1
|
Ji M, Li L, Yu J, Wu Z, Sheng Y, Wang F. New insights into the function and therapeutic potential of RNA-binding protein TRBP in viral infection, chronic metabolic diseases, brain disorders and cancer. Life Sci 2024; 358:123159. [PMID: 39447729 DOI: 10.1016/j.lfs.2024.123159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
RNA-binding proteins (RBPs) and non-coding RNAs are crucial trans-acting factors that bind to specific cis-acting elements in mRNAs, thereby regulating their stability and translation. The trans-activation response (TAR) RNA-binding protein (TRBP) recognizes precursor microRNAs (pre-miRNAs), modulates miRNA maturation, and influences miRNA interference (mi-RNAi) mediated by the RNA-induced silencing complex (RISC). TRBP also directly binds and mediates the degradation of certain mRNAs. Thus, TRBP acts as a hub for regulating gene expression and influences a variety of biological processes, including immune evasion, metabolic abnormalities, stress response, angiogenesis, hypoxia, and metastasis. Aberrant TRBP expression has been proven to be closely related to the initiation and progression of diseases, such as viral infection, chronic metabolic diseases, brain disorders, and cancer. This review summarizes the roles of TRBP in cancer and other diseases, the therapeutic potential of TRBP inhibition, and the current status of drug discovery on TRBP.
Collapse
Affiliation(s)
- Minghui Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialing Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
2
|
Arakawa Y, Elloumi F, Varma S, Khandagale P, Jo U, Kumar S, Roper N, Reinhold WC, Robey RW, Takebe N, Gottesman MM, Thomas CJ, Boeva V, Berruti A, Abate A, Tamburello M, Sigala S, Hantel C, Weigand I, Wierman ME, Kiseljak-Vassiliades K, Del Rivero J, Pommier Y. A Database Tool Integrating Genomic and Pharmacologic Data from Adrenocortical Carcinoma Cell Lines, PDX, and Patient Samples. CANCER RESEARCH COMMUNICATIONS 2024; 4:2384-2398. [PMID: 39162009 PMCID: PMC11389377 DOI: 10.1158/2767-9764.crc-24-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/07/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Adrenocortical carcinoma (ACC) is a rare and highly heterogeneous disease with a notably poor prognosis due to significant challenges in diagnosis and treatment. Emphasizing on the importance of precision medicine, there is an increasing need for comprehensive genomic resources alongside well-developed experimental models to devise personalized therapeutic strategies. We present ACC_CellMinerCDB, a substantive genomic and drug sensitivity database (available at https://discover.nci.nih.gov/acc_cellminercdb) comprising ACC cell lines, patient-derived xenografts, surgical samples, and responses to more than 2,400 drugs examined by the NCI and National Center for Advancing Translational Sciences. This database exposes shared genomic pathways among ACC cell lines and surgical samples, thus authenticating the cell lines as research models. It also allows exploration of pertinent treatment markers such as MDR-1, SOAT1, MGMT, MMR, and SLFN11 and introduces the potential to repurpose agents like temozolomide for ACC therapy. ACC_CellMinerCDB provides the foundation for exploring larger preclinical ACC models. SIGNIFICANCE ACC_CellMinerCDB, a comprehensive database of cell lines, patient-derived xenografts, surgical samples, and drug responses, reveals shared genomic pathways and treatment-relevant markers in ACC. This resource offers insights into potential therapeutic targets and the opportunity to repurpose existing drugs for ACC therapy.
Collapse
Affiliation(s)
- Yasuhiro Arakawa
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Fathi Elloumi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sudhir Varma
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Prashant Khandagale
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ukhyun Jo
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Suresh Kumar
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nitin Roper
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William C. Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert W. Robey
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Naoko Takebe
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Valentina Boeva
- Department of Computer Science, Institute for Machine Learning, ETH Zurich, Zurich, Switzerland
| | - Alfredo Berruti
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Medical Oncology Unit, University of Brescia, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, Brescia, Italy
| | - Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich, and University of Zurich, Zürich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Isabel Weigand
- Division of Endocrinology and Diabetology, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Margaret E. Wierman
- Department of Medicine-Endocrinology/Metabolism/Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Katja Kiseljak-Vassiliades
- Department of Medicine-Endocrinology/Metabolism/Diabetes, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Cioppi F, Cantini G, Ercolino T, Chetta M, Zanatta L, Nesi G, Mannelli M, Maggi M, Canu L, Luconi M. Targeted Next Generation Sequencing molecular profiling and its clinical application in adrenocortical cancer. Eur J Endocrinol 2024; 191:17-30. [PMID: 38917236 DOI: 10.1093/ejendo/lvae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVE Adrenal cortical carcinoma (ACC) is a rare malignancy with a generally poor but heterogeneous prognosis, especially depending on the tumour stage at diagnosis. Identification of somatic gene alterations combined with clinical/histopathological evaluation of the tumour can help improve prognostication. We applied a simplified targeted-Next-Generation Sequencing (NGS) panel to characterise the mutational profiles of ACCs, providing potentially relevant information for better patient management. DESIGN AND METHODS Thirty frozen tumour specimens from a local ACC series were retrospectively analysed by a custom-NGS panel (CDKN2A, CTNNB1, DAXX, MED12, NF1, PRKAR1A, RB1, TERT, TP53, ZNRF3) to detect somatic prioritised single-nucleotide variants. This cohort was integrated with 86 patients from the ACC-TCGA series bearing point-mutations in the same genes and their combinations identified by our panel. Primary endpoints of the analysis on the total cohort (113 patients) were overall survival (OS) and progression-free survival (PFS), and hazard ratio (HR) for the different alterations grouped by the signalling pathways/combinations affected. RESULTS Different PFS, OS, and HR were associated to the different pathways/combinations, being NF1 + TP53 and Wnt/β-catenin + Rb/p53 combined mutations the most deleterious, with a statistical significance for progression HR which is retained only in low-(I/II) stages-NF1 + TP53 combination: HR = 2.96[1.01-8.69] and HR = 13.23[3.15-55.61], all and low stages, respectively; Wnt/β-catenin + Rb/p53 combined pathways: HR = 6.47[2.54-16.49] and HR = 16.24[3.87-68.00], all and low-stages, respectively. CONCLUSIONS A simplified targeted-NGS approach seems the best routinely applicable first step towards somatic genetic characterisation of ACC for prognostic assessment. This approach proved to be particularly promising in low-stage cases, suggesting the need for more stringent surveillance and personalised treatment.
Collapse
Affiliation(s)
- Francesca Cioppi
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
| | - Giulia Cantini
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Section, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
| | - Tonino Ercolino
- Azienda Ospedaliero-Universitaria Careggi, (AOUC), 50139 Florence, Italy
| | - Massimiliano Chetta
- Medical Genetics, Azienda Ospedaliera di Rilievo Nazionale (A.O.R.N.) Cardarelli, Padiglione, 80131 Naples, Italy
| | - Lorenzo Zanatta
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Section, University of Florence, 50139 Florence, Italy
- Azienda Ospedaliero-Universitaria Careggi, (AOUC), 50139 Florence, Italy
| | - Gabriella Nesi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Massimo Mannelli
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Section, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
| | - Mario Maggi
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Section, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- Azienda Ospedaliero-Universitaria Careggi, (AOUC), 50139 Florence, Italy
| | - Letizia Canu
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Section, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- Azienda Ospedaliero-Universitaria Careggi, (AOUC), 50139 Florence, Italy
| | - Michaela Luconi
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Section, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
| |
Collapse
|
4
|
Zhang J, Wu L, Su T, Liu H, Jiang L, Jiang Y, Wu Z, Chen L, Li H, Zheng J, Sun Y, Peng H, Han R, Ning G, Ye L, Wang W. Pharmacogenomic analysis in adrenocortical carcinoma reveals genetic features associated with mitotane sensitivity and potential therapeutics. Front Endocrinol (Lausanne) 2024; 15:1365321. [PMID: 38779454 PMCID: PMC11109426 DOI: 10.3389/fendo.2024.1365321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Background Adrenocortical carcinoma (ACC) is an aggressive endocrine malignancy with limited therapeutic options. Treating advanced ACC with mitotane, the cornerstone therapy, remains challenging, thus underscoring the significance to predict mitotane response prior to treatment and seek other effective therapeutic strategies. Objective We aimed to determine the efficacy of mitotane via an in vitro assay using patient-derived ACC cells (PDCs), identify molecular biomarkers associated with mitotane response and preliminarily explore potential agents for ACC. Methods In vitro mitotane sensitivity testing was performed in 17 PDCs and high-throughput screening against 40 compounds was conducted in 8 PDCs. Genetic features were evaluated in 9 samples using exomic and transcriptomic sequencing. Results PDCs exhibited variable sensitivity to mitotane treatment. The median cell viability inhibition rate was 48.4% (IQR: 39.3-59.3%) and -1.2% (IQR: -26.4-22.1%) in responders (n=8) and non-responders (n=9), respectively. Median IC50 and AUC were remarkably lower in responders (IC50: 53.4 µM vs 74.7 µM, P<0.0001; AUC: 158.0 vs 213.5, P<0.0001). Genomic analysis revealed CTNNB1 somatic alterations were only found in responders (3/5) while ZNRF3 alterations only in non-responders (3/4). Transcriptomic profiling found pathways associated with lipid metabolism were upregulated in responder tumors whilst CYP27A1 and ABCA1 expression were positively correlated to in vitro mitotane sensitivity. Furthermore, pharmacologic analysis identified that compounds including disulfiram, niclosamide and bortezomib exhibited efficacy against PDCs. Conclusion ACC PDCs could be useful for testing drug response, drug repurposing and guiding personalized therapies. Our results suggested response to mitotane might be associated with the dependency on lipid metabolism. CYP27A1 and ABCA1 expression could be predictive markers for mitotane response, and disulfiram, niclosamide and bortezomib could be potential therapeutics, both warranting further investigation.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luming Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingwei Su
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiran Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyuan Wu
- Department of Interventional Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Chen
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haorong Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingkai Sun
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hangya Peng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rulai Han
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Wu L, Chen J, Su T, Jiang L, Han Y, Zhang C, Zhou W, Jiang Y, Zhong X, Wang W. Efficacy and safety of adjuvant radiation therapy in localized adrenocortical carcinoma. Front Endocrinol (Lausanne) 2024; 14:1308231. [PMID: 38260140 PMCID: PMC10801189 DOI: 10.3389/fendo.2023.1308231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Context Adrenocortical carcinoma (ACC) is rare and have high rates of recurrence and mortality. The role of adjuvant radiation therapy (RT) in localized ACC was controversial. Methods We conducted a retrospective study in our center between 2015 and 2021 to evaluate the efficacy and safety of adjuvant RT in localized ACC. Overall survival (OS) and disease-free survival (DFS) were estimated using the Kaplan-Meier method. Cox proportional hazards regression models were used to estimate the independent risk factors. Adverse events associated with RT were documented according to the toxicity criteria of the radiation therapy oncology group (RTOG) and the common terminology criteria for adverse events (CTCAE v5.0). Results Of 105 patients with localized ACC, 46 (43.8%) received adjuvant RT after surgery. The median radiation dose was 45.0Gy (range:30.0-50.4) and median follow up time was 36.5 (IQR: 19.7-51.8) months. In comparison to the no adjuvant RT group, patients with adjuvant RT had better 3-year OS (87.9% vs 79.5%, P=0.039), especially for patients with ENSAT I/II stage (P=0.004). Adjuvant RT also improved the median DFS time from 16.5months (95%CI, 12.0-20.9) to 34.6months (95%CI, 16.1-53.0). Toxicity of RT was generally mild and moderate with six grade 3 events. Conclusions Postoperative adjuvant RT significantly improved OS and DFS compared with the use of surgery alone in resected ACC patients. Although this retrospective study on RT in localized ACC indicates that RT is effective in ACC, its findings need to be prospectively confirmed.
Collapse
Affiliation(s)
- Luming Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Chen
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingwei Su
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimin Han
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Zhou
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiran Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Zhong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Nakatani K, Izumi Y, Umakoshi H, Yokomoto-Umakoshi M, Nakaji T, Kaneko H, Nakao H, Ogawa Y, Ikeda K, Bamba T. Wide-scope targeted analysis of bioactive lipids in human plasma by LC/MS/MS. J Lipid Res 2024; 65:100492. [PMID: 38135255 PMCID: PMC10821590 DOI: 10.1016/j.jlr.2023.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/14/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Quantitative information on blood metabolites can be used in developing advanced medical strategies such as early detection and prevention of disease. Monitoring bioactive lipids such as steroids, bile acids, and PUFA metabolites could be a valuable indicator of health status. However, a method for simultaneously measuring these bioactive lipids has not yet been developed. Here, we report a LC/MS/MS method that can simultaneously measure 144 bioactive lipids, including steroids, bile acids, and PUFA metabolites, from human plasma, and a sample preparation method for these targets. Protein removal by methanol precipitation and purification of bioactive lipids by solid-phase extraction improved the recovery of the targeted compounds in human plasma samples, demonstrating the importance of sample preparation methods for a wide range of bioactive lipid analyses. Using the developed method, we studied the plasma from healthy human volunteers and confirmed the presence of bioactive lipid molecules associated with sex differences and circadian rhythms. The developed method of bioactive lipid analysis can be applied to health monitoring and disease biomarker discovery in precision medicine.
