1
|
Wang R, Hastings WJ, Saliba JG, Bao D, Huang Y, Maity S, Kamal Ahmad OM, Hu L, Wang S, Fan J, Ning B. Applications of Nanotechnology for Spatial Omics: Biological Structures and Functions at Nanoscale Resolution. ACS NANO 2024. [PMID: 39704725 DOI: 10.1021/acsnano.4c11505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Spatial omics methods are extensions of traditional histological methods that can illuminate important biomedical mechanisms of physiology and disease by examining the distribution of biomolecules, including nucleic acids, proteins, lipids, and metabolites, at microscale resolution within tissues or individual cells. Since, for some applications, the desired resolution for spatial omics approaches the nanometer scale, classical tools have inherent limitations when applied to spatial omics analyses, and they can measure only a limited number of targets. Nanotechnology applications have been instrumental in overcoming these bottlenecks. When nanometer-level resolution is needed for spatial omics, super resolution microscopy or detection imaging techniques, such as mass spectrometer imaging, are required to generate precise spatial images of target expression. DNA nanostructures are widely used in spatial omics for purposes such as nucleic acid detection, signal amplification, and DNA barcoding for target molecule labeling, underscoring advances in spatial omics. Other properties of nanotechnologies include advanced spatial omics methods, such as microfluidic chips and DNA barcodes. In this review, we describe how nanotechnologies have been applied to the development of spatial transcriptomics, proteomics, metabolomics, epigenomics, and multiomics approaches. We focus on how nanotechnology supports improved resolution and throughput of spatial omics, surpassing traditional techniques. We also summarize future challenges and opportunities for the application of nanotechnology to spatial omics methods.
Collapse
Affiliation(s)
- Ruixuan Wang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Waylon J Hastings
- Department of Psychiatry and Behavioral Science, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Julian G Saliba
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Duran Bao
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Yuanyu Huang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Sudipa Maity
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Omar Mustafa Kamal Ahmad
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Logan Hu
- Groton School, 282 Farmers Row, Groton, Massachusetts 01450, United States
| | - Shengyu Wang
- St. Margaret's Episcopal School, 31641 La Novia Avenue, San Juan Capistrano, California92675, United States
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Bo Ning
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
2
|
Li S, Cortez-Jugo C, Ju Y, Caruso F. Approaching Two Decades: Biomolecular Coronas and Bio-Nano Interactions. ACS NANO 2024; 18:33257-33263. [PMID: 39602410 DOI: 10.1021/acsnano.4c13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
It has been nearly two decades since the term "protein corona" was coined. This term has since evolved to "biomolecular corona" or "biocorona" to capture the diverse biomolecules that spontaneously form on the surface of nanoparticles upon exposure to biological fluids and drive nanoparticle interactions with biological systems. In this Perspective, we highlight the significant progress in this field, including studies on nonprotein corona components, lipid nanoparticles, and the role of the corona in endogenous organ targeting. We also discuss research opportunities in this field, particularly the need for improved characterization and standardization of analysis and how recent advances in artificial intelligence and ex vivo models can improve our understanding of the biomolecular corona in guiding nanomedicine design.
Collapse
Affiliation(s)
- Shiyao Li
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
Qi L, Li Z, Liu J, Chen X. Omics-Enhanced Nanomedicine for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409102. [PMID: 39473316 DOI: 10.1002/adma.202409102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Indexed: 12/13/2024]
Abstract
Cancer nanomedicine has emerged as a promising approach to overcome the limitations of conventional cancer therapies, offering enhanced efficacy and safety in cancer management. However, the inherent heterogeneity of tumors presents increasing challenges for the application of cancer nanomedicine in both diagnosis and treatment. This heterogeneity necessitates the integration of advanced and high-throughput analytical techniques to tailor nanomedicine strategies to individual tumor profiles. Omics technologies, encompassing genomics, epigenomics, transcriptomics, proteomics, metabolomics, and more, provide unparalleled insights into the molecular and cellular mechanisms underlying cancer. By dissecting tumor heterogeneity across multiple levels, these technologies offer robust support for the development of personalized and precise cancer nanomedicine strategies. In this review, the principles, techniques, and applications of key omics technologies are summarized. Especially, the synergistic integration of omics and nanomedicine in cancer therapy is explored, focusing on enhanced diagnostic accuracy, optimized therapeutic strategies and the assessment of nanomedicine-mediated biological responses. Moreover, this review addresses current challenges and outlines future directions in the field of omics-enhanced nanomedicine. By offering valuable insights and guidance, this review aims to advance the integration of omics with nanomedicine, ultimately driving improved diagnostic and therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, Hunan, 410011, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, Hunan, 410011, China
| | - Jianping Liu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, Hunan, 410011, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore
| |
Collapse
|
4
|
Li M. Atomic force microscopy as a nanomechanical tool for cancer liquid biopsy. Biochem Biophys Res Commun 2024; 734:150637. [PMID: 39226737 DOI: 10.1016/j.bbrc.2024.150637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Liquid biopsies have been receiving tremendous attention for their potential to reshape cancer management. Though current studies of cancer liquid biopsy primarily focus on applying biochemical assays to characterize the genetic/molecular profiles of circulating tumor cells (CTCs) and their secondary products shed from tumor sites in bodily fluids, delineating the nanomechanical properties of tumor-associated materials in liquid biopsy specimens yields complementary insights into the biology of tumor dissemination and evolution. Particularly, atomic force microscopy (AFM) has become a standard and versatile toolbox for characterizing the mechanical properties of living biological systems at the micro/nanoscale, and AFM has been increasingly utilized to probe the nanomechanical properties of various tumor-derived analytes in liquid biopsies, including CTCs, tumor-associated cells, circulating tumor DNA (ctDNA) molecules, and extracellular vesicles (EVs), offering additional possibilities for understanding cancer pathogenesis from the perspective of mechanobiology. Herein, the applications of AFM in cancer liquid biopsy are summarized, and the challenges and future directions of AFM as a nanomechanical analysis tool in cancer liquid biopsy towards clinical utility are discussed and envisioned.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
