1
|
Wei J, Li Y, Chen X, Tan P, Muhammad T, Liang Y. Advances in understanding the interaction between Solanaceae NLR resistance proteins and the viral effector Avr. PLANT SIGNALING & BEHAVIOR 2024; 19:2382497. [PMID: 39312190 PMCID: PMC11421380 DOI: 10.1080/15592324.2024.2382497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 09/26/2024]
Abstract
The rising prevalence of viral-induced diseases, particularly those caused by certain strains, poses a substantial risk to the genetic diversity of Solanaceae crops and the overall safety of horticultural produce. According to the "gene-for-gene" hypothesis, resistance proteins are capable of selectively identifying nontoxic effectors produced by pathogens, as they are under purview of the host's immune defenses. The sensitivity and responsiveness of Solanaceae plants to viral attacks play a crucial role in shaping the outcomes of their interactions with viruses. Pathogenic organisms, devise an array of infection tactics aimed at circumventing or neutralizing the host's immune defenses to facilitate effective invasion. The invasion often accomplishes by suppressing or disrupting the host's defensive mechanisms or immune signals, which are integral to the infection strategies of such invading pathogens. This comprehensive review delves into the myriad approaches that pathogenic viruses employ to infiltrate and overcome the sophisticated immune system of tomatoes. Furthermore, the review explores the possibility of utilizing these viral strategies to bolster the resilience of horticultural crops, presenting a hopeful direction for forthcoming progress in plant health and agricultural stability.
Collapse
Affiliation(s)
- Jianming Wei
- College of Agriculture, Guizhou University, Guiyang, China
| | - Yunzhou Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xiangru Chen
- College of Agriculture, Guizhou University, Guiyang, China
| | - Ping Tan
- Field management station, Guiyang Agricultural Test Center, Guiyang, China
| | - Tayeb Muhammad
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Tang A, Zhang J, Huang J, Deng Y, Wang D, Yu P, Zhao R, Wang Y, Chen Z, Zhang T, Li B. Decrypting the viral community in aerobic activated sludge reactors treating antibiotic production wastewater. WATER RESEARCH 2024; 265:122253. [PMID: 39167968 DOI: 10.1016/j.watres.2024.122253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/31/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Viruses are the most abundant yet understudied members that may influence microbial metabolism in activated sludge treating antibiotic production wastewater. This study comprehensively investigated virome community characteristics under the selection pressure of nine types and different concentrations of antibiotics using a metagenomics approach. Of the 15,514 total viral operational taxonomic units (tOTUs) recovered, only 37.5 % were annotated. Antibiotics altered the original viral community structure in activated sludge. The proportion of some pathogenic viral families, including Herpesviridae_like, increased significantly in reactors treating erythromycin production wastewater. In total, 16.5 % of the tOTUs were associated with two or more hosts. tOTUs rarely carried antibiotic resistance genes (ARGs), and the ARG types in the tOTUs did not match the ARGs carried by the bacterial hosts. This suggests that transduction contributes little to the horizontal ARG transfer. Auxiliary metabolic genes (AMGs) were prevalent in tOTUs, and those involved in folate biosynthesis were particularly abundant, indicating their potential to mitigate antibiotic-induced host damage. This study provides comprehensive insights into the virome community in activated sludge treating antibiotic production wastewater and sheds light on the potential role of viral AMGs in mitigating antibiotic-induced stress.
Collapse
Affiliation(s)
- Aixi Tang
- Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jiayu Zhang
- Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jin Huang
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Renxin Zhao
- Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yulin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
| | - Zihan Chen
- Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Bing Li
- Key Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
3
|
Martins LF, Dos Santos Junior AP, Nicastro GG, Scheunemann G, Angeli CB, Rossi FPN, Quaggio RB, Palmisano G, Sgro GG, Ishida K, Baldini RL, da Silva AM. Phages ZC01 and ZC03 require type-IV pilus for Pseudomonas aeruginosa infection and have a potential for therapeutic applications. Microbiol Spectr 2024:e0152724. [PMID: 39470273 DOI: 10.1128/spectrum.01527-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
There has been a growing interest in bacteriophages as therapeutic agents to treat multidrug-resistant bacterial infections. The present work aimed at expanding the microbiological and molecular characterization of lytic phages ZC01 and ZC03 and investigating their efficacy in the control of Pseudomonas aeruginosa infection in an invertebrate animal model. These two phages were previously isolated from composting using P. aeruginosa strain PA14 as the enrichment host and had their genomes sequenced. ZC01 and ZC03 present, respectively, siphovirus and podovirus morphotypes. ZC01 was recently classified into the genus Abidjanvirus, while ZC03 belongs to Zicotriavirus genus of the Schitoviridae N4-like viruses. Through proteomics analysis, we identified virion structural proteins of ZC01 and ZC03, including a large virion-associated RNA polymerase that is characteristic of N4-like viruses, some hypothetical proteins whose annotation should be changed to virion structural proteins and a putative peptidoglycan hydrolase. Phages ZC01 and ZC03 exhibit a limited yet distinct host range, with moderate to high efficiency of plating (EOP) values observed for a few P. aeruginosa clinical isolates. Phage susceptibility assays in PA14 mutant strains point to the type-IV pilus (T4P) as the primary receptor for phages ZC01 and ZC03, and the major pilin (PilAPA14) is the T4P component recognized by these phages. Moreover, both phages significantly increase survival of Galleria mellonella larvae infected with PA14 strain. Taken together, these results underpin the therapeutic potential of these phages to treat infections by P. aeruginosa and lay the groundwork for a more detailed investigation of phage-bacteria-specific recognition mechanisms.IMPORTANCEPhage therapy is gaining increasing interest in cases of difficult-to-treat bacterial human infections, such as carbapenem-resistant Pseudomonas aeruginosa. In this work, we investigated the molecular mechanism underlying the interaction of the lytic phages ZC01 and ZC03 with the highly virulent P. aeruginosa PA14 strain and their efficacy to treat PA14 infection in Galleria mellonella larvae, a commonly used invertebrate model for phage therapy. We depicted the protein composition of ZC01 and ZC03 viral particles and identified pilin A, the major component of type-4 pilus, as the receptor recognized by these phages. Our findings indicate that phages ZC01 and ZC03 may be further used for developing therapies to treat multidrug-resistant P. aeruginosa infections.
Collapse
Affiliation(s)
- Layla Farage Martins
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Biology of Bacteria and Bacteriophages Research Center (CEPID B3), São Paulo, Brazil
| | - Ariosvaldo Pereira Dos Santos Junior
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Biology of Bacteria and Bacteriophages Research Center (CEPID B3), São Paulo, Brazil
| | | | - Gaby Scheunemann
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Claudia Blanes Angeli
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ronaldo Bento Quaggio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Germán Gustavo Sgro
- Biology of Bacteria and Bacteriophages Research Center (CEPID B3), São Paulo, Brazil
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Kelly Ishida
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Regina Lúcia Baldini
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Biology of Bacteria and Bacteriophages Research Center (CEPID B3), São Paulo, Brazil
| | - Aline Maria da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Biology of Bacteria and Bacteriophages Research Center (CEPID B3), São Paulo, Brazil
| |
Collapse
|
4
|
Valencia-Toxqui G, Ramsey J. How to introduce a new bacteriophage on the block: a short guide to phage classification. J Virol 2024; 98:e0182123. [PMID: 39264154 PMCID: PMC11494874 DOI: 10.1128/jvi.01821-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Bacteriophage (phage) studies established the field of molecular biology and continue to propel life science research forward due to their diversity, abundance, and potential applications. In this Gem article, we orient newcomers to four common ways phages are currently classified: infection cycle, morphology, taxonomy, and supergroup. By using these classifications, researchers can determine where any novel phage fits into the scheme of the known "phage-verse".
Collapse
Affiliation(s)
- Guadalupe Valencia-Toxqui
- Department of Biology, Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - Jolene Ramsey
- Department of Biology, Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
5
|
Ke D, Luo J, Liu P, Shou L, Ijaz M, Ahmed T, Shahid MS, An Q, Mustać I, Ondrasek G, Wang Y, Li B, Lou B. Advancements in Bacteriophages for the Fire Blight Pathogen Erwinia amylovora. Viruses 2024; 16:1619. [PMID: 39459951 PMCID: PMC11512310 DOI: 10.3390/v16101619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Erwinia amylovora, the causative agent of fire blight, causes significant economic losses for farmers worldwide by inflicting severe damage to the production and quality of plants in the Rosaceae family. Historically, fire blight control has primarily relied on the application of copper compounds and antibiotics, such as streptomycin. However, the emergence of antibiotic-resistant strains and growing environmental concerns have highlighted the need for alternative control methods. Recently, there has been a growing interest in adopting bacteriophages (phages) as a biological control strategy. Phages have demonstrated efficacy against the bacterial plant pathogen E. amylovora, including strains that have developed antibiotic resistance. The advantages of phage therapy includes its minimal impact on microbial community equilibrium, the lack of a detrimental impact on plants and beneficial microorganisms, and its capacity to eradicate drug-resistant bacteria. This review addresses recent advances in the isolation and characterization of E. amylovora phages, including their morphology, host range, lysis exertion, genomic characterization, and lysis mechanisms. Furthermore, this review evaluates the environmental tolerance of E. amylovora phages. Despite their potential, E. amylovora phages face certain challenges in practical applications, including stability issues and the risk of lysogenic conversion. This comprehensive review examines the latest developments in the application of phages for controlling fire blight and highlights the potential of E. amylovora phages in plant protection strategies.
Collapse
Affiliation(s)
- Dufang Ke
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.K.); (P.L.); (M.I.); (T.A.); (Q.A.)
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China;
| | - Pengfei Liu
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.K.); (P.L.); (M.I.); (T.A.); (Q.A.)
| | - Linfei Shou
- Station for the Plant Protection & Quarantine and Control of Agrochemicals of Zhejiang Province, Hangzhou 310004, China;
| | - Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.K.); (P.L.); (M.I.); (T.A.); (Q.A.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.K.); (P.L.); (M.I.); (T.A.); (Q.A.)
- Department of Life Sciences, Western Caspian University, Baku AZ1001, Azerbaijan
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman;
| | - Qianli An
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.K.); (P.L.); (M.I.); (T.A.); (Q.A.)
| | - Ivan Mustać
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (I.M.); (G.O.)
| | - Gabrijel Ondrasek
- Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia; (I.M.); (G.O.)
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.K.); (P.L.); (M.I.); (T.A.); (Q.A.)
| | - Binggan Lou
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (D.K.); (P.L.); (M.I.); (T.A.); (Q.A.)
| |
Collapse
|
6
|
Wang W, Song W, Majzoub ME, Feng X, Xu B, Tao J, Zhu Y, Li Z, Qian PY, Webster NS, Thomas T, Fan L. Decoupling of strain- and intrastrain-level interactions of microbiomes in a sponge holobiont. Nat Commun 2024; 15:8205. [PMID: 39294150 PMCID: PMC11410982 DOI: 10.1038/s41467-024-52464-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 09/07/2024] [Indexed: 09/20/2024] Open
Abstract
Holobionts are highly organized assemblages of eukaryotic hosts, cellular microbial symbionts, and viruses, whose interactions and evolution involve complex biological processes. It is largely unknown which specific determinants drive similarity or individuality in genetic diversity between holobionts. Here, we combine short- and long-read sequencing and DNA-proximity-linkage technologies to investigate intraspecific diversity of the microbiomes, including host-resolved viruses, in individuals of a model marine sponge. We find strong impacts of the sponge host and the cellular hosts of viruses on strain-level organization of the holobiont, whereas substantial overlap in nucleotide diversity between holobionts suggests frequent exchanges of microbial cells and viruses at intrastrain level in the local sponge population. Immune-evasive arms races likely restricted virus-host co-evolution at the intrastrain level, generated holobiont-specific genome variations, and linked virus-host genetics through recombination. Our work shows that a decoupling of strain- and intrastrain-level interactions is a key factor in the genetic diversification of holobionts.
