1
|
Su Y, Zhu K, Wang J, Liu B, Chang Y, Chang D, You Y. Advancing Src kinase inhibition: From structural design to therapeutic innovation - A comprehensive review. Eur J Med Chem 2025; 287:117369. [PMID: 39952096 DOI: 10.1016/j.ejmech.2025.117369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Src kinase, a non-receptor tyrosine kinase implicated in cellular signaling networks, plays a pivotal role in tumor progression and therapeutic resistance. Despite intensive research efforts spanning decades, no Src-selective kinase inhibitors have yet entered clinical use, highlighting the challenges in developing targeted therapeutics. Here we review recent advances in small-molecule Src inhibitor development, focusing on structural design strategies, binding mechanisms, and therapeutic applications. We analyze emerging approaches including fragment-based drug design, allosteric targeting, and substrate-competitive inhibition that have yielded promising new scaffold classes. Special attention is given to innovations in achieving isozyme selectivity, particularly through exploitation of non-ATP binding pockets and covalent inhibition strategies. Integration of artificial intelligence, living organoid platforms, and targeted protein degradation technologies is accelerating inhibitor optimization. We discuss key challenges in Src inhibitor development, including the need for enhanced selectivity, reduced off-target effects, and improved resistance profiles. Our analysis reveals promising directions for future therapeutic development, emphasizing the importance of rational design principles guided by structural insights and emerging technologies. These findings provide a framework for developing next-generation Src inhibitors with improved clinical potential.
Collapse
Affiliation(s)
- Yifeng Su
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Kun Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiahao Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Boyan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yue Chang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Degui Chang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, China.
| | - Yaodong You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610072, China.
| |
Collapse
|
2
|
Neerasa J, Kim B, Chung H. Novel dual-targeting PROTAC degraders of GSK-3β and CDK5: A promising approach for pancreatic cancer treatment. Bioorg Med Chem 2025; 120:118085. [PMID: 39892097 DOI: 10.1016/j.bmc.2025.118085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Pancreatic cancer remains one of the most lethal malignancies, characterized by limited therapeutic options and poor prognoses. Here, we report the development of novel dual-targeting PROTAC (proteolysis-targeting chimera) compounds designed to concurrently degrade GSK-3β and CDK5. These bifunctional molecules were systematically designed by integrating three critical components: (1) a ligand that selectively binds GSK-3β and CDK5, (2) an E3 ligase-recruiting motif, and (3) an optimized linker to facilitate target engagement and proteasomal degradation. Our series of compounds (DBMG-01 through DBVR-PTC-02) demonstrated robust and selective target degradation in pancreatic cancer cell lines, achieving nanomolar DC50 values. Among these, the lead compound DBVR-PTC-02 exhibited exceptional potency, with DC50 values of 42 nM (Dmax = 90 %) for GSK-3β and 48 nM (Dmax = 88 %) for CDK5. DBVR-PTC-02 also displayed superior antiproliferative activity compared to single-target PROTACs and conventional kinase inhibitors, with an IC50 of 1.81 ± 0.55 µM in pancreatic cancer cell viability assays. This study establishes a novel framework for dual-targeted protein degradation and highlights the therapeutic potential of DBVR-PTC-02 as a promising candidate for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jayaprakash Neerasa
- R&D Department, DongBang Future Tech & Life Co., Ltd. Gyeonggi-do, South Korea.
| | - Bongsu Kim
- R&D Department, DongBang Future Tech & Life Co., Ltd. Gyeonggi-do, South Korea
| | - Hunsuk Chung
- R&D Department, DongBang Future Tech & Life Co., Ltd. Gyeonggi-do, South Korea.
| |
Collapse
|
3
|
Tan W, Wang Y, Li M, Zhao C, Hu Y, Gao R, Chen Z, Hu L, Li Q. A novel pyridine-2-one AMPK inhibitor: Discovery, mechanism, and in vivo evaluation in a hypoxic pulmonary arterial hypertension rat model. Eur J Med Chem 2025; 286:117266. [PMID: 39826489 DOI: 10.1016/j.ejmech.2025.117266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
AMP-activated protein kinase (AMPK), a heterotrimeric serine-threonine kinase, has been identified as a promising target for regulating vascular remodeling in pulmonary arterial hypertension (PAH) due to its capacity to promote proliferation, autophagy, and anti-apoptosis in pulmonary artery smooth muscle cells (PASMCs). However, research into AMPK inhibitors is very limited. Herein, a virtual screening strategy was employed to identify CHEMBL3780091 as a lead compound for a series of novel AMPK inhibitors by exploring the structure-activity relationship around a specific pyridine-2-one scaffold. Subsequently, the most promising 13a was observed to exhibit excellent AMPK inhibitory activity and favorable anti-proliferative activity against PASMCs through the inhibition of the AMPK signaling pathway in vitro. Moreover, compound 13a significantly reduced right ventricular systolic pressure, attenuated vascular remodeling, and improved right heart function in hypoxia-induced PAH rats in vivo. In conclusion, this study provides a novel and potential lead compound for the study of AMPK inhibitors and a new direction for the development of PAH drugs that focus on improving vascular remodeling.
Collapse
Affiliation(s)
- Wenhua Tan
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Yu Wang
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Mengqi Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Congke Zhao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Yuanbo Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Ruizhe Gao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China
| | - Liqing Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China.
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, 410013, Hunan, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, 410013, Hunan, China.
| |
Collapse
|
4
|
Zhao Z, Wang J, Liu M, Li Z, Cao F, Xu P, Fang Q, Yang J, Hu Z, Wu D, Liu R, Liu X. Neuropilin-1-target self-assembled peptide nanoparticles contribute to tumor treatment by inducing pyroptosis. BMC Cancer 2025; 25:413. [PMID: 40050758 PMCID: PMC11887077 DOI: 10.1186/s12885-025-13784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Expression of the Neuropilin-1 (NRP1) is reported in malignant cells of multiple human tumor types represented as a tumor marker. Targeting NRP1 with a peptide, CK3, is used for tumor molecular imaging, raising the question of the therapeutic potential of CK2, a peptide with a CK3 backbone which enhanced targeting and tumor enrichment properties. METHODS The tumor targeting and enrichment capacity of CK2 was detected by IncuCyte, flow cytometry and animal living imaging. To enhance its therapeutic efficacy, we developed a self-assembling peptide nanoparticles Fmoc-Gffy-AP-CK2, incorporating a peptide protective domain (Fmoc), a self-assemble domain (Gffy) and an anti-tumor peptide (AP). In vitro cellular assays and in vivo tumor-xenograft experiments were conducted to evaluate the anti-tumor effect of Fmoc-Gffy-AP-CK2. RESULTS While CK3 peptide specifically targets NRP1 in vitro and in vivo, CK2 markedly achieves stronger binding with NRP1 and higher tumor accumulation. Fmoc-Gffy-AP-CK2 exhibits a potent NRP1-dependent cytotoxic effect in vitro and in vivo. Mechanically, Fmoc-Gffy-AP-CK2 triggered caspase3/gasdermin E (GSDME)-mediated pyroptosis. Fmoc-Gffy-AP-CK2 also promotes the response rate of PD-1 checkpoint blockade. CONCLUSIONS CK2, When combined with Fmoc-Gffy-AP domain, Demonstrated high anti-tumor efficacy, Providing a novel strategy for tumor treatment.
Collapse
Affiliation(s)
- Zheng Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Jingyun Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Mengmeng Liu
- Department of Oncology, The Second Affiliated Hospital JiangxiMedical College Nanchang University, Nanchang, China, 330000
- Jiangxi Key Laboratory of Clinical Translational Cancer Research, Nanchang, 330000, Jiangxi, China
| | - Ziqian Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Fei Cao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Pengfei Xu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Qi Fang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Jie Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Zhulong Hu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Di Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
| | - Rongbin Liu
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Xuekui Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
5
|
Lorente JS, Sokolov AV, Ferguson G, Schiöth HB, Hauser AS, Gloriam DE. GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 2025:10.1038/s41573-025-01139-y. [PMID: 40033110 DOI: 10.1038/s41573-025-01139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 03/05/2025]
Abstract
G protein-coupled receptors (GPCRs) form one of the largest drug target families, reflecting their involvement in numerous pathophysiological processes. In this Review, we analyse drug discovery trends for the GPCR superfamily, covering compounds, targets and indications that have reached regulatory approval or that are being investigated in clinical trials. We find that there are 516 approved drugs targeting GPCRs, making up 36% of all approved drugs. These drugs act on 121 GPCR targets, one-third of all non-sensory GPCRs. Furthermore, 337 agents targeting 133 GPCRs, including 30 novel targets, are being investigated in clinical trials. Notably, 165 of these agents are approved drugs being tested for additional indications and novel agents are increasingly allosteric modulators and biologics. Remarkably, diabetes and obesity drugs targeting GPCRs had sales of nearly US $30 billion in 2023 and the numbers of clinical trials for GPCR modulators in the metabolic diseases, oncology and immunology areas are increasing strongly. Finally, we highlight the potential of untapped target-disease associations and pathway-biased signalling. Overall, this Review provides an up-to-date reference for the drugged and potentially druggable GPCRome to inform future GPCR drug discovery and development.
Collapse
Affiliation(s)
- Javier Sánchez Lorente
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aleksandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Gavin Ferguson
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- ALPX S.A.S., Grenoble, France
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Zhao Z, Bourne PE. Advances in reversible covalent kinase inhibitors. Med Res Rev 2025; 45:629-653. [PMID: 39287197 PMCID: PMC11796325 DOI: 10.1002/med.22084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Reversible covalent kinase inhibitors (RCKIs) are a class of novel kinase inhibitors attracting increasing attention because they simultaneously show the selectivity of covalent kinase inhibitors yet avoid permanent protein-modification-induced adverse effects. Over the last decade, RCKIs have been reported to target different kinases, including Atypical group of kinases. Currently, three RCKIs are undergoing clinical trials. Here, advances in RCKIs are reviewed to systematically summarize the characteristics of electrophilic groups, chemical scaffolds, nucleophilic residues, and binding modes. In so doing, we integrate key insights into privileged electrophiles, the distribution of nucleophiles, and hence effective design strategies for the development of RCKIs. Finally, we provide a further perspective on future design strategies for RCKIs, including those that target proteins other than kinases.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Data ScienceUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Philip E. Bourne
- School of Data ScienceUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
7
|
Si F, Ma X, Liu Q, Yu J. Reviewing the path to balance: mechanisms and management of hypertension associated with targeting vascular endothelium in cancer therapy. Hypertens Res 2025; 48:1034-1047. [PMID: 39820066 DOI: 10.1038/s41440-024-02086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 01/19/2025]
Abstract
Contemporary anticancer drugs are often accompanied by varying degrees of cardiovascular toxicity, with hypertension emerging as one of the most prevalent side effects, particularly linked to inhibitors of vascular endothelial growth factor receptor (VEGFR) and tyrosine kinase inhibitors (TKIs). Hypertension induced by cancer therapies contributes to increased cardiovascular mortality in cancer patients and survivors. Given the shared common risk factors and overlapping pathophysiological mechanisms, hypertension is also a prevalent comorbidity in this patient population. The mechanisms underlying hypertension induced by therapies targeting the vascular endothelial growth factor (VEGF) signaling pathway primarily involve reduced nitric oxide (NO) synthesis, increased endothelin-1 (ET-1) production, oxidative stress, microvascular rarefaction and dysfunction, decreased natriuresis, activation of the renin-angiotensin system (RAS), and partial endothelial cell death. Research into hypertension associated with therapies targeting the VEGF signaling pathway (VSP) could facilitate the optimization of cancer treatments, improve the evaluation and management of hypertension during targeted therapy, and help to reduce cardiovascular event rates and overall patient mortality. This review aims to provide a comprehensive summary of the current advancements in this area.