5
|
Coskun A, Ertaylan G, Pusparum M, Van Hoof R, Kaya ZZ, Khosravi A, Zarrabi A. Advancing personalized medicine: Integrating statistical algorithms with omics and nano-omics for enhanced diagnostic accuracy and treatment efficacy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167339. [PMID: 38986819 DOI: 10.1016/j.bbadis.2024.167339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Medical laboratory services enable precise measurement of thousands of biomolecules and have become an inseparable part of high-quality healthcare services, exerting a profound influence on global health outcomes. The integration of omics technologies into laboratory medicine has transformed healthcare, enabling personalized treatments and interventions based on individuals' distinct genetic and metabolic profiles. Interpreting laboratory data relies on reliable reference values. Presently, population-derived references are used for individuals, risking misinterpretation due to population heterogeneity, and leading to medical errors. Thus, personalized references are crucial for precise interpretation of individual laboratory results, and the interpretation of omics data should be based on individualized reference values. We reviewed recent advancements in personalized laboratory medicine, focusing on personalized omics, and discussed strategies for implementing personalized statistical approaches in omics technologies to improve global health and concluded that personalized statistical algorithms for interpretation of omics data have great potential to enhance global health. Finally, we demonstrated that the convergence of nanotechnology and omics sciences is transforming personalized laboratory medicine by providing unparalleled diagnostic precision and innovative therapeutic strategies.
Collapse
Affiliation(s)
- Abdurrahman Coskun
- Acibadem University, School of Medicine, Department of Medical Biochemistry, Istanbul, Turkey.
| | - Gökhan Ertaylan
- Unit Health, Environmental Intelligence, Flemish Institute for Technological Research (VITO), Mol 2400, Belgium
| | - Murih Pusparum
- Unit Health, Environmental Intelligence, Flemish Institute for Technological Research (VITO), Mol 2400, Belgium; I-Biostat, Data Science Institute, Hasselt University, Hasselt 3500, Belgium
| | - Rebekka Van Hoof
- Unit Health, Environmental Intelligence, Flemish Institute for Technological Research (VITO), Mol 2400, Belgium
| | - Zelal Zuhal Kaya
- Nisantasi University, School of Medicine, Department of Medical Biochemistry, Istanbul, Turkey
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey; Graduate School of Biotehnology and Bioengeneering, Yuan Ze University, Taoyuan 320315, Taiwan; Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| |
Collapse
|
6
|
Liu Z, Fan Y, Cui M, Wang X, Zhao P. Investigation of tumour environments through advancements in microtechnology and nanotechnology. Biomed Pharmacother 2024; 178:117230. [PMID: 39116787 DOI: 10.1016/j.biopha.2024.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Cancer has a significant negative social and economic impact on both developed and developing countries. As a result, understanding the onset and progression of cancer is critical for developing therapies that can improve the well-being and health of individuals with cancer. With time, study has revealed, the tumor microenvironment has great influence on this process. Micro and nanoscale engineering techniques can be used to study the tumor microenvironment. Nanoscale and Microscale engineering use Novel technologies and designs with small dimensions to recreate the TME. Knowing how cancer cells interact with one another can help researchers develop therapeutic approaches that anticipate and counteract cancer cells' techniques for evading detection and fighting anti-cancer treatments, such as microfabrication techniques, microfluidic devices, nanosensors, and nanodevices used to study or recreate the tumor microenvironment. Nevertheless, a complicated action just like the growth and in cancer advancement, and their intensive association along the environment around it that has to be studied in more detail.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Radiology, Shengjing Hospital of China Medical University, China
| | - Yan Fan
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengyao Cui
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xu Wang
- Department of Surgical Oncology, Breast Surgery, General Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Pengfei Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
7
|
Li S, Jin B, Ma Y, Yang X, Fan J, Xie Y, Xu C, Dai X, Wang M, Liu Q, Fu T, Liu Y, Tan W. Proteome Fishing for CRISPR/Cas12a-Based Orthogonal Multiplex Aptamer Sensing. J Am Chem Soc 2024; 146:19874-19885. [PMID: 39007743 DOI: 10.1021/jacs.4c03061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Detection of serum protein biomarkers is extremely challenging owing to the superior complexity of serum. Here, we report a method of proteome fishing from the serum. It uses a magnetic nanoparticle-protein corona and a multiplexed aptamer panel, which we incubated with the nanoparticle-protein corona for biomarker recognition. To transfer protein biomarker detection to aptamer detection, we established a CRISPR/Cas12a-based orthogonal multiplex aptamer sensing (COMPASS) platform by profiling the aptamers of protein corona with clinical nonsmall cell lung cancer (NSCLC) serum samples. Furthermore, we determined the four out of nine (FOON) panel (including HE4, NSE, AFP, and VEGF165) to be the most cost-effective and accurate panel for COMPASS in NSCLC diagnosis. The diagnostic accuracy of NSCLC by the FOON panel with internal and external cohorts was 95.56% (ROC-AUC = 99.40%) and 89.58% (ROC-AUC = 95.41%), respectively. Our developed COMPASS technology circumvents the otherwise challenging multiplexed serum protein amplification problem and avoids aptamer degradation in serum. Therefore, this novel COMPASS could lead to the development of a facile, cost-effective, intelligent, and high-throughput diagnostic platform for large-cohort cancer screening.