Collapse
Affiliation(s)
- Wenxiu Wang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Weizhi Song
- Center for Marine Science and Innovation, University of New South Wales, Sydney, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Marwan E Majzoub
- Center for Marine Science and Innovation, University of New South Wales, Sydney, New South Wales, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Xiaoyuan Feng
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Bu Xu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jianchang Tao
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yuanqing Zhu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Minhang, Shanghai, China
| | - Pei-Yuan Qian
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong, China
| | - Nicole S Webster
- The Australian Antarctic Division, Kingston, Tasmania, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Torsten Thomas
- Center for Marine Science and Innovation, University of New South Wales, Sydney, New South Wales, Australia.
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Li C, Zhang Y, Shi W, Peng Y, Han Y, Jiang S, Dong X, Zhang R. Viral diversity within marine biofilms and interactions with corrosive microbes. ENVIRONMENTAL RESEARCH 2024; 263:119991. [PMID: 39276831 DOI: 10.1016/j.envres.2024.119991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
In marine environments, a wide variety of microbes like bacteria, and archaea influence on the corrosion of materials. Viruses are widely distributed in biofilms among these microbes and may affect the corrosion process through interactions with key corrosive prokaryotes. However, understanding of the viral communities within biofilms and their interactions with corrosive microbes remains is limited. To improve this knowledge gap, 53 metagenomes were utilized to investigate the diversity of viruses within biofilms on 8 different materials and their interactions with corrosive microbes. Notably, the viruses within biofilms predominantly belonged to Caudoviricetes, and phylogenetic analysis of Caudoviricetes and protein-sharing networks with other environments revealed the presence of numerous novel viral clades in biofilms. The virus‒host linkages revealed a close association between viruses and corrosive microbes in biofilms. This means that viruses may modulate host corrosion-related metabolism through auxiliary metabolic genes. It was observed that the virus could enhance host resistance to metals and antibiotics via horizontal gene transfer. Interestingly, viruses could protect themselves from host antiviral systems through anti-defense systems. This study illustrates the diversity of viruses within biofilms formed on materials and the intricate interactions between viruses and corrosive microbes, showing the potential roles of viruses in corrosive biofilms.
Collapse
Affiliation(s)
- Chengpeng Li
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yimeng Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Wenqing Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen, 361102, China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China; School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Yingchun Han
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Shuqing Jiang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Ruiyong Zhang
- Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Institute of Marine Corrosion Protection, Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Sciences, Nanning, China.
| |
Collapse
|
8
|
Geng Y, Nguyen TVP, Homaee E, Golding I. Using bacterial population dynamics to count phages and their lysogens. Nat Commun 2024; 15:7814. [PMID: 39242585 PMCID: PMC11379933 DOI: 10.1038/s41467-024-51913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/20/2024] [Indexed: 09/09/2024] Open
Abstract
Traditional assays for counting bacteriophages and their lysogens are labor-intensive and perturbative to the host cells. Here, we present a high-throughput infection method in a microplate reader, where the growth dynamics of the infected culture is measured using the optical density (OD). We find that the OD at which the culture lyses scales linearly with the logarithm of the initial phage concentration, providing a way of measuring phage numbers over nine orders of magnitude and down to single-phage sensitivity. Interpreting the measured dynamics using a mathematical model allows us to infer the phage growth rate, which is a function of the phage-cell encounter rate, latent period, and burst size. Adding antibiotic selection provides the ability to measure the rate of host lysogenization. Using this method, we found that when E. coli growth slows down, the lytic growth rate of lambda phages decreases, and the propensity for lysogeny increases, demonstrating how host physiology influences the viral developmental program.
Collapse
Affiliation(s)
- Yuncong Geng
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Thu Vu Phuc Nguyen
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Ehsan Homaee
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ido Golding
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
9
|
Dominguez-Mirazo M, Harris JD, Demory D, Weitz JS. Accounting for cellular-level variation in lysis: implications for virus-host dynamics. mBio 2024; 15:e0137624. [PMID: 39028198 PMCID: PMC11323501 DOI: 10.1128/mbio.01376-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 07/20/2024] Open
Abstract
Viral impacts on microbial populations depend on interaction phenotypes-including viral traits spanning the adsorption rate, latent period, and burst size. The latent period is a key viral trait in lytic infections. Defined as the time from viral adsorption to viral progeny release, the latent period of bacteriophage is conventionally inferred via one-step growth curves in which the accumulation of free virus is measured over time in a population of infected cells. Developed more than 80 years ago, one-step growth curves do not account for cellular-level variability in the timing of lysis, potentially biasing inference of viral traits. Here, we use nonlinear dynamical models to understand how individual-level variation of the latent period impacts virus-host dynamics. Our modeling approach shows that inference of the latent period via one-step growth curves is systematically biased-generating estimates of shorter latent periods than the underlying population-level mean. The bias arises because variability in lysis timing at the cellular level leads to a fraction of early burst events, which are interpreted, artefactually, as an earlier mean time of viral release. We develop a computational framework to estimate latent period variability from joint measurements of host and free virus populations. Our computational framework recovers both the mean and variance of the latent period within simulated infections including realistic measurement noise. This work suggests that reframing the latent period as a distribution to account for variability in the population will improve the study of viral traits and their role in shaping microbial populations.IMPORTANCEQuantifying viral traits-including the adsorption rate, burst size, and latent period-is critical to characterize viral infection dynamics and develop predictive models of viral impacts across scales from cells to ecosystems. Here, we revisit the gold standard of viral trait estimation-the one-step growth curve-to assess the extent to which assumptions at the core of viral infection dynamics lead to ongoing and systematic biases in inferences of viral traits. We show that latent period estimates obtained via one-step growth curves systematically underestimate the mean latent period and, in turn, overestimate the rate of viral killing at population scales. By explicitly incorporating trait variability into a dynamical inference framework that leverages both virus and host time series, we provide a practical route to improve estimates of the mean and variance of viral traits across diverse virus-microbe systems.
Collapse
Affiliation(s)
- Marian Dominguez-Mirazo
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Jeremy D. Harris
- Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, Indiana, USA
| | - David Demory
- CNRS, Sorbonne Université, USR3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Joshua S. Weitz
- Department of Biology, University of Maryland, College Park, Maryland, USA
- Department of Physics, University of Maryland, College Park, Maryland, USA
- Institut de Biologie, École Normale Supérieure, Paris, France
| |
Collapse
|
10
|
Carreira C, Lønborg C, Acharya B, Aryal L, Buivydaite Z, Borim Corrêa F, Chen T, Lorenzen Elberg C, Emerson JB, Hillary L, Khadka RB, Langlois V, Mason-Jones K, Netherway T, Sutela S, Trubl G, Wa Kang'eri A, Wang R, White RA, Winding A, Zhao T, Sapkota R. Integrating viruses into soil food web biogeochemistry. Nat Microbiol 2024:10.1038/s41564-024-01767-x. [PMID: 39095499 DOI: 10.1038/s41564-024-01767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
The soil microbiome is recognized as an essential component of healthy soils. Viruses are also diverse and abundant in soils, but their roles in soil systems remain unclear. Here we argue for the consideration of viruses in soil microbial food webs and describe the impact of viruses on soil biogeochemistry. The soil food web is an intricate series of trophic levels that span from autotrophic microorganisms to plants and animals. Each soil system encompasses contrasting and dynamic physicochemical conditions, with labyrinthine habitats composed of particles. Conditions are prone to shifts in space and time, and this variability can obstruct or facilitate interactions of microorganisms and viruses. Because viruses can infect all domains of life, they must be considered as key regulators of soil food web dynamics and biogeochemical cycling. We highlight future research avenues that will enable a more robust understanding of the roles of viruses in soil function and health.
Collapse
Affiliation(s)
- Cátia Carreira
- Department of Environmental Science, Aarhus University, Roskilde, Denmark.
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal.
| | | | - Basistha Acharya
- Directorate of Agricultural Research, Nepal Agricultural Research Council, Khajura, Nepal
| | - Laxman Aryal
- Nepal Agricultural Research Council, National Wheat Research Program, Bhairahawa, Nepal
| | - Zivile Buivydaite
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Felipe Borim Corrêa
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Tingting Chen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Department of Ecology, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | | | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Luke Hillary
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Ram B Khadka
- National Plant Pathology Research Center, Nepal Agricultural Research Council, Lalitpur, Nepal
| | - Valérie Langlois
- Département de Biochimie, Microbiologie et Bio-informatique, Université Laval, Québec City, Québec, Canada
| | - Kyle Mason-Jones
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Tarquin Netherway
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Suvi Sutela
- Natural Resources Institute Finland, Helsinki, Finland
| | - Gareth Trubl
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | | | - Ruiqi Wang
- Department of Environmental Biology, Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Richard Allen White
- Computational Intelligence to Predict Health and Environmental Risks, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
- North Carolina Research Campus, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Anne Winding
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Tianci Zhao
- Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Rumakanta Sapkota
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
11
|
Ares-Arroyo M, Coluzzi C, Moura de Sousa JA, Rocha EPC. Hijackers, hitchhikers, or co-drivers? The mysteries of mobilizable genetic elements. PLoS Biol 2024; 22:e3002796. [PMID: 39208359 PMCID: PMC11389934 DOI: 10.1371/journal.pbio.3002796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/11/2024] [Indexed: 09/04/2024] Open
Abstract
Mobile genetic elements shape microbial gene repertoires and populations. Recent results reveal that many, possibly most, microbial mobile genetic elements require helpers to transfer between genomes, which we refer to as Hitcher Genetic Elements (hitchers or HGEs). They may be a large fraction of pathogenicity and resistance genomic islands, whose mechanisms of transfer have remained enigmatic for decades. Together with their helper elements and their bacterial hosts, hitchers form tripartite networks of interactions that evolve rapidly within a parasitism-mutualism continuum. In this emerging view of microbial genomes as communities of mobile genetic elements many questions arise. Which elements are being moved, by whom, and how? How often are hitchers costly hyper-parasites or beneficial mutualists? What is the evolutionary origin of hitchers? Are there key advantages associated with hitchers' lifestyle that justify their unexpected abundance? And why are hitchers systematically smaller than their helpers? In this essay, we start answering these questions and point ways ahead for understanding the principles, origin, mechanisms, and impact of hitchers in bacterial ecology and evolution.
Collapse
Affiliation(s)
- Manuel Ares-Arroyo
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Charles Coluzzi
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Jorge A Moura de Sousa
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| |
Collapse
|
12
|
Nguyen TVP, Wu Y, Yao T, Trinh JT, Zeng L, Chemla YR, Golding I. Coinfecting phages impede each other's entry into the cell. Curr Biol 2024; 34:2841-2853.e18. [PMID: 38878771 PMCID: PMC11233250 DOI: 10.1016/j.cub.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/15/2024] [Accepted: 05/16/2024] [Indexed: 06/25/2024]
Abstract
The developmental choice made by temperate phages, between cell death (lysis) and viral dormancy (lysogeny), is influenced by the relative abundance of viruses and hosts in the environment. The paradigm for this abundance-driven decision is phage lambda of E. coli, whose propensity to lysogenize increases with the number of viruses coinfecting the same bacterium. It is believed that lambda uses this number to infer whether phages or bacteria outnumber each other. However, this interpretation is premised on an accurate mapping between the extracellular phage-to-bacteria ratio and the intracellular multiplicity of infection (MOI). Here, we show this premise to be faulty. By simultaneously labeling phage capsids and genomes, we find that, while the number of phages landing on each cell reliably samples the population ratio, the number of phages entering the cell does not. Single-cell infections, performed in a microfluidic device and interpreted using a stochastic model, reveal that the probability and rate of phage entry decrease with the number of adsorbed phages. This decrease reflects an MOI-dependent perturbation to host physiology caused by phage attachment, as evidenced by compromised membrane integrity and loss of membrane potential. The dependence of entry dynamics on the surrounding medium results in a strong impact on the infection outcome, while the protracted entry of coinfecting phages increases the heterogeneity in infection outcome at a given MOI. Our findings in lambda, and similar results we obtained for phages T5 and P1, demonstrate the previously unappreciated role played by entry dynamics in determining the outcome of bacteriophage infection.
