1
|
Qin X, Zhang L, Miao YB, Jiang L, Zou L, Wang Q, Shi Y. In situ size amplification strategy reduces lymphatic clearance for enhanced arthritis therapy. J Nanobiotechnology 2024; 22:755. [PMID: 39695799 DOI: 10.1186/s12951-024-03061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder characterized by painful swelling and inflammation, arising from the immune system attacking on healthy cells. However, arthritic sites often experience increased lymph flow, hastening drug clearance and potentially reducing treatment effectiveness. To address this challenge, an in situ size amplification has been proposed to reduce lymphatic clearance and thereby enhance arthritis therapy. This system has been developed based on a conjugate of dexamethasone (Dex) and polysialic acid (PSA), linked via an acid-sensitive linker, supplemented with bis-5-hydroxytryptamine (Bis-5HT) on the PSA backbone. Under physiological conditions, the system autonomously assembles into stable nanoparticles (PD5NPs), facilitating prolonged circulation and targeted delivery to inflamed joints. Upon arrival at arthritic joints, Bis-5HT reacts to elevated myeloperoxidase (MPO) levels and oxidative stress, prompting particle aggregation and in-situ size amplification. This in situ size amplification nanocarrier effectively reduces lymphatic clearance and serves as reservoirs for sustained Dex release in acidic pH environments within arthritic sites, thus continuously alleviating RA symptoms. Moreover, investigation on the underlying mechanism elucidates how the in situ size amplification nanocarrier influences the transportation of PD5NPs from inflamed joints to lymphatic vessels. Our study offers valuable insights for optimizing nanomedicine performance in vivo and augmenting therapeutic efficacy.
Collapse
Affiliation(s)
- Xianyan Qin
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Luhan Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yang-Bao Miao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Linxi Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Qin Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China.
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
2
|
Du L, Wang Y, Ma H, Fan J, Wang S, Liu J, Wang X. Exploring novel markers for coronary heart disease associated with systemic lupus erythematosus: A review. Medicine (Baltimore) 2024; 103:e40773. [PMID: 39686502 DOI: 10.1097/md.0000000000040773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune condition that is characterized by the production of autoantibodies and sustained inflammatory damage. Coronary heart disease (CHD) is a common complication of SLE, significantly increases CHD-related mortality in SLE patients. Despite conventional risk factors, the mechanisms contributing to a higher CHD risk require further investigation, with the immune and inflammatory aspects of SLE playing a significant role. Endothelial cell damage and dysfunction are key factors in the progression of coronary atherosclerosis in SLE patients. This review specifically focuses on endothelial dysfunction and the role of specific microRNAs in the context of SLE and CHD. In addition, we discuss the effects and functions of oxidative stress markers, endothelial progenitor cells, and circulating endothelial cells in individuals with both SLE and CHD. We also explored the typical inflammatory markers associated with SLE and CHD, addressing their clinical significance and limitations.
Collapse
Affiliation(s)
- Linping Du
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, China
- Shandong Second Medical University, Weifang, China
| | - Yuqun Wang
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, China
- Shandong Second Medical University, Weifang, China
| | - Honglei Ma
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, China
- Shandong Second Medical University, Weifang, China
| | - Jiaheng Fan
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, China
- Shandong Second Medical University, Weifang, China
| | - Shiqi Wang
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, China
- Shandong Second Medical University, Weifang, China
| | - Junhong Liu
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, China
- Shandong Second Medical University, Weifang, China
| | - Xiaodong Wang
- Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, China
| |
Collapse
|
3
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Wu Y, Xu Y, Xu L. Pharmacological therapy targeting the immune response in atherosclerosis. Int Immunopharmacol 2024; 141:112974. [PMID: 39168023 DOI: 10.1016/j.intimp.2024.112974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by the formation of atherosclerotic plaques that consist of numerous cells including smooth muscle cells, endothelial cells, immune cells, and foam cells. The most abundant innate and adaptive immune cells, including neutrophils, monocytes, macrophages, B cells, and T cells, play a pivotal role in the inflammatory response, lipoprotein metabolism, and foam cell formation to accelerate atherosclerotic plaque formation. In this review, we have discussed the underlying mechanisms of activated immune cells in promoting AS and reviewed published clinical trials for the treatment of AS by suppressing immune cell activation. We have also presented some crucial shortcomings of current clinical trials. Lastly, we have discussed the therapeutic potential of novel compounds, including herbal medicine and dietary food, in alleviating AS in animals. Despite these limitations, further clinical trials and experimental studies will enhance our understanding of the mechanisms modulated by immune cells and promote widespread drug use to treat AS by suppressing immune system-induced inflammation.
Collapse
Affiliation(s)
- Yirong Wu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China
| | - Yizhou Xu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China.
| | - Linhao Xu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Translational Medicine Research Center, Hangzhou First People's Hospital, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
5
|
Liu Y, Guo F, Han Z, Yin Y, Chen G, Zhang Y, Tang Q, Chen L. Neutrophils inhibit bone formation by directly contacting osteoblasts and suppressing osteogenic differentiation. Bone 2024; 190:117310. [PMID: 39477179 DOI: 10.1016/j.bone.2024.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
Neutrophils have been extensively studied for their critical roles in supporting immune defense mechanisms, initiating bone regeneration, and promoting angiogenesis. Nonetheless, the influence of neutrophils on physiological conditions, particularly in the context of bone development, remains incompletely understood. In this study, we examined the effects of non-inflammatory neutrophils on bone physiology by depleting Ly6G+ neutrophils and inducing neutropenia through myelosuppression. Our results demonstrated a notable increase in bone mass and a decrease in the bone marrow cavity upon depletion of the neutrophils. These effects were attributed to the direct interaction between neutrophils and osteoblasts, independent of reduced secretion of typical inflammatory cytokines or diminished osteoclast differentiation. This observation suggests a non-inflammatory function of neutrophils within the endosteal microenvironment, where they regulate osteogenic differentiation to preserve optimal bone mass, shape healthy three-dimensional bone trabecular structures, and create ample space for hematopoietic niche development.
Collapse
Affiliation(s)
- Yijun Liu
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Fengyuan Guo
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Zhenshuo Han
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Ying Yin
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Guangjin Chen
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yifan Zhang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Qingming Tang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| | - Lili Chen
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| |
Collapse
|
6
|
Canè S, Geiger R, Bronte V. The roles of arginases and arginine in immunity. Nat Rev Immunol 2024:10.1038/s41577-024-01098-2. [PMID: 39420221 DOI: 10.1038/s41577-024-01098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
Arginase activity and arginine metabolism in immune cells have important consequences for health and disease. Their dysregulation is commonly observed in cancer, autoimmune disorders and infectious diseases. Following the initial description of a role for arginase in the dysfunction of T cells mounting an antitumour response, numerous studies have broadened our understanding of the regulation and expression of arginases and their integration with other metabolic pathways. Here, we highlight the differences in arginase compartmentalization and storage between humans and rodents that should be taken into consideration when assessing the effects of arginase activity. We detail the roles of arginases, arginine and its metabolites in immune cells and their effects in the context of cancer, autoimmunity and infectious disease. Finally, we explore potential therapeutic strategies targeting arginases and arginine.
Collapse
Affiliation(s)
- Stefania Canè
- The Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Oncology Research (IOR), Università della Svizzera italiana, Bellinzona, Switzerland
| | | |
Collapse
|
7
|
Ma D, Feng Y, Lin X. Immune and non-immune mediators in the fibrosis pathogenesis of salivary gland in Sjögren's syndrome. Front Immunol 2024; 15:1421436. [PMID: 39469708 PMCID: PMC11513355 DOI: 10.3389/fimmu.2024.1421436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Sjögren's syndrome (SS) or Sjögren's disease (SjD) is a systemic autoimmune disease clinically manifested as sicca symptoms. This disease primarily impacts the functionality of exocrine glands, specifically the lacrimal and salivary glands (SG). SG fibrosis, an irreversible morphological change, is a severe consequence that occurs in the later stages of the disease due to sustained inflammation. However, the mechanism underlying SG fibrosis in SS remains under-investigated. Glandular fibrosis may arise from chronic sialadenitis, in which the interactions between infiltrating lymphocytes and epithelial cells potentially contributes to fibrotic pathogenesis. Thus, both immune and non-immune cells are closely involved in this process, while their interplays are not fully understood. The molecular mechanism of tissue fibrosis is partly associated with an imbalance of immune responses, in which the transforming growth factor-beta (TGF-β)-dependent epithelial-mesenchymal transition (EMT) and extracellular matrix remodeling are recently investigated. In addition, viral infection has been implicated in the pathogenesis of SS. Viral-specific innate immune response could exacerbate the autoimmune progression, resulting in overt inflammation in SG. Notably, post-COVID patients exhibit typical SS symptoms and severe inflammatory sialadenitis, which are positively correlated with SG damage. In this review, we discuss the immune and non-immune risk factors in SG fibrosis and summarize the evidence to understand the mechanisms upon autoimmune progression in SS.