Collapse
Affiliation(s)
- Kohta Nakatani
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Hironobu Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Maki Yokomoto-Umakoshi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoko Nakaji
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hiroki Kaneko
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Nakao
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazutaka Ikeda
- Laboratory of Biomolecule Analysis, Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Takeshi Bamba
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
7
|
Catalano R, Altieri B, Angelousi A, Arosio M, Bravi F, Canu L, Croci GA, Detomas M, Esposito E, Ferrante E, Ferrero S, Fuss CT, Kaltsas G, Kimpel O, Landwehr LS, Luconi M, Morelli V, Nesi G, Nozza E, Sbiera S, Serban AL, Ronchi CL, Mantovani G, Peverelli E. High Filamin a Expression in Adrenocortical Carcinomas Is Associated with a Favourable Tumour Behaviour: A European Multicentric Study. Int J Mol Sci 2023; 24:16573. [PMID: 38068896 PMCID: PMC10706064 DOI: 10.3390/ijms242316573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
The insulin-like growth factor 2 (IGF2) promotes cell growth by overactivating the IGF system in an autocrine loop in adrenocortical carcinomas (ACCs). The cytoskeleton protein filamin A (FLNA) acts as a repressor of IGF2 mitogenic signalling in ACC cells. The aims of this study were to test FLNA expression by immunohistochemistry in 119 ACCs and 26 adrenocortical adenomas (ACAs) and to evaluate its relationship with clinicopathological features and outcome in ACCs. We found that 71.4% of ACCs did not express FLNA, whereas FLNA absence was a rare event in ACAs (15.4%, p < 0.001 vs. ACCs). In addition, the expression of FLNA was associated with a less aggressive tumour behaviour in ACCs. Indeed, the subgroup of ACCs with high FLNA showed a lower ENSAT stage, Weiss score, and S-GRAS score compared to ACCs with low FLNA expression (p < 0.05). Moreover, patients with high FLNA had a longer overall survival than those with low FLNA (p < 0.05). In conclusion, our data suggest that FLNA may represent a "protective" factor in ACCs, and the integration of FLNA immunohistochemical expression in ACC tissues along with other clinical and molecular markers could be helpful to improve diagnostic accuracy and prognosis prediction in ACCs.
Collapse
Affiliation(s)
- Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Anna Angelousi
- First Department of Internal Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (G.K.)
- 51st Department of Propaedeutic Internal Medicine, National University of Athens, 11527 Athens, Greece
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| | - Francesca Bravi
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
| | - Letizia Canu
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.C.); (M.L.); (G.N.)
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
| | - Giorgio A. Croci
- Pathology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (S.F.)
| | - Mario Detomas
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Emanuela Esposito
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
- Ph.D. Program in Experimental Medicine, University of Milan, 20122 Milan, Italy
| | - Emanuele Ferrante
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| | - Stefano Ferrero
- Pathology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy (S.F.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Carmina T. Fuss
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Gregory Kaltsas
- First Department of Internal Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.A.); (G.K.)
- 51st Department of Propaedeutic Internal Medicine, National University of Athens, 11527 Athens, Greece
| | - Otilia Kimpel
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Laura-Sophie Landwehr
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.C.); (M.L.); (G.N.)
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
| | - Valentina Morelli
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| | - Gabriella Nesi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (L.C.); (M.L.); (G.N.)
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50134 Florence, Italy
| | - Emma Nozza
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
- Ph.D. Program in Experimental Medicine, University of Milan, 20122 Milan, Italy
| | - Silviu Sbiera
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, 97080 Wuerzburg, Germany; (B.A.); (M.D.); (C.T.F.); (O.K.); (L.-S.L.)
| | - Andreea L. Serban
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| | - Cristina L. Ronchi
- Institute of Metabolism and System Research, University of Birmingham, Birmingham B15 2TT, UK;
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.C.); (M.A.); (F.B.); (E.E.); (E.N.)
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (E.F.); (V.M.); (A.L.S.)
| |
Collapse
|
8
|
Yin M, Wang Y, Ren X, Han M, Li S, Liang R, Wang G, Gang X. Identification of key genes and pathways in adrenocortical carcinoma: evidence from bioinformatic analysis. Front Endocrinol (Lausanne) 2023; 14:1250033. [PMID: 38053725 PMCID: PMC10694291 DOI: 10.3389/fendo.2023.1250033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with poor prognosis. The disease originates from the cortex of adrenal gland and lacks effective treatment. Efforts have been made to elucidate the pathogenesis of ACC, but the molecular mechanisms remain elusive. To identify key genes and pathways in ACC, the expression profiles of GSE12368, GSE90713 and GSE143383 were downloaded from the Gene Expression Omnibus (GEO) database. After screening differentially expressed genes (DEGs) in each microarray dataset on the basis of cut-off, we identified 206 DEGs, consisting of 72 up-regulated and 134 down-regulated genes in three datasets. Function enrichment analyses of DEGs were performed by DAVID online database and the results revealed that the DEGs were mainly enriched in cell cycle, cell cycle process, mitotic cell cycle, response to oxygen-containing compound, progesterone-mediated oocyte maturation, p53 signaling pathway. The STRING database was used to construct the protein-protein interaction (PPI) network, and modules analysis was performed using Cytoscape. Finally, we filtered out eight hub genes, including CDK1, CCNA2, CCNB1, TOP2A, MAD2L1, BIRC5, BUB1 and AURKA. Biological process analysis showed that these hub genes were significantly enriched in nuclear division, mitosis, M phase of mitotic cell cycle and cell cycle process. Violin plot, Kaplan-Meier curve and stage plot of these hub genes confirmed the reliability of the results. In conclusion, the results in this study provided reliable key genes and pathways for ACC, which will be useful for ACC mechanisms, diagnosis and candidate targeted treatment.
Collapse
Affiliation(s)
- Mengsha Yin
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Yao Wang
- Department of Orthopedics, The Second Hospital Jilin University, Changchun, China
| | - Xinhua Ren
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Mingyue Han
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Shanshan Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Ruishuang Liang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Xiaokun Gang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Gao W, He X, Huangfu Q, Xie Y, Chen K, Sun C, Wei J, Wang B. A novel cuproptosis-related prognostic gene signature in adrenocortical carcinoma. J Clin Lab Anal 2023; 37:e24981. [PMID: 37997497 PMCID: PMC10749488 DOI: 10.1002/jcla.24981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Adrenocortical carcinoma (ACC) is an aggressive and rare malignant tumor associated with poor outcomes. Cuproptosis, a new pattern of cell death, relies on mitochondrial respiration and is associated with protein lipoylation. Increasing evidence has demonstrated the potential roles of cuproptosis in several tumor entities. However, the relationship between cuproptosis and ACC remains unclear. METHODS In total, 10 cuproptosis-related genes (CRGs) of patients with ACC were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases and differential expression analysis of CRGs was analyzed. Functional enrichment of the CRGs was performed and protein-protein interaction analysis was utilized to explore the association between the CRGs. Cuproptosis-related risk score (CRRS) was constructed by Lasso Cox regression and validated. RESULTS In the current study, the alteration and expression patterns of 10 CRGs in TCGA-ACC datasets were analyzed. We identified different expression patterns of CRGs in ACCs, discovered strong associations between CRGs and ACCs, and found that the CRGs were associated with immune infiltration in ACCs. A CRRS was created thereafter to predict overall survival (OS). CRRS = (0.083103718) *FDX1 + (-0.278423862) *LIAS+(0.090985682) *DLAT+(-0.018784047) *PDHA1 + (0.297218951) *MTF1 + (0.310197964) *CDKN2A. Patients were divided into high- and low-risk groups based on their CRRS, and independent prognostic factors were investigated. Finally, CDKN2A and FDX1 were found to be independent prognostic predictors of patients with ACC. CONCLUSIONS CDKN2A and FDX1 are independent prognostic predictors of patients with ACC. Cuproptosis may play a role in the development of ACC, providing a new perspective on therapeutic strategies related to CRGs for cancer prevention and treatment.
Collapse
Affiliation(s)
- Wenjun Gao
- Department of UrologyThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Xiaoyan He
- Department of Health EducationHangZhou Center for Disease Control and PreventionHangzhouChina
| | - Qi Huangfu
- Department of UrologyThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Yanqi Xie
- Department of UrologyThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Keliang Chen
- Department of Urology, 4th Affiliated HospitalZhejiang University School of MedicineYiwuZhejiangChina
| | - Chengfang Sun
- Department of UrologyThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Jingchao Wei
- Department of UrologyThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Bohan Wang
- Department of UrologyThe Second Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
10
|
Zhang Y, Zhang C, Li K, Deng J, Liu H, Lai G, Xie B, Zhong X. Identification of Molecular Subtypes and Prognostic Characteristics of Adrenocortical Carcinoma Based on Unsupervised Clustering. Int J Mol Sci 2023; 24:15465. [PMID: 37895143 PMCID: PMC10607826 DOI: 10.3390/ijms242015465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a poor prognosis. Increasing evidence highlights the significant role of immune-related genes (IRGs) in ACC progression and immunotherapy, but the research is still limited. Based on the Cancer Genome Atlas (TCGA) database, immune-related molecular subtypes were identified by unsupervised consensus clustering. Univariate Cox analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regression were employed to further establish immune-related gene signatures (IRGS). An evaluation of immune cell infiltration, biological function, tumor mutation burden (TMB), predicted immunotherapy response, and drug sensitivity in ACC patients was conducted to elucidate the applicative efficacy of IRGS in precision therapy. ACC patients were divided into two molecular subtypes through consistent clustering. Furthermore, the 3-gene signature (including PRKCA, LTBP1, and BIRC5) based on two molecular subtypes demonstrated consistent prognostic efficacy across the TCGA and GEO datasets and emerged as an independent prognostic factor. The low-risk group exhibited heightened immune cell infiltration, TMB, and immune checkpoint inhibitors (ICIs), associated with a favorable prognosis. Pathways associated with drug metabolism, hormone regulation, and metabolism were activated in the low-risk group. In conclusion, our findings suggest IRGS can be used as an independent prognostic biomarker, providing a foundation for shaping future ACC immunotherapy strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Biao Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing 400016, China; (Y.Z.); (C.Z.); (K.L.); (J.D.); (H.L.); (G.L.)
| | - Xiaoni Zhong
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing 400016, China; (Y.Z.); (C.Z.); (K.L.); (J.D.); (H.L.); (G.L.)
| |
Collapse
|
11
|
Libé R, Huillard O. Adrenocortical carcinoma: Diagnosis, prognostic classification and treatment of localized and advanced disease. Cancer Treat Res Commun 2023; 37:100759. [PMID: 37690343 DOI: 10.1016/j.ctarc.2023.100759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Adrenocortical carcinoma (ACC) is a rare cancer with an estimated incidence of 0.7 to 2.0 cases per 1 million population per year in the United States. It is an aggressive cancer originating in the cortex of the adrenal gland with a poor prognosis. The 5-year survival rate is less than 15% among patients with metastatic disease. In this article, we review the epidemiology and pathogenesis of ACC, the diagnostic procedures, the prognostic classification of ACC, and the treatment options from localized and resectable forms to advanced disease detailing recent therapeutic developments such as immunotherapy and molecularly targeted therapy.
Collapse
Affiliation(s)
- Rossella Libé
- Service Endocrinologie, AP-HP, Hôpital Cochin, French National Network, ENDOCAN-COMETE, F-75014, Paris, France
| | - Olivier Huillard
- Institut du Cancer Paris CARPEM, AP-HP, Department of medical oncology, Hôpital Cochin, F-75014, Paris, France.
| |
Collapse
|
12
|
Wang Q, Sun N, Meixner R, Le Gleut R, Kunzke T, Feuchtinger A, Wang J, Shen J, Kircher S, Dischinger U, Weigand I, Beuschlein F, Fassnacht M, Kroiss M, Walch A. Metabolic heterogeneity in adrenocortical carcinoma impacts patient outcomes. JCI Insight 2023; 8:e167007. [PMID: 37606037 PMCID: PMC10543722 DOI: 10.1172/jci.insight.167007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/06/2023] [Indexed: 08/23/2023] Open
Abstract
Spatially resolved metabolomics enables the investigation of tumoral metabolites in situ. Inter- and intratumor heterogeneity are key factors associated with patient outcomes. Adrenocortical carcinoma (ACC) is an exceedingly rare tumor associated with poor survival. Its clinical prognosis is highly variable, but the contributions of tumor metabolic heterogeneity have not been investigated thus far to our knowledge. An in-depth understanding of tumor heterogeneity requires molecular feature-based identification of tumor subpopulations associated with tumor aggressiveness. Here, using spatial metabolomics by high-mass resolution MALDI Fourier transform ion cyclotron resonance mass spectrometry imaging, we assessed metabolic heterogeneity by de novo discovery of metabolic subpopulations and Simpson's diversity index. After identification of tumor subpopulations in 72 patients with ACC, we additionally performed a comparison with 25 tissue sections of normal adrenal cortex to identify their common and unique metabolic subpopulations. We observed variability of ACC tumor heterogeneity and correlation of high metabolic heterogeneity with worse clinical outcome. Moreover, we identified tumor subpopulations that served as independent prognostic factors and, furthermore, discovered 4 associated anticancer drug action pathways. Our research may facilitate comprehensive understanding of the biological implications of tumor subpopulations in ACC and showed that metabolic heterogeneity might impact chemotherapy.
