1
|
Soleimani M. Not all kidney cysts are created equal: a distinct renal cystogenic mechanism in tuberous sclerosis complex (TSC). Front Physiol 2023; 14:1289388. [PMID: 38028758 PMCID: PMC10663234 DOI: 10.3389/fphys.2023.1289388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Tuberous Sclerosis Complex (TSC) is an autosomal dominant genetic disease caused by mutations in either TSC1 or TSC2 genes. Approximately, two million individuals suffer from this disorder worldwide. TSC1 and TSC2 code for the proteins harmartin and tuberin, respectively, which form a complex that regulates the mechanistic target of rapamycin complex 1 (mTORC1) and prevents uncontrollable cell growth. In the kidney, TSC presents with the enlargement of benign tumors (angiomyolipomas) and cysts whose presence eventually causes kidney failure. The factors promoting cyst formation and tumor growth in TSC are poorly understood. Recent studies on kidney cysts in various mouse models of TSC, including mice with principal cell- or pericyte-specific inactivation of TSC1 or TSC2, have identified a unique cystogenic mechanism. These studies demonstrate the development of numerous cortical cysts that are predominantly comprised of hyperproliferating A-intercalated (A-IC) cells that express both TSC1 and TSC2. An analogous cellular phenotype in cystic epithelium is observed in both humans with TSC and in TSC2+/- mice, confirming a similar kidney cystogenesis mechanism in TSC. This cellular phenotype profoundly contrasts with kidney cysts found in Autosomal Dominant Polycystic Kidney Disease (ADPKD), which do not show any notable evidence of A-IC cells participating in the cyst lining or expansion. RNA sequencing (RNA-Seq) and confirmatory expression studies demonstrate robust expression of Forkhead Box I1 (FOXI1) transcription factor and its downstream targets, including apical H+-ATPase and cytoplasmic carbonic anhydrase 2 (CAII), in the cyst epithelia of Tsc1 (or Tsc2) knockout (KO) mice, but not in Polycystic Kidney Disease (Pkd1) mutant mice. Deletion of FOXI1, which is vital to H+-ATPase expression and intercalated (IC) cell viability, completely inhibited mTORC1 activation and abrogated the cyst burden in the kidneys of Tsc1 KO mice. These results unequivocally demonstrate the critical role that FOXI1 and A-IC cells, along with H+-ATPase, play in TSC kidney cystogenesis. This review article will discuss the latest research into the causes of kidney cystogenesis in TSC with a focus on possible therapeutic options for this devastating disease.
Collapse
Affiliation(s)
- Manoocher Soleimani
- Department of Medicine, New Mexico Veterans Health Care Center, Albuquerque, NM, United States
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
2
|
Profiling of G-Protein Coupled Receptors in Adipose Tissue and Differentiating Adipocytes Offers a Translational Resource for Obesity/Metabolic Research. Cells 2023; 12:cells12030377. [PMID: 36766718 PMCID: PMC9913134 DOI: 10.3390/cells12030377] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are expressed essentially on all cells, facilitating cellular responses to external stimuli, and are involved in nearly every biological process. Several members of this family play significant roles in the regulation of adipogenesis and adipose metabolism. However, the expression and functional significance of a vast number of GPCRs in adipose tissue are unknown. We used a high-throughput RT-PCR panel to determine the expression of the entire repertoire of non-sensory GPCRs in mouse white, and brown adipose tissue and assess changes in their expression during adipogenic differentiation of murine adipocyte cell line, 3T3-L1. In addition, the expression of GPCRs in subcutaneous adipose tissues from lean, obese, and diabetic human subjects and in adipocytes isolated from regular chow and high-fat fed mice were evaluated by re-analyzing RNA-sequencing data. We detected a total of 292 and 271 GPCRs in mouse white and brown adipose tissue, respectively. There is a significant overlap in the expression of GPCRs between the two adipose tissue depots, but several GPCRs are specifically expressed in one of the two tissue types. Adipogenic differentiation of 3T3-L1 cells had a profound impact on the expression of several GPCRs. RNA sequencing of subcutaneous adipose from healthy human subjects detected 255 GPCRs and obesity significantly changed the expression of several GPCRs in adipose tissue. High-fat diet had a significant impact on adipocyte GPCR expression that was similar to human obesity. Finally, we report several highly expressed GPCRs with no known role in adipose biology whose expression was significantly altered during adipogenic differentiation, and/or in the diseased human subjects. These GPCRs could play an important role in adipose metabolism and serve as a valuable translational resource for obesity and metabolic research.