Collapse
Affiliation(s)
- Danbao Ma
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
| | - Xiang Lin
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Chinese Medicine, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| |
Collapse
|
8
|
Buch MH, Mallat Z, Dweck MR, Tarkin JM, O'Regan DP, Ferreira V, Youngstein T, Plein S. Current understanding and management of cardiovascular involvement in rheumatic immune-mediated inflammatory diseases. Nat Rev Rheumatol 2024; 20:614-634. [PMID: 39232242 DOI: 10.1038/s41584-024-01149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
Immune-mediated inflammatory diseases (IMIDs) are a spectrum of disorders of overlapping immunopathogenesis, with a prevalence of up to 10% in Western populations and increasing incidence in developing countries. Although targeted treatments have revolutionized the management of rheumatic IMIDs, cardiovascular involvement confers an increased risk of mortality and remains clinically under-recognized. Cardiovascular pathology is diverse across rheumatic IMIDs, ranging from premature atherosclerotic cardiovascular disease (ASCVD) to inflammatory cardiomyopathy, which comprises myocardial microvascular dysfunction, vasculitis, myocarditis and pericarditis, and heart failure. Epidemiological and clinical data imply that rheumatic IMIDs and associated cardiovascular disease share common inflammatory mechanisms. This concept is strengthened by emergent trials that indicate improved cardiovascular outcomes with immune modulators in the general population with ASCVD. However, not all disease-modifying therapies that reduce inflammation in IMIDs such as rheumatoid arthritis demonstrate equally beneficial cardiovascular effects, and the evidence base for treatment of inflammatory cardiomyopathy in patients with rheumatic IMIDs is lacking. Specific diagnostic protocols for the early detection and monitoring of cardiovascular involvement in patients with IMIDs are emerging but are in need of ongoing development. This Review summarizes current concepts on the potentially targetable inflammatory mechanisms of cardiovascular pathology in rheumatic IMIDs and discusses how these concepts can be considered for the diagnosis and management of cardiovascular involvement across rheumatic IMIDs, with an emphasis on the potential of cardiovascular imaging for risk stratification, early detection and prognostication.
Collapse
Affiliation(s)
- Maya H Buch
- Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK.
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Ziad Mallat
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Marc R Dweck
- Centre for Cardiovascular Science, Chancellors Building, Little France Crescent, University of Edinburgh, Edinburgh, UK
| | - Jason M Tarkin
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Declan P O'Regan
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Vanessa Ferreira
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Taryn Youngstein
- National Heart & Lung Institute, Imperial College London, London, UK
- Department of Rheumatology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Sven Plein
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| |
Collapse
|
9
|
Pappa M, Keramiotou K, Sfikakis PP, Tektonidou MG. Frailty is independently associated with subclinical cardiovascular disease in patients with systemic lupus erythematosus. RMD Open 2024; 10:e004527. [PMID: 39313303 PMCID: PMC11418478 DOI: 10.1136/rmdopen-2024-004527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
OBJECTIVES Cardiovascular disease is a leading cause of mortality in systemic lupus erythematosus (SLE). Frailty has been associated with an increased cardiovascular disease risk (CVR) in the general population. We aimed to examine the association between frailty and subclinical cardiovascular disease in patients with SLE. METHODS In this cross-sectional study, we included all patients with SLE who underwent carotid/femoral artery ultrasound in our unit between 2016 and 2018. Clinical and laboratory data were collected at the time of ultrasound testing. Frailty was measured using the Systemic Lupus International Collaborating Clinics-Frailty Index (SLICC-FI). CVR (low, moderate, high, very high) was evaluated by the Systematic COronary Risk Evaluation (SCORE) model. Determinants of atherosclerotic plaque presence were assessed by logistic regression analyses, adjusting for potential confounders. RESULTS 202 patients were included in the study. Atherosclerotic plaques (20.8% carotid, 17.3% femoral) were observed in 52/202 (25.7%) patients (89.1% women, mean (±SD) age 46.7±12.6). Median (IQR) SLICC-FI was 0.08 (0.04-0.10). 39 (19.3%) patients were classified as robust, 91 (45%) as relatively less fit, 59 (29.2%) as least fit and 13 (6.4%) as frail. In univariate analysis, plaque presence was significantly associated with age, disease duration, smoking, hypertension, systolic blood pressure, dyslipidaemia, SCORE, CVR class and SLICC-FI. CVR class (OR 5.16, p=0.000) and SLICC-FI (OR 1.34, p=0.03 per 0.05 point increase) remained significant in multivariate analysis after adjustment for traditional and disease-related CVR factors. CONCLUSIONS SLICC-FI is independently associated with plaque presence. Further studies are warranted to determine whether frailty-specific interventions can reduce CVR in patients with SLE.
Collapse
Affiliation(s)
- Maria Pappa
- Rheumatology Unit, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kyriaki Keramiotou
- Rheumatology Unit, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros P Sfikakis
- Rheumatology Unit, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria G Tektonidou
- Rheumatology Unit, First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Chen D, Liang H, Huang L, Zhou H, Wang Z. Liraglutide enhances the effect of checkpoint blockade in lung and liver cancers through the inhibition of neutrophil extracellular traps. FEBS Open Bio 2024; 14:1365-1377. [PMID: 36271684 PMCID: PMC11301266 DOI: 10.1002/2211-5463.13499] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) regulates glycemic excursions by augmenting insulin production and inhibiting glucagon secretion. Liraglutide, a long-acting GLP-1 analog, can improve glycemic control for treating type 2 diabetes and prevent neutrophil extravasation in inflammation. Here, we explored the role of liraglutide in the development and therapy of murine lung and liver cancers. In this study, liraglutide substantially decreased circulating neutrophil extracellular trap (NET) markers myeloperoxidase, elastase, and dsDNA in Lewis lung cancer (LLC) and Hepa1-6 tumor-bearing mice. Furthermore, liraglutide downregulated NETs and reactive oxygen species (ROS) of neutrophils in the tumor microenvironment. Functionally, in vitro experiments showed that liraglutide reduced NET formation by inhibiting ROS. In addition, we showed that liraglutide enhanced the anti-tumoral efficiency of programmed cell death-1 (PD-1) inhibition in LLC and Hepa1-6 tumor-bearing C57BL/6 mice. However, the removal of NETs significantly weakened the antitumor efficiency of liraglutide. We further demonstrated that the long-term antitumor CD8+ T cell responses induced by the combination therapy rejected rechallenges by respective tumor cell lines. Taken together, our findings suggest that liraglutide may promote the anti-tumoral efficiency of PD-1 inhibition by reducing NETs in lung and liver cancers.
Collapse
Affiliation(s)
- Duo Chen
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| | - Hongxin Liang
- Department of Thoracic Surgery, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Luyu Huang
- Department of Surgery, Competence Center of Thoracic SurgeryCharité Universitätsmedizin BerlinGermany
| | - Haiyu Zhou
- Department of Thoracic Surgery, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Zheng Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao‐Yang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
11
|
Seringec Akkececi N, Ciftcioglu M, Okyar B, Yildirim Cetin G. Relationship of immature granulocytes with disease activity in rheumatoid arthritis. Int J Rheum Dis 2024; 27:e15216. [PMID: 38873756 DOI: 10.1111/1756-185x.15216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
AIM To determine whether the IG count (#) and IG percentage (%) are associated with disease activity in rheumatoid arthritis (RA). METHODS This retrospective study included 65 RA patients and 65 healthy controls. Clinical and demographic characteristics of controls and RA patients (at active period and when the patients achieved remission) were obtained from medical records. Disease activity was defined by disease activity score 28 (DAS28). Furthermore, the clinical disease activity index (CDAI), and simple disease activity index (SDAI) were calculated. For the differential diagnosis of RA patients from healthy controls, the cut-off value was estimated by making receiver-operator curves (ROC). RESULTS In active RA patients, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), IG#, and IG% levels were significantly higher compared to the healthy controls (p < .001, for all). When the patients achieved remission, DAS28, CDAI, SDAI, ESR, CRP, IG#, and IG% values were significantly decreased (p < .001, for all). IG# and IG% were significantly positively correlated with DAS28, CDAI, SDAI, ESR, and CRP (p = .024, p = .008, p = .003, p < .001, p < .001, respectively). According to ROC curve analysis, IG% and IG# were the biomarkers to have a significant diagnostic value for RA with the area under the curve of 0.853 and 0.865 (p < .001, for all). CONCLUSION The present study demonstrated that two novel inflammatory markers, IG# and IG%, can be useful for monitoring RA patients' disease activity. Furthermore, IG# and IG% can also be used as fast, inexpensive, and easily available complementary diagnostic markers to diagnose RA patients.