Collapse
Affiliation(s)
- Fei Si
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xin Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Qian Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jing Yu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
8
|
Wang H, Liang L, Xie Y, Gong H, Fan F, Wen C, Jiang Y, Lei S, Qiu X, Peng H, Ye M, Xiao X, Liu J. Pseudokinase TRIB3 stabilizes SSRP1 via USP10-mediated deubiquitination to promote multiple myeloma progression. Oncogene 2025; 44:694-708. [PMID: 39653795 DOI: 10.1038/s41388-024-03245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 03/05/2025]
Abstract
Multiple myeloma (MM), the world's second most common hematologic malignancy, poses considerable clinical challenges due to its aggressive progression and resistance to therapy. Addressing these challenges requires a detailed understanding of the mechanisms driving MM initiation, progression, and therapeutic resistance. This study identifies the pseudokinase tribble homolog 3 (TRIB3) as a high-risk factor that promotes MM malignancy in vitro and in vivo. Mechanistically, TRIB3 directly interacts with structure-specific recognition protein 1 (SSRP1) and ubiquitin-specific peptidase 10 (USP10), facilitating the formation of a TRIB3/USP10/SSRP1 ternary complex. This complex stabilizes SSRP1 via USP10-mediated deubiquitination, thereby driving MM cell proliferation. Furthermore, a stapled peptide, SP-A, was developed, which effectively disrupts the TRIB3/USP10/SSRP1 complex, leading to a decrease in SSRP1 levels by inhibiting its stabilization through USP10. Notably, SP-A exhibits strong synergistic effects when combined with the proteasome inhibitor bortezomib. Given the critical role of the TRIB3/USP10/SSRP1 complex in MM pathophysiology, it represents a promising therapeutic target for MM treatment. In MM cells, TRIB3, USP10 and SSRP1 form a ternary complex and TRIB3 enhances the deubiquitinating effect of USP10 on SSRP1, leading to malignant progression of MM. In the case of drug intervention, SP-A attenuates the binding of SSRP1 and USP10 by inhibiting protein interactions between TRIB3 and SSRP1 and promoted SSRP1 protein degradation, leading to significant inhibition of MM development. Visual abstract created with Biorender.
Collapse
Affiliation(s)
- Haiqin Wang
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Long Liang
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Yifang Xie
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Han Gong
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Feifan Fan
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Chengcai Wen
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Yu Jiang
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Shiying Lei
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Xili Qiu
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China.
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China.
| | - Xiaojuan Xiao
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China.
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital; School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
9
|
Tan L, Tu Y, Miao Z, Zhao Y, Liang Y, Zhong J, Zhong R, Xu N, Chen X, He C. Glycyrol alleviates osteoporosis through dual modulation on osteoclastogenesis and osteogenesis by targeting Syk signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156429. [PMID: 39939034 DOI: 10.1016/j.phymed.2025.156429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Osteoporosis, characterized by an imbalance between osteoclast-mediated bone resorption and osteoblast-mediated bone formation, has become a serious public health challenge worldwide. Glycyrol (GC) is a representative natural coumestan isolated from licorice that shows multiple pharmacological activities, but its anti-osteoporotic effect and underlying mechanisms remain unclear. RESULTS GC significantly suppressed lipopolysaccharide-induced mouse bone loss and dexamethasone-induced zebrafish bone formation deficiency. Meanwhile, GC exhibited dual effects of inhibiting osteoclast formation and bone resorption, and stimulating osteoblast differentiation and mineralization. By combining kinomic screening assay, bioinformatics analysis and cellular target engagement validation, spleen tyrosine kinase (Syk) was identified as a key kinase target of GC. Subsequently, Syk was determined to play important roles in promoting osteoclast formation and impeding osteoblast differentiation. Interestingly, GC directly bound to the active cavity of Syk through hydrogen bonds and significantly inhibited its activity. Moreover, GC remarkably inhibited RANKL-induced activation of Syk/PLCγ2/Ca2+/NFATc1 and MAPK pathways in macrophages undergoing differentiation into osteoclasts. CONCLUSION These results demonstrated that GC exerted a dual regulation on osteoclastogenesis and osteogenesis and consequently alleviated osteoporosis through targeting Syk and its downstream signaling pathways. In addition, the current study emphasizes the key roles of Syk in bone resorption and formation, suggesting the application potential of Syk inhibitors for the management of bone diseases. Meanwhile, this study provides evidence supporting the development of GC or its derivatives as effective anti-resorptive and bone anabolic agents for the prevention or treatment of osteoporosis and other bone diseases.
Collapse
Affiliation(s)
- Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China; School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhimin Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Yuxin Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Yongkai Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Jinmiao Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Ruting Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Nan Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, 999078, China.
| |
Collapse
|
10
|
Li S, Lin J, Huang L, Hu S, Wang M, Sun W, Sun S. STK31 drives tumor immune evasion through STAT3-IL-6 mediated CD8 + T cell exhaustion. Oncogene 2025:10.1038/s41388-024-03271-2. [PMID: 40025230 DOI: 10.1038/s41388-024-03271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 03/04/2025]
Abstract
Dysregulations in protein kinases significantly contribute to the initiation, progression, and drug resistance in non-small cell lung cancer (NSCLC). Identification of novel oncogenic drivers within the human kinome is crucial for targeted therapy. In this study, we conducted a comprehensive analysis of the TCGA database and literature, pinpointing 16 candidate genes in lung cancer exhibiting frequent dysregulation and limited research. Our functional analysis revealed Serine/threonine kinase 31 (STK31) as a key player in driving tumor growth, in immune-competent mice, with minimal impact in nude mice. Further investigations unveiled upregulation of STK31 led to CD8+ T cell exhaustion. Mechanistically, STK31 induced CD8+ T cell exhaustion through the signal transducer and activator of transcription 3 (STAT3) - interleukin 6 (IL-6) signaling pathway. Direct interaction between STK31 and STAT3 activated the transcription of downstream oncogenic targets, such as IL-6, facilitating immune escape. Moreover, STK31 exhibited elevated expression levels in lung cancer tissues compared to adjacent tissues and displayed a significant correlation with poor prognosis in lung cancer patients. This study defines a critical role of STK31 in promoting immune escape through STAT3 activation, positioning it as a promising therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Shasha Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Histology and Embryology, Department of Basic Medicine, Changzhi Medical College, Changzhi, China
| | - Jiaming Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaojie Hu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingwei Wang
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Sun
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Nie J, Sun X, He Y, Zhu M, Zhang X, Wang Q, Liu Z, Xie Z, Li Z, Liao C. Structure-Based Discovery of a Highly Selective, Oral Polo-Like Kinase 1 Inhibitor with Potent Antileukemic Activity. J Med Chem 2025; 68:4477-4497. [PMID: 39965158 DOI: 10.1021/acs.jmedchem.4c02422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Polo-like kinase 1 (PLK1) plays pivotal roles in cell division and cancer pathogenesis, making it a highly coveted therapeutic target for anticancer strategies. This article reports a series of PLK1 inhibitors developed using a structure-based strategy, culminating in the discovery of compound B31, a novel isoform-specific PLK1 inhibitor with excellent kinome selectivity. In vitro, this compound exhibited superior anticancer potency across a broad spectrum of cell lines, particularly against K562, achieving a remarkable IC50 value of 0.08 nM. In a mouse model harboring subcutaneous K562 tumors, oral administration of B31 at dosages of 10 or 20 mg/kg twice weekly exhibited remarkable antileukemic activity. B31 had minimal impact on HEK293T cells and very weak inhibitory activity against the hERG channel. Furthermore, in the acute toxicity test, this compound demonstrated an extraordinary safety profile even at a dosage of 500 mg/kg, highlighting its potential as a novel antileukemic agent.
Collapse
Affiliation(s)
- Jianyu Nie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaojiao Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan He
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Mingxin Zhu
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinglong Zhang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhongtang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
12
|
Tao H, Yang B, Farhangian A, Xu K, Li T, Zhang ZY, Li J. Covalent-Allosteric Inhibitors: Do We Get the Best of Both Worlds? J Med Chem 2025; 68:4040-4052. [PMID: 39937154 DOI: 10.1021/acs.jmedchem.4c02760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Covalent-allosteric inhibitors (CAIs) may achieve the best of both worlds: increased potency, long-lasting effects, and reduced drug resistance typical of covalent ligands, along with enhanced specificity and decreased toxicity inherent in allosteric modulators. Therefore, CAIs can be an effective strategy to transform many undruggable targets into druggable ones. However, CAIs are challenging to design. In this perspective, we analyze the discovery of known CAIs targeting three protein families: protein phosphatases, protein kinases, and GTPases. We also discuss how computational methods and tools can play a role in addressing the practical challenges of rational CAI design.
Collapse
Affiliation(s)
- Hui Tao
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bo Yang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Atena Farhangian
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ke Xu
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tongtong Li
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zhong-Yin Zhang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jianing Li
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Neale DA, Morris JC, Verrills NM, Ammit AJ. Understanding the regulatory landscape of protein phosphatase 2A (PP2A): Pharmacological modulators and potential therapeutics. Pharmacol Ther 2025; 269:108834. [PMID: 40023321 DOI: 10.1016/j.pharmthera.2025.108834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed serine/threonine phosphatase with a diverse and integral role in cellular signalling pathways. Consequently, its dysfunction is frequently observed in disease states such as cancer, inflammation and Alzheimer's disease. A growing understanding of both PP2A and its endogenous regulatory proteins has presented numerous targets for therapeutic intervention. This provides important context for the dynamic control and dysregulation of PP2A function in disease states. Understanding the intricate regulation of PP2A signalling in disease has resulted in the development of novel pharmacological agents aimed at restoring cellular homeostasis. Herein we review the structure and function of PP2A together with pharmacological modulators, both endogenous (proteins) and exogenous (small molecules and peptides), with relevance to targeting PP2A as a future pharmacotherapeutic strategy.
Collapse
Affiliation(s)
- David A Neale
- School of Chemistry, UNSW Sydney, NSW 2052, Australia
| | | | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, NSW 2308, Australia; Precision Medicine Program, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, Macquarie University, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
14
|
Zhang Y, Han Y, Li X, Huang M, Hao P, Kang J. Ultradeep Phosphoproteomics for Assessing Protein Kinase Inhibitor Selectivity on a Proteome Scale. J Med Chem 2025. [PMID: 40009782 DOI: 10.1021/acs.jmedchem.4c03170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The selectivity of protein kinase inhibitors (PKIs) remains a major challenge in drug discovery. In this study, we present an ultradeep phosphoproteomics approach for assessing PKI selectivity and elucidating mechanisms of action using Zanubrutinib as a model. Two complementary phosphoproteomics strategies were employed: phosphopeptides enriched with Zr4+-IMAC in combination with TiO2 beads were analyzed using data-independent acquisition (DIA), while tyrosine phosphopeptides enriched with SH2-Superbinder were analyzed via data-dependent acquisition (DDA). The comprehensive phosphoproteomic analysis identified that 97 and 316 phosphosites were significantly altered upon Zanubrutinib stimulation in the DDA and DIA data sets, respectively. Bioinformatics analysis of these phosphoproteins provided a detailed selectivity profile of Zanubrutinib, offering insights into its mechanism of action at the molecular level. Compared to existing methods, our approach is more comprehensive, has higher throughput, and is more precise─not only for PKI selectivity assessment but also for broader cell signaling research.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ying Han
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200120, China
| | - Xuan Li
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200120, China
| | - Min Huang
- Thermo Fisher Scientific (China), Shanghai 200131, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200120, China
| | - Jingwu Kang
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
15
|
Li H, Liu Y, Zhang S, Ma L, Zeng Z, Zhou Z, Gandon V, Xu H, Yi W, Wang S. Access to N-α-deuterated amino acids and DNA conjugates via Ca(II)-HFIP-mediated reductive deutero-amination of α-oxo-carbonyl compounds. Nat Commun 2025; 16:1816. [PMID: 39979333 PMCID: PMC11842556 DOI: 10.1038/s41467-025-57098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
The development of practical and selective strategies for deuterium incorporation to construct deuterated molecules, particularly deuterium-labeled amino acids, has become as a growing focus of basic research, yet it remains a formidable challenge. Herein, we present a bioinspired calcium-HFIP-mediated site-selective reductive deutero-amination of α-oxo-carbonyl compounds with amines. Utilizing d2-Hantzsch ester as the deuterium source, this reaction attains remarkable deuteration efficiency (> 99% deuteration). It enables the synthesis of N-α-deuterated amino acid motifs with a wide range of functionality, as evidenced by over 130 examples. The method exhibits compatibility with diverse substrates, such as amino acids, peptides, drug molecules, and natural products bearing different substituents. Moreover, the application of this strategy in the synthesis of DNA-tagged N-α-deuterated amino acids/peptides has been demonstrated. This work offers an efficient and innovative solution for deuterated amino acid chemistry and holds substantial application potential in organic synthesis, medicinal chemistry, and chemical biology.