Collapse
Affiliation(s)
- Shuangqin Li
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Baichuan Jin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yintao Ma
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Xu Yang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jinlong Fan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yueli Xie
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Chenlu Xu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xin Dai
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Mengjie Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Qiqi Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Ting Fu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuan Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Javdani-Mallak A, Salahshoori I. Environmental pollutants and exosomes: A new paradigm in environmental health and disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171774. [PMID: 38508246 DOI: 10.1016/j.scitotenv.2024.171774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/16/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
This study investigates the intricate interplay between environmental pollutants and exosomes, shedding light on a novel paradigm in environmental health and disease. Cellular stress, induced by environmental toxicants or disease, significantly impacts the production and composition of exosomes, crucial mediators of intercellular communication. The heat shock response (HSR) and unfolded protein response (UPR) pathways, activated during cellular stress, profoundly influence exosome generation, cargo sorting, and function, shaping intercellular communication and stress responses. Environmental pollutants, particularly lipophilic ones, directly interact with exosome lipid bilayers, potentially affecting membrane stability, release, and cellular uptake. The study reveals that exposure to environmental contaminants induces significant changes in exosomal proteins, miRNAs, and lipids, impacting cellular function and health. Understanding the impact of environmental pollutants on exosomal cargo holds promise for biomarkers of exposure, enabling non-invasive sample collection and real-time insights into ongoing cellular responses. This research explores the potential of exosomal biomarkers for early detection of health effects, assessing treatment efficacy, and population-wide screening. Overcoming challenges requires advanced isolation techniques, standardized protocols, and machine learning for data analysis. Integration with omics technologies enhances comprehensive molecular analysis, offering a holistic understanding of the complex regulatory network influenced by environmental pollutants. The study underscores the capability of exosomes in circulation as promising biomarkers for assessing environmental exposure and systemic health effects, contributing to advancements in environmental health research and disease prevention.
Collapse
Affiliation(s)
- Afsaneh Javdani-Mallak
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Andrews JPM, Joshi SS, Tzolos E, Syed MB, Cuthbert H, Crica LE, Lozano N, Okwelogu E, Raftis JB, Bruce L, Poland CA, Duffin R, Fokkens PHB, Boere AJF, Leseman DLAC, Megson IL, Whitfield PD, Ziegler K, Tammireddy S, Hadjidemetriou M, Bussy C, Cassee FR, Newby DE, Kostarelos K, Miller MR. First-in-human controlled inhalation of thin graphene oxide nanosheets to study acute cardiorespiratory responses. NATURE NANOTECHNOLOGY 2024; 19:705-714. [PMID: 38366225 PMCID: PMC11106005 DOI: 10.1038/s41565-023-01572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 11/09/2023] [Indexed: 02/18/2024]
Abstract
Graphene oxide nanomaterials are being developed for wide-ranging applications but are associated with potential safety concerns for human health. We conducted a double-blind randomized controlled study to determine how the inhalation of graphene oxide nanosheets affects acute pulmonary and cardiovascular function. Small and ultrasmall graphene oxide nanosheets at a concentration of 200 μg m-3 or filtered air were inhaled for 2 h by 14 young healthy volunteers in repeated visits. Overall, graphene oxide nanosheet exposure was well tolerated with no adverse effects. Heart rate, blood pressure, lung function and inflammatory markers were unaffected irrespective of graphene oxide particle size. Highly enriched blood proteomics analysis revealed very few differential plasma proteins and thrombus formation was mildly increased in an ex vivo model of arterial injury. Overall, acute inhalation of highly purified and thin nanometre-sized graphene oxide nanosheets was not associated with overt detrimental effects in healthy humans. These findings demonstrate the feasibility of carefully controlled human exposures at a clinical setting for risk assessment of graphene oxide, and lay the foundations for investigating the effects of other two-dimensional nanomaterials in humans. Clinicaltrials.gov ref: NCT03659864.
