1
|
Zheng H, Wu J, Feng J, Cheng H. Cellular Senescence and Anti-Aging Strategies in Aesthetic Medicine: A Bibliometric Analysis and Brief Review. Clin Cosmet Investig Dermatol 2024; 17:2243-2259. [PMID: 39399066 PMCID: PMC11471065 DOI: 10.2147/ccid.s403417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Background Skin aging is the most obvious feature of human aging, and delaying aging has become a hot and difficult research topic in aesthetic medicine. The accumulation of dysfunctional senescent cells is one of the important mechanisms of skin aging, based on which a series of anti-aging strategies have been generated. In this paper, from the perspective of cellular senescence, we utilize bibliometrics and research review to explore the research hotspots and trends in this field, with a view to providing references for skin health and aesthetic medicine. Methods We obtained literature related to this field from the Web of Science Core Collection database from 1994 to 2024. Bibliometrix packages in R, CiteSpace, VOSviewer, Origin, and Scimago Graphica were utilized for data mining and visualization. Results A total of 2,796 documents were included in the analysis. The overall trend of publications showed a continuous and rapid increase from 2016-2023, but the total citations improved poorly over time. In this field, Journal of Cosmetic Dermatology, Journal of Investigative Dermatology, Experimental Gerontology are core journals. Kim J, Lee JH, Lee S, Rattan SIS, Chung JH and Kim JH are the core authors in this field. Seoul National University is the first in terms of publications. Korea is the country with the most publications, but USA has the most total citations. Top 10 keywords include: gene-expression, skin, cellular senescence, cell, oxidative stress, antioxidants, in vitro, fibroblasts, mechanism, cancer. Current research trends are focused on neurodegeneration, skin rejuvenation, molecular docking, fibrosis, wound healing, SASP, skin barrier, and antioxidants. The core literature and references reflect topics such as the major molecular pathways in the aging process, and the relationship with tumors. Conclusion This field of research has been rapidly rising in recent years. Relevant research hotspots focus on oxidative stress, fibroblasts, and senescence-associated secretory phenotype. Anti-aging strategies targeting cellular senescence hold great promise, including removal of senescent cells or attenuation of SASP factors, corresponding to senolytics and senomorphics therapies, respectively.
Collapse
Affiliation(s)
- Huilan Zheng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Jingping Wu
- Department of Medical Cosmetology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Jinhong Feng
- Department of Medical Cosmetology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| | - Hongbin Cheng
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610075, People’s Republic of China
| |
Collapse
|
2
|
Kaur G, Sohanur Rahman M, Shaikh S, Panda K, Chinnapaiyan S, Santiago Estevez M, Xia L, Unwalla H, Rahman I. Emerging roles of senolytics/senomorphics in HIV-related co-morbidities. Biochem Pharmacol 2024; 228:116179. [PMID: 38556028 PMCID: PMC11410549 DOI: 10.1016/j.bcp.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Human immunodeficiency virus (HIV) is known to cause cellular senescence and inflammation among infected individuals. While the traditional antiretroviral therapies (ART) have allowed the once fatal infection to be managed effectively, the quality of life of HIV patients on prolonged ART use is still inferior. Most of these individuals suffer from life-threatening comorbidities like chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension (PAH), and diabetes, to name a few. Interestingly, cellular senescence is known to play a critical role in the pathophysiology of these comorbidities as well. It is therefore important to understand the role of cellular senescence in the disease progression and co-morbidity development in HIV-infected individuals. In this respect, use of senolytic/senomorphic drugs as combination therapy with ART would be beneficial for HIV patients. This review provides a critical analysis of the current literature to determine the potential and efficacy of using senolytics/senotherapeutics in managing HIV infection, latency, and associated co-morbidities in humans. The various classes of senolytics have been studied in detail to focus on their potential to combat against HIV infections and associated pathologies with advancing age.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Md Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Maria Santiago Estevez
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Li Xia
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hoshang Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
3
|
Tian R, Su S, Yu Y, Liang S, Ma C, Jiao Y, Xing W, Tian Z, Jiang T, Wang J. Revolutionizing osteoarthritis treatment: How mesenchymal stem cells hold the key. Biomed Pharmacother 2024; 173:116458. [PMID: 38503241 DOI: 10.1016/j.biopha.2024.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
Osteoarthritis (OA) is a multifaceted disease characterized by imbalances in extracellular matrix metabolism, chondrocyte and synoviocyte senescence, as well as inflammatory responses mediated by macrophages. Although there have been notable advancements in pharmacological and surgical interventions, achieving complete remission of OA remains a formidable challenge, oftentimes accompanied by significant side effects. Mesenchymal stem cells (MSCs) have emerged as a promising avenue for OA treatment, given their ability to differentiate into chondrocytes and facilitate cartilage repair, thereby mitigating the impact of an inflammatory microenvironment induced by macrophages. This comprehensive review aims to provide a concise overview of the diverse roles played by MSCs in the treatment of OA, while elucidating the underlying mechanisms behind these contributions. Specifically, the roles include: (a) Promotion of chondrocyte and synoviocyte regeneration; (b) Inhibition of extracellular matrix degradation; (c) Attenuating the macrophage-induced inflammatory microenvironment; (d) Alleviation of pain. Understanding the multifaceted roles played by MSCs in OA treatment is paramount for developing novel therapeutic strategies. By harnessing the regenerative potential and immunomodulatory properties of MSCs, it may be possible to devise more effective and safer approaches for managing OA. Further research and clinical studies are warranted to optimize the utilization of MSCs and realize their full potential in the field of OA therapeutics.