Collapse
Affiliation(s)
- Thu Vu Phuc Nguyen
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuchen Wu
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Tianyou Yao
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jimmy T Trinh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Yann R Chemla
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ido Golding
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
13
|
Ji M, Li Y, Zhou J, Song W, Zhou Y, Ma K, Wang M, Liu X, Li Y, Gong X, Tu Q. Temporal turnover of viral biodiversity and functional potential in intertidal wetlands. NPJ Biofilms Microbiomes 2024; 10:48. [PMID: 38898104 PMCID: PMC11186824 DOI: 10.1038/s41522-024-00522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
As the central members of the microbiome networks, viruses regulate the composition of microbial communities and drive the nutrient cycles of ecosystems by lysing host cells. Therefore, uncovering the dynamic patterns and the underlying ecological mechanisms mediating the tiniest viral communities across space and through time in natural ecosystems is of crucial importance for better understanding the complex microbial world. Here, the temporal dynamics of intertidal viral communities were investigated via a time-series sampling effort. A total of 1911 viral operational taxonomic units were recovered from 36 bimonthly collected shotgun metagenomes. Functionally important auxiliary metabolic genes involved in carbohydrate, sulfur, and phosphorus metabolism were detected, some of which (e.g., cysH gene) were stably present within viral genomes over time. Over the sampling period, strong and comparable temporal turnovers were observed for intertidal viromes and their host microbes. Winter was determined as the pivotal point for the shifts in viral diversity patterns. Notably, the viral micro-diversity covaried with the macro-diversity, following similar temporal patterns. The relative abundances of viral taxa also covaried with their host prokaryotes. Meanwhile, the virus-host relationships at the whole community level were relatively stable. Further statistical analyses demonstrated that the dynamic patterns of viral communities were highly deterministic, for which temperature was the major driver. This study provided valuable mechanistic insights into the temporal turnover of viral communities in complex ecosystems such as intertidal wetlands.
Collapse
Affiliation(s)
- Mengzhi Ji
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong Province, China
| | - Yan Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong Province, China
| | - Jiayin Zhou
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong Province, China
| | - Wen Song
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong Province, China
| | - Yuqi Zhou
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong Province, China
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Kai Ma
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong Province, China
| | - Mengqi Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong Province, China
| | - Xia Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong Province, China
| | - Yueyue Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong Province, China
| | - Xiaofan Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong Province, China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong Province, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China.
| |
Collapse
|
14
|
Ortiz de Ora L, Wiles ET, Zünd M, Bañuelos MS, Haro-Ramirez N, Suder DS, Ujagar N, Angulo JA, Trinh C, Knitter C, Gonen S, Nicholas DA, Wiles TJ. Phollow: Visualizing Gut Bacteriophage Transmission within Microbial Communities and Living Animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598711. [PMID: 38915633 PMCID: PMC11195241 DOI: 10.1101/2024.06.12.598711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Bacterial viruses (known as "phages") shape the ecology and evolution of microbial communities, making them promising targets for microbiome engineering. However, knowledge of phage biology is constrained because it remains difficult to study phage transmission dynamics within multi-member communities and living animal hosts. We therefore created "Phollow": a live imaging-based approach for tracking phage replication and spread in situ with single-virion resolution. Combining Phollow with optically transparent zebrafish enabled us to directly visualize phage outbreaks within the vertebrate gut. We observed that virions can be rapidly taken up by intestinal tissues, including by enteroendocrine cells, and quickly disseminate to extraintestinal sites, including the liver and brain. Moreover, antibiotics trigger waves of interbacterial transmission leading to sudden shifts in spatial organization and composition of defined gut communities. Phollow ultimately empowers multiscale investigations connecting phage transmission to transkingdom interactions that have the potential to open new avenues for viral-based microbiome therapies.
Collapse
Affiliation(s)
- Lizett Ortiz de Ora
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Elizabeth T Wiles
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Mirjam Zünd
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Maria S Bañuelos
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Nancy Haro-Ramirez
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Diana S Suder
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Naveena Ujagar
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Julio Ayala Angulo
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Calvin Trinh
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Courtney Knitter
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Shane Gonen
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
| | - Dequina A Nicholas
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
- Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, California, USA
| | - Travis J Wiles
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California, USA
- Center for Virus Research, University of California, Irvine, California, USA
| |
Collapse
|
15
|
Guo X, Wang X, Shi J, Ren J, Zeng J, Li J, Li Y. A review and new perspective on oral bacteriophages: manifestations in the ecology of oral diseases. J Oral Microbiol 2024; 16:2344272. [PMID: 38698893 PMCID: PMC11064738 DOI: 10.1080/20002297.2024.2344272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 05/05/2024] Open
Abstract
Objective To explore the manifestations of bacteriophages in different oral disease ecologies, including periodontal diseases, dental caries, endodontic infections, and oral cancer, as well as to propel phage therapy for safer and more effective clinical application in the field of dentistry. Methods In this literature review, we outlined interactions between bacteriophages, bacteria and even oral cells in the oral ecosystem, especially in disease states. We also analyzed the current status and future prospects of phage therapy in the perspective of different oral diseases. Results Various oral bacteriophages targeting at periodontal pathogens as Porphyromonas gingivalis, Fusobacterium nucleatum, Treponema denticola and Aggregatibacter actinomycetemcomitans, cariogenic pathogen Streptococcus mutans, endodontic pathogen Enterococcus faecalis were predicted or isolated, providing promising options for phage therapy. In the realm of oral cancer, aside from displaying tumor antigens or participating in tumor-targeted therapies, phage-like particle vaccines demonstrated the potential to prevent oral infections caused by human papillomaviruses (HPVs) associated with head-and-neck cancers. Conclusion Due to their intricate interactions with bacteria and oral cells, bacteriophages are closely linked to the progression and regression of diverse oral diseases. And there is an urgent need for research to explore additional possibilities of bacteriophages in the management of oral diseases.
Collapse
Affiliation(s)
- Xinyu Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiayi Ren
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Biomedicine and Health, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Center for Archaeological Science, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Lu K, Wang X, Zhou Y, Zhu Q. Genomic characterization and probiotic potential assessment of an exopolysaccharide-producing strain Pediococcus pentosaceus LL-07 isolated from fermented meat. BMC Microbiol 2024; 24:142. [PMID: 38664612 PMCID: PMC11044368 DOI: 10.1186/s12866-024-03304-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND The genomic information available for Pediococcus pentosaceus is primarily derived from fermented fruits and vegetables, with less information available from fermented meat. P. pentosaceus LL-07, a strain isolated from fermented meat, has the capability of producing exopolysaccharides (EPS). To assess the probiotic attributes of P. pentosaceus LL-07, we conducted whole-genome sequencing (WGS) using the PacBio SequelIIe and Illumina MiSeq platforms, followed by in vitro experiments to explore its probiotic potential. RESULTS The genome size of P. pentosaceus LL-07 is 1,782,685 bp, comprising a circular chromosome and a circular plasmid. Our investigation revealed the absence of a CRISPR/Cas system. Sugar fermentation experiments demonstrated the characteristics of carbohydrate metabolism. P. pentosaceus LL-07 contains an EPS synthesis gene cluster consisting of 13 genes, which is different from the currently known gene cluster structure. NO genes associated with hemolysis or toxin synthesis were detected. Additionally, eighty-six genes related to antibiotic resistance were identified but not present in the prophage, transposon or plasmid. In vitro experiments demonstrated that P. pentosaceus LL-07 was comparable to the reference strain P. pentosaceus ATCC25745 in terms of tolerance to artificial digestive juice and bile, autoaggregation and antioxidation, and provided corresponding genomic evidence. CONCLUSION This study confirmed the safety and probiotic properties of P. pentosaceus LL-07 via complete genome and phenotype analysis, supporting its characterization as a potential probiotic candidate.
Collapse
Affiliation(s)
- Kuan Lu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guizhou Province, Guiyang, 550025, China
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guizhou, Guiyang, 550025, China
| | - Xueya Wang
- Chili Pepper Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guizhou, Guiyang, 550006, China
| | - Ying Zhou
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guizhou, Guiyang, 550025, China
| | - Qiujin Zhu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guizhou Province, Guiyang, 550025, China.
- Guizhou Province Key Laboratory of Agricultural and Animal Products Storage and Processing, School of Liquor and Food Engineering, Guizhou University, Guizhou, Guiyang, 550025, China.
| |
Collapse
|
17
|
Hong W, Mei H, Shi X, Lin X, Wang S, Ni R, Wang Y, Song L. Viral community distribution, assembly mechanism, and associated hosts in an industrial park wastewater treatment plant. ENVIRONMENTAL RESEARCH 2024; 247:118156. [PMID: 38199475 DOI: 10.1016/j.envres.2024.118156] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/02/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Viruses manipulate bacterial community composition and impact wastewater treatment efficiency. Some viruses pose threats to the environment and human populations through infection. Improving the efficiency of wastewater treatment and ensuring the health of the effluent and receptor pools requires an understanding of how viral communities assemble and interact with hosts in wastewater treatment plants (WWTPs). We used metagenomic analysis to study the distribution, assembly mechanism, and sensitive hosts for the viral communities in raw water, anaerobic tanks, and returned activated sludge units of a large-scale industrial park WWTP. Uroviricota (53.42% ± 0.14%) and Nucleocytoviricota (26.1% ± 0.19%) were dominant in all units. Viral community composition significantly differed between units, as measured by β diversity (P = 0.005). Compared to raw water, the relative viral abundance decreased by 29.8% in the anaerobic tank but increased by 9.9% in the activated sludge. Viral community assembly in raw water and anaerobic tanks was predominantly driven by deterministic processes (MST <0.5) versus stochastic processes (MST >0.5) in the activated sludge, indicating that differences in diffusion limits may fundamentally alter the assembly mechanisms of viral communities between the solid and liquid-phase environments. Acidobacteria was identified as the sensitive host contributing to viral abundance, exhibiting strong interactions and a mutual dependence (degree = 59). These results demonstrate the occurrence and prevalence of viruses in WWTPs, their different assembly mechanism, and sensitive hosts. These observations require further study of the mechanisms of viral community succession, ecological function, and roles in the successive wastewater treatment units.
Collapse
Affiliation(s)
- Wenqing Hong
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China
| | - Hong Mei
- East China Engineering Science and Technology Co., Ltd, Hefei, 230024, China
| | - Xianyang Shi
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China.
| | - Xiaoxing Lin
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China
| | - Shuijing Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China
| | - Renjie Ni
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China
| | - Yan Wang
- East China Engineering Science and Technology Co., Ltd, Hefei, 230024, China
| | - Liyan Song
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China.
| |
Collapse
|
18
|
Wu LY, Wijesekara Y, Piedade GJ, Pappas N, Brussaard CPD, Dutilh BE. Benchmarking bioinformatic virus identification tools using real-world metagenomic data across biomes. Genome Biol 2024; 25:97. [PMID: 38622738 PMCID: PMC11020464 DOI: 10.1186/s13059-024-03236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND As most viruses remain uncultivated, metagenomics is currently the main method for virus discovery. Detecting viruses in metagenomic data is not trivial. In the past few years, many bioinformatic virus identification tools have been developed for this task, making it challenging to choose the right tools, parameters, and cutoffs. As all these tools measure different biological signals, and use different algorithms and training and reference databases, it is imperative to conduct an independent benchmarking to give users objective guidance. RESULTS We compare the performance of nine state-of-the-art virus identification tools in thirteen modes on eight paired viral and microbial datasets from three distinct biomes, including a new complex dataset from Antarctic coastal waters. The tools have highly variable true positive rates (0-97%) and false positive rates (0-30%). PPR-Meta best distinguishes viral from microbial contigs, followed by DeepVirFinder, VirSorter2, and VIBRANT. Different tools identify different subsets of the benchmarking data and all tools, except for Sourmash, find unique viral contigs. Performance of tools improved with adjusted parameter cutoffs, indicating that adjustment of parameter cutoffs before usage should be considered. CONCLUSIONS Together, our independent benchmarking facilitates selecting choices of bioinformatic virus identification tools and gives suggestions for parameter adjustments to viromics researchers.
Collapse
Affiliation(s)
- Ling-Yi Wu
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Yasas Wijesekara
- Institute of Bioinformatics, University Medicine Greifswald, Felix Hausdorff Str. 8, 17475, Greifswald, Germany
| | - Gonçalo J Piedade
- Department Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, PO Box 59, Texel, 1790 AB, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Nikolaos Pappas
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands
| | - Corina P D Brussaard
- Department Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, PO Box 59, Texel, 1790 AB, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, Utrecht, 3584 CH, The Netherlands.