Collapse
Affiliation(s)
- Nurten Seringec Akkececi
- Department of Physiology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Muhammed Ciftcioglu
- Department of Internal Medicine, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Burak Okyar
- Department of Rheumatology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Gozde Yildirim Cetin
- Department of Rheumatology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
12
|
Mao L, Chen L, Qu M, He X. Pericarotid Adipose Tissue is Associated with Circulatory Markers of Inflammation and Carotid Atherosclerosis. Angiology 2024:33197241248776. [PMID: 38644057 DOI: 10.1177/00033197241248776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Perivascular adipose tissue plays roles in vascular inflammation and atherosclerosis. The present study aimed to evaluate the association between pericarotid fat density (PFD) and circulatory inflammatory indicators, internal carotid artery (ICA) stenosis, and vulnerable carotid plaques. We retrospectively screened 498 consecutive patients who underwent both computed tomography angiography of the neck between January 2017 and December 2020. The PFD, ICA stenosis, and vulnerable carotid plaques were analyzed using established approaches. Laboratory data including C-reactive protein (CRP) levels, lymphocyte-to-monocyte ratio (LMR), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic immune inflammation index (SII) were recorded. PFD was positively correlated with CRP, NLR, PLR, and SII, and negatively correlated with LMR. A higher PFD was independently associated with extracranial ICA stenosis (1.179 [1.003-1.387], P = .040) and vulnerable carotid plaques (1.046 [1.021-1.072], P = .001) after adjusting for systemic inflammatory indicators. These findings suggested higher PFD is independently associated with circulating inflammatory indicators, extracranial ICA stenosis, and vulnerable carotid plaque.
Collapse
Affiliation(s)
- Lingqun Mao
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Linkao Chen
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Man Qu
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Xinwei He
- Department of Neurology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| |
Collapse
|
13
|
Muñoz-Barrera L, Perez-Sanchez C, Ortega-Castro R, Corrales S, Luque-Tevar M, Cerdó T, Sanchez-Pareja I, Font P, Lopez-Mejías R, Calvo J, Abalos-Aguilera MC, Ruiz-Vilchez D, Segui P, Merlo C, Perez-Venegas J, Ruiz Montesino MD, Rodriguez-Escalera C, Barco CR, Fernandez-Nebro A, Vazque NM, Marenco JL, Montañes JU, Godoy-Navarrete J, Cabezas-Lucena AM, Estevez EC, Aguirre MA, González-Gay MA, Barbarroja N, Escudero-Contreras A, Lopez-Pedrera C. Personalized cardiovascular risk assessment in Rheumatoid Arthritis patients using circulating molecular profiles and their modulation by TNFi, IL6Ri, and JAKinibs. Biomed Pharmacother 2024; 173:116357. [PMID: 38479179 DOI: 10.1016/j.biopha.2024.116357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND & OBJECTIVES This study aimed to: 1) analyze the inflammatory profile of Rheumatoid Arthritis (RA) patients, identifying clinical phenotypes associated with cardiovascular (CV) risk; 2) evaluate biologic and targeted-synthetic disease-modifying antirheumatic drugs (b-DMARDs and ts-DMARDs': TNFi, IL6Ri, JAKinibs) effects; and 3) characterize molecular mechanisms in immune-cell activation and endothelial dysfunction. PATIENTS & METHODS A total of 387 RA patients and 45 healthy donors were recruited, forming three cohorts: i) 208 RA patients with established disease but without previous CV events; ii) RA-CVD: 96 RA patients with CV events, and iii) 83 RA patients treated with b-DMARDs/ts-DMARDs for 6 months. Serum inflammatory profiles (cytokines/chemokines/growth factors) and NETosis/oxidative stress-linked biomolecules were evaluated. Mechanistic in vitro studies were performed on monocytes, neutrophils and endothelial cells (EC). RESULTS In the first RA-cohort, unsupervised clustering unveiled three distinct groups: cluster 3 (C3) displayed the highest inflammatory profile, significant CV-risk score, and greater atheroma plaques prevalence. In contrast, cluster 1 (C1) exhibited the lowest inflammatory profile and CV risk score, while cluster 2 (C2) displayed an intermediate phenotype. Notably, 2nd cohort RA-CVD patients mirrored C3's inflammation. Treatment with b-DMARDs or ts-DMARDs effectively reduced disease-activity scores (DAS28) and restored normal biomolecules levels, controlling CV risk. In vitro, serum from C3-RA or RA-CVD patients increased neutrophils activity and CV-related protein levels in cultured monocytes and EC, which were partially prevented by pre-incubation with TNFi, IL6Ri, and JAKinibs. CONCLUSIONS Overall, analyzing circulating molecular profiles in RA patients holds potential for personalized clinical management, addressing CV risk and assisting healthcare professionals in tailoring treatment, ultimately improving outcomes.
Collapse
Affiliation(s)
- Laura Muñoz-Barrera
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ Reina Sofia University Hospital/ University of Cordoba, Spain
| | - Carlos Perez-Sanchez
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ Reina Sofia University Hospital/ University of Cordoba, Spain
| | - Rafaela Ortega-Castro
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ Reina Sofia University Hospital/ University of Cordoba, Spain
| | - Sagrario Corrales
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ Reina Sofia University Hospital/ University of Cordoba, Spain
| | - Maria Luque-Tevar
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ Reina Sofia University Hospital/ University of Cordoba, Spain
| | - Tomás Cerdó
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ Reina Sofia University Hospital/ University of Cordoba, Spain
| | - Ismael Sanchez-Pareja
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ Reina Sofia University Hospital/ University of Cordoba, Spain
| | - Pilar Font
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ Reina Sofia University Hospital/ University of Cordoba, Spain
| | - Raquel Lopez-Mejías
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, IDIVAL, Santander, Spain
| | - Jerusalem Calvo
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ Reina Sofia University Hospital/ University of Cordoba, Spain
| | - M Carmen Abalos-Aguilera
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ Reina Sofia University Hospital/ University of Cordoba, Spain
| | - Desiree Ruiz-Vilchez
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ Reina Sofia University Hospital/ University of Cordoba, Spain
| | - Pedro Segui
- Radiology Service, Reina Sofia Hospital/Maimonides Institute for Research in Biomedicine of Cordoba/University of Cordoba, Spain
| | - Christian Merlo
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ Reina Sofia University Hospital/ University of Cordoba, Spain
| | | | | | | | | | | | | | | | | | | | | | - Eduardo Collantes Estevez
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ Reina Sofia University Hospital/ University of Cordoba, Spain
| | - Ma Angeles Aguirre
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ Reina Sofia University Hospital/ University of Cordoba, Spain
| | | | - Nuria Barbarroja
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ Reina Sofia University Hospital/ University of Cordoba, Spain
| | - Alejandro Escudero-Contreras
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ Reina Sofia University Hospital/ University of Cordoba, Spain
| | - Chary Lopez-Pedrera
- Rheumatology service/Department of Medical and Surgical Sciences, Maimonides Institute for Research in Biomedicine of Cordoba (IMIBIC)/ Reina Sofia University Hospital/ University of Cordoba, Spain.
| |
Collapse
|
14
|
Yu H, Wu Y, Xu J, Wang Y, Cheng X, Zhang LW, Qin J, Wang Y. Neutrophils-mediated bioinspired nanoagents for noninvasive monitoring of inflammatory recruitment dynamics and navigating phototherapy in rheumatoid arthritis. BIOMATERIALS ADVANCES 2024; 158:213764. [PMID: 38227991 DOI: 10.1016/j.bioadv.2024.213764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/18/2024]
Abstract
Neutrophils play a crucial role in inflammatory immune responses, but their in vivo homing to inflammatory lesions remains unclear, hampering precise treatment options. In this study, we employed a biomineralization-inspired multimodal nanoagent to label neutrophils, enabling noninvasive monitoring of the dynamic process of inflammatory recruitment and guiding photothermal therapy in rheumatoid arthritis. Our nanoagents allowed visualization of neutrophil fate through magnetic resonance imaging, photoacoustic imaging, and fluorescence imaging in the first and second near-infrared windows. Histopathology and immunofluorescence analysis revealed pronounced inflammatory cell infiltration in rheumatoid arthritis compared to the normal limb. Furthermore, the recruitment quantity of neutrophils positively correlated with the inflammatory stage. Additionally, the inherent photothermal effect of the nanoagents efficiently ablated inflammatory cells during the optimal homing time and inflammatory phase. This neutrophil imaging-guided photothermal therapy precisely targeted inflammatory nuclei in rheumatoid arthritis and downregulated pro-inflammatory cytokines in serum. These results demonstrate that in vivo tracking of inflammatory immune response cells can significantly optimize the treatment of inflammatory diseases, including rheumatoid arthritis.
Collapse
Affiliation(s)
- Hongchang Yu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China; Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215002, China
| | - Yanxian Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Jingwei Xu
- Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Road, Suzhou 215002, China
| | - Yangyun Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Leshuai W Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China
| | - Jianzhong Qin
- The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China.
