1
|
Roger C, Paul A, Fort E, Lamouroux C, Samal A, Spinosi J, Charbotel B. Changes in the European Union definition for endocrine disruptors: how many molecules remain a cause for concern? The example of crop protection products used in agriculture in France in the six last decades. Front Public Health 2024; 11:1343047. [PMID: 38292391 PMCID: PMC10826603 DOI: 10.3389/fpubh.2023.1343047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
Background The endocrine-disrupting effects of phytopharmaceutical active substances (PAS) on human health are a public health concern. The CIPATOX-PE database, created in 2018, listed the PAS authorized in France between 1961 and 2014 presenting endocrine-disrupting effects for humans according to data from official international organizations. Since the creation of CIPATOX-PE, European regulations have changed, and new initiatives identifying substances with endocrine-disrupting effects have been implemented and new PAS have been licensed. Objectives The study aimed to update the CIPATOX-PE database by considering new 2018 European endocrine-disrupting effect identification criteria as well as the new PAS authorized on the market in France since 2015. Methods The endocrine-disrupting effect assessment of PAS from five international governmental and non-governmental initiatives was reviewed, and levels of evidence were retained by these initiatives for eighteen endocrine target organs. Results The synthesis of the identified endocrine-disrupting effects allowed to assign an endocrine-disrupting effect level of concern for 241 PAS among 980 authorized in France between 1961 and 2021. Thus, according to the updated CIPATOX-PE data, 44 PAS (18.3%) had an endocrine-disrupting effect classified as "high concern," 133 PAS (55.2%) "concern," and 64 PAS (26.6%) "unknown effect" in the current state of knowledge. In the study, 42 PAS with an endocrine-disrupting effect of "high concern" are similarly classified in CIPATOX-PE-2018 and 2021, and 2 new PAS were identified as having an endocrine-disrupting effect of "high concern" in the update, and both were previously classified with an endocrine-disrupting effect of "concern" in CIPATOX-PE-2018. Finally, a PAS was identified as having an endocrine-disrupting effect of "high concern" in CIPATOX-PE-2018 but is now classified as a PAS not investigated for endocrine-disrupting effects in CIPATOX-PE-2021. The endocrine target organs associated with the largest number of PAS with an endocrine-disrupting effect of "high concern" is the reproductive system with 31 PAS. This is followed by the thyroid with 25 PAS and the hypothalamic-pituitary axis (excluding the gonadotropic axis) with 5 PAS. Discussion The proposed endocrine-disrupting effect indicator, which is not a regulatory classification, can be used as an epidemiological tool for occupational risks and surveillance.
Collapse
Affiliation(s)
- Cloé Roger
- University Lyon, Umrestte UMR T 9405 (University Claude Bernard Lyon 1 and Gustave Eiffel), Lyon, France
| | - Adèle Paul
- University Lyon, Umrestte UMR T 9405 (University Claude Bernard Lyon 1 and Gustave Eiffel), Lyon, France
| | - Emmanuel Fort
- University Lyon, Umrestte UMR T 9405 (University Claude Bernard Lyon 1 and Gustave Eiffel), Lyon, France
| | - Céline Lamouroux
- University Lyon, Umrestte UMR T 9405 (University Claude Bernard Lyon 1 and Gustave Eiffel), Lyon, France
- CRPPE de Lyon, Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France
| | - Areejit Samal
- The Institute of Mathematical Sciences, A CI of Homi Bhabha National Institute, Chennai, India
| | - Johan Spinosi
- Santé Publique France, French National Public Health Agency, Paris, France
| | - Barbara Charbotel
- University Lyon, Umrestte UMR T 9405 (University Claude Bernard Lyon 1 and Gustave Eiffel), Lyon, France
- CRPPE de Lyon, Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France
| |
Collapse
|
2
|
Howdeshell KL, Beverly BEJ, Blain RB, Goldstone AE, Hartman PA, Lemeris CR, Newbold RR, Rooney AA, Bucher JR. Evaluating endocrine disrupting chemicals: A perspective on the novel assessments in CLARITY-BPA. Birth Defects Res 2023; 115:1345-1397. [PMID: 37646438 DOI: 10.1002/bdr2.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The Consortium Linking Academic and Regulatory Insights on Bisphenol A Toxicity (CLARITY-BPA) was a collaborative research effort to better link academic research with governmental guideline studies. This review explores the secondary goal of CLARITY-BPA: to identify endpoints or technologies from CLARITY-BPA and prior/concurrent literature from these laboratories that may enhance the capacity of rodent toxicity studies to detect endocrine disrupting chemicals (EDCs). METHODS A systematic literature search was conducted with search terms for BPA and the CLARITY-BPA participants. Relevant studies employed a laboratory rodent model and reported results on 1 of the 10 organs/organ systems evaluated in CLARITY-BPA (brain and behavior, cardiac, immune, mammary gland, ovary, penile function, prostate gland and urethra, testis and epididymis, thyroid hormone and metabolism, and uterus). Study design and findings were summarized, and a risk-of-bias assessment was conducted. RESULTS Several endpoints and methods were identified as potentially helpful to detect effects of EDCs. For example, molecular and quantitative morphological approaches were sensitive in detecting alterations in early postnatal development of the brain, ovary, and mammary glands. Hormone challenge studies mimicking human aging reported increased susceptibility of the prostate to disease following developmental BPA exposure. Statistical analyses for nonmonotonic dose responses, and computational approaches assessing multiple treatment-related outcomes concurrently in linked hormone-sensitive organ systems, reported effects at low BPA doses. CONCLUSIONS This review provided an opportunity to evaluate the unique insights provided by nontraditional assessments in CLARITY-BPA to identify technologies and endpoints to enhance detection of EDCs in future studies.