Collapse
Affiliation(s)
- Haoran Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuwei Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Silin Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lei Ma
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhongyi Zeng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment Henri Moissan, Orsay, France
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Shengdong Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
16
|
Turina P, Petrosino M, Enriquez Sandoval CA, Novak L, Pasquo A, Alexov E, Alladin MA, Ascher DB, Babbi G, Bakolitsa C, Casadio R, Cheng J, Fariselli P, Folkman L, Kamandula A, Katsonis P, Li M, Li D, Lichtarge O, Mahmud S, Martelli PL, Pal D, Panday SK, Pires DEV, Portelli S, Pucci F, Rodrigues CHM, Rooman M, Savojardo C, Schwersensky M, Shen Y, Strokach AV, Sun Y, Woo J, Radivojac P, Brenner SE, Chiaraluce R, Consalvi V, Capriotti E. Assessing the predicted impact of single amino acid substitutions in MAPK proteins for CAGI6 challenges. Hum Genet 2025:10.1007/s00439-024-02724-8. [PMID: 39976676 DOI: 10.1007/s00439-024-02724-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/27/2024] [Indexed: 03/05/2025]
Abstract
New thermodynamic and functional studies have been recently conducted to evaluate the impact of amino acid substitutions on the Mitogen Activated Protein Kinases 1 and 3 (MAPK1/3). The Critical Assessment of Genome Interpretation (CAGI) data provider, at Sapienza University of Rome, measured the unfolding free energy and the enzymatic activity of a set of variants (MAPK challenge dataset). Thermodynamic measurements for the denaturant-induced equilibrium unfolding of the phosphorylated and unphosphorylated forms of the MAPKs were obtained by monitoring the far-UV circular dichroism and intrinsic fluorescence changes as a function of denaturant concentration. These values have been used to calculate the change in unfolding free energy between the variant and wild-type proteins at zero concentration of denaturant ( Δ Δ G H 2 O ). The enzymatic activity of the phosphorylated MAPKs variants was also measured using Chelation-Enhanced Fluorescence to monitor the phosphorylation of a peptide substrate. The MAPK challenge dataset, composed of a total of 23 single amino acid substitutions (11 and 12 for MAPK1 and MAPK3, respectively), was used to assess the effectiveness of the computational methods in predicting the Δ Δ G H 2 O values, associated with the variants, and categorize them as destabilizing and not destabilizing. The data on the enzymatic activity of the MAPKs mutants were used to assess the performance of the methods for predicting the functional impact of the variants. For the sixth edition of CAGI, thirteen independent research groups from four continents (Asia, Australia, Europe and North America) submitted > 80 sets of predictions, obtained from different approaches. In this manuscript, we summarized the results of our assessment to highlight the possible limitations of the available algorithms.
Collapse
Affiliation(s)
- Paola Turina
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Maria Petrosino
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Roma, 00185, Rome, Italy
| | | | - Leonore Novak
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Roma, 00185, Rome, Italy
| | - Alessandra Pasquo
- Diagnostics and Metrology Laboratory FSN-TECFIS-DIM, ENEA CR Frascati, 00044, Frascati, Italy
| | - Emil Alexov
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Muttaqi Ahmad Alladin
- Department of Computational and Data Sciences, Indian Institute of Science, Bangaluru, 560012, India
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Giulia Babbi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Constantina Bakolitsa
- Department of Plant and Microbial Biology and Center for Computational Biology, University of California, Berkeley, CA, 94720, USA
| | - Rita Casadio
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, NextGen Precision Health Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Piero Fariselli
- Department of Medical Sciences, University of Torino, 10126, Torino, Italy
| | - Lukas Folkman
- Institute for Integrated and Intelligent Systems, Griffith University, Southport, QLD, 4222, Australia
| | - Akash Kamandula
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Minghui Li
- School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Dong Li
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sajid Mahmud
- Department of Electrical Engineering and Computer Science, NextGen Precision Health Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Pier Luigi Martelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangaluru, 560012, India
| | | | - Douglas E V Pires
- School of Computing and Information Systems, The University of Melbourne, Melbourne, VIC, 3053, Australia
| | - Stephanie Portelli
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Carlos H M Rodrigues
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Castrense Savojardo
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Martin Schwersensky
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Yang Shen
- Department of Electrical and Computer Engineering Texas, A&M University, College Station, TX, 77843, USA
| | - Alexey V Strokach
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 2E4, Canada
| | - Yuanfei Sun
- Department of Electrical and Computer Engineering Texas, A&M University, College Station, TX, 77843, USA
| | | | - Predrag Radivojac
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Steven E Brenner
- Department of Plant and Microbial Biology and Center for Computational Biology, University of California, Berkeley, CA, 94720, USA
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA, 94720, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Roberta Chiaraluce
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Roma, 00185, Rome, Italy.
| | - Valerio Consalvi
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Roma, 00185, Rome, Italy.
| | - Emidio Capriotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy.
- Computational Genomics Platform, IRCCS University Hospital of Bologna, 40138, Bologna, Italy.
| |
Collapse
|
17
|
Wang G, Seidler NJ, Röhm S, Pan Y, Liang XJ, Haarer L, Berger BT, Sivashanmugam SA, Wydra VR, Forster M, Laufer SA, Chaikuad A, Gehringer M, Knapp S. Probing the Protein Kinases' Cysteinome by Covalent Fragments. Angew Chem Int Ed Engl 2025; 64:e202419736. [PMID: 39716901 DOI: 10.1002/anie.202419736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/23/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
Protein kinases are important drug targets, yet specific inhibitors have been developed for only a fraction of the more than 500 human kinases. A major challenge in designing inhibitors for highly related kinases is selectivity. Unlike their non-covalent counterparts, covalent inhibitors offer the advantage of selectively targeting structurally similar kinases by modifying specific protein side chains, particularly non-conserved cysteines. Previously, covalent fragment screens yielded potent and selective inhibitors for individual kinases such as ERK1/2 but have not been applied to the broader kinome. Furthermore, many of the accessible cysteine positions have not been addressed so far. Here, we outline a generalizable approach to sample ATP-site cysteines with fragment-like covalent inhibitors. We present the development of a kinase-focused covalent fragment library and its systematic screening against a curated selection of 47 kinases, with 60 active site-proximal cysteines using LC/MS and differential scanning fluorimetry (DSF) assays, followed by hit validation through various complementary techniques. Our findings expand the repertoire of targetable cysteines within protein kinases, provide insight into unique binding modes identified from crystal structures and deliver isoform-specific hits with promising profiles as starting points for the development of highly potent and selective covalent inhibitors.
Collapse
Affiliation(s)
- Guiqun Wang
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), DKTK Site Frankfurt-Mainz, German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| | - Nico J Seidler
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
| | - Sandra Röhm
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Yufeng Pan
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Xiaojun Julia Liang
- Faculty of Medicine, Institute for Biomedical Engineering, Department for Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Lisa Haarer
- Faculty of Medicine, Institute for Biomedical Engineering, Department for Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Benedict-Tilman Berger
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Saran Aswathaman Sivashanmugam
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Valentin R Wydra
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
| | - Michael Forster
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Stefan A Laufer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Apirat Chaikuad
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Matthias Gehringer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Faculty of Medicine, Institute for Biomedical Engineering, Department for Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), DKTK Site Frankfurt-Mainz, German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| |
Collapse
|
18
|
Estevam GO, Linossi E, Rao J, Macdonald CB, Ravikumar A, Chrispens KM, Capra JA, Coyote-Maestas W, Pimentel H, Collisson EA, Jura N, Fraser JS. Mapping kinase domain resistance mechanisms for the MET receptor tyrosine kinase via deep mutational scanning. eLife 2025; 13:RP101882. [PMID: 39960754 PMCID: PMC11832172 DOI: 10.7554/elife.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Mutations in the kinase and juxtamembrane domains of the MET Receptor Tyrosine Kinase are responsible for oncogenesis in various cancers and can drive resistance to MET-directed treatments. Determining the most effective inhibitor for each mutational profile is a major challenge for MET-driven cancer treatment in precision medicine. Here, we used a deep mutational scan (DMS) of ~5764 MET kinase domain variants to profile the growth of each mutation against a panel of 11 inhibitors that are reported to target the MET kinase domain. We validate previously identified resistance mutations, pinpoint common resistance sites across type I, type II, and type I ½ inhibitors, unveil unique resistance and sensitizing mutations for each inhibitor, and verify non-cross-resistant sensitivities for type I and type II inhibitor pairs. We augment a protein language model with biophysical and chemical features to improve the predictive performance for inhibitor-treated datasets. Together, our study demonstrates a pooled experimental pipeline for identifying resistance mutations, provides a reference dictionary for mutations that are sensitized to specific therapies, and offers insights for future drug development.
Collapse
Affiliation(s)
- Gabriella O Estevam
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Edmond Linossi
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Jingyou Rao
- Department of Computer Science, University of California, Los AngelesLos AngelesUnited States
| | - Christian B Macdonald
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Ashraya Ravikumar
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Karson M Chrispens
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Biophysics Graduate ProgramSan FranciscoUnited States
| | - John A Capra
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San FranciscoSan FranciscoUnited States
| | - Willow Coyote-Maestas
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Harold Pimentel
- Department of Computer Science, University of California, Los AngelesLos AngelesUnited States
- Department of Computational Medicine and Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Eric A Collisson
- Human Biology, Fred Hutchinson Cancer CenterSeattleUnited States
- Department of Medicine, University of WashingtonSeattleUnited States
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California, San FranciscoSan FranciscoUnited States
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
19
|
Valipour M, Zakeri Khatir Z, Ayati A, Hosseini A, Sheibani M, Irannejad H. Advances in the selective c-MET kinase inhibitors: Application of fused [5,6]-Bicyclic nitrogen-containing cores for anticancer drug design. Eur J Med Chem 2025; 284:117177. [PMID: 39724725 DOI: 10.1016/j.ejmech.2024.117177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Over the past two decades, small molecules bearing [5,6]-bicyclic nitrogen-containing cores have emerged as one of the most extensively studied structures for the development of selective c-MET kinase inhibitors. Structure-activity relationship (SAR) studies have demonstrated that modifying these cores can significantly impact the biological properties of c-MET inhibitors, including safety/toxicity, potency, and metabolic stability. For example, although c-MET kinase inhibitors containing the [1,2,4]triazolo[4,3-b][1,2,4]triazine scaffold (core P) exhibit high inhibitory potency, they often face challenges due to metabolic stability defects. Alternatively, compounds containing [1,2,3]triazolo[4,5-b]pyrazine (core K) and [1,2,4]triazolo[4,3-b]pyridazine (core I) scaffolds demonstrate lower potency but improved metabolic stability, allowing some of them to progress into clinical trials and even be approved as novel anticancer drugs. Fortunately, X-ray crystallography studies have well elucidated key interactions between [5,6]-bicyclic nitrogen-containing cores and crucial amino acid residues within the c-MET active site. These insights emphasize the significance of π-π stacking interactions with Tyr1230 and hydrogen bonding with Asp1222, providing valuable guidance for the targeted design and optimization of selective c-MET kinase inhibitors. Following the identification/introduction of sixteen distinct [5,6]-bicyclic nitrogen-containing cores (cores A-P) utilized in the design of selective c-MET kinase inhibitors over the past two decades, this manuscript offers a comprehensive review of their roles in drug development of anticancer agents, and describes the various synthesis methods employed. The insights presented herein can serve as a resource for better structural optimization of c-MET kinase inhibitors in the future research.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Zakeri Khatir
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Adileh Ayati
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
20
|
Korovesis D, Mérillat C, Derua R, Verhelst SHL. Proteome selectivity profiling of photoaffinity probes derived from imidazopyrazine-kinase inhibitors. Commun Chem 2025; 8:34. [PMID: 39910186 PMCID: PMC11799219 DOI: 10.1038/s42004-025-01436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
Kinases are attractive drug targets, but the design of highly selective kinase inhibitors remains challenging. Selectivity may be evaluated against a panel of kinases, or - preferred - in a complex proteome. Probes that allow photoaffinity-labeling of their targets can facilitate this process. Here, we report photoaffinity probes based on the imidazopyrazine scaffold, which is found in several kinase inhibitors and drugs or drug candidates. By chemical proteomics experiments, we find a range of off-targets, which vary between the different probes. In silico analysis suggests that differences between probes may be related to the size, spatial arrangement and rigidity of the imidazopyrazine and its substituent at the 1-position.