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou 215123, China; The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou 215004, China.
| |
Collapse
|
15
|
Liu S, Liu M, Xiu J, Zhang T, Zhang B, Cun D, Yang C, Li K, Zhang J, Zhao X. Celastrol-loaded bovine serum albumin nanoparticles target inflamed neutrophils for improved rheumatoid arthritis therapy. Acta Biomater 2024; 174:345-357. [PMID: 38013018 DOI: 10.1016/j.actbio.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Inflammatory neutrophils (INEs), motivated by cytokines, continue to migrate into the inflamed joints, driving the development of RA. Hence, inducing apoptosis of INEs to reduce recruitment at inflamed joints is an effective strategy for the treatment of RA. However, simply apoptotic INEs may trigger the release of neutrophil extracellular traps (NETs) and accelerate the inflammatory process. To overcome these drawbacks, an RGD-modified bovine serum albumin (BSA) nanoparticles (CBR NPs) was fabricated to selectively target INEs in situ for intracellular delivery of CLT. Studies have demonstrated that CBR NPs can selectively target circulating INEs and induce INEs apoptosis. Meanwhile, CBR NPs inhibited the activation of NETs via NF-κB pathway and the release of Cit-H3 thereby blocking the release process of NETs. In collagen-induced arthritis (CIA) mouse model, CBR NPs suppressed the inflammatory response, and reduced the toxic effects of CLT. In summary, this study shed light on an innovative approach to treat RA by inducing apoptosis of circulating INEs and inhibiting NETs. STATEMENT OF SIGNIFICANCE: RGD-modified bovine serum albumin (BSA) nanoparticles for delivering celastrol, abbreviated as CBR NPs, were constructed to inhibit the infiltration of circulating inflammatory neutrophils (INEs) into inflamed joints while inhibiting the release of NETs to alleviate tissue damage. CBR NPs were prepared for the first time to induce apoptosis of INEs; CBR NPs could inhibit the release of NETs while inducing apoptosis of INEs in vivo and vitro cellular experiments; CBR NPs had favorable anti-inflammatory effects and low toxicity side-effects in collagen-induced arthritis (CIA) mouse models. The application of nanotechnology to induce apoptosis of INEs while inhibiting the release of NETs was a promising approach for the treatment of RA.
Collapse
Affiliation(s)
- Siyi Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110000, PR China
| | - Min Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110000, PR China
| | - Jingya Xiu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110000, PR China
| | - Tian Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110000, PR China
| | - Bowen Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110000, PR China
| | - Dongyun Cun
- Department of Hepatopancreatobiliary Surgery, The Second Afliated Hospital of Kunming Medical University, Kunming 650101, PR China
| | - Chunrong Yang
- Department of Pharmacy, Shantou University Medical College, Shantou 515000, PR China
| | - Kexin Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110000, PR China
| | - Jiulong Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110000, PR China.
| | - Xiuli Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110000, PR China.
| |
Collapse
|
16
|
Xue Y, Zhao Z, Lei Y, Qiu Z, Li X, Wang C, Cui R, Shen S, Fang L, Wang Y, Ji J, Chen Z, Zhu H, Zhu B. Influence of the linkage between long alkyl tails and cationic groups on membrane activity of nano-sized hyperbranched polyquaterniums. J Colloid Interface Sci 2024; 653:894-907. [PMID: 37774653 DOI: 10.1016/j.jcis.2023.09.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023]
Abstract
The recurrent emergence of serious pathogens necessitates novel insights and highly efficient antibacterial agents. However, the innate inability of metal ions and reactive oxygen species (ROS) to differentiate between bacteria and mammalian cells presents a challenge, limiting the selectivity crucial for an ideal antimicrobial solution. Herein, we present a systematic exploration involving two variants of nano-sized hyperbranched polyquaterniums (NHBPQs) - one featuring a lengthy alkyl tail linked to the ammonium unit at the N-atom center (NHBPQ-A), and the other in a segregated configuration (NHBPQ-B). The exterior alkyl chain chains act as a barrier to the cationic group's non-specific adsorption due to spatial site resistance, causing NHBPQ-A in broad-spectrum cytotoxicity. Conversely, the distinct molecular configuration of NHBPQ-B in the segregated state affords greater flexibility, allowing the cationic groups to be released and interact non-specifically, finally resulting in selective bactericidal activity. Leveraging this selectivity, the optimized NHBPQ-B exhibits robust anti-infectious performance in a model of methicillin-resistant Staphylococcus aureus (MRSA)-infected wounds. This work establishes a promising avenue for biocompatible NHBPQs, holding significant potential in addressing MRSA infections and ameliorating both genetically encoded and phenotypic antibiotic resistance mechanisms.
Collapse
Affiliation(s)
- Yunyun Xue
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Center of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Zihao Zhao
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Center of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Yuqing Lei
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zelin Qiu
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinfang Li
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chuyao Wang
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ronglu Cui
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shuyang Shen
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lifeng Fang
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Youxiang Wang
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian Ji
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Baoku Zhu
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Center of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China.
| |
Collapse
|
17
|
Wang H, Gao T, Zhang R, Hu J, Gao S, Wang Y, Qi X, Zhou Y, Zheng G, Dong H. Neutrophil Extracellular Traps Aggravate Contrast-Induced Acute Kidney Injury by Damaging Glomeruli and Peritubular Capillaries. J Inflamm Res 2023; 16:5629-5646. [PMID: 38046404 PMCID: PMC10693253 DOI: 10.2147/jir.s433110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023] Open
Abstract
Background Contrast-induced acute kidney injury (CI-AKI) is considered to be the third leading cause of hospital-acquired kidney injury. Current studies mostly suggest that contrast agents mainly harm renal tubular epithelial cells, but we hypothesized that the development of CI-AKI should be the result of the interaction of renal vascular and tubular injury. Methods First we constructed a CI-AKI mouse model and verified the success of the model by pathological injury and serum creatinine level. Immunohistochemistry, protein quantification and qRT-PCR were used to detect the location and level of expression of neutrophil extracellular traps (NETs) in the kidney. Then, we blocked the in vivo accumulation of NETs using GSK484 and DNase I and detected the expression of NETs and the damage of glomerular and peritubular capillaries. Results We first identified the presence of NETs in CI-AKI mice, and NETs were mainly accumulated in glomeruli and peritubular capillaries. The expression of NETs was positively correlated with the severity of CI-AKI kidney. After inhibition of NETs release or promotion of NETs degradation by drugs, renal vascular endothelial cell injury was reduced and renal pathological changes and creatinine levels were reversed in CI-AKI mice. In addition, inhibition of NETs reduced apoptosis and pyroptosis of renal cells and attenuated inflammation in vivo. Conclusion These findings suggest that NETs are involved in the development of CI-AKI by damaging glomerular and peritubular capillary endothelial cells. This study will provide a new strategy for clinical prevention and treatment of CI-AKI.
Collapse
Affiliation(s)
- Heng Wang
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Tingting Gao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jie Hu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Siqi Gao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yuwen Wang
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiaotong Qi
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yun Zhou
- Shanxi Provincial Integrated TCM and WM Hospital, Taiyuan, People’s Republic of China
| | - Guoping Zheng
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
18
|
Salafranca J, Ko JK, Mukherjee AK, Fritzsche M, van Grinsven E, Udalova IA. Neutrophil nucleus: shaping the past and the future. J Leukoc Biol 2023; 114:585-594. [PMID: 37480361 PMCID: PMC10673716 DOI: 10.1093/jleuko/qiad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023] Open
Abstract
Neutrophils are innate immune cells that are key to protecting the host against infection and maintaining body homeostasis. However, if dysregulated, they can contribute to disease, such as in cancer or chronic autoinflammatory disorders. Recent studies have highlighted the heterogeneity in the neutrophil compartment and identified the presence of immature neutrophils and their precursors in these pathologies. Therefore, understanding neutrophil maturity and the mechanisms through which they contribute to disease is critical. Neutrophils were first characterized morphologically by Ehrlich in 1879 using microscopy, and since then, different technologies have been used to assess neutrophil maturity. The advances in the imaging field, including state-of-the-art microscopy and machine learning algorithms for image analysis, reinforce the use of neutrophil nuclear morphology as a fundamental marker of maturity, applicable for objective classification in clinical diagnostics. New emerging approaches, such as the capture of changes in chromatin topology, will provide mechanistic links between the nuclear shape, chromatin organization, and transcriptional regulation during neutrophil maturation.
Collapse
Affiliation(s)
- Julia Salafranca
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Jacky Ka Ko
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Ananda K Mukherjee
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Marco Fritzsche
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Erinke van Grinsven
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| | - Irina A Udalova
- The Kennedy Institute of Rheumatology, University of Oxford, Old Road Campus Research Build, Roosevelt Dr, Headington, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
19
|
Zhao F, He Y, Zhao Z, He J, Huang H, Ai K, Liu L, Cai X. The Notch signaling-regulated angiogenesis in rheumatoid arthritis: pathogenic mechanisms and therapeutic potentials. Front Immunol 2023; 14:1272133. [PMID: 38022508 PMCID: PMC10643158 DOI: 10.3389/fimmu.2023.1272133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Angiogenesis plays a key role in the pathological process of inflammation and invasion of the synovium, and primarily drives the progression of rheumatoid arthritis (RA). Recent studies have demonstrated that the Notch signaling may represent a new therapeutic target of RA. Although the Notch signaling has been implicated in the M1 polarization of macrophages and the differentiation of lymphocytes, little is known about its role in angiogenesis in RA. In this review, we discourse the unique roles of stromal cells and adipokines in the angiogenic progression of RA, and investigate how epigenetic regulation of the Notch signaling influences angiogenesis in RA. We also discuss the interaction of the Notch-HIF signaling in RA's angiogenesis and the potential strategies targeting the Notch signaling to improve the treatment outcomes of RA. Taken together, we further suggest new insights into future research regarding the challenges in the therapeutic strategies of RA.
