liquids: tandem CO 2 electroreduction–carbonylation reactions. Chem Commun (Camb) 2022; 58:10552-10555. [DOI: 10.1039/d2cc03641j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a simple procedure that drastically reduces the E(Fei/Fe0) and E0cat of the FeIIITPP·Cl catalyst via a synergetic effect with the imidazolium dications of the IL electrolyte, and its application in tandem carbonylations.
Collapse
Affiliation(s)
- Roger Miró
- Fundació EURECAT, Unitat de Tecnologia Química, C/Marceli Domingo 2, 43007 Tarragona, Spain
| | | | - Cyril Godard
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/Marceli Domingo 1, 43007 Tarragona, Spain
| | | | - Aitor Gual
- Fundació EURECAT, Unitat de Tecnologia Química, C/Marceli Domingo 2, 43007 Tarragona, Spain
| |
Collapse
|