Collapse
Affiliation(s)
- Dimitris Korovesis
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Christel Mérillat
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, KU Leuven - University of Leuven, Leuven, Belgium
| | - Rita Derua
- Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven - University of Leuven, Leuven, Belgium
- SyBioMa, KU Leuven, Leuven, Belgium
| | - Steven H L Verhelst
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, KU Leuven - University of Leuven, Leuven, Belgium.
| |
Collapse
|
21
|
Schuh MG, Boldini D, Bohne AI, Sieber SA. Barlow Twins deep neural network for advanced 1D drug-target interaction prediction. J Cheminform 2025; 17:18. [PMID: 39910404 PMCID: PMC11800607 DOI: 10.1186/s13321-025-00952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
Accurate prediction of drug-target interactions is critical for advancing drug discovery. By reducing time and cost, machine learning and deep learning can accelerate this laborious discovery process. In a novel approach, BarlowDTI, we utilise the powerful Barlow Twins architecture for feature-extraction while considering the structure of the target protein. Our method achieves state-of-the-art predictive performance against multiple established benchmarks using only one-dimensional input. The use of our hybrid approach of deep learning and gradient boosting machine as the underlying predictor ensures fast and efficient predictions without the need for substantial computational resources. We also propose the use of an influence method to investigate how the model reaches its decision based on individual training samples. By comparing co-crystal structures, we find that BarlowDTI effectively exploits catalytically active and stabilising residues, highlighting the model's ability to generalise from one-dimensional input data. In addition, we further benchmark new baselines against existing methods. Together, these innovations improve the efficiency and effectiveness of drug-target interactions predictions, providing robust tools for accelerating drug development and deepening the understanding of molecular interactions. Therefore, we provide an easy-to-use web interface that can be freely accessed at https://www.bio.nat.tum.de/oc2/barlowdti . SCIENTIFIC CONTRIBUTION: Our computationally efficient and effective hybrid approach, combining the deep learning model Barlow Twins and gradient boosting machines, outperforms state-of-the-art methods across multiple splits and benchmarks using only one-dimensional input. Furthermore, we advance the field by proposing an influence method that elucidates model decision-making, thereby providing deeper insights into molecular interactions and improving the interpretability of drug-target interactions predictions.
Collapse
Affiliation(s)
- Maximilian G Schuh
- Chair of Organic Chemistry II, Department of Bioscience, TUM School of Natural Sciences, Center for Functional Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748, Garching bei München, Bavaria, Germany
| | - Davide Boldini
- Chair of Organic Chemistry II, Department of Bioscience, TUM School of Natural Sciences, Center for Functional Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748, Garching bei München, Bavaria, Germany.
| | - Annkathrin I Bohne
- Chair of Biochemistry, Department of Bioscience, TUM School of Natural Sciences, Center for Functional Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748, Garching bei München, Bavaria, Germany
| | - Stephan A Sieber
- Chair of Organic Chemistry II, Department of Bioscience, TUM School of Natural Sciences, Center for Functional Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer Str. 8, 85748, Garching bei München, Bavaria, Germany.
| |
Collapse
|
22
|
Jose S, Sharma H, Insan J, Sharma K, Arora V, Puranapanda S, Dhamija S, Eid N, Menon MB. Kinase Inhibitor-Induced Cell-Type Specific Vacuole Formation in the Absence of Canonical ATG5-Dependent Autophagy Initiation Pathway. Mol Cell Biol 2025; 45:99-115. [PMID: 39895059 DOI: 10.1080/10985549.2025.2454421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 11/20/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Pyridinyl-imidazole class p38 MAPKα/β (MAPK14/MAPK11) inhibitors including SB202190 have been shown to induce cell-type specific defective autophagy resulting in micron-scale vacuole formation, cell death, and tumor suppression. We had earlier shown that this is an off-target effect of SB202190. Here we provide evidence that this vacuole formation is independent of ATG5-mediated canonical autophagosome initiation. While SB202190 interferes with autophagic flux in many cell lines parallel to vacuolation, autophagy-deficient DU-145 cells and CRISPR/Cas9 gene-edited ATG5-knockout A549 cells also undergo vacuolation upon SB202190 treatment. Late-endosomal GTPase RAB7 colocalizes with these compartments and RAB7 GTP-binding is essential for SB202190-induced vacuolation. A screen for modulators of SB202190-induced vacuolation revealed molecules including multi-kinase inhibitor sorafenib as inhibitors of vacuolation and sorafenib co-treatment enhanced cytotoxicity of SB202190. Moreover, VE-821, an ATR inhibitor was found to phenocopy the cell-type specific vacuolation response of SB202190. To identify the factors determining the cell-type specificity of vacuolation induced by SB-compounds and VE-821, we compared the transcriptomics data from vacuole-forming and non-vacuole-forming cancer cell lines and identified a gene expression signature that may define sensitivity of cells to these small-molecules. Further analyses using small molecule tools and the gene signature discovered here, could reveal novel mechanisms regulating this interesting anti-cancer phenotype.
Collapse
Affiliation(s)
- Susan Jose
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Himanshi Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Janki Insan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Khushboo Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Varun Arora
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | | | - Sonam Dhamija
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Nabil Eid
- Department of Anatomy, Division of Human Biology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Manoj B Menon
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
23
|
Yang S, Zheng Y, Zhou C, Yao J, Yan G, Shen C, Kong S, Xiong Y, Sun Q, Sun Y, Shen H, Bian L, Qian K, Liu X. Multidimensional Proteomic Landscape Reveals Distinct Activated Pathways Between Human Brain Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410142. [PMID: 39716938 PMCID: PMC11831486 DOI: 10.1002/advs.202410142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/11/2024] [Indexed: 12/25/2024]
Abstract
Brain metastases (BrMs) and gliomas are two typical human brain tumors with high incidence of mortalities and distinct clinical challenges, yet the understanding of these two types of tumors remains incomplete. Here, a multidimensional proteomic landscape of BrMs and gliomas to infer tumor-specific molecular pathophysiology at both tissue and plasma levels is presented. Tissue sample analysis reveals both shared and distinct characteristics of brain tumors, highlighting significant disparities between BrMs and gliomas with differentially activated upstream pathways of the PI3K-Akt signaling pathway that have been scarcely discussed previously. Novel proteins and phosphosites such as NSUN2, TM9SF3, and PRKCG_S330 are also detected, exhibiting a high correlation with reported clinical traits, which may serve as potential immunohistochemistry (IHC) biomarkers. Moreover, tumor-specific altered phosphosites and glycosites on FN1 are highlighted as potential therapeutic targets. Further validation of 110 potential noninvasive biomarkers yields three biomarker panels comprising a total of 19 biomarkers (including DES, VWF, and COL1A1) for accurate discrimination of two types of brain tumors and normal controls. In summary, this is a full-scale dataset of two typical human brain tumors, which serves as a valuable resource for advancing precision medicine in cancer patients through targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Shuang Yang
- Institute of Translational MedicineShanghai Jiao Tong UniversityShanghai200241P. R. China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032P. R. China
| | - Yongtao Zheng
- Institute of Translational MedicineShanghai Jiao Tong UniversityShanghai200241P. R. China
- Department of NeurosurgeryRuijin HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200025P. R. China
| | - Chengbin Zhou
- Department of NeurosurgeryRuijin HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200025P. R. China
| | - Jun Yao
- Institutes of Biomedical SciencesFudan UniversityShanghai200032P. R. China
| | - Guoquan Yan
- Institutes of Biomedical SciencesFudan UniversityShanghai200032P. R. China
| | - Chengpin Shen
- Shanghai Omicsolution Co., Ltd.Shanghai200000P. R. China
| | - Siyuan Kong
- Institutes of Biomedical SciencesFudan UniversityShanghai200032P. R. China
| | - Yueting Xiong
- Institutes of Biomedical SciencesFudan UniversityShanghai200032P. R. China
| | - Qingfang Sun
- Department of NeurosurgeryRuijin HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200025P. R. China
| | - Yuhao Sun
- Institute of Translational MedicineShanghai Jiao Tong UniversityShanghai200241P. R. China
- Department of NeurosurgeryRuijin HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200025P. R. China
| | - Huali Shen
- Institutes of Biomedical SciencesFudan UniversityShanghai200032P. R. China
| | - Liuguan Bian
- Institute of Translational MedicineShanghai Jiao Tong UniversityShanghai200241P. R. China
- Department of NeurosurgeryRuijin HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200025P. R. China
| | - Kun Qian
- Institute of Translational MedicineShanghai Jiao Tong UniversityShanghai200241P. R. China
| | - Xiaohui Liu
- Institute of Translational MedicineShanghai Jiao Tong UniversityShanghai200241P. R. China
- Institutes of Biomedical SciencesFudan UniversityShanghai200032P. R. China
| |
Collapse
|
24
|
van Bergen W, Nederstigt AE, Heck AJR, Baggelaar MP. Site-Specific Competitive Kinase Inhibitor Target Profiling Using Phosphonate Affinity Tags. Mol Cell Proteomics 2025; 24:100906. [PMID: 39826875 PMCID: PMC11889359 DOI: 10.1016/j.mcpro.2025.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025] Open
Abstract
Protein kinases are prime targets for drug development due to their involvement in various cancers. However, selective inhibition of kinases, while avoiding off-target effects remains a significant challenge for the development of protein kinase inhibitors. Activity-based protein profiling (ABPP), in combination with pan-kinase activity-based probes (ABPs) and mass spectrometry-based proteomics, enables the identification of kinase drug targets. Here, we extend existing ABPP strategies for kinase profiling with a site-specific analysis, allowing for protein kinase inhibitor target engagement profiling with amino acid specificity. The site-specific approach involves highly efficient enrichment of ABP-labeled peptides, resulting in a less complex peptide matrix, straightforward data analysis, and the screening of over ∼100 kinase active sites in a single LC-MS analysis. The complementary use of both trypsin and pepsin in parallel to generate the ABP-labeled peptides considerably expanded the coverage of kinases and pinpoint the exact binding sites. Using the site-specific strategy to examine the on- and off-targets of the Ephrin receptor (Eph) B4 inhibitor NVP-BHG712 showed binding to EphA2 with an IC50 of 17 nM and EphB4 with an IC50 of 20 nM. Next to the known targets, EphA2 and EphB4, NVP-BHG712 bound to the discoidin domain-containing receptor 1 with an IC50 of 2.1 nM, suggesting that a discoidin domain-containing receptor 1-targeting regio-isomer of NVP-BHG712 was used. The promiscuity of XO44 toward ATP-binding pockets on nonkinase proteins facilitated the screening of additional off-target sites, revealing inosine-5'-monophosphate dehydrogenase 2 as a putative off-target. Expanding the search to other amino acids revealed that XO44, in addition to 745 lysines, also covalently linked 715 tyrosines, which significantly expands the competitive ABPP search space and highlights the added value of the site-specific method. Therefore, the presented approach, which can be fully automated with liquid handling platforms, provides a straightforward, valuable new approach for competitive site-specific kinase inhibitor target profiling.
Collapse
Affiliation(s)
- Wouter van Bergen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, CH, The Netherlands; Netherlands Proteomics Center, Utrecht, CH, The Netherlands
| | - Anneroos E Nederstigt
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, CH, The Netherlands; Netherlands Proteomics Center, Utrecht, CH, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, CH, The Netherlands; Netherlands Proteomics Center, Utrecht, CH, The Netherlands
| | - Marc P Baggelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, CH, The Netherlands; Netherlands Proteomics Center, Utrecht, CH, The Netherlands.
| |
Collapse
|
25
|
Kosheleva L, Koshelev D, Lagunas-Rangel FA, Levit S, Rabinovitch A, Schiöth HB. Disease-modifying pharmacological treatments of type 1 diabetes: Molecular mechanisms, target checkpoints, and possible combinatorial treatments. Pharmacol Rev 2025; 77:100044. [PMID: 40014914 DOI: 10.1016/j.pharmr.2025.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/01/2025] Open
Abstract
After a century of extensive scientific investigations, there is still no curative or disease-modifying treatment available that can provide long-lasting remission for patients diagnosed with type 1 diabetes (T1D). Although T1D has historically been regarded as a classic autoimmune disorder targeting and destroying pancreatic islet β-cells, significant research has recently demonstrated that β-cells themselves also play a substantial role in the disease's progression, which could explain some of the unfavorable clinical outcomes. We offer a thorough review of scientific and clinical insights pertaining to molecular mechanisms behind pathogenesis and the different therapeutic interventions in T1D covering over 20 possible pharmaceutical intervention treatments. The interventions are categorized as immune therapies, treatments targeting islet endocrine dysfunctions, medications with dual modes of action in immune and islet endocrine cells, and combination treatments with a broader spectrum of activity. We suggest that these collective findings can provide a valuable platform to discover new combinatorial synergies in search of the curative disease-modifying intervention for T1D. SIGNIFICANCE STATEMENT: This research delves into the underlying causes of T1D and identifies critical mechanisms governing β-cell function in both healthy and diseased states. Thus, we identify specific pathways that could be manipulated by existing or new pharmacological interventions. These interventions fall into several categories: (1) immunomodifying therapies individually targeting immune cell processes, (2) interventions targeting β-cells, (3) compounds that act simultaneously on both immune cell and β-cell pathways, and (4) combinations of compounds simultaneously targeting immune and β-cell pathways.