Collapse
Affiliation(s)
- Jack P M Andrews
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
- The Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Shruti S Joshi
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Evangelos Tzolos
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Maaz B Syed
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | - Livia E Crica
- Nanomedicine Lab, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- National Graphene Institute, The University of Manchester, Manchester, UK
| | - Neus Lozano
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain
| | - Emmanuel Okwelogu
- Nanomedicine Lab, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Jennifer B Raftis
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Lorraine Bruce
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Craig A Poland
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Rodger Duffin
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Paul H B Fokkens
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - A John F Boere
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Daan L A C Leseman
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ian L Megson
- Division of Biomedical Sciences, University of the Highlands and Islands, Inverness, UK
| | - Phil D Whitfield
- Division of Biomedical Sciences, University of the Highlands and Islands, Inverness, UK
| | - Kerstin Ziegler
- Division of Biomedical Sciences, University of the Highlands and Islands, Inverness, UK
| | - Seshu Tammireddy
- Division of Biomedical Sciences, University of the Highlands and Islands, Inverness, UK
| | - Marilena Hadjidemetriou
- Nanomedicine Lab, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Cyrill Bussy
- Nanomedicine Lab, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
- National Graphene Institute, The University of Manchester, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
- Thomas Ashton Institute for Risk and Regulatory Research, The University of Manchester, Manchester, UK
| | - Flemming R Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - David E Newby
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK.
- National Graphene Institute, The University of Manchester, Manchester, UK.
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, Spain.
| | - Mark R Miller
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
Xu Y, Cao L, Chen Y, Zhang Z, Liu W, Li H, Ding C, Pu J, Qian K, Xu W. Integrating Machine Learning in Metabolomics: A Path to Enhanced Diagnostics and Data Interpretation. SMALL METHODS 2024:e2400305. [PMID: 38682615 DOI: 10.1002/smtd.202400305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/07/2024] [Indexed: 05/01/2024]
Abstract
Metabolomics, leveraging techniques like NMR and MS, is crucial for understanding biochemical processes in pathophysiological states. This field, however, faces challenges in metabolite sensitivity, data complexity, and omics data integration. Recent machine learning advancements have enhanced data analysis and disease classification in metabolomics. This study explores machine learning integration with metabolomics to improve metabolite identification, data efficiency, and diagnostic methods. Using deep learning and traditional machine learning, it presents advancements in metabolic data analysis, including novel algorithms for accurate peak identification, robust disease classification from metabolic profiles, and improved metabolite annotation. It also highlights multiomics integration, demonstrating machine learning's potential in elucidating biological phenomena and advancing disease diagnostics. This work contributes significantly to metabolomics by merging it with machine learning, offering innovative solutions to analytical challenges and setting new standards for omics data analysis.
Collapse
Affiliation(s)
- Yudian Xu
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Linlin Cao
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Yifan Chen
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Ziyue Zhang
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Wanshan Liu
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - He Li
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Chenhuan Ding
- Department of Traditional Chinese Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| | - Kun Qian
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
- School of Biomedical Engineering, Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Wei Xu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, P. R. China
| |
Collapse
|
11
|
Boselli L, Castagnola V, Armirotti A, Benfenati F, Pompa PP. Biomolecular Corona of Gold Nanoparticles: The Urgent Need for Strong Roots to Grow Strong Branches. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306474. [PMID: 38085683 DOI: 10.1002/smll.202306474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/20/2023] [Indexed: 04/13/2024]
Abstract
Gold nanoparticles (GNPs) are largely employed in diagnostics/biosensors and are among the most investigated nanomaterials in biology/medicine. However, few GNP-based nanoformulations have received FDA approval to date, and promising in vitro studies have failed to translate to in vivo efficacy. One key factor is that biological fluids contain high concentrations of proteins, lipids, sugars, and metabolites, which can adsorb/interact with the GNP's surface, forming a layer called biomolecular corona (BMC). The BMC can mask prepared functionalities and target moieties, creating new surface chemistry and determining GNPs' biological fate. Here, the current knowledge is summarized on GNP-BMCs, analyzing the factors driving these interactions and the biological consequences. A partial fingerprint of GNP-BMC analyzing common patterns of composition in the literature is extrapolated. However, a red flag is also risen concerning the current lack of data availability and regulated form of knowledge on BMC. Nanomedicine is still in its infancy, and relying on recently developed analytical and informatic tools offers an unprecedented opportunity to make a leap forward. However, a restart through robust shared protocols and data sharing is necessary to obtain "stronger roots". This will create a path to exploiting BMC for human benefit, promoting the clinical translation of biomedical nanotools.
Collapse
Affiliation(s)
- Luca Boselli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy
| | - Valentina Castagnola
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova, 16132, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova, 16132, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
12
|
Wang M, Dai X, Yang X, Jin B, Xie Y, Xu C, Liu Q, Wang L, Ying L, Lu W, Chen Q, Fu T, Su D, Liu Y, Tan W. Serum Protein Fishing for Machine Learning-Boosted Diagnostic Classification of Small Nodules of Lung. ACS NANO 2024; 18:4038-4055. [PMID: 38270088 DOI: 10.1021/acsnano.3c07217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Diagnosis of benign and malignant small nodules of the lung remains an unmet clinical problem which is leading to serious false positive diagnosis and overtreatment. Here, we developed a serum protein fishing-based spectral library (ProteoFish) for data independent acquisition analysis and a machine learning-boosted protein panel for diagnosis of early Non-Small Cell Lung Cancer (NSCLC) and classification of benign and malignant small nodules. We established an extensive NSCLC protein bank consisting of 297 clinical subjects. After testing 5 feature extraction algorithms and six machine learning models, the Lasso algorithm for a 15-key protein panel selection and Random Forest was chosen for diagnostic classification. Our random forest classifier achieved 91.38% accuracy in benign and malignant small nodule diagnosis, which is superior to the existing clinical assays. By integrating with machine learning, the 15-key protein panel may provide insights to multiplexed protein biomarker fishing from serum for facile cancer screening and tackling the current clinical challenge in prospective diagnostic classification of small nodules of the lung.