Collapse
Affiliation(s)
- Fang Zhao
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yini He
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhihao Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
| | - Jiarong He
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Huang
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiong Cai
- Department of Rheumatology of The First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
20
|
Chen C, Zuo Y, Hu H, Shao Y, Dong S, Zeng J, Huang L, Liu Z, Shen Q, Liu F, Liao X, Cao Z, Zhong Z, Lu H, Bi Y, Chen J. Cysteamine hydrochloride affects ocular development and triggers associated inflammation in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132175. [PMID: 37517235 DOI: 10.1016/j.jhazmat.2023.132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
The increasing use of cosmetics has raised widespread concerns regarding their ingredients. Cysteamine hydrochloride (CSH) is a newly identified allergenic component in cosmetics, and therefore its potential toxicity needs further elucidation. Here, we investigated the in vivo toxicity of CSH during ocular development utilizing a zebrafish model. CSH exposure was linked to smaller eyes, increased vasculature of the fundus and decreased vessel diameter in zebrafish larvae. Moreover, CSH exposure accelerated the process of vascular sprouting and enhanced the proliferation of ocular vascular endothelial cells. Diminished behavior in response to visual stimuli and ocular structural damage in zebrafish larvae after CSH treatment were confirmed by analysis of the photo-visual motor response and pathological examination, respectively. Through transcriptional assays, transgenic fluorescence photography and molecular docking analysis, we determined that CSH inhibited Notch receptor transcription, leading to an aberrant proliferation of ocular vascular endothelial cells mediated by Vegf signaling activation. This process disrupted ocular homeostasis, and induced an inflammatory response with neutrophil accumulation, in addition to the generation of high levels of reactive oxygen species, which in turn promoted the occurrence of apoptotic cells in the eye and ultimately impaired ocular structure and visual function during zebrafish development.
Collapse
Affiliation(s)
- Chao Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China; Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Yuhua Zuo
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325003, China
| | - Hongmei Hu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Yuting Shao
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Si Dong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China; Department of Internal Medicine and Hematology, Affiliated Hospital of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Junquan Zeng
- Department of Internal Medicine and Hematology, Affiliated Hospital of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Ling Huang
- Department of Interventional and Vascular Surgery, Affiliated Hospital of Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Ziyi Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Qinyuan Shen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China
| | - Zilin Zhong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Yanlong Bi
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Jianjun Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Medical Genetics, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
21
|
Mertz P, Wollenschlaeger C, Chasset F, Dima A, Arnaud L. Rheumatoid vasculitis in 2023: Changes and challenges since the biologics era. Autoimmun Rev 2023; 22:103391. [PMID: 37468085 DOI: 10.1016/j.autrev.2023.103391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Significant changes in the epidemiology and natural history of rheumatoid vasculitis (RV) have occurred with the introduction of biological therapies such as TNF inhibitors (TNFi) and rituximab. PURPOSE This scoping review aims to address the key current challenges and propose updated criteria for RV. This will aid future descriptive observational studies and prospective therapeutic trials. METHODOLOGY The MEDLINE database was searched for eligible articles from inception through December 2022. Articles were selected based on language and publication date after 1998, corresponding to the approval of the first TNFi in rheumatic diseases. RESULTS Sixty articles were included in the review. The mean incidence of RV has decreased since the approval of biologic therapies in RA, from 9.1 (95% CI: 6.8-12.0) per million between 1988 and 2000 to 3.9 (95% CI: 2.3-6.2) between 2001 and 2010, probably due to significant improvement in RA severity and a decrease in smoking habits. Factors associated with an increased risk of RV include smoking at RA diagnosis, longer disease duration, severe RA, immunopositivity, and male gender (regardless of age). Homozygosity for the HLA-DRB104 shared epitope is linked to RV, while the presence of HLA-C3 is a significant predictor of vasculitis in patients without HLA-DRB104. Cutaneous (65-88%), neurologic (35-63%), and cardiac (33%) manifestations are common in RV, often associated with constitutional symptoms (70%). Histologic findings range from small vessel vasculitis to medium-sized necrotizing arteritis, but definite evidence of vasculitis is not required in the 1984 Scott and Bacon diagnostic criteria. Existing data on RV treatment are retrospective, and no formal published guidelines are currently available. CONCLUSION The understanding of RV pathogenesis has improved since its initial diagnostic criteria, with a wider range of clinical manifestations identified. However, a validated and updated criteria that incorporates these advances is currently lacking, impeding the development of descriptive observational studies and prospective therapeutic trials. PRIMARY FUNDING SOURCE This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Collapse
Affiliation(s)
- Philippe Mertz
- Service de rhumatologie, INSERM UMR-S1109, Hôpital de Hautepierre, 1 Avenue Molière BP 83049, 67098 Strasbourg Cedex, France; Centre National de Référence des Maladies Auto-immunes Systémiques Rares Est Sud-Ouest (RESO)-LUPUS, European Reference Networks (ERN) ReCONNET and RITA, France.
| | - Clara Wollenschlaeger
- Dermatology Clinic, Hôpitaux Universitaires et Université de Strasbourg, 1 Place de l'Hôpital, 67091 Strasbourg Cedex, France
| | - François Chasset
- Sorbonne Université, Faculté de Médecine, Service de dermatologie et Allergologie, AP-HP, hôpital Tenon, et INSERM U1135, CIMI, Paris
| | - Alina Dima
- Department of Rheumatology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Laurent Arnaud
- Service de rhumatologie, INSERM UMR-S1109, Hôpital de Hautepierre, 1 Avenue Molière BP 83049, 67098 Strasbourg Cedex, France; Centre National de Référence des Maladies Auto-immunes Systémiques Rares Est Sud-Ouest (RESO)-LUPUS, European Reference Networks (ERN) ReCONNET and RITA, France
| |
Collapse
|
22
|
Chang Y, Hummel SN, Watson MN, Jin G, Lian XL, Bao X. Engineered Artificial Human Neutrophils Exhibit Mature Functional Performance. ACS Synth Biol 2023; 12:2262-2270. [PMID: 37523468 PMCID: PMC11070884 DOI: 10.1021/acssynbio.3c00309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Neutrophils, a key innate immune component, are powerful effector leukocytes for mediating opposing effects on tumor progression and ameliorating pathogen infections. However, their short lifespan and complex purification process have limited neutrophil clinical applications. Here we combined genetic engineering technology with a nanodrug system to construct artificial neutrophils that display functions similar to those of native neutrophils. K562 and HL60 human leukemia cells were engineered to express the human G protein-coupled receptor hM4Di. Compared to the parental cells, engineered hM4Di-K562 and hM4Di-HL60 cells exhibited excellent chemotaxis ability towards clozapine-N-oxide (CNO) and superior bacteria phagocytic behavior, resembling native neutrophils. The antibacterial ability of the hM4Di-K562 cells was further enhanced by loading them with the glycopeptide vancomycin via mesoporous silica nanoparticles (Nano@Van). Our proposed artificial cell engineering platform provides a new avenue to investigate the physiological properties of neutrophils.
Collapse
Affiliation(s)
- Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN 47906, USA
| | - Sydney N. Hummel
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Monique N. Watson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Gyuhyung Jin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN 47906, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, The Huck Institutes of the Life Sciences, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN 47906, USA
| |
Collapse
|
23
|
Liu W, Peng J, Wu Y, Ye Z, Zong Z, Wu R, Li H. Immune and inflammatory mechanisms and therapeutic targets of gout: An update. Int Immunopharmacol 2023; 121:110466. [PMID: 37311355 DOI: 10.1016/j.intimp.2023.110466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Gout is an autoimmune disease characterized by acute or chronic inflammation and damage to bone joints induced due to the precipitation of monosodium urate (MSU) crystals. In recent years, with the continuous development of animal models and ongoing clinical investigations, more immune cells and inflammatory factors have been found to play roles in gouty inflammation. The inflammatory network involved in gout has been discovered, providing a new perspective from which to develop targeted therapy for gouty inflammation. Studies have shown that neutrophil macrophages and T lymphocytes play important roles in the pathogenesis and resolution of gout, and some inflammatory cytokines, such as those in the interleukin-1 (IL-1) family, have been shown to play anti-inflammatory or proinflammatory roles in gouty inflammation, but the mechanisms underlying their roles are unclear. In this review, we explore the roles of inflammatory cytokines, inflammasomes and immune cells in the course of gout development and the research status of therapeutic drugs used for inflammation to provide insights into future targeted therapy for gouty inflammation and the direction of gout pathogenesis research.