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
19
|
Zheng Y, Gao Z, Wu S, Ruan A. Community Structure, Drivers, and Potential Functions of Different Lifestyle Viruses in Chaohu Lake. Viruses 2024; 16:590. [PMID: 38675931 PMCID: PMC11053968 DOI: 10.3390/v16040590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Viruses, as the most prolific entities on Earth, constitute significant ecological groups within freshwater lakes, exerting pivotal ecological roles. In this study, we selected Chaohu Lake, a representative eutrophic freshwater lake in China, as our research site to explore the community distribution, driving mechanisms, and potential ecological functions of diverse viral communities, the intricate virus-host interaction systems, and the overarching influence of viruses on global biogeochemical cycling.
Collapse
Affiliation(s)
- Yu Zheng
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210024, China; (Y.Z.); (Z.G.); (S.W.)
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Zihao Gao
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210024, China; (Y.Z.); (Z.G.); (S.W.)
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Shuai Wu
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210024, China; (Y.Z.); (Z.G.); (S.W.)
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Aidong Ruan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210024, China; (Y.Z.); (Z.G.); (S.W.)
- College of Geography and Remote Sensing, Hohai University, Nanjing 210098, China
| |
Collapse
|
20
|
Flores VS, Amgarten DE, Iha BKV, Ryon KA, Danko D, Tierney BT, Mason C, da Silva AM, Setubal JC. Discovery and description of novel phage genomes from urban microbiomes sampled by the MetaSUB consortium. Sci Rep 2024; 14:7913. [PMID: 38575625 PMCID: PMC10994904 DOI: 10.1038/s41598-024-58226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Bacteriophages are recognized as the most abundant members of microbiomes and have therefore a profound impact on microbial communities through the interactions with their bacterial hosts. The International Metagenomics and Metadesign of Subways and Urban Biomes Consortium (MetaSUB) has sampled mass-transit systems in 60 cities over 3 years using metagenomics, throwing light into these hitherto largely unexplored urban environments. MetaSUB focused primarily on the bacterial community. In this work, we explored MetaSUB metagenomic data in order to recover and analyze bacteriophage genomes. We recovered and analyzed 1714 phage genomes with size at least 40 kbp, from the class Caudoviricetes, the vast majority of which (80%) are novel. The recovered genomes were predicted to belong to temperate (69%) and lytic (31%) phages. Thirty-three of these genomes have more than 200 kbp, and one of them reaches 572 kbp, placing it among the largest phage genomes ever found. In general, the phages tended to be site-specific or nearly so, but 194 genomes could be identified in every city from which phage genomes were retrieved. We predicted hosts for 48% of the phages and observed general agreement between phage abundance and the respective bacterial host abundance, which include the most common nosocomial multidrug-resistant pathogens. A small fraction of the phage genomes are carriers of antibiotic resistance genes, and such genomes tended to be particularly abundant in the sites where they were found. We also detected CRISPR-Cas systems in five phage genomes. This study expands the previously reported MetaSUB results and is a contribution to the knowledge about phage diversity, global distribution, and phage genome content.
Collapse
Affiliation(s)
- Vinicius S Flores
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Deyvid E Amgarten
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Bruno Koshin Vázquez Iha
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | | | | | - Braden T Tierney
- Weill Cornell Medicine, New York, NY, USA
- Harvard Medical School, Cambridge, MA, USA
| | | | - Aline Maria da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil.
| | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000, Brazil.
| |
Collapse
|
21
|
Medvedeva A, Domakhina S, Vasnetsov C, Vasnetsov V, Kolomeisky A. Physical-Chemical Approach to Designing Drugs with Multiple Targets. J Phys Chem Lett 2024; 15:1828-1835. [PMID: 38330920 DOI: 10.1021/acs.jpclett.3c03624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Many people simultaneously exhibit multiple diseases, which complicates efficient medical treatments. For example, patients with cancer are frequently susceptible to infections. However, developing drugs that could simultaneously target several diseases is challenging. We present a novel theoretical method to assist in selecting compounds with multiple therapeutic targets. The idea is to find correlations between the physical and chemical properties of drug molecules and their abilities to work against multiple targets. As a first step, we investigated potential drugs against cancer and viral infections. Specifically, we investigated antimicrobial peptides (AMPs), which are short positively charged biomolecules produced by living systems as a part of their immune defense. AMPs show anticancer and antiviral activity. We use chemoinformatics and correlation analysis as a part of the machine-learning method to identify the specific properties that distinguish AMPs with dual anticancer and antiviral activities. Physical-chemical arguments to explain these observations are presented.
Collapse
Affiliation(s)
- Angela Medvedeva
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Sofya Domakhina
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Catherine Vasnetsov
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Victor Vasnetsov
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anatoly Kolomeisky
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
22
|
Gao SM, Fei HL, Li Q, Lan LY, Huang LN, Fan PF. Eco-evolutionary dynamics of gut phageome in wild gibbons (Hoolock tianxing) with seasonal diet variations. Nat Commun 2024; 15:1254. [PMID: 38341424 PMCID: PMC10858875 DOI: 10.1038/s41467-024-45663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
It has been extensively studied that the gut microbiome provides animals flexibility to adapt to food variability. Yet, how gut phageome responds to diet variation of wild animals remains unexplored. Here, we analyze the eco-evolutionary dynamics of gut phageome in six wild gibbons (Hoolock tianxing) by collecting individually-resolved fresh fecal samples and parallel feeding behavior data for 15 consecutive months. Application of complementary viral and microbial metagenomics recovers 39,198 virulent and temperate phage genomes from the feces. Hierarchical cluster analyses show remarkable seasonal diet variations in gibbons. From high-fruit to high-leaf feeding period, the abundances of phage populations are seasonally fluctuated, especially driven by the increased abundance of virulent phages that kill the Lachnospiraceae hosts, and a decreased abundance of temperate phages that piggyback the Bacteroidaceae hosts. Functional profiling reveals an enrichment through horizontal gene transfers of toxin-antitoxin genes on temperate phage genomes in high-leaf season, potentially conferring benefits to their prokaryotic hosts. The phage-host ecological dynamics are driven by the coevolutionary processes which select for tail fiber and DNA primase genes on virulent and temperate phage genomes, respectively. Our results highlight complex phageome-microbiome interactions as a key feature of the gibbon gut microbial ecosystem responding to the seasonal diet.
Collapse
Affiliation(s)
- Shao-Ming Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Han-Lan Fei
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
- College of Life Science, China West Normal University, Nanchong, 637002, PR China
| | - Qi Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Li-Ying Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China
| | - Li-Nan Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
23
|
Podlacha M, Węgrzyn G, Węgrzyn A. Bacteriophages-Dangerous Viruses Acting Incognito or Underestimated Saviors in the Fight against Bacteria? Int J Mol Sci 2024; 25:2107. [PMID: 38396784 PMCID: PMC10889324 DOI: 10.3390/ijms25042107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The steadily increasing number of drug-resistant bacterial species has prompted the search for alternative treatments, resulting in a growing interest in bacteriophages. Although they are viruses infecting bacterial cells, bacteriophages are an extremely important part of the human microbiota. By interacting with eukaryotic cells, they are able to modulate the functioning of many systems, including the immune and nervous systems, affecting not only the homeostasis of the organism, but potentially also the regulation of pathological processes. Therefore, the aim of this review is to answer the questions of (i) how animal/human immune systems respond to bacteriophages under physiological conditions and under conditions of reduced immunity, especially during bacterial infection; (ii) whether bacteriophages can induce negative changes in brain functioning after crossing the blood-brain barrier, which could result in various disorders or in an increase in the risk of neurodegenerative diseases; and (iii) how bacteriophages can modify gut microbiota. The crucial dilemma is whether administration of bacteriophages is always beneficial or rather if it may involve any risks.
Collapse
Affiliation(s)
- Magdalena Podlacha
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.P.); (G.W.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.P.); (G.W.)
| | - Alicja Węgrzyn
- Phage Therapy Center, University Center for Applied and Interdisciplinary Research, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
24
|
Zhou K, Zhang T, Chen XW, Xu Y, Zhang R, Qian PY. Viruses in Marine Invertebrate Holobionts: Complex Interactions Between Phages and Bacterial Symbionts. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:467-485. [PMID: 37647612 DOI: 10.1146/annurev-marine-021623-093133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Marine invertebrates are ecologically and economically important and have formed holobionts by evolving symbiotic relationships with cellular and acellular microorganisms that reside in and on their tissues. In recent decades, significant focus on symbiotic cellular microorganisms has led to the discovery of various functions and a considerable expansion of our knowledge of holobiont functions. Despite this progress, our understanding of symbiotic acellular microorganisms remains insufficient, impeding our ability to achieve a comprehensive understanding of marine holobionts. In this review, we highlight the abundant viruses, with a particular emphasis on bacteriophages; provide an overview of their diversity, especially in extensively studied sponges and corals; and examine their potential life cycles. In addition, we discuss potential phage-holobiont interactions of various invertebrates, including participating in initial bacterial colonization, maintaining symbiotic relationships, and causing or exacerbating the diseases of marine invertebrates. Despite the importance of this subject, knowledge of how viruses contribute to marine invertebrate organisms remains limited. Advancements in technology and greater attention to viruses will enhance our understanding of marine invertebrate holobionts.
Collapse
Affiliation(s)
- Kun Zhou
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China;
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ting Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen, Fujian, China
| | - Xiao-Wei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University (Xiang'an), Xiamen, Fujian, China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China;
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China;
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China;
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
25
|
Zhang H, Zhang H, Du H, Yu X, Xu Y. The insights into the phage communities of fermented foods in the age of viral metagenomics. Crit Rev Food Sci Nutr 2024:1-13. [PMID: 38214674 DOI: 10.1080/10408398.2023.2299323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Phages play a critical role in the assembly and regulation of fermented food microbiome through lysis and lysogenic lifestyle, which in turn affects the yield and quality of fermented foods. Therefore, it is important to investigate and characterize the diversity and function of phages under complex microbial communities and nutrient substrate conditions to provide novel insights into the regulation of traditional spontaneous fermentation. Viral metagenomics has gradually garnered increasing attention in fermented food research to elucidate phage functions and characterize the interactions between phages and the microbial community. Advances in this technology have uncovered a wide range of phages associated with the production of traditional fermented foods and beverages. This paper reviews the common methods of viral metagenomics applied in fermented food research, and summarizes the ecological functions of phages in traditional fermented foods. In the future, combining viral metagenomics with culturable methods and metagenomics will broaden the scope of research on fermented food systems, revealing the complex role of phages and intricate phage-bacterium interactions.
Collapse
Affiliation(s)
- Huadong Zhang
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongxia Zhang
- College of Life Sciences, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaowei Yu
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
26
|
Joffe N, Kuhlisch C, Schleyer G, Ahlers NS, Shemi A, Vardi A. Cell-to-cell heterogeneity drives host-virus coexistence in a bloom-forming alga. THE ISME JOURNAL 2024; 18:wrae038. [PMID: 38452203 PMCID: PMC10980834 DOI: 10.1093/ismejo/wrae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Algal blooms drive global biogeochemical cycles of key nutrients and serve as hotspots for biological interactions in the ocean. The massive blooms of the cosmopolitan coccolithophore Emiliania huxleyi are often infected by the lytic E. huxleyi virus, which is a major mortality agent triggering bloom demise. This multi-annual "boom and bust" pattern of E. huxleyi blooms suggests that coexistence is essential for these host-virus dynamics. To investigate host-virus coexistence, we developed a new model system from an E. huxleyi culture that recovered from viral infection. The recovered population coexists with the virus, as host cells continue to divide in parallel to viral production. By applying single-molecule fluorescence in situ hybridization (smFISH) to quantify the fraction of infected cells, and assessing infection-specific lipid biomarkers, we identified a small subpopulation of cells that were infected and produced new virions, whereas most of the host population could resist infection. To further assess population heterogeneity, we generated clonal strain collections using single-cell sorting and subsequently phenotyped their susceptibility to E. huxleyi virus infection. This unraveled substantial cell-to-cell heterogeneity across a continuum of susceptibility to resistance, highlighting that infection outcome may vary depending on the individual cell. These results add a new dimension to our understanding of the complexity of host-virus interactions that are commonly assessed in bulk and described by binary definitions of resistance or susceptibility. We propose that phenotypic heterogeneity drives the host-virus coexistence and demonstrate how the coexistence with a lytic virus provides an ecological advantage for the host by killing competing strains.