Collapse
Affiliation(s)
- Mengjie Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, Hunan, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Xin Dai
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Xu Yang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Baichuan Jin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Yueli Xie
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Chenlu Xu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Qiqi Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Lichao Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Lisha Ying
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Weishan Lu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Qixun Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, Hunan, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Dan Su
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Yuan Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, Hunan, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| |
Collapse
|
13
|
Chen W, He H, Jiao P, Han L, Li J, Wang X, Guo X. Metal-Organic Framework for Hypoxia/ROS/pH Triple-Responsive Cargo Release. Adv Healthc Mater 2023; 12:e2301785. [PMID: 37590153 DOI: 10.1002/adhm.202301785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Indexed: 08/19/2023]
Abstract
Nanoparticulate antitumor photodynamic therapy (PDT) is suffering from a very short lifetime, limited diffusion distance of reactive oxygen species (ROS). Herein, a hypoxia/ROS/pH triple-responsive metal-organic framework (MOF) is designed to facilitate the on-demand release of photosensitizers and hence enhanced PDT efficacy. Tailored azo-containing imidazole ligand is coordinated with zinc to form MOF where photosensitizer (Chlorin e6/Ce6) is encapsulated. Azo can be reduced by overexpressed azoreductase in hypoxic tumor cells, resulting in depletion of glutathione (GSH) and thioredoxin (Trx) which are major antioxidants against ROS oxidative damage in PDT, resulting in rapid cargo release and additional efficacy amplification. The imidazole ionization causes a proton sponge effect to ensure the disintegration of the nanocarriers in acidic organelles, allowing the rapid release of Ce6 through lysosome escape. Under light irradiation, ROS produced by Ce6 may oxidize imidazole to urea, resulting in rapid cargo release. All of the triggers are expected to show interactive synergism. The pH- and hypoxia-responsiveness can improve the release rate of Ce6 for enhanced PDT therapy, whereas the consumption of oxygen by PDT may induce elevated hypoxia and hence in turn enhanced cargo release. This work highlights the role of triple-responsive nanocarriers for triggered photosensitizer release and improved antitumor PDT efficacy.
Collapse
Affiliation(s)
- Wenyu Chen
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Huixin He
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Pengfei Jiao
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Lefei Han
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Jianchun Li
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Xiu Wang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Xuliang Guo
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui, 233000, China
| |
Collapse
|
14
|
Jiang M, Althomali RH, Ansari SA, Saleh EAM, Gupta J, Kambarov KD, Alsaab HO, Alwaily ER, Hussien BM, Mustafa YF, Narmani A, Farhood B. Advances in preparation, biomedical, and pharmaceutical applications of chitosan-based gold, silver, and magnetic nanoparticles: A review. Int J Biol Macromol 2023; 251:126390. [PMID: 37595701 DOI: 10.1016/j.ijbiomac.2023.126390] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/11/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
During the last decades, the ever-increasing incidence of various diseases, like cancer, has led to a high rate of death worldwide. On the other hand, conventional modalities (such as chemotherapy and radiotherapy) have not indicated enough efficiency in the diagnosis and treatment of diseases. Thus, potential novel approaches should be taken into consideration to pave the way for the suppression of diseases. Among novel approaches, biomaterials, like chitosan nanoparticles (CS NPs, N-acetyl-glucosamine and D-glucosamine), have been approved by the FDA for some efficient pharmaceutical applications. These NPs owing to their physicochemical properties, modification with different molecules, biocompatibility, serum stability, less immune response, suitable pharmacokinetics and pharmacodynamics, etc. have received deep attention among researchers and clinicians. More importantly, the impact of CS polysaccharide in the synthesis, preparation, and delivery of metallic NPs (like gold, silver, and magnetic NPs), and combination of CS with these metallic NPs can further facilitate the diagnosis and treatment of diseases. Metallic NPs possess some features, like converting NIR photon energy into thermal energy and anti-microorganism capability, and can be a potential candidate for the diagnosis and treatment of diseases in combination with CS NPs. These combined NPs would be efficient pharmaceuticals in the future.