Collapse
Affiliation(s)
- Wenji Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China; The Second Clinical Medical College of Nanchang University, 330006 Nanchang, China
| | - Jie Peng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China; The Second Clinical Medical College of Nanchang University, 330006 Nanchang, China
| | - Yixin Wu
- Queen Mary College of Nanchang University, 330006 Nanchang, China
| | - Zuxiang Ye
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China; The Second Clinical Medical College of Nanchang University, 330006 Nanchang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 MinDe Road, 330006 Nanchang, China
| | - Rui Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China.
| | - Hui Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, 330006 Nanchang, China.
| |
Collapse
|
24
|
Carnevale S, Di Ceglie I, Grieco G, Rigatelli A, Bonavita E, Jaillon S. Neutrophil diversity in inflammation and cancer. Front Immunol 2023; 14:1180810. [PMID: 37180120 PMCID: PMC10169606 DOI: 10.3389/fimmu.2023.1180810] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Neutrophils are the most abundant circulating leukocytes in humans and the first immune cells recruited at the site of inflammation. Classically perceived as short-lived effector cells with limited plasticity and diversity, neutrophils are now recognized as highly heterogenous immune cells, which can adapt to various environmental cues. In addition to playing a central role in the host defence, neutrophils are involved in pathological contexts such as inflammatory diseases and cancer. The prevalence of neutrophils in these conditions is usually associated with detrimental inflammatory responses and poor clinical outcomes. However, a beneficial role for neutrophils is emerging in several pathological contexts, including in cancer. Here we will review the current knowledge of neutrophil biology and heterogeneity in steady state and during inflammation, with a focus on the opposing roles of neutrophils in different pathological contexts.
Collapse
Affiliation(s)
| | | | - Giovanna Grieco
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | | | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
25
|
Lu Y, Zhou J, Wang Q, Cai J, Yu B, Dai Q, Bao Y, Chen R, Zhang Z, Zhang D, Hou T. Glucocorticoid-loaded pH/ROS Dual-Responsive Nanoparticles Alleviate Joint Destruction by Downregulating the NF-κB Signaling Pathway. Acta Biomater 2023; 164:458-473. [PMID: 37072065 DOI: 10.1016/j.actbio.2023.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/20/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease causing severe symptoms that are difficult to treat. Nano-drug delivery system is recognized as a promising strategy for management of RA. However, how to thoroughly release payloads from nanoformulations and synergistic therapy of RA needs to be further investigated. To address this issue, a pH and reactive oxygen species (ROS) dual-responsive, methylprednisolone (MPS)-loaded and arginine-glycine-aspartic acid (RGD)-modified nanoparticles (NPs) were fabricated using phytochemical and ROS-responsive moiety co-modified α-cyclodextrin (α-CD) as a carrier. In vitro and in vivo experiments verified that the pH/ROS dual-responsive nanomedicine could be efficiently internalized by activated macrophages and synovial cells, and the released MPS could promote transformation of M1-type macrophages into M2 phenotype, thereby down-regulating pro-inflammatory cytokines. In vivo experiments demonstrated that the pH/ROS dual-responsive nanomedicine was remarkably accumulated in the inflamed joints of mice with collagen-induced arthritis (CIA). The accumulated nanomedicine could obviously relieve joint swelling and cartilage destruction without obvious adverse effects. Importantly, the expression of interleukin-6 and tumor necrosis factor-α in the joints of CIA mice were significantly inhibited by the pH/ROS dual-responsive nanomedicine in comparison with free drug and non-targeted counterparts. In addition, the expression of the NF-κB signaling pathway molecules P65 was also significantly decreased by nanomedicine-treatment. Our results reveal that MPS-loaded pH/ROS dual-responsive NPs can effectively alleviate joint destruction via down-regulation of the NF-κB signaling pathway. STATEMENT OF SIGNIFICANCE: Nanomedicine is recognized as an attractive method for the targeting treatment of rheumatoid arthritis (RA). To thorough release of payloads from nanoformulations and synergistic therapy of RA, herein, a phytochemical and ROS-responsive moiety co-modified α-cyclodextrin was used as a pH/ROS dual-responsive carrier to encapsulate methylprednisolone to manage RA. The fabricated nanomedicine can effectively release its payloads under pH and/or ROS microenvironment, and the released drugs dramatically promote transformation of M1-type macrophages into M2 phenotype to reduce the release of pro-inflammatory cytokines. The prepared nanomedicine also obviously decreased the NF-κB signaling pathway molecule P65 expression in the joints, thereby down-regulating pro-inflammatory cytokines expression to alleviate joint swelling and cartilage destruction. We provided a candidate for the targeting treatment of RA.
Collapse
Affiliation(s)
- Yanzhu Lu
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; Department of Orthopaedics, 958th Hospital of Chinese People's Liberation Army (Third Military Medical University), Chongqing 400038, China
| | - Jiangling Zhou
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qianmei Wang
- Department of Pharmacy, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Juan Cai
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Bo Yu
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qijie Dai
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ying Bao
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rui Chen
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhongrong Zhang
- Department of Orthopaedics, 958th Hospital of Chinese People's Liberation Army (Third Military Medical University), Chongqing 400038, China.
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Tianyong Hou
- Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China; National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopaedics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
26
|
Manukyan G, Gallo J, Mikulkova Z, Trajerova M, Savara J, Slobodova Z, Fidler E, Shrestha B, Kriegova E. Phenotypic and functional characterisation of synovial fluid-derived neutrophils in knee osteoarthritis and knee infection. Osteoarthritis Cartilage 2023; 31:72-82. [PMID: 36216277 DOI: 10.1016/j.joca.2022.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/25/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE An increase in the number of neutrophils (NEUs) has long been associated with infections in the knee joints; however, their impact on knee osteoarthritis (KOA) pathophysiology remains largely unexplored. DESIGN This study compared the phenotypic and functional characteristics of synovial fluid (SF)-derived NEUs in KOA and knee infection (INF). RESULTS KOA NEUs were characterised by a lower expression of CD11b, CD54, and CD64 and higher expression of CD62L, TLR2, and TLR4 compared with INF NEUs. Except for CCL2, lower levels of inflammatory mediators and proteases were detected in KOA SF than in INF SF. Functionally, KOA NEUs displayed increased reactive oxygen species production and phagocytic activity compared with INF NEUs. Moreover, KOA and INF NEUs differed in cell sizes, histological characteristics of the surrounding synovial tissues, and their effects on the endothelial cells assessed by human umbilical vein endothelial cells. When KOA patients were subdivided based on the SF NEU abundance, patients with high NEUs (10%-60%) were characterised by i) elevated SF protein levels of TNF-α, IL-1RA, MMP-9, sTREM-1, VILIP-1 and ii) lower CD54, CD64, TLR2 and TLR4 expression compared to patients with low NEUs (<10%). Analysis of paired SF samples suggests that low or high NEU percentages, respectively, persist throughout the course of disease. CONCLUSIONS Our findings suggest that NEU may play a significant role in KOA pathophysiology. Further studies should explore the mechanisms that contribute to the increased number of NEUs in SF and the clinical consequences of neutrophilic phenotype in KOA.
Collapse
Affiliation(s)
- G Manukyan
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic; Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, Yerevan, Armenia.
| | - J Gallo
- Department of Orthopedics, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic.
| | - Z Mikulkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic.
| | - M Trajerova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic.
| | - J Savara
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic; Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, Ostrava, Czech Republic.
| | - Z Slobodova
- Department of Clinical and Molecular Pathology, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic.
| | - E Fidler
- Department of Orthopedics, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic.
| | - B Shrestha
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic.
| | - E Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacký University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic.
| |
Collapse
|
27
|
Targeting thromboinflammation in antiphospholipid syndrome. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2022; 21:744-757. [PMID: 36696191 DOI: 10.1016/j.jtha.2022.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023]
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disease, where persistent presence of antiphospholipid antibodies (aPL) leads to thrombotic and obstetric complications. APS is a paradigmatic thromboinflammatory disease. Thromboinflammation is a pathophysiological mechanism coupling inflammation and thrombosis, which contributes to the pathophysiology of cardiovascular disease. APS can serve as a model to unravel mechanisms of thromboinflammation and the relationship between innate immune cells and thrombosis. Monocytes are activated by aPL into a proinflammatory and procoagulant phenotype, producing proinflammatory cytokines such as tumor necrosis factor α, interleukin 6, as well as tissue factor. Important cellular signaling pathways involved are the NF-κB-pathway, mammalian target of rapamycin (mTOR) signaling, and the NOD-, LRR-, and pyrin domain-containing protein 3 inflammasome. All of these may serve as future therapeutic targets. Neutrophils produce neutrophil extracellular traps in response to aPL, and this leads to thrombosis. Thrombosis in APS also stems from increased interaction of neutrophils with endothelial cells through P-selectin glycoprotein ligand-1. NETosis can be targeted not only with several experimental therapeutics, such as DNase, but also through the redirection of current therapies such as defibrotide and the antiplatelet agent dipyridamole. Activation of platelets by aPL leads to a procoagulant phenotype. Platelet-leukocyte interactions are increased, possibly mediated by increased levels of soluble P-selectin and soluble CD40-ligand. Platelet-directed future treatment options involve the inhibition of several platelet receptors activated by aPL, as well as mTOR inhibition. This review discusses mechanisms underlying thromboinflammation in APS that present targetable therapeutic options, some of which may be generalizable to other thromboinflammatory diseases.