Collapse
Affiliation(s)
- Liudmila Kosheleva
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Daniil Koshelev
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Shmuel Levit
- Diabetes and Metabolism Institute, Assuta Medical Centers, Tel Aviv, Israel
| | | | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia.
| |
Collapse
|
26
|
Chiwoneso TC, Luo Y, Xu Y, Chen X, Chen L, Sun J. Kinases and their derived inhibitors from natural products. Bioorg Chem 2025; 156:108196. [PMID: 39908736 DOI: 10.1016/j.bioorg.2025.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/03/2024] [Accepted: 01/18/2025] [Indexed: 02/07/2025]
Abstract
Protein kinase dysregulation is a hallmark of many cancers, yet their tumorigenic mechanisms remain elusive despite 60 years of study. Since learning that their mechanism includes catalyzing phosphorylation of amino acids in protein substrates, researchers began devising their inhibition strategies. Initially, protein kinase inhibitors (PKIs) derived from natural products were employed despite high cytotoxicity risks. While synthetic PKIs proved less toxic, they face significant drug resistance challenges. This review examines the progress in understanding protein kinases' role in cancer, their classification and modes of action since their discovery. To illuminate the path towards less toxic yet highly effective kinase inhibitors, this study analyzes the synthesis and modification of all FDA-approved natural product derived kinase inhibitors (NPDKIs) as well as those that failed clinical trials. By providing insights into successful and unsuccessful approaches, this review also aims to advance medicinal chemistry strategies for developing more effective and safer PKIs, potentially improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Takudzwa Chipeperengo Chiwoneso
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Yajing Luo
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Yifan Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Xinyu Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China
| | - Li Chen
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China.
| | - Jianbo Sun
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198 China.
| |
Collapse
|
27
|
Yan H, Huang X, Zhou Y, Mu Y, Zhang S, Cao Y, Wu W, Xu Z, Chen X, Zhang X, Wang X, Yang X, Yang B, He Q, Luo P. Disturbing Cholesterol/Sphingolipid Metabolism by Squalene Epoxidase Arises Crizotinib Hepatotoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414923. [PMID: 39836491 DOI: 10.1002/advs.202414923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/13/2025] [Indexed: 01/23/2025]
Abstract
Metabolic disorders have been identified as one of the causes of drug-induced liver injury; however, the direct regulatory mechanism regarding this disorder has not yet been clarified. In this study, a single regulatory mechanism of small molecule kinase inhibitors, with crizotinib as the representative drug is elucidated. First, it is discovered that crizotinib induced aberrant lipid metabolism and apoptosis in the liver. A mechanistic study revealed that crizotinib treatment promoted the accumulation of squalene epoxidase (SQLE) by inhibiting autophagosome-lysosome fusion which blocked the autophagic degradation of SQLE. A maladaptive increase in SQLE led to disturbances in cholesterol and sphingolipid metabolism via an enzymatic activity-dependent manner. Abnormal cholesterol results in both steatosis and inflammatory infiltration, and disturbances in sphingolipid metabolism promote cell apoptosis by inducing lysosomal membrane permeabilization. The restoration of the level or activity of SQLE ameliorated steatosis and hepatocyte injury. The autophagy activator known as metformin or the SQLE enzymatic inhibitor known as terbinafine has potential clinical use for alleviating crizotinib hepatotoxicity.
Collapse
Affiliation(s)
- Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangliang Huang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yourong Zhou
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Mu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shaoyin Zhang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yashi Cao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xueqin Chen
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiaohong Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
28
|
Lee J, Bang D, Kim S. Residue-Level Multiview Deep Learning for ATP Binding Site Prediction and Applications in Kinase Inhibitors. J Chem Inf Model 2025; 65:50-61. [PMID: 39690486 DOI: 10.1021/acs.jcim.4c01255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Accurate identification of adenosine triphosphate (ATP) binding sites is crucial for understanding cellular functions and advancing drug discovery, particularly in targeting kinases for cancer treatment. Existing methods face significant challenges due to their reliance on time-consuming precomputed features and the heavily imbalanced nature of binding site data without further investigations on their utility in drug discovery. To address these limitations, we introduced Multiview-ATPBind and ResiBoost. Multiview-ATPBind is an end-to-end deep learning model that integrates one-dimensional (1D) sequence and three-dimensional (3D) structural information for rapid and precise residue-level pocket-ligand interaction predictions. Additionally, ResiBoost is a novel residue-level boosting algorithm designed to mitigate data imbalance by enhancing the prediction of rare positive binding residues. Our approach outperforms state-of-the-art models on benchmark data sets, showing significant improvements in balanced metrics with both experimental and AI-predicted structures. Furthermore, our model seamlessly transfers to predicting binding sites and enhancing docking simulations for kinase inhibitors, including imatinib and dasatinib, underscoring the potential of our method in drug discovery applications.
Collapse
Affiliation(s)
- Jaechan Lee
- Department of Computer Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- AIGENDRUG Co., Ltd., Seoul 08826, Republic of Korea
| | - Dongmin Bang
- AIGENDRUG Co., Ltd., Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Kim
- Department of Computer Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- AIGENDRUG Co., Ltd., Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Artificial Intelligence, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
29
|
Shirley DJ, Nandakumar M, Cabrera A, Yiu B, Puumala E, Liu Z, Robbins N, Whitesell L, Smith JL, Lyons SP, Mordant AL, Herring LE, Graves LM, Couñago RM, Drewry DH, Cowen LE, Willson TM. Chemoproteomic Profiling of C. albicans for Characterization of Anti-fungal Kinase Inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632200. [PMID: 39829896 PMCID: PMC11741263 DOI: 10.1101/2025.01.10.632200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Candida albicans is a growing health concern as the leading causal agent of systemic candidiasis, a life-threatening fungal infection with a mortality rate of ~40% despite best available therapy. Yck2, a fungal casein kinase 1 (CK1) family member, is the cellular target of inhibitors YK-I-02 (YK) and MN-I-157 (MN). Here, multiplexed inhibitor beads paired with mass spectrometry (MIB/MS) employing ATP-competitive kinase inhibitors were used to define the selectivity of these Yck2 inhibitors across the global C. albicans proteome. The MIB matrix captured 89% of the known and predicted C. albicans protein kinases present in cell lysate. In MIB/MS competition assays, YK and MN demonstrated exquisite selectivity across the C. albicans fungal kinome with target engagement of only three CK1 homologs (Yck2, Yck22, and Hrr25) and a homolog of human p38α (Hog1). Additional chemoproteomics using a custom MN-kinobead identified only one additional C. albicans protein, confirming its remarkable fungal proteome-wide selectivity. To identify new Yck2 inhibitors with selectivity over Hog1, thirteen human CK1 kinase inhibitors were profiled for fungal kinase-binding activity using MIB/MS competition assays and in-cell NanoBRET target engagement assays. A new chemotype of family-selective Yck2 inhibitors with antifungal activity was identified. Together, these findings expand the application of MIB/MS proteomic profiling for non-human kinomes and demonstrate its utility in the discovery and development of selective inhibitors of fungal kinases with potential antimicrobial activity.
Collapse
Affiliation(s)
- David J Shirley
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Meganathan Nandakumar
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Aurora Cabrera
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bonnie Yiu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Jeffrey L Smith
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott P Lyons
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Angie L Mordant
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lee M Graves
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rafael M Couñago
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, University of Campinas, 13083-886-Campinas, SP, Brazil
| | - David H Drewry
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Timothy M Willson
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
30
|
Haag A, Němec V, Janovská P, Bartošíková J, Adhikari B, Müller J, Schwalm MP, Čada Š, Ohmayer U, Daub H, Kim Y, Born F, Wolf E, Bryja V, Knapp S. Development and Discovery of a Selective Degrader of Casein Kinases 1 δ/ε. J Med Chem 2025; 68:506-530. [PMID: 39729064 DOI: 10.1021/acs.jmedchem.4c02201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Members of the casein kinase 1 (CK1) family have emerged as key regulators of cellular signaling and as potential drug targets. Functional annotation of the 7 human isoforms would benefit from isoform-selective inhibitors, allowing studies on the role of these enzymes in normal physiology and disease pathogenesis. However, due to significant sequence homology within the catalytic domain, isoform selectivity is difficult to achieve with conventional small molecules. Here, we used a PROTAC (Proteolysis TArgeting Chimeras) approach to develop a highly selective degrader AH078 (37) targeting CK1δ and CK1ε with excellent selectivity over the highly related CK1α isoform. The developed PROTAC, AH078 (37) selectively degraded CK1δ and CK1ε with a DC50 of 200 nM. Characterization of AH078 (37) revealed a VHL and Ubiquitin-dependent degradation mechanism. Thus, AH078 (37) represents a versatile chemical tool to study CK1δ and CK1ε function in cellular systems.
Collapse
Affiliation(s)
- Adrian Haag
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Václav Němec
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Pavlína Janovská
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jana Bartošíková
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Bikash Adhikari
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Str. 1, Kiel 24118, Germany
| | - Juliane Müller
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Str. 1, Kiel 24118, Germany
| | - Martin P Schwalm
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Uli Ohmayer
- NEOsphere Biotechnologies GmbH, Fraunhoferstr. 1, 82152 Martinsried, Germany
| | - Henrik Daub
- NEOsphere Biotechnologies GmbH, Fraunhoferstr. 1, 82152 Martinsried, Germany
| | - Yeojin Kim
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Florian Born
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Elmar Wolf
- Institute of Biochemistry, University of Kiel, Rudolf-Höber-Str. 1, Kiel 24118, Germany
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German translational cancer network (DKTK) site Frankfurt Mainz, 60590 Heidelberg, Germany
| |
Collapse
|
31
|
Sander P, Schwalm MP, Krämer A, Elson L, Rasch A, Masberg B, Selig R, Sievers-Engler A, Lämmerhofer M, Müller S, Knapp S, Albrecht W, Laufer SA. Design, Synthesis, and Biochemical Evaluation of Novel MLK3 Inhibitors: A Target Hopping Example. J Med Chem 2025; 68:674-694. [PMID: 39681301 DOI: 10.1021/acs.jmedchem.4c02552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The human kinome has tremendous medical potential. In the past decade, mixed-lineage protein kinase 3 (MLK3) has emerged as an interesting and druggable target in oncogenic signaling. The important role of MLK3 has been demonstrated in several types of cancer. In a target hopping example we started with the focal adhesion kinase (FAK) inhibitor PF-431396 (10), which shows off-target activity toward MLK3. We were able to develop highly active compounds in the single digit nanomolar range for MLK3. Furthermore, we achieved a dramatic shift in selectivity from FAK to MLK3. Here we present a new chemical class of MLK3 inhibitors, including our lead compound 37 with an outstanding IC50 value of <1 nM in a biochemical MLK3 assay while simultaneously exhibiting kinome-wide selectivity.
Collapse
Affiliation(s)
- Pascal Sander
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Martin P Schwalm
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DTKT Site Frankfurt-Mainz, Heidelberg 69120, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Lewis Elson
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Alexander Rasch
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Benedikt Masberg
- Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard-Karls University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Roland Selig
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
- HepaRegeniX GmbH, Eisenbahnstraße 63, Tuebingen 72072, Germany
| | - Adrian Sievers-Engler
- Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard-Karls University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Michael Lämmerhofer
- Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard-Karls University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main 60438, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DTKT Site Frankfurt-Mainz, Heidelberg 69120, Germany
| | | | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
- Cluster of Excellence "Image Guided and Functionally Instructed Tumor Therapies" (iFIT), Eberhard Karls University of Tuebingen, Tuebingen 72076, Germany
- German Consortium for Translational Cancer Research (DKTK), Partner Site Tuebingen, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- Tuebingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| |
Collapse
|
32
|
Chen J, Fasihianifard P, Lian R, Gibson-Elias LJ, Moreno JL, Chang CEA, Zhong W, Hooley RJ. Supramolecular Host:Guest Arrays Site-Selectively Recognize Peptide Phosphorylation and Kinase Activity. J Am Chem Soc 2025; 147:841-850. [PMID: 39680592 DOI: 10.1021/jacs.4c13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
A synergistic combination of cationic styrylpyridinium dyes and water-soluble deep cavitand hosts can recognize phosphorylated peptides with both site- and state-selectivity. Two mechanisms of interaction are dominant: either the cationic dye interacts with Trp residues in the peptide or the host:dye pair forms a heteroternary complex with the peptide, driven by both strong dye-peptide and cavitand-peptide binding (Kd values up to 4 μM). The presence of multiple recognition mechanisms results in varying fluorescence responses dependent on the phosphorylation state and position, eliminating the need for covalent modification of the peptide target. Differential sensing aided by machine learning algorithms permits full discrimination between differently positioned serine phosphorylations with a minimal 3-component array. The array is fully functional in the presence of protein kinase A (PKA) and its required cofactors and capable of site-selective monitoring of serine phosphorylation at the privileged PKA motif, in the presence of serine residues that do not undergo reaction, illustrating the potential of the system in kinase-based drug screening.