Collapse
Affiliation(s)
- Mingyang Jiang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China, 530021
| | - Raed H Althomali
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Shakeel Ahmed Ansari
- Department of Biochemistry, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India
| | | | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
15
|
Wang X, Xu W, Li J, Shi C, Guo Y, Shan J, Qi R. Nano-omics: Frontier fields of fusion of nanotechnology. SMART MEDICINE 2023; 2:e20230039. [PMID: 39188303 PMCID: PMC11236068 DOI: 10.1002/smmd.20230039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/15/2023] [Indexed: 08/28/2024]
Abstract
Nanotechnology, an emerging force, has infiltrated diverse domains like biomedical, materials, and environmental sciences. Nano-omics, an emerging fusion, combines nanotechnology with omics, boasting amplified sensitivity and resolution. This review introduces nanotechnology basics, surveys its recent strides in nano-omics, deliberates present challenges, and envisions future growth.
Collapse
Affiliation(s)
- Xuan Wang
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
- Jiangsu Key Laboratory of Pediatric Respiratory DiseaseInstitute of PediatricsNanjing University of Chinese MedicineNanjingChina
- Medical Metabolomics CenterNanjing University of Chinese MedicineNanjingChina
| | - Weichen Xu
- Jiangsu Key Laboratory of Pediatric Respiratory DiseaseInstitute of PediatricsNanjing University of Chinese MedicineNanjingChina
- Medical Metabolomics CenterNanjing University of Chinese MedicineNanjingChina
| | - Jun Li
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Chen Shi
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
- Jiangsu Key Laboratory of Pediatric Respiratory DiseaseInstitute of PediatricsNanjing University of Chinese MedicineNanjingChina
- Medical Metabolomics CenterNanjing University of Chinese MedicineNanjingChina
| | - Yuanyuan Guo
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory DiseaseInstitute of PediatricsNanjing University of Chinese MedicineNanjingChina
- Medical Metabolomics CenterNanjing University of Chinese MedicineNanjingChina
| | - Ruogu Qi
- School of Medicine & Holistic Integrative MedicineNanjing University of Chinese MedicineNanjingChina
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUS
| |
Collapse
|
16
|
Kim M, Panagiotakopoulou M, Chen C, Ruiz SB, Ganesh K, Tammela T, Heller DA. Micro-engineering and nano-engineering approaches to investigate tumour ecosystems. Nat Rev Cancer 2023; 23:581-599. [PMID: 37353679 PMCID: PMC10528361 DOI: 10.1038/s41568-023-00593-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/25/2023]
Abstract
The interactions among tumour cells, the tumour microenvironment (TME) and non-tumour tissues are of interest to many cancer researchers. Micro-engineering approaches and nanotechnologies are under extensive exploration for modelling these interactions and measuring them in situ and in vivo to investigate therapeutic vulnerabilities in cancer and extend a systemic view of tumour ecosystems. Here we highlight the greatest opportunities for improving the understanding of tumour ecosystems using microfluidic devices, bioprinting or organ-on-a-chip approaches. We also discuss the potential of nanosensors that can transmit information from within the TME or elsewhere in the body to address scientific and clinical questions about changes in chemical gradients, enzymatic activities, metabolic and immune profiles of the TME and circulating analytes. This Review aims to connect the cancer biology and engineering communities, presenting biomedical technologies that may expand the methodologies of the former, while inspiring the latter to develop approaches for interrogating cancer ecosystems.
Collapse
Affiliation(s)
- Mijin Kim
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
| | | | - Chen Chen
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional PhD Program in Chemical Biology, Sloan Kettering Institute, New York, NY, USA
| | - Stephen B Ruiz
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Tuomas Tammela
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, NY, USA
| | - Daniel A Heller
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA.
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
17
|
Kirschner F, Arnold-Schild D, Leps C, Łącki MK, Klein M, Chen Y, Ludt A, Marini F, Kücük C, Stein L, Distler U, Sielaff M, Michna T, Riegel K, Rajalingam K, Bopp T, Tenzer S, Schild H. Modulation of cellular transcriptome and proteome composition by azidohomoalanine-implications on click chemistry-based secretome analysis. J Mol Med (Berl) 2023; 101:855-867. [PMID: 37231147 PMCID: PMC10300158 DOI: 10.1007/s00109-023-02333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
The analysis of the secretome provides important information on proteins defining intercellular communication and the recruitment and behavior of cells in specific tissues. Especially in the context of tumors, secretome data can support decisions for diagnosis and therapy. The mass spectrometry-based analysis of cell-conditioned media is widely used for the unbiased characterization of cancer secretomes in vitro. Metabolic labeling using azide-containing amino acid analogs in combination with click chemistry facilitates this type of analysis in the presence of serum, preventing serum starvation-induced effects. The modified amino acid analogs, however, are less efficiently incorporated into newly synthesized proteins and may perturb protein folding. Combining transcriptome and proteome analysis, we elucidate in detail the effects of metabolic labeling with the methionine analog azidohomoalanine (AHA) on gene and protein expression. Our data reveal that 15-39% of the proteins detected in the secretome displayed changes in transcript and protein expression induced by AHA labeling. Gene Ontology (GO) analyses indicate that metabolic labeling using AHA leads to induction of cellular stress and apoptosis-related pathways and provide first insights on how this affects the composition of the secretome on a global scale. KEY MESSAGES: Azide-containing amino acid analogs affect gene expression profiles. Azide-containing amino acid analogs influence cellular proteome. Azidohomoalanine labeling induces cellular stress and apoptotic pathways. Secretome consists of proteins with dysregulated expression profiles.