Collapse
Affiliation(s)
- Qian Wang
- Research Unit Analytical Pathology and
| | - Na Sun
- Research Unit Analytical Pathology and
| | - Raphael Meixner
- Core Facility Statistical Consulting, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Ronan Le Gleut
- Core Facility Statistical Consulting, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | | | | | - Jun Wang
- Research Unit Analytical Pathology and
| | - Jian Shen
- Research Unit Analytical Pathology and
| | | | - Ulrich Dischinger
- Division of Endocrinology and Diabetes, Department of Internal Medicine, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Isabel Weigand
- Division of Endocrinology and Diabetes, Department of Internal Medicine, University Hospital of Wuerzburg, Wuerzburg, Germany
- Department of Internal Medicine IV, LMU Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Felix Beuschlein
- Department of Internal Medicine IV, LMU Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Internal Medicine, University Hospital of Wuerzburg, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Matthias Kroiss
- Division of Endocrinology and Diabetes, Department of Internal Medicine, University Hospital of Wuerzburg, Wuerzburg, Germany
- Department of Internal Medicine IV, LMU Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital of Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
13
|
Kerdivel G, Amrouche F, Calmejane MA, Carallis F, Hamroune J, Hantel C, Bertherat J, Assié G, Boeva V. DNA hypermethylation driven by DNMT1 and DNMT3A favors tumor immune escape contributing to the aggressiveness of adrenocortical carcinoma. Clin Epigenetics 2023; 15:121. [PMID: 37528470 PMCID: PMC10394822 DOI: 10.1186/s13148-023-01534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 07/16/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Adrenocortical carcinoma is rare and aggressive endocrine cancer of the adrenal gland. Within adrenocortical carcinoma, a recently described subtype characterized by a CpG island methylator phenotype (CIMP) has been associated with an especially poor prognosis. However, the drivers of CIMP remain unknown. Furthermore, the functional relation between CIMP and poor clinical outcomes of patients with adrenocortical carcinoma stays elusive. RESULTS Here, we show that CIMP in adrenocortical carcinoma is linked to the increased expression of DNA methyltransferases DNMT1 and DNMT3A driven by a gain of gene copy number and cell hyperproliferation. Importantly, we demonstrate that CIMP contributes to tumor aggressiveness by favoring tumor immune escape. This effect could be at least partially reversed by treatment with the demethylating agent 5-azacytidine. CONCLUSIONS In sum, our findings suggest that co-treatment with demethylating agents might enhance the efficacy of immunotherapy and could represent a novel therapeutic approach for patients with high CIMP adrenocortical carcinoma.
Collapse
Affiliation(s)
- Gwenneg Kerdivel
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France
| | - Floriane Amrouche
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France
| | - Marie-Ange Calmejane
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France
| | | | - Juliette Hamroune
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Jérôme Bertherat
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France
| | - Guillaume Assié
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France
| | - Valentina Boeva
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France.
- Department of Computer Science, Institute for Machine Learning, ETH Zurich, Universitätstrasse 6, 8092, Zurich, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Zurich, Switzerland.
| |
Collapse
|
14
|
Midan HM, Helal GK, Abulsoud AI, Elshaer SS, El-Husseiny AA, Fathi D, Abdelmaksoud NM, Abdel Mageed SS, Elballal MS, Zaki MB, Abd-Elmawla MA, Al-Noshokaty TM, Rizk NI, Elrebehy MA, El-Dakroury WA, Hashem AH, Doghish AS. The potential role of miRNAs in the pathogenesis of adrenocortical carcinoma - A focus on signaling pathways interplay. Pathol Res Pract 2023; 248:154690. [PMID: 37473498 DOI: 10.1016/j.prp.2023.154690] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Adrenocortical carcinoma (ACC) is a highly malignant infrequent tumor with a dismal prognosis. microRNAs (miRNAs, miRs) are crucial in post-transcriptional gene expression regulation. Due to their ability to regulate multiple gene networks, miRNAs are central to the hallmarks of cancer, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, replicative immortality, induction/access to the vasculature, activation of invasion and metastasis, reprogramming of cellular metabolism, and avoidance of immune destruction. ACC represents a singular form of neoplasia associated with aberrations in the expression of evolutionarily conserved short, non-coding RNAs. Recently, the role of miRNAs in ACC has been examined extensively despite the disease's rarity. Hence, the current review is a fast-intensive track elucidating the potential role of miRNAs in the pathogenesis of ACC besides their association with the survival of ACC.
Collapse
Affiliation(s)
- Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Gouda Kamel Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11231, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
15
|
Warde KM, Smith LJ, Liu L, Stubben CJ, Lohman BK, Willett PW, Ammer JL, Castaneda-Hernandez G, Imodoye SO, Zhang C, Jones KD, Converso-Baran K, Ekiz HA, Barry M, Clay MR, Kiseljak-Vassiliades K, Giordano TJ, Hammer GD, Basham KJ. Senescence-induced immune remodeling facilitates metastatic adrenal cancer in a sex-dimorphic manner. NATURE AGING 2023; 3:846-865. [PMID: 37231196 PMCID: PMC11534150 DOI: 10.1038/s43587-023-00420-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 04/12/2023] [Indexed: 05/27/2023]
Abstract
Aging markedly increases cancer risk, yet our mechanistic understanding of how aging influences cancer initiation is limited. Here we demonstrate that the loss of ZNRF3, an inhibitor of Wnt signaling that is frequently mutated in adrenocortical carcinoma, leads to the induction of cellular senescence that remodels the tissue microenvironment and ultimately permits metastatic adrenal cancer in old animals. The effects are sexually dimorphic, with males exhibiting earlier senescence activation and a greater innate immune response, driven in part by androgens, resulting in high myeloid cell accumulation and lower incidence of malignancy. Conversely, females present a dampened immune response and increased susceptibility to metastatic cancer. Senescence-recruited myeloid cells become depleted as tumors progress, which is recapitulated in patients in whom a low myeloid signature is associated with worse outcomes. Our study uncovers a role for myeloid cells in restraining adrenal cancer with substantial prognostic value and provides a model for interrogating pleiotropic effects of cellular senescence in cancer.
Collapse
Affiliation(s)
- Kate M Warde
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Lorenzo J Smith
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Lihua Liu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Chris J Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Brian K Lohman
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Parker W Willett
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Julia L Ammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | | | - Sikiru O Imodoye
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Chenge Zhang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Kara D Jones
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Kimber Converso-Baran
- Frankel Cardiovascular Center Physiology and Phenotyping Core, University of Michigan, Ann Arbor, MI, USA
| | - H Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla Izmir, Turkey
| | - Marc Barry
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Michael R Clay
- Department of Pathology, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine at Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas J Giordano
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
16
|
Pinto D, Parameswaran R. Role of Truncated O-GalNAc Glycans in Cancer Progression and Metastasis in Endocrine Cancers. Cancers (Basel) 2023; 15:3266. [PMID: 37444377 DOI: 10.3390/cancers15133266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Glycans are an essential part of cells, playing a fundamental role in many pathophysiological processes such as cell differentiation, adhesion, motility, signal transduction, host-pathogen interactions, tumour cell invasion, and metastasis development. These glycans are also able to exert control over the changes in tumour immunogenicity, interfering with tumour-editing events and leading to immune-resistant cancer cells. The incomplete synthesis of O-glycans or the formation of truncated glycans such as the Tn-antigen (Thomsen nouveau; GalNAcα- Ser/Thr), its sialylated version the STn-antigen (sialyl-Tn; Neu5Acα2-6GalNAcα-Ser/Thr) and the elongated T-antigen (Thomsen-Friedenreich; Galβ1-3GalNAcα-Ser/Thr) has been shown to be associated with tumour progression and metastatic state in many human cancers. Prognosis in various human cancers is significantly poor when they dedifferentiate or metastasise. Recent studies in glycobiology have shown truncated O-glycans to be a hallmark of cancer cells, and when expressed, increase the oncogenicity by promoting dedifferentiation, risk of metastasis by impaired adhesion (mediated by selectins and integrins), and resistance to immunological killing by NK cells. Insight into these truncated glycans provides a complimentary and attractive route for cancer antigen discovery. The recent emergence of immunotherapies against cancers is predicted to harness the potential of using such agents against cancer-associated truncated glycans. In this review, we explore the role of truncated O-glycans in cancer progression and metastasis along with some recent studies on the role of O-glycans in endocrine cancers affecting the thyroid and adrenal gland.
Collapse
Affiliation(s)
- Diluka Pinto
- Division of Endocrine Surgery, National University Hospital, Singapore 119074, Singapore
| | - Rajeev Parameswaran
- Division of Endocrine Surgery, National University Hospital, Singapore 119074, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
17
|
Faucz FR, Maria AG, Stratakis CA. Molecular tools for diagnosing diseases of the adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2023; 30:154-160. [PMID: 37067987 DOI: 10.1097/med.0000000000000809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
PURPOSE OF REVIEW The adrenal glands produce some of the most essential for life hormones, including cortisol and other steroids, and catecholamines. The former is produced from the adrenal cortex, whereas the latter is from the medulla. The two parts are anatomically and functionally distinct and it would be impossible in the context of one short article to cover all molecular updates on both the cortex and the medulla. Thus, in this review, we focus on the molecular tools available for diagnosing adrenocortical diseases, such as adrenal insufficiency, Cushing and Conn syndromes, and their potential for advancing medical care and clinical outcome. RECENT FINDINGS The advent of next generation sequencing opened doors for finding genetic diseases and signaling pathways involved in adrenocortical diseases. In addition, the combination of molecular data and clinicopathologic assessment might be the best approach for an early and precise diagnosis contributing to therapeutic decisions and improvement of patient outcomes. SUMMARY Diagnosing adrenocortical diseases can be challenging; however, the progress of molecular tools for adrenocortical disease diagnosis has greatly contributed to early detection and to meliorate patient outcomes.
Collapse
Affiliation(s)
| | - Andrea G Maria
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Constantine A Stratakis
- ELPEN Pharmaceuticals, Pikermi & H. Dunant Hospital, Athens
- Human Genetics & Precision Medicine, IMBB, FORTH, Heraklion, Greece
| |
Collapse
|
18
|
Lyraki R, Grabek A, Tison A, Weerasinghe Arachchige LC, Peitzsch M, Bechmann N, Youssef SA, de Bruin A, Bakker ERM, Claessens F, Chaboissier MC, Schedl A. Crosstalk between androgen receptor and WNT/β-catenin signaling causes sex-specific adrenocortical hyperplasia in mice. Dis Model Mech 2023; 16:dmm050053. [PMID: 37102205 PMCID: PMC10184674 DOI: 10.1242/dmm.050053] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/29/2023] [Indexed: 04/28/2023] Open
Abstract
Female bias is highly prevalent in conditions such as adrenal cortex hyperplasia and neoplasia, but the reasons behind this phenomenon are poorly understood. In this study, we show that overexpression of the secreted WNT agonist R-spondin 1 (RSPO1) leads to ectopic activation of WNT/β-catenin signaling and causes sex-specific adrenocortical hyperplasia in mice. Although female adrenals show ectopic proliferation, male adrenals display excessive immune system activation and cortical thinning. Using a combination of genetic manipulations and hormonal treatment, we show that gonadal androgens suppress ectopic proliferation in the adrenal cortex and determine the selective regulation of the WNT-related genes Axin2 and Wnt4. Notably, genetic removal of androgen receptor (AR) from adrenocortical cells restores the mitogenic effect of WNT/β-catenin signaling. This is the first demonstration that AR activity in the adrenal cortex determines susceptibility to canonical WNT signaling-induced hyperplasia.
Collapse
Affiliation(s)
- Rodanthi Lyraki
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108 Nice, France
| | - Anaëlle Grabek
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108 Nice, France
| | - Amélie Tison
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108 Nice, France
| | | | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Sameh A. Youssef
- Dutch Molecular Pathology Center, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
- Janssen Research and Development, 2340 Beerse, Belgium
| | - Alain de Bruin
- Dutch Molecular Pathology Center, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, the Netherlands
| | - Elvira R. M. Bakker
- Department of Pathology, University Medical Center Utrecht, 3508 AB, Utrecht, the Netherlands
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | | | - Andreas Schedl
- Université Côte d'Azur, Inserm, CNRS, Institut de Biologie Valrose, 06108 Nice, France
| |
Collapse
|
19
|
Leo J, Dondossola E, Basham KJ, Wilson NR, Alhalabi O, Gao J, Kurnit KC, White MG, McQuade JL, Westin SN, Wellberg EA, Frigo DE. Stranger Things: New Roles and Opportunities for Androgen Receptor in Oncology Beyond Prostate Cancer. Endocrinology 2023; 164:bqad071. [PMID: 37154098 PMCID: PMC10413436 DOI: 10.1210/endocr/bqad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
The androgen receptor (AR) is one of the oldest therapeutic targets in oncology and continues to dominate the treatment landscape for advanced prostate cancer, where nearly all treatment regimens include some form of AR modulation. In this regard, AR remains the central driver of prostate cancer cell biology. Emerging preclinical and clinical data implicate key roles for AR in additional cancer types, thereby expanding the importance of this drug target beyond prostate cancer. In this mini-review, new roles for AR in other cancer types are discussed as well as their potential for treatment with AR-targeted agents. Our understanding of these additional functions for AR in oncology expand this receptor's potential as a therapeutic target and will help guide the development of new treatment approaches.
Collapse
Affiliation(s)
- Javier Leo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Eleonora Dondossola
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kaitlin J Basham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Nathaniel R Wilson
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Omar Alhalabi
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katherine C Kurnit
- Department of Obstetrics and Gynecology, Section of Gynecologic Oncology, The University of Chicago, Chicago, IL 60637, USA
| | - Michael G White
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shannon N Westin
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth A Wellberg
- Department of Pathology, Harold Hamm Diabetes Center, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
20
|
The Characteristics of Tumor Microenvironment Predict Survival and Response to Immunotherapy in Adrenocortical Carcinomas. Cells 2023; 12:cells12050755. [PMID: 36899891 PMCID: PMC10000893 DOI: 10.3390/cells12050755] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Increasing evidence confirms that tumor microenvironment (TME) can influence tumor progression and treatment, but TME is still understudied in adrenocortical carcinoma (ACC). In this study, we first scored TME using the xCell algorithm, then defined genes associated with TME, and then used consensus unsupervised clustering analysis to construct TME-related subtypes. Meanwhile, weighted gene co-expression network analysis was used to identify modules correlated with TME-related subtypes. Ultimately, the LASSO-Cox approach was used to establish a TME-related signature. The results showed that TME-related scores in ACC may not correlate with clinical features but do promote a better overall survival. Patients were classified into two TME-related subtypes. Subtype 2 had more immune signaling features, higher expression of immune checkpoints and MHC molecules, no CTNNB1 mutations, higher infiltration of macrophages and endothelial cells, lower tumor immune dysfunction and exclusion scores, and higher immunophenoscore, suggesting that subtype 2 may be more sensitive to immunotherapy. 231 modular genes highly relevant to TME-related subtypes were identified, and a 7-gene TME-related signature that independently predicted patient prognosis was established. Our study revealed an integrated role of TME in ACC and helped to identify those patients who really responded to immunotherapy, while providing new strategies on risk management and prognosis prediction.