Collapse
Affiliation(s)
- Kembra L Howdeshell
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Brandiese E J Beverly
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | - Retha R Newbold
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| | - Andrew A Rooney
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - John R Bucher
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| |
Collapse
|
3
|
Martínez-Pinna J, Sempere-Navarro R, Medina-Gali RM, Fuentes E, Quesada I, Sargis RM, Trasande L, Nadal A. Endocrine disruptors in plastics alter β-cell physiology and increase the risk of diabetes mellitus. Am J Physiol Endocrinol Metab 2023; 324:E488-E505. [PMID: 37134142 PMCID: PMC10228669 DOI: 10.1152/ajpendo.00068.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Plastic pollution breaks a planetary boundary threatening wildlife and humans through its physical and chemical effects. Of the latter, the release of endocrine disrupting chemicals (EDCs) has consequences on the prevalence of human diseases related to the endocrine system. Bisphenols (BPs) and phthalates are two groups of EDCs commonly found in plastics that migrate into the environment and make low-dose human exposure ubiquitous. Here we review epidemiological, animal, and cellular studies linking exposure to BPs and phthalates to altered glucose regulation, with emphasis on the role of pancreatic β-cells. Epidemiological studies indicate that exposure to BPs and phthalates is associated with diabetes mellitus. Studies in animal models indicate that treatment with doses within the range of human exposure decreases insulin sensitivity and glucose tolerance, induces dyslipidemia, and modifies functional β-cell mass and serum levels of insulin, leptin, and adiponectin. These studies reveal that disruption of β-cell physiology by EDCs plays a key role in impairing glucose homeostasis by altering the mechanisms used by β-cells to adapt to metabolic stress such as chronic nutrient excess. Studies at the cellular level demonstrate that BPs and phthalates modify the same biochemical pathways involved in adaptation to chronic excess fuel. These include changes in insulin biosynthesis and secretion, electrical activity, expression of key genes, and mitochondrial function. The data summarized here indicate that BPs and phthalates are important risk factors for diabetes mellitus and support a global effort to decrease plastic pollution and human exposure to EDCs.
Collapse
Affiliation(s)
- Juan Martínez-Pinna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Roberto Sempere-Navarro
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Regla M Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Fuentes
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, New York, United States
- Department of Population Health, New York University Grossman School of Medicine, New York, New York, United States
- Wagner School of Public Service, New York University, New York, New York, United States
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Babiloni-Chust I, Dos Santos RS, Medina-Gali RM, Perez-Serna AA, Encinar JA, Martinez-Pinna J, Gustafsson JA, Marroqui L, Nadal A. G protein-coupled estrogen receptor activation by bisphenol-A disrupts the protection from apoptosis conferred by the estrogen receptors ERα and ERβ in pancreatic beta cells. ENVIRONMENT INTERNATIONAL 2022; 164:107250. [PMID: 35461094 DOI: 10.1016/j.envint.2022.107250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
17β-estradiol protects pancreatic β-cells from apoptosis via the estrogen receptors ERα, ERβ and GPER. Conversely, the endocrine disruptor bisphenol-A (BPA), which exerts multiple effects in this cell type via the same estrogen receptors, increased basal apoptosis. The molecular-initiated events that trigger these opposite actions have yet to be identified. We demonstrated that combined genetic downregulation and pharmacological blockade of each estrogen receptor increased apoptosis to a different extent. The increase in apoptosis induced by BPA was diminished by the pharmacological blockade or the genetic silencing of GPER, and it was partially reproduced by the GPER agonist G1. BPA and G1-induced apoptosis were abolished upon pharmacological inhibition, silencing of ERα and ERβ, or in dispersed islet cells from ERβ knockout (BERKO) mice. However, the ERα and ERβ agonists PPT and DPN, respectively, had no effect on beta cell viability. To exert their biological actions, ERα and ERβ form homodimers and heterodimers. Molecular dynamics simulations together with proximity ligand assays and coimmunoprecipitation experiments indicated that the interaction of BPA with ERα and ERβ as well as GPER activation by G1 decreased ERαβ heterodimers. We propose that ERαβ heterodimers play an antiapoptotic role in beta cells and that BPA- and G1-induced decreases in ERαβ heterodimers lead to beta cell apoptosis. Unveiling how different estrogenic chemicals affect the crosstalk among estrogen receptors should help to identify diabetogenic endocrine disruptors.