Collapse
Affiliation(s)
- Friederike Kirschner
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Danielle Arnold-Schild
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Christian Leps
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Mateusz Krzysztof Łącki
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Matthias Klein
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
- Research Center for Immunotherapy (FZI), Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Yannic Chen
- Helmholtz Institute Translational Oncology, Obere Zahlbacher Straße 63, 55131, Mainz, Germany
| | - Annekathrin Ludt
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Can Kücük
- Helmholtz Institute Translational Oncology, Obere Zahlbacher Straße 63, 55131, Mainz, Germany
| | - Lara Stein
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Ute Distler
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
- Research Center for Immunotherapy (FZI), Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Malte Sielaff
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Thomas Michna
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Kristina Riegel
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tobias Bopp
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
- Research Center for Immunotherapy (FZI), Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- University Cancer Center Mainz, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- German Cancer Consortium (DKTK), Mainz, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
- Helmholtz Institute Translational Oncology, Obere Zahlbacher Straße 63, 55131, Mainz, Germany.
- Research Center for Immunotherapy (FZI), Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
- Helmholtz Institute Translational Oncology, Obere Zahlbacher Straße 63, 55131, Mainz, Germany.
- Research Center for Immunotherapy (FZI), Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
- University Cancer Center Mainz, Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
18
|
Hao L, Zhao RT, Welch NL, Tan EKW, Zhong Q, Harzallah NS, Ngambenjawong C, Ko H, Fleming HE, Sabeti PC, Bhatia SN. CRISPR-Cas-amplified urinary biomarkers for multiplexed and portable cancer diagnostics. NATURE NANOTECHNOLOGY 2023; 18:798-807. [PMID: 37095220 PMCID: PMC10359190 DOI: 10.1038/s41565-023-01372-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
Synthetic biomarkers, bioengineered sensors that generate molecular reporters in diseased microenvironments, represent an emerging paradigm in precision diagnostics. Despite the utility of DNA barcodes as a multiplexing tool, their susceptibility to nucleases in vivo has limited their utility. Here we exploit chemically stabilized nucleic acids to multiplex synthetic biomarkers and produce diagnostic signals in biofluids that can be 'read out' via CRISPR nucleases. The strategy relies on microenvironmental endopeptidase to trigger the release of nucleic acid barcodes and polymerase-amplification-free, CRISPR-Cas-mediated barcode detection in unprocessed urine. Our data suggest that DNA-encoded nanosensors can non-invasively detect and differentiate disease states in transplanted and autochthonous murine cancer models. We also demonstrate that CRISPR-Cas amplification can be harnessed to convert the readout to a point-of-care paper diagnostic tool. Finally, we employ a microfluidic platform for densely multiplexed, CRISPR-mediated DNA barcode readout that can potentially evaluate complex human diseases rapidly and guide therapeutic decisions.
Collapse
Affiliation(s)
- Liangliang Hao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Renee T Zhao
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicole L Welch
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Edward Kah Wei Tan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qian Zhong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nour Saida Harzallah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chayanon Ngambenjawong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Henry Ko
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heather E Fleming
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Pardis C Sabeti
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Nguyen NHA, Falagan-Lotsch P. Mechanistic Insights into the Biological Effects of Engineered Nanomaterials: A Focus on Gold Nanoparticles. Int J Mol Sci 2023; 24:4109. [PMID: 36835521 PMCID: PMC9963226 DOI: 10.3390/ijms24044109] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Nanotechnology has great potential to significantly advance the biomedical field for the benefit of human health. However, the limited understanding of nano-bio interactions leading to unknowns about the potential adverse health effects of engineered nanomaterials and to the poor efficacy of nanomedicines has hindered their use and commercialization. This is well evidenced considering gold nanoparticles, one of the most promising nanomaterials for biomedical applications. Thus, a fundamental understanding of nano-bio interactions is of interest to nanotoxicology and nanomedicine, enabling the development of safe-by-design nanomaterials and improving the efficacy of nanomedicines. In this review, we introduce the advanced approaches currently applied in nano-bio interaction studies-omics and systems toxicology-to provide insights into the biological effects of nanomaterials at the molecular level. We highlight the use of omics and systems toxicology studies focusing on the assessment of the mechanisms underlying the in vitro biological responses to gold nanoparticles. First, the great potential of gold-based nanoplatforms to improve healthcare along with the main challenges for their clinical translation are presented. We then discuss the current limitations in the translation of omics data to support risk assessment of engineered nanomaterials.