Collapse
Affiliation(s)
- Nir Joffe
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Constanze Kuhlisch
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Guy Schleyer
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, 07745 Jena, Germany
| | - Nadia S Ahlers
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Adva Shemi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
27
|
Howard-Varona C, Lindback MM, Fudyma JD, Krongauz A, Solonenko NE, Zayed AA, Andreopoulos WB, Olson HM, Kim YM, Kyle JE, Glavina del Rio T, Adkins JN, Tfaily MM, Paul S, Sullivan MB, Duhaime MB. Environment-specific virocell metabolic reprogramming. THE ISME JOURNAL 2024; 18:wrae055. [PMID: 38552150 PMCID: PMC11170926 DOI: 10.1093/ismejo/wrae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/23/2023] [Accepted: 03/28/2024] [Indexed: 06/14/2024]
Abstract
Viruses impact microbial systems through killing hosts, horizontal gene transfer, and altering cellular metabolism, consequently impacting nutrient cycles. A virus-infected cell, a "virocell," is distinct from its uninfected sister cell as the virus commandeers cellular machinery to produce viruses rather than replicate cells. Problematically, virocell responses to the nutrient-limited conditions that abound in nature are poorly understood. Here we used a systems biology approach to investigate virocell metabolic reprogramming under nutrient limitation. Using transcriptomics, proteomics, lipidomics, and endo- and exo-metabolomics, we assessed how low phosphate (low-P) conditions impacted virocells of a marine Pseudoalteromonas host when independently infected by two unrelated phages (HP1 and HS2). With the combined stresses of infection and nutrient limitation, a set of nested responses were observed. First, low-P imposed common cellular responses on all cells (virocells and uninfected cells), including activating the canonical P-stress response, and decreasing transcription, translation, and extracellular organic matter consumption. Second, low-P imposed infection-specific responses (for both virocells), including enhancing nitrogen assimilation and fatty acid degradation, and decreasing extracellular lipid relative abundance. Third, low-P suggested virocell-specific strategies. Specifically, HS2-virocells regulated gene expression by increasing transcription and ribosomal protein production, whereas HP1-virocells accumulated host proteins, decreased extracellular peptide relative abundance, and invested in broader energy and resource acquisition. These results suggest that although environmental conditions shape metabolism in common ways regardless of infection, virocell-specific strategies exist to support viral replication during nutrient limitation, and a framework now exists for identifying metabolic strategies of nutrient-limited virocells in nature.
Collapse
Affiliation(s)
- Cristina Howard-Varona
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, United States
| | - Morgan M Lindback
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Ann Arbor, MI 48109, United States
| | - Jane D Fudyma
- Department of Environmental Science, University of Arizona, 1177 E 4th St, Tucson, AZ 85719, United States
- Present address: Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Azriel Krongauz
- Department of Statistics, The Ohio State University, 1958 Neil Ave, Columbus, OH 43210, United States
| | - Natalie E Solonenko
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, United States
| | - Ahmed A Zayed
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, United States
| | - William B Andreopoulos
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, United States
- Present address: Department of Computer Science, San Jose State University, One Washington Square, San Jose CA 95192, United States
| | - Heather M Olson
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, United States
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, United States
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, United States
| | - Tijana Glavina del Rio
- US Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, United States
| | - Joshua N Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354, United States
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, United States
| | - Malak M Tfaily
- Department of Environmental Science, University of Arizona, 1177 E 4th St, Tucson, AZ 85719, United States
| | - Subhadeep Paul
- Department of Statistics, The Ohio State University, 1958 Neil Ave, Columbus, OH 43210, United States
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, 484 W 12th Ave, Columbus, OH 43210, United States
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, 2070 Neil Ave, Columbus, OH 43210, United States
- Center for RNA Biology and Center of Microbiome Science, The Ohio State University, 484 W. 12th Ave, Columbus, OH 43210, United States
| | - Melissa B Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Ann Arbor, MI 48109, United States
| |
Collapse
|
28
|
Rossi FPN, Flores VS, Uceda-Campos G, Amgarten DE, Setubal JC, da Silva AM. Comparative Analyses of Bacteriophage Genomes. Methods Mol Biol 2024; 2802:427-453. [PMID: 38819567 DOI: 10.1007/978-1-0716-3838-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Bacterial viruses (bacteriophages or phages) are the most abundant and diverse biological entities on Earth. There is a renewed worldwide interest in phage-centered research motivated by their enormous potential as antimicrobials to cope with multidrug-resistant pathogens. An ever-growing number of complete phage genomes are becoming available, derived either from newly isolated phages (cultivated phages) or recovered from metagenomic sequencing data (uncultivated phages). Robust comparative analysis is crucial for a comprehensive understanding of genotypic variations of phages and their related evolutionary processes, and to investigate the interaction mechanisms between phages and their hosts. In this chapter, we present a protocol for phage comparative genomics employing tools selected out of the many currently available, focusing on complete genomes of phages classified in the class Caudoviricetes. This protocol provides accurate identification of similarities, differences, and patterns among new and previously known complete phage genomes as well as phage clustering and taxonomic classification.
Collapse
Affiliation(s)
| | - Vinicius Sousa Flores
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Guillermo Uceda-Campos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | | | - João Carlos Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Aline Maria da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
29
|
Avellaneda-Franco L, Xie L, Nakai M, Barr JJ, Marques FZ. Dietary fiber intake impacts gut bacterial and viral populations in a hypertensive mouse model. Gut Microbes 2024; 16:2407047. [PMID: 39340212 DOI: 10.1080/19490976.2024.2407047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The gut microbiome is an emerging factor in preventing hypertension, yet the influence of gut bacteriophages, viruses infecting bacteria, on this condition remains unclear. Bacteriophage-bacteria interactions, which impact the gut microbiome, are influenced differentially by temperate and virulent bacteriophages. However, the standard technique for studying viral populations, viral-like particles (VLPs)-metagenomes, often overlook prophages, the intracellular stage of temperate bacteriophages, creating a knowledge gap. To address this, we investigated alterations in extracellular and intracellular bacteriophages, alongside bacterial populations, in the angiotensin II-hypertension model. We sequenced VLPs and bulk DNA from cecal-colonic samples collected from male C57BL/6J mice implanted with minipumps containing saline or angiotensin II. We assembled 106 bacterial and 816 viral genomes and found that gut viral and bacterial populations remained stable between hypertensive and normotensive mice. A higher number of temperate viruses were observed across all treatments. Although temperate viruses outnumbered virulent viruses, sequencing of both VLPs and bulk revealed that virions from virulent viruses were more abundant in the murine gut. We then evaluated the impact of low- and high-fiber intake on gut microbiome composition in the angiotensin II model. Fiber intake significantly influenced the gut microbiome composition and hypertension development. Mice receiving high-fiber had lower blood pressure, a higher bacterial-encoded carbohydrate-associated enzyme, and a higher total relative abundance of temperate viruses than those receiving low-fiber. Our findings suggest that phages are not associated with hypertension development in the angiotensin II model. However, they support a complex diet-bacteria/phage interaction that may be involved in blood pressure regulation.
Collapse
Affiliation(s)
| | - Liang Xie
- School of Biological Sciences, Monash University, Melbourne, Australia
- Precision Medicine Translational Research Programme, Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michael Nakai
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Jeremy J Barr
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Francine Z Marques
- School of Biological Sciences, Monash University, Melbourne, Australia
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
- Victorian Heart Institute, Monash University, Melbourne, Australia
| |
Collapse
|
30
|
Zhang Y, Takaki Y, Yoshida-Takashima Y, Hiraoka S, Kurosawa K, Nunoura T, Takai K. A sequential one-pot approach for rapid and convenient characterization of putative restriction-modification systems. mSystems 2023; 8:e0081723. [PMID: 37843256 PMCID: PMC10734518 DOI: 10.1128/msystems.00817-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE The elucidation of the molecular basis of virus-host coevolutionary interactions is boosted with state-of-the-art sequencing technologies. However, the sequence-only information is often insufficient to output a conclusive argument without biochemical characterizations. We proposed a 1-day and one-pot approach to confirm the exact function of putative restriction-modification (R-M) genes that presumably mediate microbial coevolution. The experiments mainly focused on a series of putative R-M enzymes from a deep-sea virus and its host bacterium. The results quickly unveiled unambiguous substrate specificities, superior catalytic performance, and unique sequence preferences for two new restriction enzymes (capable of cleaving DNA) and two new methyltransferases (capable of modifying DNA with methyl groups). The reality of the functional R-M system reinforced a model of mutually beneficial interactions with the virus in the deep-sea microbial ecosystem. The cell culture-independent approach also holds great potential for exploring novel and biotechnologically significant R-M enzymes from microbial dark matter.
Collapse
Affiliation(s)
- Yi Zhang
- SUGAR Program, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yoshihiro Takaki
- SUGAR Program, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yukari Yoshida-Takashima
- SUGAR Program, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Satoshi Hiraoka
- Research Center for Bioscience and Nanoscience (CeBN), MRU, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Kanako Kurosawa
- SUGAR Program, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), MRU, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Ken Takai
- SUGAR Program, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
31
|
Kosmopoulos JC, Klier KM, Langwig MV, Tran PQ, Anantharaman K. Viromes vs. mixed community metagenomes: choice of method dictates interpretation of viral community ecology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562385. [PMID: 37904928 PMCID: PMC10614762 DOI: 10.1101/2023.10.15.562385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Background Viruses, the majority of which are uncultivated, are among the most abundant biological entities on Earth. From altering microbial physiology to driving community dynamics, viruses are fundamental members of microbiomes. While the number of studies leveraging viral metagenomics (viromics) for studying uncultivated viruses is growing, standards for viromics research are lacking. Viromics can utilize computational discovery of viruses from total metagenomes of all community members (hereafter metagenomes) or use physical separation of virus-specific fractions (hereafter viromes). However, differences in the recovery and interpretation of viruses from metagenomes and viromes obtained from the same samples remain understudied. Results Here, we compare viral communities from paired viromes and metagenomes obtained from 60 diverse samples across human gut, soil, freshwater, and marine ecosystems. Overall, viral communities obtained from viromes were more abundant and species rich than those obtained from metagenomes, although there were some exceptions. Despite this, metagenomes still contained many viral genomes not detected in viromes. We also found notable differences in the predicted lytic state of viruses detected in viromes vs metagenomes at the time of sequencing. Other forms of variation observed include genome presence/absence, genome quality, and encoded protein content between viromes and metagenomes, but the magnitude of these differences varied by environment. Conclusions Overall, our results show that the choice of method can lead to differing interpretations of viral community ecology. We suggest that the choice of whether to target a metagenome or virome to study viral communities should be dependent on the environmental context and ecological questions being asked. However, our overall recommendation to researchers investigating viral ecology and evolution is to pair both approaches to maximize their respective benefits.
Collapse
Affiliation(s)
- James C. Kosmopoulos
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katherine M. Klier
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Freshwater and Marine Sciences Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marguerite V. Langwig
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Freshwater and Marine Sciences Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Patricia Q. Tran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karthik Anantharaman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
32
|
Piya D, Nolan N, Moore ML, Ramirez Hernandez LA, Cress BF, Young R, Arkin AP, Mutalik VK. Systematic and scalable genome-wide essentiality mapping to identify nonessential genes in phages. PLoS Biol 2023; 21:e3002416. [PMID: 38048319 PMCID: PMC10695390 DOI: 10.1371/journal.pbio.3002416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/02/2023] [Indexed: 12/06/2023] Open
Abstract
Phages are one of the key ecological drivers of microbial community dynamics, function, and evolution. Despite their importance in bacterial ecology and evolutionary processes, phage genes are poorly characterized, hampering their usage in a variety of biotechnological applications. Methods to characterize such genes, even those critical to the phage life cycle, are labor intensive and are generally phage specific. Here, we develop a systematic gene essentiality mapping method scalable to new phage-host combinations that facilitate the identification of nonessential genes. As a proof of concept, we use an arrayed genome-wide CRISPR interference (CRISPRi) assay to map gene essentiality landscape in the canonical coliphages λ and P1. Results from a single panel of CRISPRi probes largely recapitulate the essential gene roster determined from decades of genetic analysis for lambda and provide new insights into essential and nonessential loci in P1. We present evidence of how CRISPRi polarity can lead to false positive gene essentiality assignments and recommend caution towards interpreting CRISPRi data on gene essentiality when applied to less studied phages. Finally, we show that we can engineer phages by inserting DNA barcodes into newly identified inessential regions, which will empower processes of identification, quantification, and tracking of phages in diverse applications.