Collapse
|
21
|
Liu H, Huang K, Liu D, Wang Y. Case Report: Surgery to remove adrenocortical oncocytic carcinoma from an Asian male. Front Surg 2023; 10:943296. [PMID: 36761025 PMCID: PMC9905669 DOI: 10.3389/fsurg.2023.943296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Adrenocortical oncocytic carcinoma is a rare type of adrenocortical tumor. Its clinical characteristics and biological behavior need to be further evaluated after the accumulation of cases. Here we report a case of adrenocortical oncocytic carcinoma in an Asian male with scoliosis. We performed an operation on this patient. Because the patient's scoliosis was limited during the operation and the tumor protruded into the chest, we decided to adopt open surgery in the supine position. During the operation, we found a tumor about 8 cm in diameter in the right adrenal region and successfully removed it. The patient recovered well after surgery, and there was no tumor recurrence after one year of follow-up. Pathological results confirmed the diagnosis of adrenocortical oncocytic carcinoma. Pathological features showed tumor cell invasion of adipose tissue, with atypical mitosis and abundant esinophilic cytoplasm. Immunohistochemistry showed that nucleus related antigen (Ki67) index was more than 15% and the positive pathological staining of Synaptophysin (Syn), Melanoma A (Melan A), Inhibin and calretinin. The incidence rate of adrenocortical oncocytic carcinoma is extremely rare. Abdominal Computed tomography (CT) scans and other imaging examination methods are not specific. For larger adrenal tumors, the diagnosis of this disease should be considered. For patients with adrenocortical oncocytic carcinoma who have not yet metastasized, we may achieve sound treatment effects and reduce recurrence by removing the tumor, retroperitoneal fat around the tumor and locoregional lymph nodes.
Collapse
Affiliation(s)
- Hongtao Liu
- Department of Urology, General Hospital of Northern Theater Command, Shenyang, China
| | - Kai Huang
- Department of Urology, Clinical Medical College, Yangzhou University, Yangzhou, China,Correspondence: Kai Huang
| | - Dan Liu
- Department of Pathology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yehua Wang
- Department of Urology, Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
22
|
Ko YL, Kumar V, Lippert J, Diaz-Cano S, Skordilis K, Kimpel O, Kircher S, Asia M, Elhassan YS, Altieri B, Ronchi CL. Coincidence of primary adrenocortical carcinoma and melanoma: three CASE reports. BMC Endocr Disord 2023; 23:4. [PMID: 36604647 PMCID: PMC9817389 DOI: 10.1186/s12902-022-01253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with a heterogeneous prognosis, while adrenal metastasis from other primary cancers, including melanoma, may occur more frequently. ACC may rarely occur as part of familial cancer syndromes, but even in sporadic cases, a significant proportion of patients had other malignancies before or after diagnosis of ACC. Herein we present three cases where sporadic ACC was identified in patients with coexistent or previous history of melanoma. CASE DESCRIPTION Patient 1 - A 37-yr-old man with a superficial spreading BRAF-positive melanoma was found to harbour a progressively growing left adrenal mass. Initially, he was suspected of having adrenal metastasis, but the histology after adrenalectomy confirmed ACC. Patient 2 - A 68-year-old man with a history of recurrent BRAF-positive melanoma was diagnosed with disseminated metastatic melanoma recurrence, including a rapidly enlarging left adrenal mass. Consequently, he underwent left adrenalectomy, and histology again confirmed ACC. Patient 3 - A 50-yr-old man was referred with histological diagnosis of metastatic ACC. He had a background history of pT1 melanoma. We undertook targeted sequencing of ACC tissue samples in all cases. Somatic variants were observed in the known driver genes CTNNB1 (Patient 1), APC and KMT2D (Patient 2), and APC and TP53 (Patient 3). Germline TP53 variants (Li-Fraumeni syndrome) were excluded in all cases. Retrospective review of our patient cohort in the last 21 years revealed a frequency of 0.5% of histologically diagnosed melanoma metastasis among patients referred for adrenal masses. On the other hand, 1.6% of patients with histologically confirmed ACC had a previous history of melanoma. CONCLUSION Sporadic ACC can occur in the background of melanoma, even if adrenal metastasis might appear to be the most likely diagnosis. Coexistent primary adrenal malignancy should be considered and investigated for in all patients with a history of melanoma with suspicious adrenal lesions.
Collapse
Affiliation(s)
- Ye Lynn Ko
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Vaishnavi Kumar
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Juliane Lippert
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Salvador Diaz-Cano
- Department of Histopathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Kassiani Skordilis
- Department of Histopathology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Otilia Kimpel
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Stefan Kircher
- Institute for Pathology, University of Würzburg, Würzburg, Germany
| | - Miriam Asia
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Yasir S Elhassan
- Institute of Metabolism and System Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
- Centre for Endocrinology, Diabetes, and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Cristina L Ronchi
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany.
- Institute of Metabolism and System Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK.
- Centre for Endocrinology, Diabetes, and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
23
|
Shen C, Wang Y. Ferroptosis Biomarkers for Predicting Prognosis and Immunotherapy Efficacy in Adrenocortical Carcinoma. Arch Med Res 2023; 54:45-55. [PMID: 36528469 DOI: 10.1016/j.arcmed.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/17/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Numerous studies have suggested that ferroptosis plays an important regulatory role in cancer cell death. Nonetheless, the potential effects of ferroptosis regulators on the prognosis, the expression of immunomodulatory factors in the tumor microenvironment and on the efficacy of immunotherapy in adrenocortical carcinoma (ACC) remain largely unknown. METHODS Public ACC datasets were used to investigate the relationship between ferroptosis regulators and prognosis and clinical features. A ferroptosis scoring system was established for individual cases of ACC using principal component analysis algorithms. Hub ferroptosis-related genes involved in immunoregulation and immunotherapy efficacy in ACC were further identified. RESULTS Twenty ferroptosis regulators were differentially expressed in ACC and 17 ferroptosis regulators were closely related to prognosis in ACC. A ferroptosis scoring system was developed based on ACSL4, FANCD2, and SLC7A1 expression, and the ferroptosis regulators could serve as an independent prognostic factor for ACC. Further analyses indicated that the ferroptosis score integrated with the tumor mutation burden (TMB), and immune-checkpoint gene expression could predict prognosis in ACC. RNA isolation and reverse transcription‑quantitative polymerase chain reaction (RT-qPCR) demonstrated significant differences in the expression levels of ACSL4, FANCD2, and SLC7A1 between ACC and normal tissues. Furthermore, FANCD2 was significantly related to immunotherapy efficacy and prognosis in ACC. CONCLUSION Our study demonstrated that ferroptosis was significantly associated with prognosis, clinical characteristics, immune-checkpoint gene expression, and tumor microenvironment immune cell infiltration in ACC. The current study provides comprehensive evidence for further research on ferroptosis regulators in ACC and provides new insight into the epigenetic regulation of the antitumor immune response.
Collapse
Affiliation(s)
- Chengquan Shen
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Key Laboratory of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yonghua Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Key Laboratory of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
24
|
Subramanian C, McCallister R, Cohen MS. Multi-genomic analysis of 260 adrenocortical cancer patient tumors identifies novel network BIRC5-hsa-miR-335-5p-PAX8-AS1 strongly associated with poor survival. Surgery 2023; 173:43-51. [PMID: 36202651 DOI: 10.1016/j.surg.2022.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/15/2022] [Accepted: 08/09/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adrenocortical carcinoma is a rare endocrine cancer with poor overall survival. Linking survival outcomes to a common target across multiple genomic datasets incorporating microRNA-long non-coding RNA dysregulation have not been well described. We hypothesized that a multi-database analysis of microRNA-long noncoding RNA-messenger RNA regulatory networks associated with survival will identify novel biomarkers. METHODS Significantly dysregulated genes or microRNA in adrenocortical carcinoma compared to normal adrenal was identified from sequencing data for 260 human adrenocortical carcinomas using GEO2R. The miRnet identified hub microRNA and genes and long noncoding RNA and microRNA associated with survival genes. The R2 generated Kaplan-Meier curves. The database miRTarBase linked genes associated with poor survival and dysregulated microRNA. RESULTS Analysis of genes and microRNAs differentially regulated in >50% of datasets revealed 75 genes and 12 microRNAs were upregulated, and 167 genes and 12 microRNAs were downregulated (bonf. P < .05). Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed cell cycle, P53 signaling, arachidonic acid and innate immune response, and PI3/Akt are altered in adrenocortical carcinoma. A microRNA-target interaction network of differentially regulated microRNAs identified upregulated miRNA107, 103a-3p and 27a-3p, 16-5p, and downregulated 335-5p to have the highest degree of interaction with upregulated (ie, TPX2, CDK1, BIRC5, PRC1, CCNB1, GINS1) and downregulated (ie, RSPO3, NR2F1, TLR4, HOXA5, USP53, SLC16A9) hub genes as well as hub long noncoding RNAs XIST, NEAT1, KCNQ1OT1, and PAX8-AS1. Survival analysis revealed that the hub genes are associated with poor overall survival (P < .05) of adrenocortical carcinoma in the Cancer Genome Atlas data. CONCLUSION A messenger RNA-microRNA-long noncoding RNA network analysis identified the BIRC5-miR335-5p-PAX8-AS1 network as one that was associated with poor overall survival in adrenocortical carcinoma, warranting further validation as a potential therapeutic target.
Collapse
Affiliation(s)
| | | | - Mark S Cohen
- Department of Surgery, Michigan Medicine, Ann Arbor, MI; Department of Pharmacology, University of Michigan, Ann Arbor, MI; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Adrenocortical carcinoma (ACC) is a rare, aggressive disease with a paucity of data and great variability between published studies regarding its treatment. This review provides information on current clinical management and oncological and endocrine outcomes. RECENT FINDINGS Complete surgical resection is the only potentially curative treatment for adrenocortical carcinoma (ACC). Adjuvant mitotane treatment is recommended in patients with favourable/intermediate prognosis. As part of the endocrine follow-up, steroid hormones and thyroid hormones may be decreased or increased and may need to be substituted or suppressed. Recurrences are common. If the disease-free interval is more than 12 months, surgery is a treatment if complete resection is feasible. In advanced/metastatic ACC patients, the prognosis is poor. Mitotane monotherapy is only appropriate for patients with low tumour burden and indolent disease. Patients with unfavourable prognosis should be treated with aggressive cytotoxic therapy. Patients requiring third-line treatment should be considered for clinical trials. Immunotherapy and targeted therapy are currently being investigated, but have so far yielded only unsatisfactory results. SUMMARY There is scarce evidence for the treatment of ACC, which often complicates clinical decision-making. Patients who progress on EDP-M should be treated in clinical trials.
Collapse
|
26
|
Abstract
Adrenal cortical carcinoma (ACC) is a rare and aggressive malignancy that poses challenging issues regarding the diagnostic workup. Indeed, no presurgical technique or clinical parameters can reliably distinguish between adrenal cortical adenomas, which are more frequent and have a favorable outcome, and ACC, and the final diagnosis largely relies on histopathologic analysis of the surgical specimen. However, even the pathologic assessment of malignancy in an adrenal cortical lesion is not straightforward and requires a combined evaluation of multiple histopathologic features. Starting from the Weiss score, which was developed in 1984, several histopathologic scoring systems have been designed to tackle the difficulties of ACC diagnosis. Dealing with specific histopathologic variants (eg, Liss-Weiss-Bisceglia scoring system for oncocytic ACC) or patient characteristics (eg, Wieneke index in the pediatric setting), these scores remarkably improved the diagnostic workup of ACC and its subtypes. Nevertheless, cases with misleading features or discordant correlations between pathologic findings and clinical behavior still occur. Owing to multicentric collaborative studies integrating morphologic features with ancillary immunohistochemical markers and molecular analysis, ACC has eventually emerged as a multifaceted, heterogenous malignancy, and, while innovative and promising approaches are currently being tested, the future clinical management of patients with ACC will mainly rely on personalized medicine and target-therapy protocols. At the dawn of the new Fifth World Health Organization classification of endocrine tumors, this review will tackle ACC from the pathologist's perspective, thus focusing on the main available diagnostic, prognostic, and predictive tissue-tethered features and biomarkers and providing relevant clinical and molecular correlates.