Collapse
Affiliation(s)
- Nhung H. A. Nguyen
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec (TUL), Studentsk. 2, 46117 Liberec, Czech Republic
| | - Priscila Falagan-Lotsch
- Department of Biological Sciences, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
20
|
Griego A, Scarpa E, De Matteis V, Rizzello L. Nanoparticle delivery through the BBB in central nervous system tuberculosis. IBRAIN 2023; 9:43-62. [PMID: 37786519 PMCID: PMC10528790 DOI: 10.1002/ibra.12087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 10/04/2023]
Abstract
Recent advances in Nanotechnology have revolutionized the production of materials for biomedical applications. Nowadays, there is a plethora of nanomaterials with potential for use towards improvement of human health. On the other hand, very little is known about how these materials interact with biological systems, especially at the nanoscale level, mainly because of the lack of specific methods to probe these interactions. In this review, we will analytically describe the journey of nanoparticles (NPs) through the brain, starting from the very first moment upon injection. We will preliminarily provide a brief overlook of the physicochemical properties of NPs. Then, we will discuss how these NPs interact with the body compartments and biological barriers, before reaching the blood-brain barrier (BBB), the last gate guarding the brain. Particular attention will be paid to the interaction with the biomolecular, the bio-mesoscopic, the (blood) cellular, and the tissue barriers, with a focus on the BBB. This will be framed in the context of brain infections, especially considering central nervous system tuberculosis (CNS-TB), which is one of the most devastating forms of human mycobacterial infections. The final aim of this review is not a collection, nor a list, of current literature data, as it provides the readers with the analytical tools and guidelines for the design of effective and rational NPs for delivery in the infected brain.
Collapse
Affiliation(s)
- Anna Griego
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| | - Edoardo Scarpa
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| | - Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”University of SalentoLecceItaly
| | - Loris Rizzello
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| |
Collapse
|
21
|
Wu Q, Fu S, Xiao H, Du J, Cheng F, Wan S, Zhu H, Li D, Peng F, Ding X, Wang L. Advances in Extracellular Vesicle Nanotechnology for Precision Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204814. [PMID: 36373730 PMCID: PMC9875626 DOI: 10.1002/advs.202204814] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/09/2022] [Indexed: 05/04/2023]
Abstract
Extracellular vesicles (EVs) have increasingly been recognized as important cell surrogates influencing many pathophysiological processes, including cellular homeostasis, cancer progression, neurologic disease, and infectious disease. These behaviors enable EVs broad application prospects for clinical application in disease diagnosis and treatment. Many studies suggest that EVs are superior to conventional synthetic carriers in terms of drug delivery and circulating biomarkers for early disease diagnosis, opening up new frontiers for modern theranostics. Despite these clinical potential, EVs containing diverse cellular components, such as nucleic acids, proteins, and metabolites are highly heterogeneous and small size. The limitation of preparatory, engineering and analytical technologies for EVs poses technical barriers to clinical translation. This article aims at present a critical overview of emerging technologies in EVs field for biomedical applications and challenges involved in their clinic translations. The current methods for isolation and identification of EVs are discussed. Additionally, engineering strategies developed to enhance scalable production and improved cargo loading as well as tumor targeting are presented. The superior clinical potential of EVs, particularly in terms of different cell origins and their application in the next generation of diagnostic and treatment platforms, are clarified.
Collapse
Affiliation(s)
- Qian Wu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Siyuan Fu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Hanyang Xiao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Jiaxin Du
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Fang Cheng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Shuangshuang Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Houjuan Zhu
- A*STAR (Agency for ScienceTechnology and Research)Singapore138634Singapore
| | - Dan Li
- Department of DermatologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Fei Peng
- Wellman Center for PhotomedicineMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02114USA
| | - Xianguang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| |
Collapse
|
22
|
Xu X, Wu J, Dai Z, Hu R, Xie Y, Wang L. Monte Carlo simulation of physical dose enhancement in core-shell magnetic gold nanoparticles with TOPAS. Front Oncol 2022; 12:992358. [PMID: 36185221 PMCID: PMC9516316 DOI: 10.3389/fonc.2022.992358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
The application of metal nanoparticles (MNPs) as sensitization materials is a common strategy that is used to study dose enhancement in radiotherapy. Recent in vitro tests have revealed that magnetic gold nanoparticles (NPs) can be used in cancer therapy under a magnetic field to enhance the synergistic efficiency in radiotherapy and photothermal therapy. However, magnetic gold NPs have rarely been studied as sensitization materials. In this study, we obtained further results of the sensitization properties of the magnetic gold NPs (Fe3O4@AuNPs) with or without magnetic field using the TOPAS-nBio Monte Carlo (MC) toolkit. We analyzed the properties of Fe3O4@AuNP in a single NP model and in a cell model under monoenergetic photons and brachytherapy, and we investigated whether the magnetic field contributes to the physical sensitization process. Our results revealed that the dose enhancement factor (DEF) of Fe3O4@AuNPs was lower than that of gold nanoparticles (AuNPs) in a single NP and in a cell irradiated by monoenergetic photons. But it’s worth mentioning that under a magnetic field, the DEF of targeted Fe3O4@AuNPs in a cell model with a clinical brachytherapy source was 22.17% (cytoplasm) and 6.89% (nucleus) higher than those of AuNPs (50 mg/mL). The Fe3O4@AuNPs were proved as an effective sensitization materials when combined with the magnetic field in MC simulation for the first time, which contributes to the research on in vitro tests on radiosensitization as well as clinical research in future.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianan Wu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhitao Dai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Rui Hu
- Department of Radiation Oncology, Affiliated Suzhou Hospital of Nanjing Medical University Suzhou Municipal Hospital, Suzhou, China
| | - Yaoqin Xie
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Luhua Wang, ; Yaoqin Xie,
| | - Luhua Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Luhua Wang, ; Yaoqin Xie,
| |
Collapse
|