Collapse
Affiliation(s)
- Denish Piya
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California, United States of America
| | - Nicholas Nolan
- Department of Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
| | - Madeline L. Moore
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Luis A. Ramirez Hernandez
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Brady F. Cress
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California, United States of America
| | - Ry Young
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University, College Station, Texas, United States of America
| | - Adam P. Arkin
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California, United States of America
- Department of Bioengineering, University of California-Berkeley, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Vivek K. Mutalik
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California, United States of America
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
33
|
Wang J, Li L, Lin S. Active viral infection during blooms of a dinoflagellate indicates dinoflagellate-viral co-adaptation. Appl Environ Microbiol 2023; 89:e0115623. [PMID: 37874280 PMCID: PMC10686096 DOI: 10.1128/aem.01156-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/06/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE This study represents the first that investigates in situ virus infection in dinoflagellate blooms. Our findings reveal highly similar viral assemblages that infected the bloom species Prorocentrum shikokuense and a co-adapted metabolic relationship between the host and the viruses in the blooms, which varied between the prolonged and the short-lived blooms of the same dinoflagellate species. These findings fill the gap in knowledge regarding the identity and behavior of viruses in a dinoflagellate bloom and shed light on what appears to be the complex mode of infection. The novel insight will be potentially valuable for fully understanding and modeling the role of viruses in regulating blooms of dinoflagellates and other algae.
Collapse
Affiliation(s)
- Jingtian Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, and College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA
| |
Collapse
|
34
|
Li Y, Yun H, Chen R, Jiao N, Zheng Q, Yang Y, Zhang R. Characterization of a Vibriophage Infecting Pathogenic Vibrio harveyi. Int J Mol Sci 2023; 24:16202. [PMID: 38003392 PMCID: PMC10671443 DOI: 10.3390/ijms242216202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Bacterial diseases caused by Vibrio spp. are prevalent in aquaculture and can lead to high mortality rates among aquatic species and significant economic losses. With the increasing emergence of multidrug-resistant Vibrio strains, phage therapy is being explored as a potential alternative to antibiotics for biocontrol of infectious diseases. Here, a new lytic phage named vB_VhaS_R21Y (R21Y) was isolated against Vibrio harveyi BVH1 obtained from seawater from a scallop-farming area in Rongcheng, China. Its morphology, infection cycle, lytic profile, phage stability, and genetic features were characterized. Transmission electronic microscopy indicated that R21Y is siphovirus-like, comprising an icosahedral head (diameter 73.31 ± 2.09 nm) and long noncontractile tail (205.55 ± 0.75 nm). In a one-step growth experiment, R21Y had a 40-min latent period and a burst size of 35 phage particles per infected cell. R21Y was highly species-specific in the host range test and was relatively stable at pH 4-10 and 4-55 °C. Genomic analysis showed that R21Y is a double-stranded DNA virus with a genome size of 82,795 bp and GC content of 47.48%. Its high tolerance and lytic activity indicated that R21Y may be a candidate for phage therapy in controlling vibriosis in aquacultural systems.
Collapse
Affiliation(s)
- Yingying Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.L.); (H.Y.); (R.C.); (N.J.); (Q.Z.)
- Institute for Advanced Study, Shenzhen University, Shenzhen 518061, China
| | - Huayi Yun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.L.); (H.Y.); (R.C.); (N.J.); (Q.Z.)
| | - Ruo Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.L.); (H.Y.); (R.C.); (N.J.); (Q.Z.)
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.L.); (H.Y.); (R.C.); (N.J.); (Q.Z.)
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (Y.L.); (H.Y.); (R.C.); (N.J.); (Q.Z.)
| | - Yunlan Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518061, China
| | - Rui Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518061, China
| |
Collapse
|
35
|
Listmann L, Peters C, Rahlff J, Esser SP, Schaum CE. Seasonality and Strain Specificity Drive Rapid Co-evolution in an Ostreococcus-Virus System from the Western Baltic Sea. MICROBIAL ECOLOGY 2023; 86:2414-2423. [PMID: 37268771 PMCID: PMC10640450 DOI: 10.1007/s00248-023-02243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Marine viruses are a major driver of phytoplankton mortality and thereby influence biogeochemical cycling of carbon and other nutrients. Phytoplankton-targeting viruses are important components of ecosystem dynamics, but broad-scale experimental investigations of host-virus interactions remain scarce. Here, we investigated in detail a picophytoplankton (size 1 µm) host's responses to infections by species-specific viruses from distinct geographical regions and different sampling seasons. Specifically, we used Ostreococcus tauri and O. mediterraneus and their viruses (size ca. 100 nm). Ostreococcus sp. is globally distributed and, like other picoplankton species, play an important role in coastal ecosystems at certain times of the year. Further, Ostreococcus sp. is a model organism, and the Ostreococcus-virus system is well-known in marine biology. However, only few studies have researched its evolutionary biology and the implications thereof for ecosystem dynamics. The Ostreococcus strains used here stem from different regions of the Southwestern Baltic Sea that vary in salinity and temperature and were obtained during several cruises spanning different sampling seasons. Using an experimental cross-infection set-up, we explicitly confirm species and strain specificity in Ostreococcus sp. from the Baltic Sea. Moreover, we found that the timing of virus-host co-existence was a driver of infection patterns as well. In combination, these findings prove that host-virus co-evolution can be rapid in natural systems.
Collapse
Affiliation(s)
- Luisa Listmann
- Institute for Marine Ecosystem and Fisheries Science, University of Hamburg, Olbersweg 24, 22767, Hamburg, Germany.
- Centre for Earth System Science and Sustainability, 20146, Hamburg, Germany.
| | - Carina Peters
- Institute for Marine Ecosystem and Fisheries Science, University of Hamburg, Olbersweg 24, 22767, Hamburg, Germany
- Centre for Earth System Science and Sustainability, 20146, Hamburg, Germany
| | - Janina Rahlff
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Departement of Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, 39231, Kalmar, Sweden
| | - Sarah P Esser
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, 45141, Essen, Germany
| | - C-Elisa Schaum
- Institute for Marine Ecosystem and Fisheries Science, University of Hamburg, Olbersweg 24, 22767, Hamburg, Germany
- Centre for Earth System Science and Sustainability, 20146, Hamburg, Germany
| |
Collapse
|
36
|
Burian A, Gruber-Dorninger M, Schweichart J, Yasindi A, Bulling M, Jirsa F, Winter C, Muia AW, Schagerl M. Drivers of microbial food-web structure along productivity gradients. Proc Biol Sci 2023; 290:20231531. [PMID: 37876193 PMCID: PMC10598424 DOI: 10.1098/rspb.2023.1531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Ratios between viruses, heterotrophic prokaryotes and chlorophyll a are key indicators of microbial food structure and both virus-prokaryote and prokaryote-chlorophyll ratios have been proposed to decrease with system productivity. However, the mechanisms underlying these responses are still insufficiently resolved and their consistency across aquatic ecosystem types requires critical evaluation. We assessed microbial community ratios in highly productive African soda-lakes and used our data from naturally hypereutrophic systems which are largely underrepresented in literature, to complement earlier across-system meta-analyses. In contrast to marine and freshwater systems, prokaryote-chlorophyll ratios in African soda-lakes did not decrease along productivity gradients. High-resolution time series from two soda-lakes indicated that this lack of response could be driven by a weakened top-down control of heterotrophic prokaryotes. Our analysis of virus-prokaryote relationships, revealed a reduction of virus-prokaryote ratios by high suspended particle concentrations in soda-lakes. This effect, likely driven by the adsorption of free-living viruses, was also found in three out of four additionally analysed marine datasets. However, the decrease of virus-prokaryote ratios previously reported in highly productive marine systems, was neither detectable in soda-lakes nor freshwaters. Hence, our study demonstrates that system-specific analyses can reveal the diversity of mechanisms that structure microbial food-webs and shape their response to productivity increases.
Collapse
Affiliation(s)
- Alfred Burian
- Department of Computational Landscape Ecology, UFZ– Helmholtz Centre for Environmental Research, Leipzig, Germany
- Marine Ecology Department, Lurio University, Nampula, Mozambique
| | | | - Johannes Schweichart
- Biology Centre, University of South Bohemia in České, České Budějovice, Czech Republic
| | - Andrew Yasindi
- Department of Biological Sciences, Egerton University, Njoro, Kenya
| | - Mark Bulling
- Environmental Sustainability Research Centre, University of Derby, Derby, UK
| | - Franz Jirsa
- Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Christian Winter
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | | | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Heiman CM, Vacheron J, Keel C. Evolutionary and ecological role of extracellular contractile injection systems: from threat to weapon. Front Microbiol 2023; 14:1264877. [PMID: 37886057 PMCID: PMC10598620 DOI: 10.3389/fmicb.2023.1264877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Contractile injection systems (CISs) are phage tail-related structures that are encoded in many bacterial genomes. These devices encompass the cell-based type VI secretion systems (T6SSs) as well as extracellular CISs (eCISs). The eCISs comprise the R-tailocins produced by various bacterial species as well as related phage tail-like structures such as the antifeeding prophages (Afps) of Serratia entomophila, the Photorhabdus virulence cassettes (PVCs), and the metamorphosis-associated contractile structures (MACs) of Pseudoalteromonas luteoviolacea. These contractile structures are released into the extracellular environment upon suicidal lysis of the producer cell and play important roles in bacterial ecology and evolution. In this review, we specifically portray the eCISs with a focus on the R-tailocins, sketch the history of their discovery and provide insights into their evolution within the bacterial host, their structures and how they are assembled and released. We then highlight ecological and evolutionary roles of eCISs and conceptualize how they can influence and shape bacterial communities. Finally, we point to their potential for biotechnological applications in medicine and agriculture.
Collapse
Affiliation(s)
- Clara Margot Heiman
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
38
|
Nicolas AM, Sieradzki ET, Pett-Ridge J, Banfield JF, Taga ME, Firestone MK, Blazewicz SJ. A subset of viruses thrives following microbial resuscitation during rewetting of a seasonally dry California grassland soil. Nat Commun 2023; 14:5835. [PMID: 37730729 PMCID: PMC10511743 DOI: 10.1038/s41467-023-40835-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/09/2023] [Indexed: 09/22/2023] Open
Abstract
Viruses are abundant, ubiquitous members of soil communities that kill microbial cells, but how they respond to perturbation of soil ecosystems is essentially unknown. Here, we investigate lineage-specific virus-host dynamics in grassland soil following "wet-up", when resident microbes are both resuscitated and lysed after a prolonged dry period. Quantitative isotope tracing, time-resolved metagenomics and viromic analyses indicate that dry soil holds a diverse but low biomass reservoir of virions, of which only a subset thrives following wet-up. Viral richness decreases by 50% within 24 h post wet-up, while viral biomass increases four-fold within one week. Though recent hypotheses suggest lysogeny predominates in soil, our evidence indicates that viruses in lytic cycles dominate the response to wet-up. We estimate that viruses drive a measurable and continuous rate of cell lysis, with up to 46% of microbial death driven by viral lysis one week following wet-up. Thus, viruses contribute to turnover of soil microbial biomass and the widely reported CO2 efflux following wet-up of seasonally dry soils.
Collapse
Affiliation(s)
- Alexa M Nicolas
- Plant & Microbial Biology Department, University of California Berkeley, Berkeley, CA, USA
| | - Ella T Sieradzki
- Environmental Science, Policy & Management Department, University of California Berkeley, Berkeley, CA, USA.