Collapse
|
27
|
Deng Y, Li H, Fu J, Pu Y, Zhang Y, Chen S, Tong S, Liu H. A hypoxia risk score for prognosis prediction and tumor microenvironment in adrenocortical carcinoma. Front Genet 2022; 13:796681. [PMID: 36583015 PMCID: PMC9792869 DOI: 10.3389/fgene.2022.796681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Adrenocortical carcinoma (ACC) is a rare malignant endocrine tumor derived from the adrenal cortex. Because of its highly aggressive nature, the prognosis of patients with adrenocortical carcinoma is not impressive. Hypoxia exists in the vast majority of solid tumors and contributes to invasion, metastasis, and drug resistance. This study aimed to reveal the role of hypoxia in Adrenocortical carcinoma and develop a hypoxia risk score (HRS) for Adrenocortical carcinoma prognostic prediction. Methods: Hypoxia-related genes were obtained from the Molecular Signatures Database. The training cohorts of patients with adrenocortical carcinoma were downloaded from The Cancer Genome Atlas, while another three validation cohorts with comprehensive survival data were collected from the Gene Expression Omnibus. In addition, we constructed a hypoxia classifier using a random survival forest model. Moreover, we explored the relationship between the hypoxia risk score and immunophenotype in adrenocortical carcinoma to evaluate the efficacy of immune check inhibitors (ICI) therapy and prognosis of patients. Results: HRS and tumor stage were identified as independent prognostic factors. HRS was negatively correlated with immune cycle activity, immune cell infiltration, and the T cell inflammatory score. Therefore, we considered the low hypoxia risk score group as the inflammatory immunophenotype, whereas the high HRS group was a non-inflammatory immunophenotype. In addition, the HRS was negatively related to the expression of common immune checkpoint molecules such as PD-L1, CD200, CTLA-4, and TIGIT, suggesting that patients with a lower hypoxia risk score respond better to immunotherapy. Conclusion: We developed and validated a novel hypoxia risk score to predict the immunophenotype and response of patients with adrenocortical carcinoma to immune check inhibitors therapy. These findings not only provide fresh prognostic indicators for adrenocortical carcinoma but also offer several promising treatment targets for this disease.
Collapse
Affiliation(s)
- Yuanyuan Deng
- Department of Geriatric Endocrine, Xiangya Hospital, Central South University, Changsha, China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jinglan Fu
- Department of Geriatric Endocrine, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Pu
- Department of Geriatric Endocrine, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zhang
- Department of Geriatric Endocrine, Xiangya Hospital, Central South University, Changsha, China
| | - Shijing Chen
- Department of Geriatric Endocrine, Xiangya Hospital, Central South University, Changsha, China
| | - Shiyu Tong
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Huixia Liu, ; Shiyu Tong,
| | - Huixia Liu
- Department of Geriatric Endocrine, Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Huixia Liu, ; Shiyu Tong,
| |
Collapse
|
28
|
Lerario AM, Mohan DR, Hammer GD. Update on Biology and Genomics of Adrenocortical Carcinomas: Rationale for Emerging Therapies. Endocr Rev 2022; 43:1051-1073. [PMID: 35551369 PMCID: PMC9695111 DOI: 10.1210/endrev/bnac012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 11/19/2022]
Abstract
The adrenal glands are paired endocrine organs that produce steroid hormones and catecholamines required for life. Adrenocortical carcinoma (ACC) is a rare and often fatal cancer of the peripheral domain of the gland, the adrenal cortex. Recent research in adrenal development, homeostasis, and disease have refined our understanding of the cellular and molecular programs controlling cortical growth and renewal, uncovering crucial clues into how physiologic programs are hijacked in early and late stages of malignant neoplasia. Alongside these studies, genome-wide approaches to examine adrenocortical tumors have transformed our understanding of ACC biology, and revealed that ACC is composed of distinct molecular subtypes associated with favorable, intermediate, and dismal clinical outcomes. The homogeneous transcriptional and epigenetic programs prevailing in each ACC subtype suggest likely susceptibility to any of a plethora of existing and novel targeted agents, with the caveat that therapeutic response may ultimately be limited by cancer cell plasticity. Despite enormous biomedical research advances in the last decade, the only potentially curative therapy for ACC to date is primary surgical resection, and up to 75% of patients will develop metastatic disease refractory to standard-of-care adjuvant mitotane and cytotoxic chemotherapy. A comprehensive, integrated, and current bench-to-bedside understanding of our field's investigations into adrenocortical physiology and neoplasia is crucial to developing novel clinical tools and approaches to equip the one-in-a-million patient fighting this devastating disease.
Collapse
Affiliation(s)
- Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Dipika R Mohan
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| |
Collapse
|
29
|
Muzzi JCD, Magno JM, Souza JS, Alvarenga LM, de Moura JF, Figueiredo BC, Castro MAA. Comprehensive Characterization of the Regulatory Landscape of Adrenocortical Carcinoma: Novel Transcription Factors and Targets Associated with Prognosis. Cancers (Basel) 2022; 14:5279. [PMID: 36358698 PMCID: PMC9657296 DOI: 10.3390/cancers14215279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 08/31/2023] Open
Abstract
We reconstructed a transcriptional regulatory network for adrenocortical carcinoma (ACC) using transcriptomic and clinical data from The Cancer Genome Atlas (TCGA)-ACC cohort. We investigated the association of transcriptional regulatory units (regulons) with overall survival, molecular phenotypes, and immune signatures. We annotated the ACC regulons with cancer hallmarks and assessed single sample regulon activities in the European Network for the Study of Adrenal Tumors (ENSAT) cohort. We found 369 regulons associated with overall survival and subdivided them into four clusters: RC1 and RC2, associated with good prognosis, and RC3 and RC4, associated with worse outcomes. The RC1 and RC3 regulons were highly correlated with the 'Steroid Phenotype,' while the RC2 and RC4 regulons were highly correlated with a molecular proliferation signature. We selected two regulons, NR5A1 (steroidogenic factor 1, SF-1) and CENPA (Centromeric Protein A), that were consistently associated with overall survival for further downstream analyses. The CENPA regulon was the primary regulator of MKI-67 (a marker of proliferation KI-67), while the NR5A1 regulon is a well-described transcription factor (TF) in ACC tumorigenesis. We also found that the ZBTB4 (Zinc finger and BTB domain-containing protein 4) regulon, which is negatively associated with CENPA in our transcriptional regulatory network, is also a druggable anti-tumorigenic TF. We anticipate that the ACC regulons may be used as a reference for further investigations concerning the complex molecular interactions in ACC tumors.
Collapse
Affiliation(s)
- João C. D. Muzzi
- Laboratório de Imunoquímica (LIMQ), Pós-Graduação em Microbiologia, Parasitologia e Patologia, Departamento de Patologia Básica, Universidade Federal do Paraná (UFPR), Curitiba 81530-990, Brazil
- Laboratório de Bioinformática e Biologia de Sistemas, Pós-Graduação em Bioinformática, Universidade Federal do Paraná (UFPR), Curitiba 81520-260, Brazil
- Oncology Division, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, Brazil
| | - Jéssica M. Magno
- Laboratório de Bioinformática e Biologia de Sistemas, Pós-Graduação em Bioinformática, Universidade Federal do Paraná (UFPR), Curitiba 81520-260, Brazil
- Oncology Division, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, Brazil
| | - Jean S. Souza
- Oncology Division, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, Brazil
| | - Larissa M. Alvarenga
- Laboratório de Imunoquímica (LIMQ), Pós-Graduação em Microbiologia, Parasitologia e Patologia, Departamento de Patologia Básica, Universidade Federal do Paraná (UFPR), Curitiba 81530-990, Brazil
| | - Juliana F. de Moura
- Laboratório de Imunoquímica (LIMQ), Pós-Graduação em Microbiologia, Parasitologia e Patologia, Departamento de Patologia Básica, Universidade Federal do Paraná (UFPR), Curitiba 81530-990, Brazil
| | - Bonald C. Figueiredo
- Oncology Division, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, Brazil
- Molecular Oncology Laboratory, Centro de Genética Molecular e Pesquisa do Câncer em Crianças (CEGEMPAC), Curitiba 80030-110, Brazil
| | - Mauro A. A. Castro
- Laboratório de Bioinformática e Biologia de Sistemas, Pós-Graduação em Bioinformática, Universidade Federal do Paraná (UFPR), Curitiba 81520-260, Brazil
| |
Collapse
|
30
|
The RING finger protein family in health and disease. Signal Transduct Target Ther 2022; 7:300. [PMID: 36042206 PMCID: PMC9424811 DOI: 10.1038/s41392-022-01152-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 02/05/2023] Open
Abstract
Ubiquitination is a highly conserved and fundamental posttranslational modification (PTM) in all eukaryotes regulating thousands of proteins. The RING (really interesting new gene) finger (RNF) protein, containing the RING domain, exerts E3 ubiquitin ligase that mediates the covalent attachment of ubiquitin (Ub) to target proteins. Multiple reviews have summarized the critical roles of the tripartite-motif (TRIM) protein family, a subgroup of RNF proteins, in various diseases, including cancer, inflammatory, infectious, and neuropsychiatric disorders. Except for TRIMs, since numerous studies over the past decades have delineated that other RNF proteins also exert widespread involvement in several diseases, their importance should not be underestimated. This review summarizes the potential contribution of dysregulated RNF proteins, except for TRIMs, to the pathogenesis of some diseases, including cancer, autoimmune diseases, and neurodegenerative disorder. Since viral infection is broadly involved in the induction and development of those diseases, this manuscript also highlights the regulatory roles of RNF proteins, excluding TRIMs, in the antiviral immune responses. In addition, we further discuss the potential intervention strategies targeting other RNF proteins for the prevention and therapeutics of those human diseases.
Collapse
|
31
|
Arnon J, Grozinsky-Glasberg S, Oleinikov K, Gross DJ, Salmon A, Meirovitz A, Maimon O. Prognostic factors in advanced Adrenocortical Carcinoma: Summary of a national referral center’s 20 years of experience. J Endocr Soc 2022; 6:bvac112. [PMID: 35949453 PMCID: PMC9354968 DOI: 10.1210/jendso/bvac112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
Context Adrenocortical carcinoma (ACC) is a rare malignancy with poor prognosis for both locally advanced and metastatic disease. Standard treatment with combination etoposide–doxorubicin–cisplatin–mitotane (EDP-M) is highly toxic and some patients benefit from mitotane monotherapy. However, identification of these patients remains challenging. Objective We present a summary of the Israeli national referral center’s 20 years of experience in treating advanced ACC, with the aim of identifying prognostic factors and assisting in treatment decision making. Methods We conducted a retrospective multivariate analysis of patients treated for metastatic or locally advanced ACC at Hadassah Medical Center between 2000 and 2020 to determine clinical, pathological, and treatment factors correlated with overall survival (OS). Results In our cohort of 37 patients, a combination of modified European Network for the study of Adrenal Tumors (mENSAT) staging with either grade and R status, or age and symptoms was validated to stratify prognosis (P = .01 and P = .03, respectively). Patients who underwent R0 resection followed by radiotherapy or metastasectomy for oligometastatic disease had longer OS than patients with residual disease: median OS of 55 months vs 14 months, respectively, hazard ratio 3.1 (CI 1.4-6.7, P = .005). Patients treated with mitotane monotherapy had a significantly better prognosis, yet this result was attenuated in a multivariate analysis controlling for mENSAT and R status. Of patients treated with EDP-M, 41.4% experienced grade 3 or higher adverse events. Conclusion Patients with advanced ACC achieving R0 status have a better prognosis and might benefit from mitotane monotherapy.
Collapse
Affiliation(s)
- Johnathan Arnon
- Department of Oncology, Sharett institute for Oncology, Hadassah Medical Organization and Faculty of Medicine , Hebrew University of Jerusalem, Israel
| | - Simona Grozinsky-Glasberg
- Neuroendocrine Unit, ENETS Center of Excellence, Department of Endocrinology and Metabolism , Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Kira Oleinikov
- Neuroendocrine Unit, ENETS Center of Excellence, Department of Endocrinology and Metabolism , Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - David J Gross
- Neuroendocrine Unit, ENETS Center of Excellence, Department of Endocrinology and Metabolism , Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Asher Salmon
- Department of Oncology, Sharett institute for Oncology, Hadassah Medical Organization and Faculty of Medicine , Hebrew University of Jerusalem, Israel
| | - Amichay Meirovitz
- Department of Oncology, Sharett institute for Oncology, Hadassah Medical Organization and Faculty of Medicine , Hebrew University of Jerusalem, Israel
| | - Ofra Maimon
- Department of Oncology, Sharett institute for Oncology, Hadassah Medical Organization and Faculty of Medicine , Hebrew University of Jerusalem, Israel
| |
Collapse
|
32
|
Detomas M, Pivonello C, Pellegrini B, Landwehr LS, Sbiera S, Pivonello R, Ronchi CL, Colao A, Altieri B, De Martino MC. MicroRNAs and Long Non-Coding RNAs in Adrenocortical Carcinoma. Cells 2022; 11:2234. [PMID: 35883677 PMCID: PMC9324008 DOI: 10.3390/cells11142234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a type of genetic material that do not encode proteins but regulate the gene expression at an epigenetic level, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). The role played by ncRNAs in many physiological and pathological processes has gained attention during the last few decades, as they might be useful in the diagnosis, treatment and management of several human disorders, including endocrine and oncological diseases. Adrenocortical carcinoma (ACC) is a rare and aggressive endocrine cancer, still characterized by high mortality and morbidity due to both endocrine and oncological complications. Despite the rarity of this disease, recently, the role of ncRNA has been quite extensively evaluated in ACC. In order to better explore the role of the ncRNA in human ACC, this review summarizes the current knowledge on ncRNA dysregulation in ACC and its potential role in the diagnosis, treatment, and management of this tumor.
Collapse
Affiliation(s)
- Mario Detomas
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (M.D.); (L.-S.L.); (S.S.); (C.L.R.); (B.A.)
| | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, 80131 Naples, Italy; (C.P.); (B.P.); (R.P.); (A.C.)
| | - Bianca Pellegrini
- Dipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, 80131 Naples, Italy; (C.P.); (B.P.); (R.P.); (A.C.)
| | - Laura-Sophie Landwehr
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (M.D.); (L.-S.L.); (S.S.); (C.L.R.); (B.A.)
| | - Silviu Sbiera
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (M.D.); (L.-S.L.); (S.S.); (C.L.R.); (B.A.)