Collapse
Affiliation(s)
- Ruijiao Tian
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Shibo Su
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China; Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China; School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Yang Yu
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Siqiang Liang
- Zhongke Comprehensive Medical Transformation Center Research Institute (Hainan) Co., Ltd, Haikou 571199, China
| | - Chuqing Ma
- The Second Clinical College, Hainan Medical University, Haikou 571199, China
| | - Yang Jiao
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Weihong Xing
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
| | - Ziheng Tian
- School of Clinical Medicine, Jining Medical University, Jining 272002, China
| | - Tongmeng Jiang
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China; Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.
| | - Juan Wang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China; Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China; School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
4
|
Huang J, Jin S, Guo R, Wu W, Yang C, Qin Y, Chen Q, He X, Qu J, Yang Z. Histone lysine demethylase KDM5B facilitates proliferation and suppresses apoptosis in human acute myeloid leukemia cells through the miR-140-3p/BCL2 axis. RNA (NEW YORK, N.Y.) 2024; 30:435-447. [PMID: 38296629 PMCID: PMC10946434 DOI: 10.1261/rna.079865.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
The histone lysine demethylase KDM5B is frequently up-regulated in various human cancer cells. However, its expression and functional role in human acute myeloid leukemia (AML) cells remain unclear. Here, we found that the expression level of KDM5B is high in primary human AML cells. We have demonstrated that knocking down KDM5B leads to apoptosis and impairs proliferation in primary human AML and some human AML cell lines. We further identified miR-140-3p as a downstream target gene of KDM5B. KDM5B expression was inversely correlated with the miR-140-3p level in primary human AML cells. Molecular studies showed that silencing KDM5B enhanced H3K4 trimethylation (H3K4me3) at the promoter of miR-140-3p, leading to high expression of miR-140-3p, which in turn inhibited B-cell CLL/lymphoma 2 (BCL2) expression. Finally, we demonstrate that the defective proliferation induced by KDM5B knockdown (KD) can be rescued with the miR-140-3p inhibitor or enhanced by combining KDM5B KD with a BCL2 inhibitor. Altogether, our data support the conclusion that KDM5B promotes tumorigenesis in human AML cells through the miR-140-3p/BCL2 axis. Targeting the KDM5B/miR-140-3p/BCL2 pathway may hold therapeutic promise for treating human AML.
Collapse
Affiliation(s)
- Jiaojuan Huang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuiling Jin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei Wu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chengxuan Yang
- Department of Galactophore, Xinxiang First People's Hospital, Xinxiang 453000, China
| | - Yali Qin
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingchuan Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ximiao He
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Qu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhenhua Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Kepp O, Galluzzi L, Petroni G. Cellular senescence and aging at the crossroad between immunity and cancer. Methods Cell Biol 2024; 181:xvii-xxiv. [PMID: 38302247 DOI: 10.1016/s0091-679x(24)00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Affiliation(s)
- Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Paris, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States
| | - Giulia Petroni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Czabotar PE, Garcia-Saez AJ. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat Rev Mol Cell Biol 2023; 24:732-748. [PMID: 37438560 DOI: 10.1038/s41580-023-00629-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
The proteins of the BCL-2 family are key regulators of mitochondrial apoptosis, acting as either promoters or inhibitors of cell death. The functional interplay and balance between the opposing BCL-2 family members control permeabilization of the outer mitochondrial membrane, leading to the release of activators of the caspase cascade into the cytosol and ultimately resulting in cell death. Despite considerable research, our knowledge about the mechanisms of the BCL-2 family of proteins remains insufficient, which complicates cell fate predictions and does not allow us to fully exploit these proteins as targets for drug discovery. Detailed understanding of the formation and molecular architecture of the apoptotic pore in the outer mitochondrial membrane remains a holy grail in the field, but new studies allow us to begin constructing a structural model of its arrangement. Recent literature has also revealed unexpected activities for several BCL-2 family members that challenge established concepts of how they regulate mitochondrial permeabilization. In this Review, we revisit the most important advances in the field and integrate them into a new structure-function-based classification of the BCL-2 family members that intends to provide a comprehensive model for BCL-2 action in apoptosis. We close this Review by discussing the potential of drugging the BCL-2 family in diseases characterized by aberrant apoptosis.
Collapse
Affiliation(s)
- Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Ana J Garcia-Saez
- Membrane Biophysics, Institute of Genetics, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|