Collapse
Affiliation(s)
- Ignacio Babiloni-Chust
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Reinaldo S Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Regla M Medina-Gali
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Atenea A Perez-Serna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - José-Antonio Encinar
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
| | - Juan Martinez-Pinna
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Jan-Ake Gustafsson
- Department of Cell Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Laura Marroqui
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Angel Nadal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain.
| |
Collapse
|
5
|
Natsch A. Scientific discrepancies in European regulatory proposals on endocrine disruptors-REACH regulation quo vadis? Arch Toxicol 2021; 95:3601-3609. [PMID: 34505931 PMCID: PMC8492591 DOI: 10.1007/s00204-021-03152-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 11/26/2022]
Abstract
The EU chemical strategy for sustainability places a high focus on endocrine-disrupting chemicals (ED), the importance of their identification with increased testing and a ban in consumer products by a generic approach. It is assumed that for ED no threshold and hence no safe dose exists, leading to this generic approach. This view appears to be linked to the claim that for ED ‘low-dose non-monotonic dose response’ (low-dose NMDR) effects are observed. Without this hypothesis, there are no scientific reasons why classical risk assessment cannot be applied to the ED mode-of-action. Thus, whether for ED low-dose NMDR effects are considered a reproducible scientific fact by European authorities is Gretchen’s question in this politicized field. Recent documents by the SCCS, EFSA and ECHA reviewed herein illustrate the diverging views within European scientific bodies on this issue. Furthermore, ED researchers never replicated findings on low-dose NMDR in blinded inter-laboratory experiments and the CLARITY-BPA core studies could not find evidence for reproducible NMDR for BPA. ECHA proposes a battery of in vitro tests to test all chemicals for ED properties. However, these tests were never validated for relevance and their high positivity rate could lead to increased follow-up animal testing. Based on (i) lack of reproducibility data for low-dose NMDR, (ii) diverging views within European authorities on NMDR and (iii) lack of fully validated in vitro test methods it might be premature to fast-track the wide-ranging changes in the regulatory landscape proposed by the authorities ultimately leading to drastically increased animal testing.
Collapse
Affiliation(s)
- Andreas Natsch
- Fragrances S&T, Ingredients Research, Givaudan Schweiz AG, Kemptpark 50, CH-8310, Kemptthal, Switzerland.
| |
Collapse
|
6
|
Abstract
The thyroid hormone system is a main target of endocrine disruptor compounds (EDC) at all levels of its intricately fine-tuned feedback regulation, synthesis, distribution, metabolism and action of the 'prohormone' thyroxine and its active metabolites. Apart from classical antithyroid effects of EDC on the gland, the majority of known and suspected effects occurs at the pre-receptor control of T3 ligand availability to T3 receptors exerting ligand modulated thyroid hormone action. Tissue-, organ- and cell-specific expression and function of thyroid hormone transporters, deiodinases, metabolizing enzymes and T3-receptor forms, all integral components of the system, may mediate adverse EDC effects. Established evidence from nutritional, pharmacological and molecular genetic studies clearly support the functional, biological, and clinical relevance of these targets. Iodine-containing thyroid hormones and the organization of this system are highly conserved during evolution from primitive aquatic life forms, amphibia, birds throughout all vertebrates including humans. Mechanistic studies from various animal experimental models strongly support cause-effect relationships upon EDC exposure, hazards and adverse effects of EDC across various species. Retrospective case-control, cohort and population studies linking EDC exposure with epidemiological data on thyroid hormone-related (dys-)functions provide clear evidence that human development, especially of the fetal and neonatal brain, growth, differentiation and metabolic processes in adult and aging humans are at risk for adverse EDC effects. Considering that more than half of the world population still lives on inadequate iodine supply, the additional ubiquitous exposure to EDC and their mixtures is an additional threat for the essential thyroid hormone system, the health of the human population and their future progenies, animal life forms and our global environment.
Collapse
Affiliation(s)
- Josef Köhrle
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Experimentelle Endokrinologie, Hessische Strasse 3-4, 10115, Berlin, Germany.
| | - Caroline Frädrich
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institut für Experimentelle Endokrinologie, Hessische Strasse 3-4, 10115, Berlin, Germany
| |
Collapse
|