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, 80131 Naples, Italy; (C.P.); (B.P.); (R.P.); (A.C.)
- Unesco Chair for Health Education and Sustainable Development, Federico II University, 80131 Naples, Italy
| | - Cristina L. Ronchi
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (M.D.); (L.-S.L.); (S.S.); (C.L.R.); (B.A.)
- Institute of Metabolism and System Research, University of Birmingham, Birmingham B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham B15 2TT, UK
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, 80131 Naples, Italy; (C.P.); (B.P.); (R.P.); (A.C.)
- Unesco Chair for Health Education and Sustainable Development, Federico II University, 80131 Naples, Italy
| | - Barbara Altieri
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, University of Würzburg, 97080 Würzburg, Germany; (M.D.); (L.-S.L.); (S.S.); (C.L.R.); (B.A.)
| | - Maria Cristina De Martino
- Dipartimento di Medicina Clinica e Chirurgia, Università “Federico II” di Napoli, 80131 Naples, Italy; (C.P.); (B.P.); (R.P.); (A.C.)
| |
Collapse
|
33
|
Nazha B, Zhuang TZ, Dada HI, Drusbosky LM, Brown JT, Ravindranathan D, Carthon BC, Kucuk O, Goldman J, Master VA, Bilen MA. Blood-Based Next-Generation Sequencing in Adrenocortical Carcinoma. Oncologist 2022; 27:462-468. [PMID: 35462410 PMCID: PMC9177103 DOI: 10.1093/oncolo/oyac061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Adrenocortical carcinoma (ACC) is a rare and heterogeneous malignancy with poor prognosis. We aimed to evaluate the feasibility of next-generation sequencing (NGS) testing of circulating cell-free tumor DNA (ctDNA) in patients with ACC, to characterize the genomic landscape of alterations, and to identify potential clinically actionable mutations. METHODS Retrospective analysis of genomic data from 120 patients with ACC who had ctDNA testing between 12/2016 and 10/2021 using Guardant360 (Guardant Health, CA) was performed. ctDNA NGS analysis interrogated single nucleotide variants, fusions, indels, and copy number amplifications of up to 83 genes. The frequency of genomic alterations, landscape of co-occurring mutations, and pathogenic/likely pathogenic alterations with potential targeted therapies was identified. The prevalence of alterations identified in ctDNA was compared to those detected in tissue using a publicly available database (cBioPortal). RESULTS The median age of this cohort was 53 years (range 21-81), and 56% of patients were female. Ninety-six patients (80%) had ≥1 somatic alteration detected. TP53 (52%), EGFR (23%), CTNNB1 (18%), MET (18%), and ATM (14%) were found to be the most frequently altered genes in ACC samples. Pathogenic and/or likely pathogenic mutations in therapeutically relevant genes were observed in 56 patients (47%) and included EGFR, BRAF, MET, CDKN2A, CDK4/6, and ATM. The most frequent co-occurring mutations were EGFR + MET (9%), MET + CDK4 (7%), EGFR + CDK4 (7%), and BRAF + MET (7%). The frequencies of mutations detected in ctDNA were similar to those detected in tissue. CONCLUSIONS Utilizing blood-based NGS to characterize genomic alterations in advanced ACC is feasible in over 80% of patients. Almost half of the patients had actionable mutations with approved therapies in other cancers. This approach might inform the development of personalized treatment options or identify clinical trials available for this aggressive malignancy.
Collapse
Affiliation(s)
- Bassel Nazha
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tony Z Zhuang
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Jacqueline T Brown
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Deepak Ravindranathan
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Bradley C Carthon
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Omer Kucuk
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jamie Goldman
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Viraj A Master
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehmet Asim Bilen
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
34
|
Lin X, Gu Y, Su Y, Dong Y, Major P, Kapoor A, Tang D. Prediction of Adrenocortical Carcinoma Relapse and Prognosis with a Set of Novel Multigene Panels. Cancers (Basel) 2022; 14:cancers14112805. [PMID: 35681785 PMCID: PMC9179637 DOI: 10.3390/cancers14112805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Effective assessment of adrenocortical carcinoma (ACC) prognosis is critical in patient management. We report four novel and robust prognostic multigene panels. Sig27var25, SigIQvar8, SigCmbnvar5, and SigCmbn_B predict ACC relapse at area under the curve (AUC) of 0.89, 0.79, 0.78, and 0.80, respectively, and fatality at AUC of 0.91, 0.88, 0.85, and 0.87, respectively. Among their 33 component genes, 31 are novel. They could be differentially expressed in ACCs from normal tissues, tumors with different severity (stages and lymph node metastasis), ACCs with TP53 mutations, and tumors with differentially expressed immune checkpoints (CTLA4, PD1, TGFBR1, and others). All panels correlate with reductions of ACC-associated CD8+ and/or NK cells. Furthermore, we provide the first evidence for the association of mesenchymal stem cells (MSCs) with ACC relapse (p = 2 × 10−6) and prognosis (p = 2 × 10−8). Sig27var25, SigIQvar8, SigCmbnvar5, and SigCmbn_B correlate with MSC (spearman r ≥ 0.53, p ≤ 1.38 × 10−5). Sig27var25 and SigIQvar8 were derived from a prostate cancer (PC) and clear cell renal cell carcinoma (ccRCC) multigene signature, respectively; SigCmbnvar5 and SigCmbn_B are combinations of both panels, revealing close relationships of ACC with PC and ccRCC. The origin of these four panels from PC and ccRCC favors their prognostic potential towards ACC.
Collapse
Affiliation(s)
- Xiaozeng Lin
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (X.L.); (Y.G.); (Y.S.); (Y.D.)
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Yan Gu
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (X.L.); (Y.G.); (Y.S.); (Y.D.)
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Yingying Su
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (X.L.); (Y.G.); (Y.S.); (Y.D.)
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ying Dong
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (X.L.); (Y.G.); (Y.S.); (Y.D.)
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Pierre Major
- Department of Oncology, McMaster University, Hamilton, ON L8V 5C2, Canada;
| | - Anil Kapoor
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (X.L.); (Y.G.); (Y.S.); (Y.D.)
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence: (A.K.); (D.T.); Tel.: +1-905-522-1155 (ext. 35218) (A.K.); +1-905-522-1155 (ext. 35168) (D.T.)
| | - Damu Tang
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada; (X.L.); (Y.G.); (Y.S.); (Y.D.)
- The Research Institute of St Joe’s Hamilton, St Joseph’s Hospital, Hamilton, ON L8N 4A6, Canada
- Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence: (A.K.); (D.T.); Tel.: +1-905-522-1155 (ext. 35218) (A.K.); +1-905-522-1155 (ext. 35168) (D.T.)
| |
Collapse
|
35
|
Zhang T, Song X, Qiao J, Zhu R, Ren Y, Shan PF. A Novel Predictive Model for Adrenocortical Carcinoma Based on Hypoxia- and Ferroptosis-Related Gene Expression. Front Med (Lausanne) 2022; 9:856606. [PMID: 35652069 PMCID: PMC9148996 DOI: 10.3389/fmed.2022.856606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe impact of hypoxia on ferroptosis is important in cancer proliferation, but no predictive model combining hypoxia and ferroptosis for adrenocortical carcinoma (ACC) has been reported. The purpose of this study was to construct a predictive model based on hypoxia- and ferroptosis-related gene expression in ACC.MethodsWe assessed hypoxia- and ferroptosis-related gene expression using data from 79 patients with ACC in The Cancer Genome Atlas (TCGA). Then, a predictive model was constructed to stratify patient survival using least absolute contraction and selection operation regression. Gene expression profiles of patients with ACC in the Gene Expression Omnibus (GEO) database were used to verify the predictive model.ResultsBased on hypoxia-related gene expression, 79 patients with ACC in the TCGA database were divided into three molecular subtypes (C1, C2, and C3) with different clinical outcomes. Patients with the C3 subtype had the shortest survival. Ferroptosis-related genes exhibited distinct expression patterns in the three subtypes. A predictive model combining hypoxia- and ferroptosis-related gene expression was constructed. A nomogram was constructed using age, sex, tumor stage, and the predictive gene model. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that the gene signature was mainly related to the cell cycle and organelle fission.ConclusionThis hypoxia-and ferroptosis-related gene signature displayed excellent predictive performance for ACC and could serve as an emerging source of novel therapeutic targets in ACC.
Collapse
|
36
|
Das R, Ghosh Chowdhury M, Raundal S, Jadhav J, Kumar N, Patel S, Shard A. Objective assessment of adrenocortical carcinoma driver genes and their correlation with tumor pyruvate kinase M2. Gene 2022; 822:146354. [PMID: 35189247 DOI: 10.1016/j.gene.2022.146354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023]
Abstract
Glandular cancers have a significant share of the total cancer patients all over the world. In the case of adrenocortical carcinomas (ACCs), although the benign form is more frequent and common, the malignant form provides a very less percentage of patients with five or more than five years of survival rate. There are gene alterations that are involved as a crucial factor behind the occurrence of ACCs. Out of these, the most prominent genetic alterations (PRKAR-1A, CTNNB1, ZNRF3, TP53, CCNE1 and TERF2 genes) are linked with a glycolytic enzyme pyruvate kinase M2 (PKM2), which converts phosphoenolpyruvate (PEP) to pyruvate in the glycolytic pathway. The involvementof PKM2 renders a cumulative effect through different pathways that may result in the onset of ACCs. Thus, this review aims to establish a link between ACCs, alterations of specific genes and PKM2.
Collapse
Affiliation(s)
- Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Moumita Ghosh Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Sonal Raundal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Jyotika Jadhav
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Navin Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Ahmedabad, Gandhinagar, Gujarat 380054, India.
| |
Collapse
|
37
|
Luo Y, Chen Q, Lin J. Identification and validation of a tumor mutation burden-related signature combined with immune microenvironment infiltration in adrenocortical carcinoma. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:7055-7075. [PMID: 35730296 DOI: 10.3934/mbe.2022333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tumor mutation burden (TMB), an emerging molecular determinant, is accompanied by microsatellite instability and immune infiltrates in various malignancies. However, whether TMB is related to the prognosis or immune responsiveness of adrenocortical carcinoma (ACC) remains to be elucidated. This paper aims to investigate the impact of TMB on the prognosis and immune microenvironment infiltration in ACC. The somatic mutation data, gene expression profile, and corresponding clinicopathological information were retrieved from TCGA. The mutation landscape was summarized and visualized with the waterfall diagram. The ACC patients were divided into low and high TMB groups based on the median TMB value and differentially expressed genes (DEGs) between the two groups were identified. Diverse functional analyses were conducted to determine the functionality of the DEGs. The immune cell infiltration signatures were evaluated based on multiple algorithms. Eventually, a TMB Prognostic Signature (TMBPS) was established and its predictive accuracy for ACC was evaluated. Single nucleotide polymorphism and C > T were found to be more common than other missense mutations. In addition, lower TMB levels indicated improved survival outcomes and were correlated with younger age and earlier clinical stage. Functional analysis suggested that DEGs were primarily related to the cell cycle, DNA replication, and cancer progression. Additionally, significant differences in infiltration levels of activated CD4+ T cells, naive B cells, and activated NK cells were observed in two TMB groups. We also found that patients with higher TMBPS showed worse survival outcomes, which was validated in the Gene Expression Omnibus database. Our study systematically analyzed the mutation and identified a TMBPS combined with immune microenvironment infiltration in ACC. It is expected that this paper can promote the development of ACC treatment strategies.
Collapse
Affiliation(s)
- Yong Luo
- Department of Urology, the Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan 528000, China
| | - Qingbiao Chen
- Department of Urology, the Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan 528000, China
| | - Jingbo Lin
- Department of Urology, the Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan 528000, China
| |
Collapse
|
38
|
Lin C, Hu R, Sun F, Liang W. Ferroptosis-based molecular prognostic model for adrenocortical carcinoma based on least absolute shrinkage and selection operator regression. J Clin Lab Anal 2022; 36:e24465. [PMID: 35500219 PMCID: PMC9169198 DOI: 10.1002/jcla.24465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
Background This study aimed to find ferroptosis‐related genes linked to clinical outcomes of adrenocortical carcinoma (ACC) and assess the prognostic value of the model. Methods We downloaded the mRNA sequencing data and patient clinical data of 78 ACC patients from the TCGA data portal. Candidate ferroptosis‐related genes were screened by univariate regression analysis, machine‐learning least absolute shrinkage, and selection operator (LASSO). A ferroptosis‐related gene‐based prognostic model was constructed. The effectiveness of the prediction model was accessed by KM and ROC analysis. External validation was done using the GSE19750 cohort. A nomogram was generated. The prognostic accuracy was measured and compared with conventional staging systems (TNM stage). Functional analysis was conducted to identify biological characterization of survival‐associated ferroptosis‐related genes. Results Seventy genes were identified as survival‐associated ferroptosis‐related genes. The prognostic model was constructed with 17 ferroptosis‐related genes including STMN1, RRM2, HELLS, FANCD2, AURKA, GABARAPL2, SLC7A11, KRAS, ACSL4, MAPK3, HMGB1, CXCL2, ATG7, DDIT4, NOX1, PLIN4, and STEAP3. A RiskScore was calculated for each patient. KM curve indicated good prognostic performance. The AUC of the ROC curve for predicting 1‐, 3‐, and 5‐ year(s) survival time was 0.975, 0.913, and 0.915 respectively. The nomogram prognostic evaluation model showed better predictive ability than conventional staging systems. Conclusion We constructed a prognosis model of ACC based on ferroptosis‐related genes with better predictive value than the conventional staging system. These efforts provided candidate targets for revealing the molecular basis of ACC, as well as novel targets for drug development.