Collapse
Affiliation(s)
- Junyi Chen
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Parisa Fasihianifard
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Ria Lian
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Lucas J Gibson-Elias
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Jose L Moreno
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Chia-En A Chang
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| | - Wenwan Zhong
- Key Laboratory of Precision and Intelligent Chemistry; Department of Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Richard J Hooley
- Department of Chemistry, University of California─Riverside, Riverside, California 92521, United States
| |
Collapse
|
33
|
Moyano PM, Kubina T, Paruch ŠO, Jarošková A, Novotný J, Skočková V, Ovesná P, Suchánková T, Prokofeva P, Kuster B, Šmída M, Chaikuad A, Krämer A, Knapp S, Souček K, Paruch K. Thieno[3,2-b]pyridine: Attractive scaffold for highly selective inhibitors of underexplored protein kinases with variable binding mode. Angew Chem Int Ed Engl 2025; 64:e202412786. [PMID: 39503260 DOI: 10.1002/anie.202412786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 11/22/2024]
Abstract
Protein kinases are key regulators of numerous biological processes and aberrant kinase activity can cause various diseases, particularly cancer. Herein, we report the identification of new series of highly selective kinase inhibitors based on the thieno[3,2-b]pyridine scaffold. The weak interaction of the thieno[3,2-b]pyridine core with the kinase hinge region allows for profoundly different binding modes all of which maintain high kinome-wide selectivity, as illustrated by the isomers MU1464 and MU1668. Thus, this core structure provides a template of ATP-competitive but not ATP-mimetic inhibitors that are anchored at the kinase back pocket. Mapping the chemical space around the central thieno[3,2-b]pyridine pharmacophore afforded highly selective inhibitors of the kinase Haspin, exemplified by the compound MU1920 that fulfils criteria for a quality chemical probe and is suitable for use in in vivo applications. However, despite the role of Haspin in mitosis, the inhibition of Haspin alone was not sufficient to elicit cytotoxic effect in cancer cells. The thieno[3,2-b]pyridine scaffold can be used in a broader context, as a basis of inhibitors targeting other underexplored protein kinases, such as CDKLs.
Collapse
Affiliation(s)
- Paula Martín Moyano
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic
| | - Tadeáš Kubina
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Štěpán Owen Paruch
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Aneta Jarošková
- Institute of Biophysics, Czech Academy of Science, Královopolská 135, 612 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Jan Novotný
- Institute of Biophysics, Czech Academy of Science, Královopolská 135, 612 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Veronika Skočková
- Institute of Biophysics, Czech Academy of Science, Královopolská 135, 612 00, Brno, Czech Republic
| | - Petra Ovesná
- Institute of Biostatistics and Analyses, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tereza Suchánková
- Institute of Biophysics, Czech Academy of Science, Královopolská 135, 612 00, Brno, Czech Republic
| | - Polina Prokofeva
- Proteomics and Bioanalytics, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Michal Šmída
- CEITEC, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Apirat Chaikuad
- Institute for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, Frankfurt am Main, 60438, Germany
| | - Andreas Krämer
- Institute for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, Frankfurt am Main, 60438, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Structural Genomics Consortium, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, Frankfurt am Main, 60438, Germany
| | - Karel Souček
- International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic
- Institute of Biophysics, Czech Academy of Science, Královopolská 135, 612 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kamil Paruch
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- International Clinical Research Centre, St. Anne's University Hospital, Pekařská 53, Brno, 656 91, Czech Republic
| |
Collapse
|
34
|
Guo Y, Liu F, Chi M, Qian H, Zhang Y, Yuan Y, Hou S, Chen X, Ma L. Design and synthesis of JNK1-targeted PROTACs and research on the activity. Bioorg Chem 2025; 154:108044. [PMID: 39700830 DOI: 10.1016/j.bioorg.2024.108044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Kinase dysregulation is greatly associated with cell growth, proliferation, differentiation and apoptosis, which indicates their great potential as therapeutic targets for treatment of numerous progressive disorders, including inflammatory, metabolic and autoimmune disorders, organ fibrosis and cancer. The c‑Jun N‑Terminal Kinase (JNK), as a member of MAPK family, is proved to be a potential target for the treatment of pulmonary fibrosis, which is the most common progressive and fatal fibrotic lung disease. As a new strategy, small-molecule-mediated targeted protein degradation pathway has the advantages of catalytic properties, overcoming drug resistance and expanding target space, which can circumvent the limitations associated with kinase inhibitors. Proteolysis targeting chimeras (PROTAC) contains a linker to concatenate a ligand of E3 ubiquitin ligase and a ligand for a protein of interest (POI). We developed a total of 20 JNK1-targeted PROTACs that induce proteasomal degradation of JNK1 components. The most active PROTAC molecule PA2 was then investigated by JNK1 enzyme assay and protein degradation assay, which suggested that PA2 had an anti-JNK1 ability and provided insights for the future use of JNK1-targeted PROTAC as treatment drugs for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yue Guo
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Fengling Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Man Chi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hewen Qian
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ye Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yaxia Yuan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Shurong Hou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
35
|
Song M, Elkamhawy A, Noh W, Abdelazem AZ, Park Y, Sivaraman A, Bertleuova A, Atef D, Lee K. Pyrimidine scaffold dual-target kinase inhibitors for cancer diseases: A review on design strategies, synthetic approaches, and structure-activity relationship (2018‒2023). Arch Pharm (Weinheim) 2025; 358:e2400163. [PMID: 39828961 DOI: 10.1002/ardp.202400163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
Cancer, the second leading cause of death globally, causes a significant threat to life. Despite advancements in the treatment of cancer, persistent challenges include severe side effects and the emergence of acquired drug resistance. Additionally, many traditional chemotherapy drugs show restricted efficacy and high toxicity, primarily attributed to their lack of selectivity. Thus, the development of drugs targeting protein kinases has emerged as a noteworthy priority for addressing human cancers. Medicinal chemists have shown considerable interest in the development of dual drug candidates as a strategy to create medicines that are safer, more efficient, and cost-effective. Furthermore, the Food and Drug Administration (FDA) has approved several dual-target drugs for anticancer treatment, emphasizing their lower risks of drug interactions and improved pharmacokinetics and safety profiles. This review focuses on the synthetic efforts, design strategies, and structure-activity relationship of the pyrimidine scaffold-based dual kinase inhibitors developed with anticancer potential within the recent 6 years (2018‒2023). Collectively, these strategies are expected to offer fresh perspectives on the future directions of pyrimidine-based dual-target kinase drug design, potentially advancing cancer therapeutics.
Collapse
Affiliation(s)
- Moeun Song
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| | - Ahmed Elkamhawy
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Woojeong Noh
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| | - Ahmed Z Abdelazem
- Biotechnology & Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni, suef, Egypt
| | - Younggeun Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| | - Aneesh Sivaraman
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| | - Arailym Bertleuova
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Dalia Atef
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Bu H, Pei C, Ouyang M, Chen Y, Yu L, Huang X, Tan Y. The antitumor peptide M1-20 induced the degradation of CDK1 through CUL4-DDB1-DCAF1-involved ubiquitination. Cancer Gene Ther 2025; 32:61-70. [PMID: 39562696 DOI: 10.1038/s41417-024-00855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
CDK1 is an oncogenic serine/threonine kinase known to play an important role in the regulation of the cell cycle. FOXM1, as one of the CDK1 substrates, requires binding of CDK1/CCNB1 complex for phosphorylation-dependent recruitment of p300/CBP coactivators to mediate transcriptional activity. Previous studies from our laboratory found that a novel peptide (M1-20) derived from the C-terminus of FOXM1 exhibited potent inhibitory effects for cancer cells. Based on these proofs and to explore the inhibitory mechanism of M1-20, we designed experiments and found that CDK1 served as an important target of M1-20. M1-20 enhanced the ubiquitination and degradation of CDK1 by CUL4-DDB1-DCAF1 complexes through the proteasome pathway. M1-20 could also affect the formation of CDK1/CCNB1 complexes. In addition, compared to RO3306, a CDK1 inhibitor, M1-20 exhibited excellent inhibitory effects in FVB/N MMTV-PyVT murine model of spontaneous breast cancer. These results suggested that M1-20 was a potential CDK1 inhibitor for the treatment of cancer.
Collapse
Affiliation(s)
- Huitong Bu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chaozhu Pei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
| | - Min Ouyang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
| | - Yan Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
| | - Li Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
| | - Xiaoqin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
| | - Yongjun Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China.
| |
Collapse
|
37
|
Wu D, Sun Q, Tang H, Xiao H, Luo J, Ouyang L, Sun Q. Acquired resistance to tyrosine kinase targeted therapy: mechanism and tackling strategies. Drug Resist Updat 2025; 78:101176. [PMID: 39642660 DOI: 10.1016/j.drup.2024.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
Over the past two decades, tyrosine kinase inhibitors (TKIs) have rapidly emerged as pivotal targeted agents, offering promising therapeutic prospects for patients. However, as the cornerstone of targeted therapies, an increasing number of TKIs have been found to develop acquired resistance during treatment, making the challenge of overcoming this resistance a primary focus of current research. This review comprehensively examines the evolution of TKIs from multiple perspectives, with particular emphasis on the mechanisms underlying acquired resistance, innovative drug design strategies, inherent challenges, and future directions.
Collapse
Affiliation(s)
- Defa Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Qian Sun
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China; West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haolin Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Jiaxiang Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China; West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
38
|
Cao Y, Yu T, Zhu Z, Zhang Y, Sun S, Li N, Gu C, Yang Y. Exploring the landscape of post-translational modification in drug discovery. Pharmacol Ther 2025; 265:108749. [PMID: 39557344 DOI: 10.1016/j.pharmthera.2024.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Post-translational modifications (PTMs) play a crucial role in regulating protein function, and their dysregulation is frequently associated with various diseases. The emergence of epigenetic drugs targeting factors such as histone deacetylases (HDACs) and histone methyltransferase enhancers of zeste homolog 2 (EZH2) has led to a significant shift towards precision medicine, offering new possibilities to overcome the limitations of traditional therapeutics. In this review, we aim to systematically explore how small molecules modulate PTMs. We discuss the direct targeting of enzymes involved in PTM pathways, the modulation of substrate proteins, and the disruption of protein-enzyme interactions that govern PTM processes. Additionally, we delve into the emerging strategy of employing multifunctional molecules to precisely regulate the modification levels of proteins of interest (POIs). Furthermore, we examine the specific characteristics of these molecules, evaluating their therapeutic benefits and potential drawbacks. The goal of this review is to provide a comprehensive understanding of PTM-targeting strategies and their potential for personalized medicine, offering a forward-looking perspective on the evolution of precision therapeutics.
Collapse
Affiliation(s)
- Yuhao Cao
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianyi Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziang Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanjiao Zhang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Nianguang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ye Yang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
39
|
Zhang Q, Yu J, You Q, Wang L. Modulating Phosphorylation by Proximity-Inducing Modalities for Cancer Therapy. J Med Chem 2024; 67:21695-21716. [PMID: 39648992 DOI: 10.1021/acs.jmedchem.4c02624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Abnormal phosphorylation of proteins can lead to various diseases, particularly cancer. Therefore, the development of small molecules for precise regulation of protein phosphorylation holds great potential for drug design. While the traditional kinase/phosphatase small-molecule modulators have shown some success, achieving precise phosphorylation regulation has proven to be challenging. The emergence of heterobifunctional molecules, such as phosphorylation-inducing chimeric small molecules (PHICSs) and phosphatase recruiting chimeras (PHORCs), with proximity-inducing modalities is expected to lead to a breakthrough by specifically recruiting kinase or phosphatase to the protein of interest. Herein, we summarize the drug targets with aberrant phosphorylation in cancer and underscore the potential of correcting phosphorylation in cancer therapy. Through reported cases of heterobifunctional molecules targeting phosphorylation regulation, we highlight the current design strategies and features of these molecules. We also provide a systematic elaboration of the link between aberrantly phosphorylated targets and cancer as well as the existing challenges and future research directions for developing heterobifunctional molecular drugs for phosphorylation regulation.
