1
|
Xie W, Zhang Y, Xu Q, Zhong G, Lin J, He H, Du Q, Tan H, Chen M, Wu Z, Deng Y, Han Z, Lu J, Ye J, Zou F, Zhuo Y, Zhong W. A Unique Approach: Biomimetic Graphdiyne-Based Nanoplatform to Treat Prostate Cancer by Combining Cuproptosis and Enhanced Chemodynamic Therapy. Int J Nanomedicine 2024; 19:3957-3972. [PMID: 38711614 PMCID: PMC11073530 DOI: 10.2147/ijn.s455355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/20/2024] [Indexed: 05/08/2024] Open
Abstract
Purpose Current treatment approaches for Prostate cancer (PCa) often come with debilitating side effects and limited therapeutic outcomes. There is urgent need for an alternative effective and safe treatment for PCa. Methods We developed a nanoplatform to target prostate cancer cells based on graphdiyne (GDY) and a copper-based metal-organic framework (GDY-CuMOF), that carries the chemotherapy drug doxorubicin (DOX) for cancer treatment. Moreover, to provide GDY-CuMOF@DOX with homotypic targeting capability, we coated the PCa cell membrane (DU145 cell membrane, DCM) onto the surface of GDY-CuMOF@DOX, thus obtaining a biomimetic nanoplatform (DCM@GDY-CuMOF@DOX). The nanoplatform was characterized by using transmission electron microscope, atomic force microscope, X-ray diffraction, etc. Drug release behavior, antitumor effects in vivo and in vitro, and biosafety of the nanoplatform were evaluated. Results We found that GDY-CuMOF exhibited a remarkable capability to load DOX mainly through π-conjugation and pore adsorption, and it responsively released DOX and generated Cu+ in the presence of glutathione (GSH). In vivo experiments demonstrated that this nanoplatform exhibits remarkable cell-killing efficiency by generating lethal reactive oxygen species (ROS) and mediating cuproptosis. In addition, DCM@GDY-CuMOF@DOX effectively suppresses tumor growth in vivo without causing any apparent side effects. Conclusion The constructed DCM@GDY-CuMOF@DOX nanoplatform integrates tumor targeting, drug-responsive release and combination with cuproptosis and chemodynamic therapy, offering insights for further biomedical research on efficient PCa treatment.
Collapse
Affiliation(s)
- Wenjie Xie
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Yixun Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Qianfeng Xu
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Guowei Zhong
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Jundong Lin
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, People’s Republic of China
| | - Huichan He
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, People’s Republic of China
| | - Qiuling Du
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Huijing Tan
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Muqi Chen
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Zhenjie Wu
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, People’s Republic of China
| | - Yulin Deng
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Zhaodong Han
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, People’s Republic of China
| | - Jianming Lu
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, People’s Republic of China
| | - Jianheng Ye
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, People’s Republic of China
| | - Fen Zou
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Yangjia Zhuo
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
| | - Weide Zhong
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, People’s Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, People’s Republic of China
| |
Collapse
|
5
|
Xiang Z, Xu C, Wu G, Liu B, Wu D. CircRNA-UCK2 Increased TET1 Inhibits Proliferation and Invasion of Prostate Cancer Cells Via Sponge MiRNA-767-5p. Open Med (Wars) 2019; 14:833-842. [PMID: 31844675 PMCID: PMC6884924 DOI: 10.1515/med-2019-0097] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/06/2019] [Indexed: 12/27/2022] Open
Abstract
A majority of the patients with advanced prostate cancer initially respond to androgen deprivation therapy and enzalutamide therapy, but eventually enter the castration-resistant prostate cancer (CRPC) phase. Some studies have shown that the activation of other signalling pathways in CRPC cells replaces the function of the androgen receptor, as well as promotes cell metastasis and progression. However, the mechanisms underlying this side effect remain unclear. The present study aims to explore the continued progression of cells after enzalutamide resistance. Low expression of circRNA-UCK2 (circUCK2) was detected in enzalutamide-resistant (EnzR) cells. Moreover, miR-767-5p was found to be resistant to EnzR cells when the level of circUCK2 is increased. The decrease in free miR-767-5p increases the expression of TET1 protein through the post-transcriptional regulation of mRNA, thereby inhibiting cell invasion and proliferation. Knocking down circUCK2 in enzalutamide-sensitive cells reduces the concentration of TET1, thereby increasing cell invasion and proliferation. A preclinical study using in vivo mouse models also showed that a high expression of circUCK2 inhibited the EnzR cell growth. Thus, this study might aid in developing a novel therapy to better suppress the CRPC progression.
Collapse
Affiliation(s)
- Zhendong Xiang
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China.,Department of Urology, The People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang 443003, China
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Gang Wu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Bo Liu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|