Collapse
Affiliation(s)
- Chen Lin
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruofei Hu
- Lifestyle Supporting Technologies Group, Technical University of Madrid, Madrid, Spain
| | - FangFang Sun
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Liang
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
39
|
Kamai T, Murakami S, Arai K, Ishida K, Kijima T. Association of Nrf2 expression and mutation with Weiss and Helsinki scores in adrenocortical carcinoma. Cancer Sci 2022; 113:2368-2377. [PMID: 35467062 PMCID: PMC9277251 DOI: 10.1111/cas.15379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/30/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare malignant tumor. Genetic abnormalities that may represent therapeutic targets and prognostic factors in ACC remain unclear. Besides being one of the main cellular defense mechanisms that regulates antioxidant pathways for detoxifying reactive oxygen species (ROS), the transcription factor nuclear factor erythroid 2–related factor 2 (Nrf2) promotes tumor proliferation by increasing metabolic activity. In surgical specimens from 12 cases of nonmetastatic ACCs and nine cases of benign adrenocortical adenoma (ACA), we investigated gene mutation and protein expressions for Nrf2 and the preoperative maximum standard glucose uptake (SUVmax) on [18F]fluorodeoxy‐glucose positron emission tomography. Three of five ACCs with a Weiss score of 7 to 9 were Nrf2 mutants; these ACCs had higher expression of Nrf2 and higher preoperative SUVmax. The other seven ACCs had a Weiss score of 3 to 6; these seven ACCs and all the ACAs were non‐Nrf2 gene mutants. Patients with a Weiss score of 7 to 9 and Nrf2 mutant ACC had shorter overall survival. Based on Helsinki scoring, three ACCs with a Helsinki score greater than 17 had Nrf2 mutants, higher expression of Nrf2, higher preoperative SUVmax, and shorter overall survival. Our findings indicate that Nrf2 activation and the associated increase in metabolism play roles in ACC, in particular in ACC with a Weiss score of 7 to 9 and a Helsinki score of greater than 17.
Collapse
Affiliation(s)
- Takao Kamai
- Department of Urology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Satoshi Murakami
- Department of Urology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Kyoko Arai
- Department of Urology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Kazuyuki Ishida
- Department of Diagnostic Pathology, Dokkyo Medical University, Mibu, Tochigi, Japan
| | - Toshiki Kijima
- Department of Urology, Dokkyo Medical University, Mibu, Tochigi, Japan
| |
Collapse
|
40
|
Yu X, Zhu D, Luo B, Kou W, Cheng Y, Zhu Y. IFNγ enhances ferroptosis by increasing JAK‑STAT pathway activation to suppress SLCA711 expression in adrenocortical carcinoma. Oncol Rep 2022; 47:97. [PMID: 35322867 PMCID: PMC8968764 DOI: 10.3892/or.2022.8308] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare type of tumor with a poor prognosis. Ferroptosis is a relatively novel form of programmed cell death driven by iron-dependent lipid peroxidation accumulation. Recent evidence suggests that IFNγ facilitates erastin-induced ferroptosis, which contributed to anticancer therapy in various types of cancer. However, it has remained elusive whether the regulation of IFNγ on ferroptosis has a positive role in the treatment of ACC. Thus, the aim of the present study was to explore the effects of IFNγ on erastin-induced ferroptosis in the ACC cell line NCI-H295R and investigate the underlying mechanisms. Cell viability was assessed using a Cell Counting Kit-8 assay, an ethynyldioxyuridine proliferation assay and Live/Dead staining. The levels of iron, reactive oxygen species, lipid peroxidation and mitochondrial damage were also assessed. Western blot and reverse transcription-quantitative PCR analyses were used to determine the underlying molecular mechanisms involved in the erastin-induced ferroptosis of NCI-H295R cells. The results suggested that IFNγ promoted erastin-induced ferroptotic cell death. Furthermore, IFNγ enhanced erastin-induced ferroptosis, as evidenced by the accumulation of iron, as well as the increase in lipid peroxidation and promotion of mitochondrial damage. Further analysis suggested that IFNγ enhanced ferroptosis by suppressing the expression of solute carrier family 7 member 11, an important negative regulator of ferroptosis, and this was achieved via activation of the JAK/STAT pathway in NCI-H295R cells. The present study provided experimental evidence on the activity and mechanism of ferroptosis enhanced by IFNγ in ACC and may give critical insight into the immunotherapeutic management of ACC.
Collapse
Affiliation(s)
- Xinbo Yu
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Dandan Zhu
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Bixian Luo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Wei Kou
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Yuling Cheng
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Yu Zhu
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
41
|
Huang YG, Li D, Wang L, Su XM, Tang XB. CENPF/CDK1 signaling pathway enhances the progression of adrenocortical carcinoma by regulating the G2/M-phase cell cycle. J Transl Med 2022; 20:78. [PMID: 35123514 PMCID: PMC8818156 DOI: 10.1186/s12967-022-03277-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Background Adrenocortical carcinoma (ACC) is an aggressive and rare malignant tumor and is prone to local invasion and metastasis. And, overexpressed Centromere Protein F (CENPF) is closely related to the oncogenesis of various neoplasms, including ACC. However, the prognosis and exact biological function of CENPF in ACC remains largely unclear. Methods In the present essay, the expression patterns and prognostic value of CENPF in ACC were investigated in clinical specimens and public cancer databases, including GEO and TCGA. The potential signaling mechanism of CENPF in ACC was studied based on gene-set enrichment analysis (GSEA). Furthermore, a small RNA interference experiment was conducted to probe the underlying biological function of CENPF in the human ACC cell line, SW13 cells. Lastly, two available therapeutic strategies, including immunotherapy and chemotherapy, have been further explored. Results The expression of CENPF in human ACC samples, GEO, and TCGA databases depicted that CENPF was overtly hyper-expressed in ACC patients and positively correlated with tumor stage. The aberrant expression of CENPF was significantly correlated with unfavorable overall survival (OS) in ACC patients. Then, the GSEA analysis declared that CENPF was mainly involved in the G2/M-phase mediated cell cycle and p53 signaling pathway. Further, the in vitro experiment demonstrated that the interaction between CENPF and CDK1 augmented the G2/M-phase transition of mitosis, cell proliferation and might induce p53 mediated anti-tumor effect in human ACC cell line, SW13 cells. Lastly, immune infiltration analysis highlighted that ACC patients with high CENPF expression harbored significantly different immune cell populations, and high TMB/MSI score. The gene-drug interaction network stated that CENPF inhibitors, such as Cisplatin, Sunitinib, and Etoposide, might serve as potential drugs for the therapy of ACC. Conclusion The result points out that CENPF is significantly overexpressed in ACC patients. The overexpressed CENPF predicts a poor prognosis of ACC and might augment the progress of ACC. Thus, CENPF and related genes might serve as a novel prognostic biomarker or latent therapeutic target for ACC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03277-y.
Collapse
|
42
|
de Jong MC, Patel N, Hassan-Smith Z, Mihai R, Khan S. Sarcopenia is Associated with Reduced Survival following Surgery for Adrenocortical Carcinoma. Endocr Res 2022; 47:8-17. [PMID: 34340645 DOI: 10.1080/07435800.2021.1954942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AIM Adrenocortical cancer (ACC) is an aggressive malignancy and robust prognostic factors remain unclear. The presence of sarcopenia has been shown to negatively impact survival for other malignancies, but has not been extensively analyzed in ACC. METHODS Patients who underwent resection of their ACC between 2010 and 2020 were identified; therapeutic, operative, and outcome data were analyzed. Sarcopenia was assessed by calculation of the skeletal muscle index (SMI) and was defined as an SMI <52.4cm2/m2 for males and <38.5cm2/m2 for females. RESULTS Data on 35 patients (18 F: 17 M; median age 54 [range: 18-86]) who had primary surgical treatment were analyzed. Median tumor size was 10 cm [range:3-15]. In eleven patients (31%), the tumor was hormonally active (cortisol = 8;23%). Seventeen patients (49%) were classified as having sarcopenia on their pre-operative CT scan. The Intraclass Correlation Coefficient (ICC) for intra- and inter-observer variability showed very good agreement (0.99 and 0.98). There was no difference in incidence of sarcopenia stratifying for sex, BMI, or tumor-size, but incidence was higher with increasing age (p < .05). Overall median survival was 36 months, with 1- and 3-year survival rates of 77% and 52%. The presence of sarcopenia was strongly associated with a shorter overall survival (HR = 3.21; [95%CI: 1.06-9.69];p = .03) on unadjusted analyses. Moreover, age, higher T-stage, and presence of capsular invasion were also associated with poorer survival on univariable analyses. CONCLUSION The presence of sarcopenia in patients undergoing surgery for ACC could be a predictor of reduced overall survival, although replications of these analyses should be performed in similar, larger cohorts. Specifically, the influence of a patient's hormonal status on the manifestation of sarcopenia should be further defined.
Collapse
Affiliation(s)
- Mechteld C de Jong
- Department of Endocrine Surgery - Churchill Cancer Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Neel Patel
- Department of Radiology - Churchill Cancer Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Zaki Hassan-Smith
- Centre for Endocrinology, Diabetes & Metabolism, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Radu Mihai
- Department of Endocrine Surgery - Churchill Cancer Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Shahab Khan
- Department of Endocrine Surgery - Churchill Cancer Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
43
|
Grisanti S, Cosentini D, Sigala S, Berruti A. Molecular genotyping of adrenocortical carcinoma: a systematic analysis of published literature 2019-2021. Curr Opin Oncol 2022; 34:19-28. [PMID: 34669649 PMCID: PMC10863665 DOI: 10.1097/cco.0000000000000799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW comprehensive molecular characterization of adrenocortical carcinoma (ACC) through next-generation sequencing and bioinformatics analyses is expanding the number of targets with potential prognostic and therapeutic value. We performed a critical review of recent published literature on genotyping of ACC. RECENT FINDINGS 423 studies were published between 2019 and 2021. After manual curation we summarized selected evidence in two thematic areas: germline deoxyribonucleic acid (DNA) variations, genomic alterations and prognosis. SUMMARY the evolving genomic landscape of ACC requires target validation in terms of prognostic and predictive value within scientific consortia. Although the existing multiple driver genes are difficult targets in the perspective of precision oncology, alterations in DNA damage repair genes or in promoter hypermethylation could open new venues for repurposing of existing drugs in ACC.
Collapse
Affiliation(s)
- Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili
| | - Deborah Cosentini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, ASST Spedali Civili
| |
Collapse
|
44
|
Huang YG, Wang Y, Zhu RJ, Tang K, Tang XB, Su XM. EMS1/DLL4-Notch Signaling Axis Augments Cell Cycle-Mediated Tumorigenesis and Progress in Human Adrenocortical Carcinoma. Front Oncol 2021; 11:771579. [PMID: 34858850 PMCID: PMC8631517 DOI: 10.3389/fonc.2021.771579] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/22/2021] [Indexed: 11/24/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare malignant neoplasm that is prone to local invasion and metastasis. Meanwhile, overexpressed endothelial cell-specific molecule 1 (ESM1) is closely related to tumorigenesis of multitudinous tumors. However, the prognosis value and biological function of ESM1 in ACC remains undefined. In the current essay, the assessment in human ACC samples and multiple public cancer databases suggested that ESM1 was significantly overexpressed in ACC patients. The abnormal expression of ESM1 was evidently correlated with dismal overall survival (OS) in ACC patients. Then, the gene-set enrichment analysis (GSEA) was applied to unravel that ESM1 was mostly involved in cell cycle and Notch4 signaling pathway. Furthermore, in vitro experiment, RNA interference of ESM1 was carried out to state that ESM1 augments CDK1 and p21-mediated G2/M-phase transition of mitosis, cell proliferation via DLL4-Notch signaling pathway in human ACC cell line, SW13 cells. Additionally, two possible or available therapeutic strategies, including immunotherapy and chemotherapy, have been further explored. Immune infiltration analysis highlighted that no significant difference was found in ACC patients between EMS1high and EMS1low group for immune checkpoint-related genes. In addition, the overexpression of ESM1 might trigger the accumulation of tumor mutation burden (TMB) during the cell cycle of DNA replication in ACC. The gene-drug interaction network then indicated that ESM1 inhibitors, such as cisplatin, might serve as potential drugs for the therapy of ACC. Collectively, the results asserted that ESM1 and related regulators might act as underlying prognostic biomarkers or novel therapeutic targets for ACC.
Collapse
Affiliation(s)
- Yu-Gang Huang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ya Wang
- Department of Immunology, Nankai University School of Medicine, Tianjin, China
| | - Rui-Juan Zhu
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Kai Tang
- Department of Pediatric, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xian-Bin Tang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiao-Min Su
- Department of Immunology, Nankai University School of Medicine, Tianjin, China
| |
Collapse
|
45
|
Mueller JW, Vogg N, Lightning TA, Weigand I, Ronchi CL, Foster PA, Kroiss M. Steroid Sulfation in Adrenal Tumors. J Clin Endocrinol Metab 2021; 106:3385-3397. [PMID: 33739426 DOI: 10.1210/clinem/dgab182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The adrenal cortex produces specific steroid hormones including steroid sulfates such as dehydroepiandrosterone sulfate (DHEAS), the most abundant steroid hormone in the human circulation. Steroid sulfation involves a multistep enzyme machinery that may be impaired by inborn errors of steroid metabolism. Emerging data suggest a role of steroid sulfates in the pathophysiology of adrenal tumors and as potential biomarkers. EVIDENCE ACQUISITION Selective literature search using "steroid," "sulfat*," "adrenal," "transport," "mass spectrometry" and related terms in different combinations. EVIDENCE SYNTHESIS A recent study highlighted the tissue abundance of estrogen sulfates to be of prognostic impact in adrenocortical carcinoma tissue samples using matrix-assisted laser desorption ionization mass spectrometry imaging. General mechanisms of sulfate uptake, activation, and transfer to substrate steroids are reasonably well understood. Key aspects of this pathway, however, have not been investigated in detail in the adrenal; these include the regulation of substrate specificity and the secretion of sulfated steroids. Both for the adrenal and targeted peripheral tissues, steroid sulfates may have relevant biological actions beyond their cognate nuclear receptors after desulfation. Impaired steroid sulfation such as low DHEAS in Cushing adenomas is of diagnostic utility, but more comprehensive studies are lacking. In bioanalytics, the requirement of deconjugation for gas-chromatography/mass-spectrometry has precluded the study of steroid sulfates for a long time. This limitation may be overcome by liquid chromatography/tandem mass spectrometry. CONCLUSIONS A role of steroid sulfation in the pathophysiology of adrenal tumors has been suggested and a diagnostic utility of steroid sulfates as biomarkers is likely. Recent analytical developments may target sulfated steroids specifically.