Collapse
Affiliation(s)
- Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
40
|
Gunji D, Abe Y, Muraoka S, Narumi R, Isoyama J, Ikemoto N, Ishida M, Shinkura A, Tomonaga T, Nagayama S, Takahashi Y, Fukunaga Y, Sakai Y, Obama K, Adachi J. Longitudinal phosphoproteomics reveals the PI3K-PAK1 axis as a potential target for recurrent colorectal liver metastases. Cell Rep 2024; 43:115061. [PMID: 39689713 DOI: 10.1016/j.celrep.2024.115061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/07/2024] [Accepted: 11/21/2024] [Indexed: 12/19/2024] Open
Abstract
The resistance of colorectal cancer liver metastases (CRLMs) to 5-fluorouracil (5-FU) chemotherapy remains a significant global health challenge. We investigated the phosphoproteomic dynamics of serial tissue sections obtained from initial metastases and recurrent tumors collected from 24 patients to address this unmet need for innovative therapeutic strategies for patients with CRLM with a poor prognosis. Our analysis revealed the activation of PAK kinase in patients with CRLM with a poor prognosis. Using an unbiased computational approach, we conducted a correlation analysis between PAK1 kinase activity and 545 drug sensitivity profiles across 35 colorectal cancer cell lines and identified PI3K inhibitors as potential therapeutic candidates. The efficacy of the FDA-approved PI3K inhibitor copanlisib was validated in 5-FU-resistant cell lines with high PAK1 kinase activity both in vitro and in vivo. This study presents an effective strategy for drug target discovery based on kinase activity, and the concept of this approach is widely applicable.
Collapse
Affiliation(s)
- Daigo Gunji
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yuichi Abe
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Immunoproteomics Laboratory, Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Satoshi Muraoka
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Ryohei Narumi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Junko Isoyama
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Narumi Ikemoto
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Mimiko Ishida
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Akina Shinkura
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Satoshi Nagayama
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan; Department of Surgery, Uji-Tokusyukai Medical Center, Kyoto 611-0041, Japan
| | - Yu Takahashi
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yosuke Fukunaga
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Kazutaka Obama
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
41
|
Zhao Z, Bourne PE. Exploring Extended Warheads toward Developing Cysteine-Targeted Covalent Kinase Inhibitors. J Chem Inf Model 2024; 64:9517-9527. [PMID: 39656065 DOI: 10.1021/acs.jcim.4c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
In designing covalent kinase inhibitors (CKIs), the inclusion of electrophiles as attacking warheads demands careful choreography, ensuring not only their presence on the scaffold moiety but also their precise interaction with nucleophiles in the binding sites. Given the limited number of known electrophiles, exploring adjacent chemical space to broaden the palette of available electrophiles capable of covalent inhibition is desirable. Here, we systematically analyze the characteristics of warheads and the corresponding adjacent fragments for use in CKI design. We first collect all the released cysteine-targeted CKIs from multiple databases and create one CKI data set containing 16,961 kinase-inhibitor data points from 12,381 unique CKIs covering 146 kinases with accessible cysteines in their binding pockets. Then, we analyze this data set, focusing on the extended warheads (i.e., warheads + adjacent fragments)─including 30 common warheads and 1344 unique adjacent fragments. In so doing, we provide structural insights and delineate chemical properties and patterns in these extended warheads. Notably, we highlight the popular patterns observed within reversible CKIs for the popular warheads cyanoacrylamide and aldehyde. This study provides medicinal chemists with novel insights into extended warheads and a comprehensive source of adjacent fragments, thus guiding the design, synthesis, and optimization of CKIs.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Data Science and Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Philip E Bourne
- School of Data Science and Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
42
|
Wittlinger F, Chitnis SP, Pham CD, Damghani T, Patel KB, Möllers M, Schaeffner IK, Abidakun OA, Deng MQ, Ogboo BC, Rasch A, Beyett TS, Buckley B, Feru F, Shaurova T, Knappe C, Eck MJ, Hershberger PA, Scott DA, Brandt AL, Laufer SA, Heppner DE. Tilting the Scales toward EGFR Mutant Selectivity: Expanding the Scope of Bivalent "Type V" Kinase Inhibitors. J Med Chem 2024; 67:21438-21469. [PMID: 39626019 DOI: 10.1021/acs.jmedchem.4c02311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Binding multiple sites within proteins with bivalent compounds is a strategy for developing uniquely active agents. A new class of dual-site inhibitors has emerged targeting the epidermal growth factor receptor (EGFR) anchored to both the orthosteric (ATP) and allosteric sites. Despite proof-of-concept successes, enabling selectivity against oncogenic activating mutations has not been achieved and classifying these inhibitors among kinase inhibitors remains underexplored. This study investigates the structure-activity relationships, binding modes, and biological activity of ATP-allosteric bivalent inhibitors (AABIs). We find that AABIs selectively inhibit drug-resistant EGFR mutants (L858R/T790M and L858R/T790M/C797S) by anchoring a methyl isoindolinone moiety along the αC-helix channel of the allosteric site. In contrast, related Type I1/2 inhibitors target wild-type EGFR but are less effective against resistant mutants. This shift in selectivity demonstrates that mutant-selective AABIs classify as "Type V" bivalent inhibitors.
Collapse
Affiliation(s)
- Florian Wittlinger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Surbhi P Chitnis
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Calvin D Pham
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Tahereh Damghani
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Kishan B Patel
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Mareike Möllers
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Ilse K Schaeffner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Omobolanle A Abidakun
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Matthew Q Deng
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Blessing C Ogboo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Alexander Rasch
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Tyler S Beyett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Brian Buckley
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
| | - Frederic Feru
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tatiana Shaurova
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
| | - Cornelius Knappe
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Pamela A Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
| | - David A Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Asher L Brandt
- Department of Chemistry, University of Saint Joseph, West Hartford, Connecticut 06117 United States
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies" Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - David E Heppner
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
- Department of Structural Biology, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
43
|
Kong Z, Li S, Li J, Chen Y, Chen M, Zhang X, Wang D, Liu J. Combinatorial Targeting of Common Docking and ATP Binding Sites on Mps1 MAPK for Management of Pathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27115-27124. [PMID: 39622772 PMCID: PMC11640755 DOI: 10.1021/acs.jafc.4c09504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Resistance in pathogenic fungi necessitates the development of fungicides with new mechanisms of action. The Mps1 MAPK of Magnaporthe oryzae, the pathogen of rice blast disease, has been shown to be a molecular target for fungicide research. Here, we present compound TAK-733 that interacts with the common docking (CD) site of Mps1 and can be used in combination with ATP-competitive inhibitors. We initially identified compounds PLX-4720 and TAK-733 that interact with Mps1. Subsequent assays show that PLX-4720 is an ATP-competitive inhibitor, whereas TAK-733 binds to the CD site of Mps1─an interaction site for its MAPKK─but not to the ATP-binding pocket as it does in the kinase MEK1. In vivo assays demonstrated that TAK-733 exhibits combinational effects with ATP-competitive inhibitors PLX-4720 and A378-0. Collectively, we present TAK-733 as having a new mechanism of action suitable for combinational application with ATP-competitive inhibitors in the management of pathogenic fungi.
Collapse
Affiliation(s)
- Zhiwei Kong
- State
Key Laboratory of Maize Bio-breeding, Joint International Research
Laboratory of Crop Molecular Breeding, China
Agricultural University, Beijing 100193, China
- Ministry
of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control,
College of Plant Protection, China Agricultural
University, Beijing 100193, China
| | - Saijie Li
- State
Key Laboratory of Maize Bio-breeding, Joint International Research
Laboratory of Crop Molecular Breeding, China
Agricultural University, Beijing 100193, China
- Ministry
of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control,
College of Plant Protection, China Agricultural
University, Beijing 100193, China
| | - Juxian Li
- State
Key Laboratory of Maize Bio-breeding, Joint International Research
Laboratory of Crop Molecular Breeding, China
Agricultural University, Beijing 100193, China
- Ministry
of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control,
College of Plant Protection, China Agricultural
University, Beijing 100193, China
| | - Yitong Chen
- State
Key Laboratory of Maize Bio-breeding, Joint International Research
Laboratory of Crop Molecular Breeding, China
Agricultural University, Beijing 100193, China
- Ministry
of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control,
College of Plant Protection, China Agricultural
University, Beijing 100193, China
| | - Meiqing Chen
- State
Key Laboratory of Maize Bio-breeding, Joint International Research
Laboratory of Crop Molecular Breeding, China
Agricultural University, Beijing 100193, China
- Ministry
of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control,
College of Plant Protection, China Agricultural
University, Beijing 100193, China
| | - Xin Zhang
- Ministry
of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control,
College of Plant Protection, China Agricultural
University, Beijing 100193, China
| | - Dongli Wang
- Ministry
of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control,
College of Plant Protection, China Agricultural
University, Beijing 100193, China
| | - Junfeng Liu
- State
Key Laboratory of Maize Bio-breeding, Joint International Research
Laboratory of Crop Molecular Breeding, China
Agricultural University, Beijing 100193, China
- Ministry
of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control,
College of Plant Protection, China Agricultural
University, Beijing 100193, China
- Sanya
Institute of China Agricultural University, Sanya 572024, China
| |
Collapse
|
44
|
Tan L, Miao Z, Zhao Y, Liang Y, Xu N, Chen X, Tu Y, He C. Dual regulation of phaseol on osteoclast formation and osteoblast differentiation by targeting TAK1 kinase for osteoporosis treatment. J Adv Res 2024:S2090-1232(24)00565-4. [PMID: 39662728 DOI: 10.1016/j.jare.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024] Open
Abstract
INTRODUCTION Osteoporosis is an osteolytic disorder resulting from an inequilibrium between osteoblast-mediated osteogenesis and osteoclast-driven bone absorption. Safe and effective approaches for osteoporosis management are still highly demanded. PURPOSE This study aimed to examine the osteoprotective effect and the mechanisms of phaseol (PHA) in vitro and in vivo. METHODS Virtual screening identified the potential inhibitors of transforming growth factor-beta-activated kinase 1 (TAK1) from coumestans. The interaction between PHA and TAK1 was investigated by molecular simulation, pronase and thermal resistance assays. The maturation and function of osteoclasts were determined using tartrate-resistant acid phosphatase staining, bone absorption and F-actin ring formation assays. The differentiation and calcification of osteoblasts were assessed by alkaline phosphatase staining and Alizarin Red S staining. The activity of related targets and pathways were detected using immunoblotting, immunofluorescence and co-immunoprecipitation assays. The in vivo osteoprotective effect of PHA was evaluated using a lipopolysaccharide (LPS)-induced mouse osteoporosis model. RESULTS Firstly, we confirmed that TAK1 was essential in controlling bone remodeling by regulating osteogenesis and osteoclastogenesis. Moreover, PHA, a coumestan compound predominantly present in leguminous plants, was identified as a potent TAK1 inhibitor through virtual and real experiments. Subsequently, PHA was observed to enhance osteoblast differentiation and calcification, while suppress osteoclast maturation and bone resorptive function in vitro. Mechanistically, PHA remarkably inhibited the TRAF6-TAK1 complex formation, and inhibited the activation of TAK1, MAPK and NF-κB pathways by targeting TAK1. In the in vivo study, PHA strongly attenuated bone loss, inflammatory responses, and osteoclast over-activation in lipopolysaccharide-induced osteoporosis mice. CONCLUSION PHA had a dual-functional regulatory impact on osteogenesis and osteoclastogenesis by targeting TAK1, suppressing TRAF6-TAK1 complex generation, and modulating its associated signaling pathways, ultimately leading to mitigating osteoporosis. This study offered compelling evidence in favor of using PHA for preventing and managing osteoporosis as both a bone anabolic and anti-resorptive agent.