Collapse
|
28
|
Geerdink RJ, Pascoal Ramos MI, van den Hoogen LL, Radstake TRDJ, Shibayama S, Shibuya A, Bont L, Meyaard L. Differential isoform expression of Allergin-1 during acute and chronic inflammation. Immun Inflamm Dis 2022; 10:e739. [PMID: 36444625 PMCID: PMC9695092 DOI: 10.1002/iid3.739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/08/2022] [Accepted: 10/28/2022] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Neutrophils are crucial to antimicrobial defense, but excessive neutrophilic inflammation elicits immune pathology. Currently, no effective treatment exists to curb neutrophil activation. However, neutrophils express a variety of inhibitory receptors which may represent potential therapeutic targets to limit neutrophilic inflammation. Indeed, we previously showed that the inhibitory collagen receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) regulates neutrophilic airway inflammation and inhibits neutrophil extracellular trap formation. The inhibitory receptor Allergin-1 is expressed by myeloid cells and B cells. Allergin-1 suppresses mast cell and basophil activation, but a potential regulatory role on neutrophils remains unexplored. We aimed to demonstrate the regulation of neutrophils by Allergin-1. METHODS We examine Allergin-1 isoform expression on human neutrophils during homeostatic (healthy donors) and chronic inflammatory (systemic lupus erythematosus patients) conditions in comparison to other circulating leukocytes by flow cytometry. To reveal a potential role for Allergin-1 in regulating neutrophilic inflammation, we experimentally infect wild-type (WT) and Allergin-1-deficient mice with a respiratory syncytial virus (RSV) and monitor disease severity and examine cellular airway infiltrate. Flow cytometry was used to confirm Allergin-1 expression by airway-infiltrated neutrophils in RSV infection-induced bronchiolitis patients. RESULTS Only the short 1 (S1) isoform, but not the long (L) or S2 isoform could be detected on blood leukocytes, with the exception of nonclassical monocytes, which exclusively express the S2 isoform. Allergin-1 expression levels did not vary significantly between healthy individuals and patients with the systemic inflammatory disease on any interrogated cell type. Airway-infiltrated neutrophils of pediatric RSV bronchiolitis patients were found to express Allergin-1S1. However, Allergin-1-deficient mice experimentally infected with RSV did not show exacerbated disease or increased neutrophil airway infiltration compared to WT littermates. CONCLUSION Allergin-1 isoform expression is unaffected by chronic inflammatory conditions. In stark contrast to fellow inhibitory receptor LAIR-1, Allergin-1 does not regulate neutrophilic inflammation in a mouse model of RSV bronchiolitis.
Collapse
Affiliation(s)
- Ruben J. Geerdink
- Center for Translational Immunology, University Medical Centre UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Maria Inês Pascoal Ramos
- Center for Translational Immunology, University Medical Centre UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Luuk L. van den Hoogen
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Timothy R. D. J. Radstake
- Center for Translational Immunology, University Medical Centre UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Shiro Shibayama
- Research Centre of Immunology, Tsukuba InstituteONO Pharmaceutical Co., Ltd.TsukubaIbarakiJapan
| | - Akira Shibuya
- Department of Immunology, Faculty of MedicineUniversity of TsukubaTsukubaIbarakiJapan
| | - Louis Bont
- Center for Translational Immunology, University Medical Centre UtrechtUtrecht UniversityUtrechtThe Netherlands
- Department of Paediatrics, Wilhelmina Children's HospitalUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Centre UtrechtUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
29
|
Özcan A, Boyman O. Mechanisms regulating neutrophil responses in immunity, allergy, and autoimmunity. Allergy 2022; 77:3567-3583. [PMID: 36067034 PMCID: PMC10087481 DOI: 10.1111/all.15505] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/16/2022] [Accepted: 09/03/2022] [Indexed: 01/28/2023]
Abstract
Neutrophil granulocytes, or neutrophils, are the most abundant circulating leukocytes in humans and indispensable for antimicrobial immunity, as exemplified in patients with inborn and acquired defects of neutrophils. Neutrophils were long regarded as the foot soldiers of the immune system, solely destined to execute a set of effector functions against invading pathogens before undergoing apoptosis, the latter of which was ascribed to their short life span. This simplistic understanding of neutrophils has now been revised on the basis of insights gained from the use of mouse models and single-cell high-throughput techniques, revealing tissue- and context-specific roles of neutrophils in guiding immune responses. These studies also demonstrated that neutrophil responses were controlled by sophisticated feedback mechanisms, including directed chemotaxis of neutrophils to tissue-draining lymph nodes resulting in modulation of antimicrobial immunity and inflammation. Moreover, findings in mice and humans showed that neutrophil responses adapted to different deterministic cytokine signals, which controlled their migration and effector function as well as, notably, their biologic clock by affecting the kinetics of their aging. These mechanistic insights have important implications for health and disease in humans, particularly, in allergic diseases, such as atopic dermatitis and allergic asthma bronchiale, as well as in autoinflammatory and autoimmune diseases. Hence, our improved understanding of neutrophils sheds light on novel therapeutic avenues, focusing on molecularly defined biologic agents.
Collapse
Affiliation(s)
- Alaz Özcan
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Rawat K, Shrivastava A. Neutrophils as emerging protagonists and targets in chronic inflammatory diseases. Inflamm Res 2022; 71:1477-1488. [PMID: 36289077 PMCID: PMC9607713 DOI: 10.1007/s00011-022-01627-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/15/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Neutrophils are the key cells of our innate immune system with a primary role in host defense. They rapidly arrive at the site of infection and display a range of effector functions including phagocytosis, degranulation, and NETosis to eliminate the invading pathogens. However, in recent years, studies focusing on neutrophil biology have revealed the highly adaptable nature and versatile functions of these cells which extend beyond host defense. Neutrophils are now referred to as powerful mediators of chronic inflammation. In several chronic inflammatory diseases, their untoward actions, such as immense infiltration, hyper-activation, dysregulation of effector functions, and extended survival, eventually contribute to disease pathogenesis. Therefore, a better understanding of neutrophils and their effector functions in prevalent chronic diseases will not only shed light on their role in disease pathogenesis but will also reveal them as novel therapeutic targets. METHODS We performed a computer-based online search using the databases, PubMed.gov and Clinical trials.gov for published research and review articles. RESULTS AND CONCLUSIONS This review provides an assessment of neutrophils and their crucial involvement in various chronic inflammatory disorders ranging from respiratory, neurodegenerative, autoimmune, and cardiovascular diseases. In addition, we also discuss the therapeutic approach for targeting neutrophils in disease settings that will pave the way forward for future research.
Collapse
Affiliation(s)
- Kavita Rawat
- Department of Zoology, University of Delhi, New Delhi, Delhi 110007 India
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, New Delhi, Delhi 110007 India
| |
Collapse
|
31
|
Solow EB, Mineo C. Editorial: Cardiovascular diseases in autoimmune diseases: Dyslipidemia and vascular inflammation. Front Cardiovasc Med 2022; 9:1043669. [DOI: 10.3389/fcvm.2022.1043669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
|
32
|
Aymonnier K, Amsler J, Lamprecht P, Salama A, Witko‐Sarsat V. The neutrophil: A key resourceful agent in immune‐mediated vasculitis. Immunol Rev 2022; 314:326-356. [PMID: 36408947 DOI: 10.1111/imr.13170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The term "vasculitis" refers to a group of rare immune-mediated diseases characterized by the dysregulated immune system attacking blood vessels located in any organ of the body, including the skin, lungs, and kidneys. Vasculitides are classified according to the size of the vessel that is affected. Although this observation is not specific to small-, medium-, or large-vessel vasculitides, patients show a high circulating neutrophil-to-lymphocyte ratio, suggesting the direct or indirect involvement of neutrophils in these diseases. As first responders to infection or inflammation, neutrophils release cytotoxic mediators, including reactive oxygen species, proteases, and neutrophil extracellular traps. If not controlled, this dangerous arsenal can injure the vascular system, which acts as the main transport route for neutrophils, thereby amplifying the initial inflammatory stimulus and the recruitment of immune cells. This review highlights the ability of neutrophils to "set the tone" for immune cells and other cells in the vessel wall. Considering both their long-established and newly described roles, we extend their functions far beyond their direct host-damaging potential. We also review the roles of neutrophils in various types of primary vasculitis, including immune complex vasculitis, anti-neutrophil cytoplasmic antibody-associated vasculitis, polyarteritis nodosa, Kawasaki disease, giant cell arteritis, Takayasu arteritis, and Behçet's disease.