Collapse
Affiliation(s)
- Jonathan Wolf Mueller
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Nora Vogg
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University Hospital Würzburg, University of Würzburg, Würzburg(Germany)
| | - Thomas Alec Lightning
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
| | - Isabel Weigand
- Department of Medicine IV, University Hospital München, Ludwig-Maximilians-Universität München, München, Germany
| | - Cristina L Ronchi
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University Hospital Würzburg, University of Würzburg, Würzburg(Germany)
| | - Paul A Foster
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Matthias Kroiss
- Department of Internal Medicine I, Division of Endocrinology and Diabetology, University Hospital Würzburg, University of Würzburg, Würzburg(Germany)
- Department of Medicine IV, University Hospital München, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
46
|
Miao J, Li R, Wettere AJV, Guo H, Tabaran AF, O'Sullivan MG, Carlson T, Scott PM, Chen K, Gao D, Li H, Wang Y, Wang Z, Cormier RT. Cancer spectrum in TP53-deficient golden Syrian hamsters: A new model for Li-Fraumeni syndrome. J Carcinog 2021; 20:18. [PMID: 34729050 PMCID: PMC8531574 DOI: 10.4103/jcar.jcar_18_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/27/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Background: The TP53 tumor suppressor gene is the most commonly mutated gene in human cancers. Humans who inherit mutant TP53 alleles develop a wide range of early onset cancers, a disorder called Li-Fraumeni Syndrome (LFS). Trp53-deficient mice recapitulate most but not all of the cancer phenotypes observed in TP53-deficient human cancers, indicating that new animal models may complement current mouse models and better inform on human disease development. Materials and Methods: The recent application of CRISPR/Cas9 genetic engineering technology has permitted the emergence of golden Syrian hamsters as genetic models for wide range of diseases, including cancer. Here, the first cancer phenotype of TP53 knockout golden Syrian hamsters is described. Results: Hamsters that are homozygous for TP53 mutations become moribund on average ~ 139 days of age, while hamsters that are heterozygous become moribund at ~ 286 days. TP53 homozygous knockout hamsters develop a wide range of cancers, often synchronous and metastatic to multiple tissues, including lymphomas, several sarcomas, especially hemangiosarcomas, myeloid leukemias and several carcinomas. TP53 heterozygous mutants develop a more restricted tumor spectrum, primarily lymphomas. Conclusions: Overall, hamsters may provide insights into how TP53 deficiency leads to cancer in humans and can become a new model to test novel therapies.
Collapse
Affiliation(s)
- Jinxin Miao
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA.,Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Henan, China.,Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Henan, China
| | - Rong Li
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Arnaud J Van Wettere
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Haoran Guo
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Henan, China
| | - Alexandru-Flaviu Tabaran
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.,Masonic Cancer Center, Comparative Pathology Shared Resource, University of Minnesota, Minneapolis, USA.,Department of Pathology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Romania
| | - M Gerald O'Sullivan
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.,Masonic Cancer Center, Comparative Pathology Shared Resource, University of Minnesota, Minneapolis, USA
| | - Timothy Carlson
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.,Masonic Cancer Center, Comparative Pathology Shared Resource, University of Minnesota, Minneapolis, USA
| | - Patricia M Scott
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
| | - Kuisheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dongling Gao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huixiang Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yaohe Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Henan, China.,Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University, London, UK
| | - Zhongde Wang
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Robert T Cormier
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
| |
Collapse
|
47
|
Parianos C, Kyriakopoulos G, Kostakis ID, Nasiri-Ansari N, Aggeli C, Dimitriadi A, Angelousi A, Papavassiliou AG, Kaltsas GA, Zografos G, Kassi E. Adrenocortical Cancer: A 20-Year Experience of a Single Referral Center in Prognosis and Outcomes. Horm Metab Res 2021; 53:709-716. [PMID: 34740271 DOI: 10.1055/a-1666-9026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare but very aggressive endocrine malignancy with poor survival. Histopathology is important for diagnosis, while in some cases immunohistochemical markers and gene profiling of the resected tumor may be superior to current staging systems to determine prognosis. We aimed to present the 20-year experience at a tertiary hospital in patients with ACCs and correlate the immunohistochemical characteristics of ACCs with the clinical and morphological characteristics of the tumors and the survival of the patients. Forty-five patients with ACC were included in the study. All the resections were R0. The tumor size and weight, the disease stage (ENSAT classification), Weiss score and Helsinki score were examined along with immunohistochemical expression of inhibin-A, melan A, calretinin, Ki67, synaptophysin, p53, vimentin, CKAE1/AE3. The male to female ratio was 1:1.37. The median age at diagnosis was 55.5 years (IQR 19-77). The median size of ACCs was 9 cm (IQR 3.5-22 cm) and the median weight 127 g (IQR 18-1400 g). The median follow up period was 18 months (IQR 1-96). Ki67 varied from<1% to 75% (median: 16.4%). The expression of melan-A and lower expression of Ki-67 (≤4) were independently associated with longer OS time (p=0.01 and p=0.04, respectively). In multivariable analysis, tumor volume>400 cm3 (p=0.046), Weiss score>5 (p=0.007) and overexpression of p53 (p=0.036) were independent risk factors for shorter survival. Adrenocortical carcinoma is a rare and very aggressive endocrine malignancy. The most important factors that determine long-term prognosis of ACC are the disease stage at diagnosis, the Weiss score, and the Ki67 index. Immunohistochemical markers such as melan A could also serve as prognostic factors.
Collapse
Affiliation(s)
- Christos Parianos
- Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
- Department of Surgery, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Georgios Kyriakopoulos
- Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
- Department of Pathology, Evaggelismos Hospital, Athens, Greece
| | - Ioannis D Kostakis
- Department of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Royal Free Hospital, London, UK
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysanthi Aggeli
- Department of Surgery, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Anastasia Dimitriadi
- Department of Pathology, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Anna Angelousi
- Unit of Endocrinology, First Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Gregory A Kaltsas
- Unit of Endocrinology, First Department of Propaedeutic Internal Medicine, Laiko Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - George Zografos
- Department of Surgery, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, National and Kapodistrian University of Athens, Athens, Greece
- Unit of Endocrinology, First Department of Propaedeutic Internal Medicine, Laiko Hospital, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
48
|
Veronez LC, das Chagas PF, Corrêa CAP, Baroni M, da Silva KR, Nagano LF, Borges KS, Queiroz RGP, Tone LG, Scrideli CA. MSI2 expression in adrenocortical carcinoma: Association with unfavorable prognosis and correlation with steroid and immune-related pathways. J Cell Biochem 2021; 122:1925-1935. [PMID: 34581457 DOI: 10.1002/jcb.30153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/23/2021] [Accepted: 09/09/2021] [Indexed: 11/06/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare, but highly aggressive cancer of the adrenal cortex with a generally poor prognosis. Despite being rare, completely resected ACCs present a high risk of recurrence. Musashi-2 (MSI2) has recently been recognized as a potential prognostic biomarker and therapeutic target in many cancers. However, no studies have evaluated the clinical significance of MSI2 expression in ACC. Here, we addressed MSI2 expression and its association with ACC prognosis and clinicopathological parameters. MSI2 expression was analyzed in TCGA, GSE12368, GSE33371, and GSE49278 ACC datasets; and its correlation with other genes and immune cell infiltration were investigated by using the R2: Genomics Analysis and Visualization Platform and TIMER databases, respectively. Enrichment analysis was performed with the DAVID Functional Annotation Tool. Kaplan-Meier curves, log-rank tests, and Cox regression analyses were used to explore the prognostic role of MSI2 in ACC. Our findings demonstrated the potential value of MSI2 overexpression as an independent predictor of poor prognosis in patients with completely resected ACC (hazard ratio 6.715, 95% confidence interval 1.266 - 35.620, p =.025). In addition, MSI2 overexpression was associated with characteristics of unfavorable prognosis, such as cortisol excess (p = .002), recurrence (p =.003), and death (p =.015); positively correlated with genes related to steroid biosynthesis (p < .05); and negatively correlated with immune-related pathways (p < .05). Our findings demonstrate that MSI2 has value as a prognostic marker for completely resected ACC and reinforce the investigation of its role as a possible therapeutic target for patients with ACC.
Collapse
Affiliation(s)
- Luciana C Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Pablo F das Chagas
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carolina A P Corrêa
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mirella Baroni
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Keteryne R da Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luis F Nagano
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kleiton S Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Rosane G P Queiroz
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiz G Tone
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos A Scrideli
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
49
|
Hu DG, Marri S, Mackenzie PI, Hulin JA, McKinnon RA, Meech R. The Expression Profiles and Deregulation of UDP-Glycosyltransferase ( UGT) Genes in Human Cancers and Their Association with Clinical Outcomes. Cancers (Basel) 2021; 13:4491. [PMID: 34503303 PMCID: PMC8430925 DOI: 10.3390/cancers13174491] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022] Open
Abstract
The human UDP-glycosyltransferase (UGTs) superfamily has 22 functional enzymes that play a critical role in the metabolism of small lipophilic compounds, including carcinogens, drugs, steroids, lipids, fatty acids, and bile acids. The expression profiles of UGT genes in human cancers and their impact on cancer patient survival remains to be systematically investigated. In the present study, a comprehensive analysis of the RNAseq and clinical datasets of 9514 patients from 33 different TCGA (the Genome Cancer Atlas) cancers demonstrated cancer-specific UGT expression profiles with high interindividual variability among and within individual cancers. Notably, cancers derived from drug metabolizing tissues (liver, kidney, gut, pancreas) expressed the largest number of UGT genes (COAD, KIRC, KIRP, LIHC, PAAD); six UGT genes (1A6, 1A9, 1A10, 2A3, 2B7, UGT8) showed high expression in five or more different cancers. Kaplan-Meier plots and logrank tests revealed that six UGT genes were significantly associated with increased overall survival (OS) rates [UGT1A1 (LUSC), UGT1A6 (ACC), UGT1A7 (ACC), UGT2A3 (KIRC), UGT2B15 (BLCA, SKCM)] or decreased OS rates [UGT2B15 (LGG), UGT8 (UVM)] in specific cancers. Finally, differential expression analysis of 611 patients from 12 TCGA cancers identified 16 UGT genes (1A1, 1A3, 1A6, 1A7, 1A8, 1A9, 1A10, 2A1, 2A3, 2B4, 2B7, 2B11, 2B15, 3A1, 3A2, UGT8) that were up/downregulated in at least one cancer relative to normal tissues. In conclusion, our data show widespread expression of UGT genes in cancers, highlighting the capacity for intratumoural drug metabolism through the UGT conjugation pathway. The data also suggests the potentials for specific UGT genes to serve as prognostic biomarkers or therapeutic targets in cancers.
Collapse
Affiliation(s)
- Dong Gui Hu
- Dicipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (P.I.M.); (J.-A.H.); (R.A.M.); (R.M.)
| | - Shashikanth Marri
- Dicipline of Molecular Medicine and Pathology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia;
| | - Peter I. Mackenzie
- Dicipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (P.I.M.); (J.-A.H.); (R.A.M.); (R.M.)
| | - Julie-Ann Hulin
- Dicipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (P.I.M.); (J.-A.H.); (R.A.M.); (R.M.)
| | - Ross A. McKinnon
- Dicipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (P.I.M.); (J.-A.H.); (R.A.M.); (R.M.)
| | - Robyn Meech
- Dicipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia; (P.I.M.); (J.-A.H.); (R.A.M.); (R.M.)
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW In this article, we focus on the current and future treatment options for adrenocortical carcinoma (ACC). RECENT FINDINGS Radical surgery remains the only curative treatment for ACC. Recent reports showed a longer overall survival (OS) in patients with high risk of recurrence treated with adjuvant mitotane; the time in target range (14-20 mg/l) is related to low risk of relapse both in adjuvant and in palliative setting. In patients who experience disease progression after etoposide, doxorubicin, cisplatin with mitotane (EDP-M), gemcitabine and metronomic capecitabine, or the less used streptozotocin, represent a second-line chemotherapy option. Temozolomide can be employed as a third-line chemotherapy. To date, unsatisfactory results have been obtained on the efficacy of targeted therapies. Clinical trials are ongoing to evaluate the efficacy of tyrosine kinase and immune checkpoint inhibitors. SUMMARY ACC is a rare disease with a poor prognosis. The main therapy is represented by radical surgery conducted by an expert surgeon. Adjuvant mitotane has to be started in patients with high risk of recurrence. In patients with inoperable disease, the scheme EDP-M is the most employed. Few data are available on second-line and third-line chemotherapy in patients with disease progression after EDP-M. Currently, the role of targeted therapies is under evaluation.
Collapse
|