Collapse
Affiliation(s)
- Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Zhimin Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yuxin Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yongkai Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Nan Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China.
| |
Collapse
|
45
|
Waitman KB, Martin HJ, Carlos JAEG, Braga RC, Souza VAM, Melo-Filho CC, Hilscher S, Toledo MFZJ, Tavares MT, Costa-Lotufo LV, Machado-Neto JA, Schutkowski M, Sippl W, Kronenberger T, Alves VM, Parise-Filho R, Muratov EN. Dona Flor and her two husbands: Discovery of novel HDAC6/AKT2 inhibitors for myeloid cancer treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.30.626092. [PMID: 39677737 PMCID: PMC11642781 DOI: 10.1101/2024.11.30.626092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Hematological cancer treatment with hybrid kinase/HDAC inhibitors is a novel strategy to overcome the challenge of acquired resistance to drugs. We collected IC 50 datasets from the ChEMBL database for 13 cancer cell lines (72 h cytotoxicity, measured by MTT), known inhibitors for 38 kinases, and 10 HDACs isoforms, that we identified by target fishing and literature review. The data was subjected to rigorous biological and chemical curation leaving the final datasets ranging from 76 to 8173 compounds depending on the target. We generated Random Forest classification models, whereby 14 showed greater than 80% predictability after 5-fold external cross-validation. We screened 30 hybrid kinase/HDAC inhibitor analogs through each of these models. Fragment-contribution maps were constructed to aid the understanding of SARs and the optimization of these compounds as selective kinase/HDAC inhibitors for cancer treatment. Among the predicted compounds, 9 representative hybrids were synthesized and subjected to biological evaluation to validate the models. We observed high hit rates after biological testing for the following models: K562 (62.5%), MV4-11 (75.0%), MM1S (100%), NB-4 (62.5%), U937 (75.0), and HDAC6 (86.0%). This aided the identification of 6b and 6k as potent anticancer inhibitors with IC 50 of 0.2-0.8 µM in three cancer cell lines, linked to HDAC6 inhibition below 2 nM, and blockade of AKT2 phosphorylation at 2 μM, validating the ability of our models to predict novel drug candidates. Highlights Novel kinase/HDAC inhibitors for cancer treatment were found using machine learning61 QSAR models for hematological cancers and its targets were built and validatedK562, MV4-11, MM1S, NB-4, U937, and HDAC6 models had hit rates above 62.5% in tests 6b and 6k presented potent IC 50 of 0.2-0.8 µM in three cancer cell lines 6b and 6k inhibited HDAC6 below 2 nM, and blockade of AKT2 phosphorylation at 2 μM.
Collapse
|
46
|
Estevam GO, Linossi EM, Rao J, Macdonald CB, Ravikumar A, Chrispens KM, Capra JA, Coyote-Maestas W, Pimentel H, Collisson EA, Jura N, Fraser JS. Mapping kinase domain resistance mechanisms for the MET receptor tyrosine kinase via deep mutational scanning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603579. [PMID: 39071407 PMCID: PMC11275805 DOI: 10.1101/2024.07.16.603579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Mutations in the kinase and juxtamembrane domains of the MET Receptor Tyrosine Kinase are responsible for oncogenesis in various cancers and can drive resistance to MET-directed treatments. Determining the most effective inhibitor for each mutational profile is a major challenge for MET-driven cancer treatment in precision medicine. Here, we used a deep mutational scan (DMS) of ~5,764 MET kinase domain variants to profile the growth of each mutation against a panel of 11 inhibitors that are reported to target the MET kinase domain. We validate previously identified resistance mutations, pinpoint common resistance sites across type I, type II, and type I ½ inhibitors, unveil unique resistance and sensitizing mutations for each inhibitor, and verify non-cross-resistant sensitivities for type I and type II inhibitor pairs. We augment a protein language model with biophysical and chemical features to improve the predictive performance for inhibitor-treated datasets. Together, our study demonstrates a pooled experimental pipeline for identifying resistance mutations, provides a reference dictionary for mutations that are sensitized to specific therapies, and offers insights for future drug development.
Collapse
Affiliation(s)
- Gabriella O. Estevam
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, United States
- Tetrad Graduate Program, UCSF, San Francisco, CA, United States
| | - Edmond M. Linossi
- Cardiovascular Research Institute, UCSF, San Francisco, CA, United States
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, United States
| | - Jingyou Rao
- Department of Computer Science, UCLA, Los Angeles, CA, United States
| | - Christian B. Macdonald
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, United States
| | - Ashraya Ravikumar
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, United States
| | - Karson M. Chrispens
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, United States
- Biophysics Graduate Program, UCSF, San Francisco, CA, United States
| | - John A. Capra
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, UCSF, San Francisco, CA, United States
| | - Willow Coyote-Maestas
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, United States
- Quantitative Biosciences Institute, UCSF, San Francisco, CA, United States
| | - Harold Pimentel
- Department of Computer Science, UCLA, Los Angeles, CA, United States
- Department of Computational Medicine and Human Genetics, UCLA, Los Angeles, CA, United States
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Eric A. Collisson
- Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Natalia Jura
- Cardiovascular Research Institute, UCSF, San Francisco, CA, United States
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, United States
- Quantitative Biosciences Institute, UCSF, San Francisco, CA, United States
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, United States
- Quantitative Biosciences Institute, UCSF, San Francisco, CA, United States
| |
Collapse
|
47
|
Baro M, Lee H, Kelley V, Lou R, Phoomak C, Politi K, Zeiss CJ, Van Zandt M, Contessa JN. OST Catalytic Subunit Redundancy Enables Therapeutic Targeting of N-Glycosylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626593. [PMID: 39677793 PMCID: PMC11643024 DOI: 10.1101/2024.12.03.626593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Protein asparagine (N)-glycosylation, which promotes folding and trafficking of cell surface receptors such as the EGFR, has not been considered a viable target in oncology due to the essential and non-redundant enzymatic activities required for glycan synthesis and transfer. In mammals an exception to this rule is the presence of the oligosaccharyltransferase (OST) catalytic subunit paralogs, STT3A and STT3B. Here we delineate the chemical biology of OST inhibitors and develop an approach for limited inhibition of N-glycosylation optimized for downstream effects on EGFR. Small molecules with enhanced pharmacokinetic properties and preferences for STT3A or STT3B were synthesized, characterized in vitro, and advanced to in vivo testing. The lead from this series, NGI-189, causes tumor regression or growth delay of patient derived and TKI resistant EGFR-mutant lung cancer xenografts without toxicity. Together these results suggest that bioavailable OST inhibitors can be developed as therapeutic agents for oncology.
Collapse
Affiliation(s)
- Marta Baro
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510 USA
| | - Hojin Lee
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510 USA
| | - Vanessa Kelley
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510 USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510 USA
| | - Rongliang Lou
- New England Discovery Partners, Branford, CT, 06405 USA
| | - Chatchai Phoomak
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510 USA
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330 Thailand
| | - Katerina Politi
- Department of Internal Medicine (Section of Medical Oncology), Yale University School of Medicine, New Haven, CT, 06510 USA
| | - Caroline J. Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Joseph N. Contessa
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510 USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06510 USA
- Lead contact
| |
Collapse
|
48
|
Martins DM, Fernandes PO, Vieira LA, Maltarollo VG, Moraes AH. Structure-Guided Drug Design Targeting Abl Kinase: How Structure and Regulation Can Assist in Designing New Drugs. Chembiochem 2024; 25:e202400296. [PMID: 39008807 DOI: 10.1002/cbic.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The human protein Abelson kinase (Abl), a tyrosine kinase, plays a pivotal role in developing chronic myeloid leukemia (CML). Abl's involvement in various signaling pathways underscores its significance in regulating fundamental biological processes, including DNA damage responses, actin polymerization, and chromatin structural changes. The discovery of the Bcr-Abl oncoprotein, resulting from a chromosomal translocation in CML patients, revolutionized the understanding and treatment of the disease. The introduction of targeted therapies, starting with interferon-alpha and culminating in the development of tyrosine kinase inhibitors (TKIs) like imatinib, significantly improved patient outcomes. However, challenges such as drug resistance and side effects persist, indicating the necessity of research into novel therapeutic strategies. This review describes advancements in Abl kinase inhibitor development, emphasizing rational compound design from structural and regulatory information. Strategies, including bivalent inhibitors, PROTACs, and compounds targeting regulatory domains, promise to overcome resistance and minimize side effects. Additionally, leveraging the intricate structure and interactions of Bcr-Abl may provide insights into developing inhibitors for other kinases. Overall, this review highlights the importance of continued research into Abl kinase inhibition and its broader implications for therapeutic interventions targeting kinase-driven diseases. It provides valuable insights and strategies that may guide the development of next-generation therapies.
Collapse
MESH Headings
- Humans
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Drug Design
- Proto-Oncogene Proteins c-abl/metabolism
- Proto-Oncogene Proteins c-abl/antagonists & inhibitors
- Proto-Oncogene Proteins c-abl/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Molecular Structure
Collapse
Affiliation(s)
- Diego M Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Philipe O Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Lucas A Vieira
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Vinícius G Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Adolfo H Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| |
Collapse
|
49
|
Bhatnagar A, Pemawat G. Anticancer and Antibacterial Activeness of Fused Pyrimidines: Newfangled Updates. Bioorg Chem 2024; 153:107780. [PMID: 39260159 DOI: 10.1016/j.bioorg.2024.107780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Pyrimidine-based heterocyclic compounds are garnering substantial interest due to their essential role as a class of natural and synthetic molecules. These compounds show a diverse array of biologically relevant activities, making them highly prospective candidates for clinical translation as therapeutic agents in combating various diseases. Pyrimidine derivatives and their fused analogues, such as thienopyrimidines, pyrazolopyrimidines, pyridopyrimidines, and pyrimidopyrimidines, hold immense possibility in both anticancer and antibacterial research. These compounds exhibit notable efficacy by targeting protein kinases, which are crucial enzymes regulating fundamental cellular processes like metabolism, migration, division, and growth. Through enzyme inhibition, these derivatives disrupt key cellular signaling pathways, thereby affecting critical cellular functions and viability. The advantage lies in the ubiquity of the pyrimidine structure across various natural compounds, enabling interactions with enzymes, genetic material, and cellular components pivotal for chemical and biological processes. This interaction plays a central role in modulating vital biological activities, making pyrimidine-containing compounds indispensable in drug discovery. In the realm of anticancer therapy, these compounds strategically target key proteins like EGFR, important for aberrant cell growth. Fused pyrimidine motifs, exemplified by various drugs, are designed to inhibit EGFR, thereby impeding tumor progression. Moreover, these compounds influence potent antibacterial activity, interfering with microbial growth through mechanisms ranging from DNA replication inhibition to other vital cellular functions. This dual activity, targeting both cancer cells and microbial pathogens, underscores the versatility and potential of pyrimidine derivatives in medical applications. This review provides insights into the structural characteristics, synthesis methods, and significant medicinal applications of fused pyrimidine derivatives, highlighting their double role in combating cancer and bacterial infections.
Collapse
Affiliation(s)
- Ayushi Bhatnagar
- Department of Chemistry, University College of Science, Mohanlal Sukhadia University, Udaipur, Rajasthan, India 313001
| | - Gangotri Pemawat
- Department of Chemistry, University College of Science, Mohanlal Sukhadia University, Udaipur, Rajasthan, India 313001.
| |
Collapse
|
50
|
Tang Q, Ren T, Bai P, Wang X, Zhao L, Zhong R, Sun G. Novel strategies to overcome chemoresistance in human glioblastoma. Biochem Pharmacol 2024; 230:116588. [PMID: 39461382 DOI: 10.1016/j.bcp.2024.116588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Temozolomide (TMZ) is currently the first-line chemotherapeutic agent for the treatment of glioblastoma multiforme (GBM). However, the inherent heterogeneity of GBM often results in suboptimal outcomes, particularly due to varying degrees of resistance to TMZ. Over the past several decades, O6-methylguanine-DNA methyltransferase (MGMT)-mediated DNA repair pathway has been extensively investigated as a target to overcome TMZ resistance. Nonetheless, the combination of small molecule covalent MGMT inhibitors with TMZ and other chemotherapeutic agents has frequently led to adverse clinical effects. Recently, additional mechanisms contributing to TMZ resistance have been identified, including epidermal growth factor receptor (EGFR) mutations, overactivation of intracellular signalling pathways, energy metabolism reprogramming or survival autophagy, and changes in tumor microenvironment (TME). These findings suggest that novel therapeutic strategies targeting these mechanisms hold promise for overcoming TMZ resistance in GBM patients. In this review, we summarize the latest advancements in understanding the mechanisms underlying intrinsic and acquired TMZ resistance. Additionally, we compile various small-molecule compounds with potential to mitigate chemoresistance in GBM. These mechanism-based compounds may enhance the sensitivity of GBM to TMZ and related chemotherapeutic agents, thereby improving overall survival rates in clinical practice.
Collapse
Affiliation(s)
- Qing Tang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Peiying Bai
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xin Wang
- Department of Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|