Collapse
Affiliation(s)
- Karen Aymonnier
- INSERM U1016, Institut Cochin, Université Paris Cité, CNRS 8104 Paris France
| | - Jennifer Amsler
- INSERM U1016, Institut Cochin, Université Paris Cité, CNRS 8104 Paris France
| | - Peter Lamprecht
- Department of Rheumatology and Clinical Immunology University of Lübeck Lübeck Germany
| | - Alan Salama
- Department of Renal Medicine, Royal Free Hospital University College London London UK
| | | |
Collapse
|
33
|
Völs S, Kaisar-Iluz N, Shaul ME, Ryvkin A, Ashkenazy H, Yehuda A, Atamneh R, Heinberg A, Ben-David-Naim M, Nadav M, Hirsch S, Mitesser V, Salpeter SJ, Dzikowski R, Hayouka Z, Gershoni JM, Fridlender ZG, Granot Z. Targeted nanoparticles modify neutrophil function in vivo. Front Immunol 2022; 13:1003871. [PMID: 36275643 PMCID: PMC9580275 DOI: 10.3389/fimmu.2022.1003871] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophils play critical roles in a broad spectrum of clinical conditions. Accordingly, manipulation of neutrophil function may provide a powerful immunotherapeutic approach. However, due to neutrophils characteristic short half-life and their large population number, this possibility was considered impractical. Here we describe the identification of peptides which specifically bind either murine or human neutrophils. Although the murine and human neutrophil-specific peptides are not cross-reactive, we identified CD177 as the neutrophil-expressed binding partner in both species. Decorating nanoparticles with a neutrophil-specific peptide confers neutrophil specificity and these neutrophil-specific nanoparticles accumulate in sites of inflammation. Significantly, we demonstrate that encapsulating neutrophil modifying small molecules within these nanoparticles yields specific modulation of neutrophil function (ROS production, degranulation, polarization), intracellular signaling and longevity both in vitro and in vivo. Collectively, our findings demonstrate that neutrophil specific targeting may serve as a novel mode of immunotherapy in disease.
Collapse
Affiliation(s)
- Sandra Völs
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Naomi Kaisar-Iluz
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Merav E. Shaul
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Arik Ryvkin
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Haim Ashkenazy
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Avishag Yehuda
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ronza Atamneh
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Adina Heinberg
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| | | | | | | | - Vera Mitesser
- Department of Microbiology and Molecular Genetics, Kuvin Center for the Study of Infectious and Tropical Diseases, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, Kuvin Center for the Study of Infectious and Tropical Diseases, Institute for Medical Research Israel-Canada, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Zvi Hayouka
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jonathan M. Gershoni
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Zvi G. Fridlender
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- *Correspondence: Zvi G. Fridlender, ; Zvi Granot,
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
- *Correspondence: Zvi G. Fridlender, ; Zvi Granot,
| |
Collapse
|
34
|
Xue Y, Zhao Z, Zhao Y, Wang C, Shen S, Qiu Z, Cui R, Zhou S, Fang L, Chen Z, Zhu H, Zhu B. Influence of cationic groups on the antibacterial behavior of cationic nano-sized hyperbranched polymers to enhance bacteria-infected wound healing. NANOSCALE 2022; 14:12789-12803. [PMID: 36004750 DOI: 10.1039/d2nr02149h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the continuous emergence of drug-resistant pathogens, new strategies with high antibacterial efficacy are urgently needed. Herein, five cationic nano-sized hyperbranched polymers (CNHBPs) with cationic functional groups have been constructed, and their antibacterial mechanism has been studied in detail. CNHBPs bearing secondary ammonium salt groups and long alkyl chains (S12-CNHBP) exhibited weak antibacterial and antibiofilm ability, while CNHBPs bearing quaternary ammonium salt groups and long alkyl chains (Q12-CNHBP) showed the highest antimicrobial and strongest antibiofilm activities. ζ potential and isothermal titration microcalorimetry (ITC) results suggest that the negatively charged surfaces of bacterial cells provided Q12-CNHBP with a higher intrinsic electrostatic driving force for bacterial killing than that with S12-CNHBP. Fluorescent tracing and morphological observations indicate that the bacterial genome might be another antibacterial target for S12-CNHBP in addition to the cell wall and membrane, which are mainly antibacterial targets for Q12-CNHBP, making it less likely to induce bacterial resistance. Surprisingly, Q12-CNHBP exhibited superior in vivo therapeutic efficacy in a mouse wound model of methicillin-resistant Staphylococcus aureus (MRSA) infection with low toxicity during treatment. These advantages and ease of preparation will undoubtedly distinguish Q12-CNHBP as a new class of suitable candidates to combat multidrug-resistant pathogen infections. This study opens up a new avenue for exploiting antibacterial biomaterials to treat infections caused by drug-resistant bacteria.
Collapse
Affiliation(s)
- Yunyun Xue
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Zihao Zhao
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yu Zhao
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Chuyao Wang
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Shuyang Shen
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Zelin Qiu
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ronglu Cui
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Shien Zhou
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Lifeng Fang
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Baoku Zhu
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
35
|
Wang J, Chen X. Junctional Adhesion Molecules: Potential Proteins in Atherosclerosis. Front Cardiovasc Med 2022; 9:888818. [PMID: 35872908 PMCID: PMC9302484 DOI: 10.3389/fcvm.2022.888818] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Junctional adhesion molecules (JAMs) are cell-cell adhesion molecules of the immunoglobulin superfamily and are involved in the regulation of diverse atherosclerosis-related processes such as endothelial barrier maintenance, leucocytes transendothelial migration, and angiogenesis. To combine and further broaden related results, this review concluded the recent progress in the roles of JAMs and predicted future studies of JAMs in the development of atherosclerosis.
Collapse
Affiliation(s)
- Junqi Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Xiaoping Chen,
| |
Collapse
|
36
|
Xue Y, Qiu Z, Zhao Z, Wang C, Cui R, Shen S, Zhao Y, Zhou S, Fang L, Chen Z, Zhu H, Zhu B. Secondary Ammonium-Based Hyperbranched Poly(amidoamine) with Excellent Membrane-Active Property for Multidrug-Resistant Bacterial Infection. ACS APPLIED BIO MATERIALS 2022; 5:3384-3395. [PMID: 35765122 DOI: 10.1021/acsabm.2c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the rapid emergence of microbial infections induced by "superbugs", public health and the global economy are threatened by the lack of effective and biocompatible antibacterial agents. Herein, we systematically design a series of secondary ammonium-based hyperbranched poly(amidoamine) (SAHBP) with different alkyl chain lengths for probing high-efficacy antibacterial agents. SAHBP modified with alkyl tails at the hyperbranched core could efficiently kill Escherichia coli and Staphylococcus aureus, two types of clinically important bacteria worldwide. The best SAHBP with 12-carbon-long alkyl tails (SAHBP-12) also showed high activity against problematic multidrug-resistant bacteria, including Pseudomonas aeruginosa and methicillin-resistant S. aureus (MRSA). Based on ζ potential, isothermal titration microcalorimetry (ITC), and membrane integrity assays, it is found that SAHBP-12 could attach to the cell membrane via electrostatic adsorption and hydrophobic interactions, following which the integrity of the bacterial cell wall and the cell membrane is disrupted, resulting in severe cell membrane damage and the leakage of cytoplasmic contents, finally causing bacterial cell death. Impressively, benefiting from excellent membrane-active property, SAHBP-12 exhibited robust therapeutic efficacy in MRSA-infected mice wounds. Moreover, SAHBP-12 also showed excellent biosafety in vitro and in vivo, which undoubtedly distinguished it as a potent weapon in combating the growing threat of problematic multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Yunyun Xue
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zelin Qiu
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zihao Zhao
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chuyao Wang
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ronglu Cui
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shuyang Shen
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yu Zhao
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shien Zhou
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lifeng Fang
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Baoku Zhu
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
37
|
He Y, Chen R, Zhang M, Wang B, Liao Z, Shi G, Li Y. Abnormal Changes of Monocyte Subsets in Patients With Sjögren’s Syndrome. Front Immunol 2022; 13:864920. [PMID: 35309355 PMCID: PMC8931697 DOI: 10.3389/fimmu.2022.864920] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background Recent studies have proven the existence of distinct monocyte subsets, which play a significant role in the development of some rheumatic diseases such as systemic lupus erythematosus (SLE). This study was performed to define the changes of monocyte subsets in patients with Sjögren’s Syndrome (SjS). Methods Single cell RNA-sequencing (scRNA-seq) data of monocytes from SjS patients and controls were analyzed. The transcriptomic changes in monocyte subsets between SjS and controls were identified and potential key functional pathways involved in SjS development were also explored. Results A total of 11 monocyte subsets were identified in the scRNA-seq analyses of monocytes. A new monocyte subset characterized by higher expression of VNN2 (GPI-80) and S100A12 (Monocyte cluster 3) was identified, and it was increased in SjS patients. Compared with controls, almost all monocyte subsets from SjS patients had increased expression of TNFSF10 (TRAIL). Moreover, interferon (IFN)-related and neutrophil activation-associated pathways were main up-regulated pathways in the monocytes of SjS patients. Conclusion This study uncovered the abnormal changes in monocyte subsets and their transcriptomic changes in SjS patients, and identified TNFSF10 high/+ monocytes as a potential key player in SjS pathogenesis and a promising target for SjS treatment.
Collapse
Affiliation(s)
- Yan He
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen Science and Technology Bureau, Xiamen, China
| | - Rongjuan Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen Science and Technology Bureau, Xiamen, China
| | - Mengqin Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen Science and Technology Bureau, Xiamen, China
| | - Bin Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen Science and Technology Bureau, Xiamen, China
| | - Zhangdi Liao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen Science and Technology Bureau, Xiamen, China
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen Science and Technology Bureau, Xiamen, China
- *Correspondence: Guixiu Shi, ; Yan Li,
| | - Yan Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen Science and Technology Bureau, Xiamen, China
- *Correspondence: Guixiu Shi, ; Yan Li,
| |
Collapse
|