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California Merced, Merced, CA, USA
| | - Jillian F Banfield
- Environmental Science, Policy & Management Department, University of California Berkeley, Berkeley, CA, USA
- Earth and Planetary Sciences, University of California Berkeley, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michiko E Taga
- Plant & Microbial Biology Department, University of California Berkeley, Berkeley, CA, USA
| | - Mary K Firestone
- Environmental Science, Policy & Management Department, University of California Berkeley, Berkeley, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven J Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| |
Collapse
|
39
|
Dot EW, Thomason LC, Chappie JS. Everything OLD is new again: How structural, functional, and bioinformatic advances have redefined a neglected nuclease family. Mol Microbiol 2023; 120:122-140. [PMID: 37254295 DOI: 10.1111/mmi.15074] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 06/01/2023]
Abstract
Overcoming lysogenization defect (OLD) proteins are a conserved family of ATP-powered nucleases that function in anti-phage defense. Recent bioinformatic, genetic, and crystallographic studies have yielded new insights into the structure, function, and evolution of these enzymes. Here we review these developments and propose a new classification scheme to categorize OLD homologs that relies on gene neighborhoods, biochemical properties, domain organization, and catalytic machinery. This taxonomy reveals important similarities and differences between family members and provides a blueprint to contextualize future in vivo and in vitro findings. We also detail how OLD nucleases are related to PARIS and Septu anti-phage defense systems and discuss important mechanistic questions that remain unanswered.
Collapse
Affiliation(s)
- Elena Wanvig Dot
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| | - Lynn C Thomason
- Molecular Control and Genetics Section, RNA Biology Laboratory, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland, USA
| | - Joshua S Chappie
- Department of Molecular Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
40
|
Hongo JA, de Castro GM, Albuquerque Menezes AP, Rios Picorelli AC, Martins da Silva TT, Imada EL, Marchionni L, Del-Bem LE, Vieira Chaves A, Almeida GMDF, Campelo F, Lobo FP. CALANGO: A phylogeny-aware comparative genomics tool for discovering quantitative genotype-phenotype associations across species. PATTERNS (NEW YORK, N.Y.) 2023; 4:100728. [PMID: 37409050 PMCID: PMC10318336 DOI: 10.1016/j.patter.2023.100728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 03/15/2023] [Indexed: 07/07/2023]
Abstract
Living species vary significantly in phenotype and genomic content. Sophisticated statistical methods linking genes with phenotypes within a species have led to breakthroughs in complex genetic diseases and genetic breeding. Despite the abundance of genomic and phenotypic data available for thousands of species, finding genotype-phenotype associations across species is challenging due to the non-independence of species data resulting from common ancestry. To address this, we present CALANGO (comparative analysis with annotation-based genomic components), a phylogeny-aware comparative genomics tool to find homologous regions and biological roles associated with quantitative phenotypes across species. In two case studies, CALANGO identified both known and previously unidentified genotype-phenotype associations. The first study revealed unknown aspects of the ecological interaction between Escherichia coli, its integrated bacteriophages, and the pathogenicity phenotype. The second identified an association between maximum height in angiosperms and the expansion of a reproductive mechanism that prevents inbreeding and increases genetic diversity, with implications for conservation biology and agriculture.
Collapse
Affiliation(s)
- Jorge Augusto Hongo
- Instituto de Computação, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-872, Brazil
| | - Giovanni Marques de Castro
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Alison Pelri Albuquerque Menezes
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Agnello César Rios Picorelli
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Thieres Tayroni Martins da Silva
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Eddie Luidy Imada
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Luigi Marchionni
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Luiz-Eduardo Del-Bem
- Department of Botany, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Anderson Vieira Chaves
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Gabriel Magno de Freitas Almeida
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, 9019 Tromsø, Norway
| | - Felipe Campelo
- Department of Computer Science, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK
| | - Francisco Pereira Lobo
- Department of Genetics, Ecology and Evolution, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
41
|
Nguyen TVP, Wu Y, Yao T, Trinh JT, Zeng L, Chemla YR, Golding I. CO-INFECTING PHAGES IMPEDE EACH OTHER'S ENTRY INTO THE CELL. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543643. [PMID: 37333217 PMCID: PMC10274716 DOI: 10.1101/2023.06.05.543643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Bacteriophage lambda tunes its propensity to lysogenize based on the number of viral genome copies inside the infected cell. Viral self-counting is believed to serve as a way of inferring the abundance of available hosts in the environment. This interpretation is premised on an accurate mapping between the extracellular phage-to-bacteria ratio and the intracellular multiplicity of infection (MOI). However, here we show this premise to be untrue. By simultaneously labeling phage capsids and genomes, we find that, while the number of phages landing on each cell reliably samples the population ratio, the number of phages entering the cell does not. Single-cell infections, followed in a microfluidic device and interpreted using a stochastic model, reveal that the probability and rate of individual phage entries decrease with MOI. This decrease reflects an MOI-dependent perturbation to host physiology caused by phage landing, evidenced by compromised membrane integrity and loss of membrane potential. The dependence of phage entry dynamics on the surrounding medium is found to result in a strong impact of environmental conditions on the infection outcome, while the protracted entry of co-infecting phages increases the cell-to-cell variability in infection outcome at a given MOI. Our findings demonstrate the previously unappreciated role played by entry dynamics in determining the outcome of bacteriophage infection.
Collapse
Affiliation(s)
- Thu Vu Phuc Nguyen
- Department of Physics, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX 77030, USA
| | - Yuchen Wu
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Tianyou Yao
- Department of Physics, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Jimmy T. Trinh
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Yann R. Chemla
- Department of Physics, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Ido Golding
- Department of Physics, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX 77030, USA
- Department of Microbiology, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| |
Collapse
|
42
|
Veglia AJ, Bistolas KSI, Voolstra CR, Hume BCC, Ruscheweyh HJ, Planes S, Allemand D, Boissin E, Wincker P, Poulain J, Moulin C, Bourdin G, Iwankow G, Romac S, Agostini S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores M, Forcioli D, Furla P, Galand PE, Gilson E, Lombard F, Pesant S, Reynaud S, Sunagawa S, Thomas OP, Troublé R, Zoccola D, Correa AMS, Vega Thurber RL. Endogenous viral elements reveal associations between a non-retroviral RNA virus and symbiotic dinoflagellate genomes. Commun Biol 2023; 6:566. [PMID: 37264063 DOI: 10.1038/s42003-023-04917-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Endogenous viral elements (EVEs) offer insight into the evolutionary histories and hosts of contemporary viruses. This study leveraged DNA metagenomics and genomics to detect and infer the host of a non-retroviral dinoflagellate-infecting +ssRNA virus (dinoRNAV) common in coral reefs. As part of the Tara Pacific Expedition, this study surveyed 269 newly sequenced cnidarians and their resident symbiotic dinoflagellates (Symbiodiniaceae), associated metabarcodes, and publicly available metagenomes, revealing 178 dinoRNAV EVEs, predominantly among hydrocoral-dinoflagellate metagenomes. Putative associations between Symbiodiniaceae and dinoRNAV EVEs were corroborated by the characterization of dinoRNAV-like sequences in 17 of 18 scaffold-scale and one chromosome-scale dinoflagellate genome assembly, flanked by characteristically cellular sequences and in proximity to retroelements, suggesting potential mechanisms of integration. EVEs were not detected in dinoflagellate-free (aposymbiotic) cnidarian genome assemblies, including stony corals, hydrocorals, jellyfish, or seawater. The pervasive nature of dinoRNAV EVEs within dinoflagellate genomes (especially Symbiodinium), as well as their inconsistent within-genome distribution and fragmented nature, suggest ancestral or recurrent integration of this virus with variable conservation. Broadly, these findings illustrate how +ssRNA viruses may obscure their genomes as members of nested symbioses, with implications for host evolution, exaptation, and immunity in the context of reef health and disease.
Collapse
Affiliation(s)
- Alex J Veglia
- BioSciences Department, Rice University, Houston, TX, USA
| | | | | | | | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, Vladimir-Prelog-Weg 4, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Clémentine Moulin
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75012, Paris, France
| | | | - Guillaume Iwankow
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Bernard Banaigs
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth and Planetary Sciences, 76100, Rehovot, Israel
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, LIA ROPSE, Monaco, France
| | - Paola Furla
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, LIA ROPSE, Monaco, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, 66650, Banyuls sur mer, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Department of Medical Genetics, CHU of Nice, Nice, France
| | - Fabien Lombard
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, F-06230, Villefranche-sur-Mer, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stéphanie Reynaud
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, Vladimir-Prelog-Weg 4, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road H91 TK33, Galway, Ireland
| | - Romain Troublé
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75012, Paris, France
| | - Didier Zoccola
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | | | | |
Collapse
|
43
|
Radouani F, Sanchez-Cid C, Silbande A, Laure A, Ruiz-Valencia A, Robert F, Vogel TM, Salvin P. Evolution and interaction of microbial communities in mangrove microbial fuel cells and first description of Shewanella fodinae as electroactive bacterium. Bioelectrochemistry 2023; 153:108460. [PMID: 37224603 DOI: 10.1016/j.bioelechem.2023.108460] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Understanding exoelectrogenic bacteria mechanisms and their interactions in complex biofilm is critical for the development of microbial fuel cells (MFCs). In this article, assumptions concerning the benefits of the complex sediment microbial community for electricity production were explored with both the complex microbial community and isolates identified as Shewanella. Analysis of the microbial community revealed a strong influence of the sediment community on anodes and electrolytes compared to that of only water. Moreover, while Pelobacteraceae-related genera were dominant in our MFCs instead of Desulfuromonas and Geobacter as usually reported, the electroactive Shewanella algae and Shewanella fodinae were isolated and cultivated from the anodic biofilm. S. fodinae, described for the first time as an electroactive bacterium to the best of our knowledge, led to a maximal current density of 3.6 A/m2 set as 0.3 V/SCE in a three-electrode set-up fed with lactate. S. algae, in a complex medium containing several available substrates, showed several preferential oxidative behaviors including a diauxic behavior. In pure culture and under our conditions, S. fodinae and S. algae were not able to use acetate as a sole electron donor. However, their presence in our acetate-fed MFCs and the adaptive behavior of S. algae hint a syntrophic interaction between the bacteria to optimize the use of the substrate in a complex environment.
Collapse
Affiliation(s)
- Fatima Radouani
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France
| | - Concepcion Sanchez-Cid
- Environmental Microbial Genomics, CNRS UMR 5005 Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Adèle Silbande
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France
| | - Adeline Laure
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France
| | - Azariel Ruiz-Valencia
- Environmental Microbial Genomics, CNRS UMR 5005 Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Écully, France
| | - Florent Robert
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France
| | - Timothy M Vogel
- Université de Lyon, Université Claude Bernard Lyon 1, UMR 5557, UMR INRAe 1418, VetAgro Sup, Écologie Microbienne, équipe BEER, F-69622 Villeurbanne, France
| | - Paule Salvin
- Laboratoire des Matériaux et Molécules en Milieu Agressif, UR4_1, UFR STE, Université des Antilles, Schoelcher, France.
| |
Collapse
|
44
|
Lin YS, Sun CL, Tsang S, Bensalem S, Le Pioufle B, Wang HY. Label-free and noninvasive analysis of microorganism surface epistructures at the single-cell level. Biophys J 2023; 122:1794-1806. [PMID: 37041747 PMCID: PMC10209039 DOI: 10.1016/j.bpj.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/10/2022] [Accepted: 04/07/2023] [Indexed: 04/13/2023] Open
Abstract
Cell surface properties of microorganisms provide abundant information for their physiological status and fate choice. However, current methods for analyzing cell surface properties require labeling or fixation, which can alter the cell activity. This study establishes a label-free, rapid, noninvasive, and quantitative analysis of cell surface properties, including the presence and the dimension of epistructure, down to the single-cell level and at the nanometer scale. Simultaneously, electrorotation provides dielectric properties of intracellular contents. With the combined information, the growth phase of microalgae cells can be identified. The measurement is based on electrorotation of single cells, and an electrorotation model accounting for the surface properties is developed to properly interpret experimental data. The epistructure length measured by electrorotation is validated by scanning electron microscopy. The measurement accuracy is satisfactory in particular in the case of microscale epistructures in the exponential phase and nanoscale epistructures in the stationary phase. However, the measurement accuracy for nanoscale epistructures on cells in the exponential phase is offset by the effect of a thick double layer. Lastly, a diversity in epistructure length distinguishes exponential phase from stationary phase.