Collapse
|
3
|
Heidman LM, Peinetti N, Copello VA, Burnstein KL. Exploiting Dependence of Castration-Resistant Prostate Cancer on the Arginine Vasopressin Signaling Axis by Repurposing Vaptans. Mol Cancer Res 2022; 20:1295-1304. [PMID: 35503085 PMCID: PMC9357166 DOI: 10.1158/1541-7786.mcr-21-0927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/08/2021] [Accepted: 04/28/2022] [Indexed: 02/07/2023]
Abstract
Men with advanced prostate cancer are treated by androgen deprivation therapy but the disease recurs as incurable castration-resistant prostate cancer (CRPC), requiring new treatment options. We previously demonstrated that the G protein-coupled receptor (GPCR) arginine vasopressin receptor type1A (AVPR1A) is expressed in CRPC and promotes castration-resistant growth in vitro and in vivo. AVPR1A is part of a family of GPCR's including arginine vasopressin receptor type 2 (AVPR2). Interrogation of prostate cancer patient sample data revealed that coexpression of AVPR1A and AVPR2 is highly correlated with disease progression. Stimulation of AVPR2 with a selective agonist desmopressin promoted CRPC cell proliferation through cAMP/protein kinase A signaling, consistent with AVPR2 coupling to the G protein subunit alpha s. In contrast, blocking AVPR2 with a selective FDA-approved antagonist, tolvaptan, reduced cell growth. In CRPC xenografts, antagonizing AVPR2, AVPR1A, or both significantly reduced CRPC tumor growth as well as decreased on-target markers of tumor burden. Combinatorial use of AVPR1A and AVPR2 antagonists promoted apoptosis synergistically in CRPC cells. Furthermore, we found that castration-resistant cells produced AVP, the endogenous ligand for arginine vasopressin receptors, and knockout of AVP in CRPC cells significantly reduced proliferation suggesting possible AVP autocrine signaling. These data indicate that the AVP/arginine vasopressin receptor signaling axis represents a promising and clinically actionable target for CRPC. IMPLICATIONS The arginine vasopressin signaling axis in CRPC provides a therapeutic window that is targetable through repurposing safe and effective AVPR1A and AVPR2 antagonists.
Collapse
Affiliation(s)
- Laine M. Heidman
- 1Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Nahuel Peinetti
- 1Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Valeria A. Copello
- 1Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Kerry L. Burnstein
- 1Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, and Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
4
|
Cai H, Chen SM, Ke ZB, Chen H, Zhu JM, Lin TT, Huang F, Wei Y, Zheng QS, Xue XY, Sun XL, Xu N. Development and Validation of Hub Genes for Adrenal Aldosterone-Producing Adenoma by Integrated Bioinformatics Analysis. Int J Gen Med 2021; 14:10003-10013. [PMID: 34984024 PMCID: PMC8702988 DOI: 10.2147/ijgm.s330956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To develop and validate hub genes involving in the development and progression of primary aldosteronism (PA) and adrenal aldosterone-producing adenoma (APA). MATERIALS AND METHODS A total of four datasets of gene expression profiles related to APA were downloaded from GEO datasets. GSE60042 and GSE8514 were used to identify DEGs. Weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network module analysis were conducted. GO and KEGG enrichment analysis was performed. GSE10927 and GSE33371 were used for further external validation. RESULTS We identified a total of 892 DEGs from GSE60042 and 1167 DEGs from GSE8514. WGCNA analysis demonstrated that the blue module (255 genes) and turquoise module (303 genes) were significantly correlated with APA. PPI networks were then constructed. GO term enrichment analysis suggested that cellular divalent inorganic cation homeostasis, calcium ion homeostasis, collagen-containing extracellular matrix, transport vesicle and metal ion transmembrane transporter activity were the vital annotations. KEGG pathway analysis found that these genes were significantly enriched in neuroactive ligand-receptor interaction, calcium signaling pathway. Finally, we identified a total of 11 candidate genes involving in the development and progression of APA and PA. Besides, two independent datasets (GSE10927 and GSE33371) were used for external validation, and there were seven hub genes successfully verified, including C3, GRM3, AVPR1A, WFS1, PTGFR, NTSR2, and JUN. CONCLUSION These newly identified genes could contribute to the understanding of potential mechanism in APA and PA and might be promising targets for the treatment of APA and PA.
Collapse
Affiliation(s)
- Hai Cai
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Shao-Ming Chen
- Department of Nuclear Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People's Republic of China
| | - Zhi-Bin Ke
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Hang Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Jun-Ming Zhu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Ting-Ting Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Fei Huang
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Central Lab, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Yong Wei
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Xiong-Lin Sun
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| |
Collapse
|