Collapse
Affiliation(s)
- Yu-Sheng Lin
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan; Université Paris Saclay, ENS Paris Saclay, CNRS Institut d'Alembert, SATIE, Gif sur Yvette, France
| | - Chen-Li Sun
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Sung Tsang
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Sakina Bensalem
- Université Paris Saclay, ENS Paris Saclay, CNRS Institut d'Alembert, LUMIN, Gif sur Yvette, France
| | - Bruno Le Pioufle
- Université Paris Saclay, ENS Paris Saclay, CNRS Institut d'Alembert, LUMIN, Gif sur Yvette, France
| | - Hsiang-Yu Wang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
45
|
Jurburg SD, Hom EFY, Chatzinotas A. Beyond pathogenesis: Detecting the full spectrum of ecological interactions in the virosphere. PLoS Biol 2023; 21:e3002109. [PMID: 37186573 PMCID: PMC10184920 DOI: 10.1371/journal.pbio.3002109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The public perception of viruses has historically been negative. We are now at a stage where the development of tools to study viruses is at an all-time high, but society's perception of viruses is at an all-time low. The literature regarding viral interactions has been skewed towards negative (i.e., pathogenic) symbioses, whereas viral mutualisms remain relatively underexplored. Viral interactions with their hosts are complex and some non-pathogenic viruses could have potential benefits to society. However, viral research is seldom designed to identify viral mutualists, a gap that merits considering new experimental designs. Determining whether antagonisms, mutualisms, and commensalisms are equally common ecological strategies requires more balanced research efforts that characterize the full spectrum of viral interactions.
Collapse
Affiliation(s)
- Stephanie D. Jurburg
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Erik F. Y. Hom
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, Mississippi, United States of America
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
46
|
Xia R, Sun M, Balcázar JL, Yu P, Hu F, Alvarez PJJ. Benzo[a]pyrene stress impacts adaptive strategies and ecological functions of earthworm intestinal viromes. THE ISME JOURNAL 2023:10.1038/s41396-023-01408-x. [PMID: 37069233 DOI: 10.1038/s41396-023-01408-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The earthworm gut virome influences the structure and function of the gut microbiome, which in turn influences worm health and ecological functions. However, despite its ecological and soil quality implications, it remains elusive how earthworm intestinal phages respond to different environmental stress, such as soil pollution. Here we used metagenomics and metatranscriptomics to investigate interactions between the worm intestinal phages and their bacteria under different benzo[a]pyrene (BaP) concentrations. Low-level BaP (0.1 mg kg-1) stress stimulated microbial metabolism (1.74-fold to control), and enhanced the antiphage defense system (n = 75) against infection (8 phage-host pairs). Low-level BaP exposure resulted in the highest proportion of lysogenic phages (88%), and prophages expressed auxiliary metabolic genes (AMGs) associated with nutrient transformation (e.g., amino acid metabolism). In contrast, high-level BaP exposure (200 mg kg-1) disrupted microbial metabolism and suppressed the antiphage systems (n = 29), leading to the increase in phage-bacterium association (37 phage-host pairs) and conversion of lysogenic to lytic phages (lysogenic ratio declined to 43%). Despite fluctuating phage-bacterium interactions, phage-encoded AMGs related to microbial antioxidant and pollutant degradation were enriched, apparently to alleviate pollution stress. Overall, these findings expand our knowledge of complex phage-bacterium interactions in pollution-stressed worm guts, and deepen our understanding of the ecological and evolutionary roles of phages.
Collapse
Affiliation(s)
- Rong Xia
- Soil Ecology Lab, Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization and Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing, 210095, China
| | - Mingming Sun
- Soil Ecology Lab, Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization and Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing, 210095, China.
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), 17003, Girona, Spain
- University of Girona, 17004, Girona, Spain
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310085, China.
| | - Feng Hu
- Soil Ecology Lab, Key Laboratory of Plant Immunity, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization and Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing, 210095, China
| | - Pedro J J Alvarez
- Civil and Environmental Engineering Department, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
47
|
Coy SR, Utama B, Spurlin JW, Kim JG, Deshmukh H, Lwigale P, Nagasaki K, Correa AMS. Visualization of RNA virus infection in a marine protist with a universal biomarker. Sci Rep 2023; 13:5813. [PMID: 37037845 PMCID: PMC10086069 DOI: 10.1038/s41598-023-31507-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/13/2023] [Indexed: 04/12/2023] Open
Abstract
Half of the marine virosphere is hypothesized to be RNA viruses (kingdom Orthornavirae) that infect abundant micro-eukaryotic hosts (e.g. protists). To test this, quantitative approaches that broadly track infections in situ are needed. Here, we describe a technique-dsRNA-Immunofluorescence (dsRIF)-that uses a double-stranded RNA (dsRNA) targeting monoclonal antibody to assess host infection status based on the presence of dsRNA, a replicative intermediate of all Orthornavirae infections. We show that the dinoflagellate Heterocapsa circularisquama produces dsRIF signal ~ 1000 times above background autofluorescence when infected by the + ssRNA virus HcRNAV. dsRNA-positive virocells were detected across > 50% of the 48-h infection cycle and accumulated to represent at least 63% of the population. Photosynthetic and chromosomal integrity remained intact during peak replication, indicating HcRNAV infection does not interrupt these processes. This work validates the use of dsRIF on marine RNA viruses and their hosts, setting the stage for quantitative environmental applications that will accelerate understanding of virus-driven ecosystem impacts.
Collapse
Affiliation(s)
- Samantha R Coy
- Department of Biosciences, Rice University, Houston, TX, USA.
- Department of Oceanography, Texas A&M University, College Station, TX, USA.
| | - Budi Utama
- Shared Equipment Authority, Rice University, Houston, TX, USA
| | - James W Spurlin
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Julia G Kim
- Department of Biosciences, Rice University, Houston, TX, USA
| | | | - Peter Lwigale
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Keizo Nagasaki
- Faculty of Science and Technology, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | | |
Collapse
|
48
|
Howe-Kerr LI, Grupstra CGB, Rabbitt KM, Conetta D, Coy SR, Klinges JG, Maher RL, McConnell KM, Meiling SS, Messyasz A, Schmeltzer ER, Seabrook S, Sims JA, Veglia AJ, Thurber AR, Thurber RLV, Correa AMS. Viruses of a key coral symbiont exhibit temperature-driven productivity across a reefscape. ISME COMMUNICATIONS 2023; 3:27. [PMID: 37009785 PMCID: PMC10068613 DOI: 10.1038/s43705-023-00227-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 05/31/2023]
Abstract
Viruses can affect coral health by infecting their symbiotic dinoflagellate partners (Symbiodiniaceae). Yet, viral dynamics in coral colonies exposed to environmental stress have not been studied at the reef scale, particularly within individual viral lineages. We sequenced the viral major capsid protein (mcp) gene of positive-sense single-stranded RNA viruses known to infect symbiotic dinoflagellates ('dinoRNAVs') to analyze their dynamics in the reef-building coral, Porites lobata. We repeatedly sampled 54 colonies harboring Cladocopium C15 dinoflagellates, across three environmentally distinct reef zones (fringing reef, back reef, and forereef) around the island of Moorea, French Polynesia over a 3-year period and spanning a reef-wide thermal stress event. By the end of the sampling period, 28% (5/18) of corals in the fringing reef experienced partial mortality versus 78% (14/18) of corals in the forereef. Over 90% (50/54) of colonies had detectable dinoRNAV infections. Reef zone influenced the composition and richness of viral mcp amino acid types ('aminotypes'), with the fringing reef containing the highest aminotype richness. The reef-wide thermal stress event significantly increased aminotype dispersion, and this pattern was strongest in the colonies that experienced partial mortality. These findings demonstrate that dinoRNAV infections respond to environmental fluctuations experienced in situ on reefs. Further, viral productivity will likely increase as ocean temperatures continue to rise, potentially impacting the foundational symbiosis underpinning coral reef ecosystems.
Collapse
Affiliation(s)
| | - Carsten G B Grupstra
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Kristen M Rabbitt
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, USA
| | - Dennis Conetta
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Samantha R Coy
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Oceanography, Texas A & M University, College Station, TX, USA
| | - J Grace Klinges
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, USA
| | - Rebecca L Maher
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | | | - Sonora S Meiling
- University of the Virgin Islands, St. Thomas, US Virgin Islands, USA
| | - Adriana Messyasz
- Rutgers School of Environmental and Biological Sciences, New Brunswick, NJ, USA
| | | | - Sarah Seabrook
- Oregon State University, Corvallis, OR, USA
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Jordan A Sims
- Department of BioSciences, Rice University, Houston, TX, USA
- Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Alex J Veglia
- Department of BioSciences, Rice University, Houston, TX, USA
| | | | | | | |
Collapse
|
49
|
Cai L, Weinbauer MG, Xie L, Zhang R. The smallest in the deepest: the enigmatic role of viruses in the deep biosphere. Natl Sci Rev 2023; 10:nwad009. [PMID: 36960220 PMCID: PMC10029852 DOI: 10.1093/nsr/nwad009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
It is commonly recognized that viruses control the composition, metabolism, and evolutionary trajectories of prokaryotic communities, with resulting vital feedback on ecosystem functioning and nutrient cycling in a wide range of ecosystems. Although the deep biosphere has been estimated to be the largest reservoir for viruses and their prokaryotic hosts, the biology and ecology of viruses therein remain poorly understood. The deep virosphere is an enigmatic field of study in which many critical questions are still to be answered. Is the deep virosphere simply a repository for deeply preserved, non-functioning virus particles? Or are deep viruses infectious agents that can readily infect suitable hosts and subsequently shape microbial populations and nutrient cycling? Can the cellular content released by viral lysis, and even the organic structures of virions themselves, serve as the source of bioavailable nutrients for microbial activity in the deep biosphere as in other ecosystems? In this review, we synthesize our current knowledge of viruses in the deep biosphere and seek to identify topics with the potential for substantial discoveries in the future.
Collapse
Affiliation(s)
- Lanlan Cai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Markus G Weinbauer
- Sorbonne Universités, UPMC, Université Paris 06, CNRS, Laboratoire d’Océanographie de Villefranche (LOV), Villefranche BP28, France
| | - Le Xie
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | | |
Collapse
|
50
|
Sun Q, Shen L, Zhang BL, Yu J, Wei F, Sun Y, Chen W, Wang S. Advance on Engineering of Bacteriophages by Synthetic Biology. Infect Drug Resist 2023; 16:1941-1953. [PMID: 37025193 PMCID: PMC10072152 DOI: 10.2147/idr.s402962] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Since bacteriophages (phages) were firstly reported at the beginning of the 20th century, the study on them experiences booming-fading-emerging with discovery and overuse of antibiotics. Although they are the hotspots for therapy of antibiotic-resistant strains nowadays, natural phage applications encounter some challenges such as limited host range and bacterial resistance to phages. Synthetic biology, one of the most dramatic directions in the recent 20-years study of microbiology, has generated numerous methods and tools and has contributed a lot to understanding phage evolution, engineering modification, and controlling phage-bacteria interactions. In order to better modify and apply phages by using synthetic biology techniques in the future, in this review, we comprehensively introduce various strategies on engineering or modification of phage genome and rebooting of recombinant phages, summarize the recent researches and potential directions of phage synthetic biology, and outline the current application of engineered phages in practice.
Collapse
Affiliation(s)
- Qingqing Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| | - Lixin Shen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| | - Bai-Ling Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People’s Republic of China
| | - Jiaoyang Yu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
- Clinical Research Center, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, People’s Republic of China
| | - Fu Wei
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| | - Wei Chen
- Clinical Research Center, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, People’s Republic of China
- The Clinical Infectious Disease Center of Nanjing, Nanjing, 210003, People’s Republic of China
- Correspondence: Wei Chen; Shiwei Wang, Email ;
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, the College of Life Sciences, Northwest University, Xi’an, 710069, People’s Republic of China
| |
Collapse
|