1
|
Zeng Q, Zhang S, Leng N, Xing Y. Advancing tumor vaccines: Overcoming TME challenges, delivery strategies, and biomaterial-based vaccine for enhanced immunotherapy. Crit Rev Oncol Hematol 2025; 205:104576. [PMID: 39581246 DOI: 10.1016/j.critrevonc.2024.104576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/03/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024] Open
Abstract
Tumor vaccines, as an immunotherapeutic approach, harness the body's immune cells to provoke antitumor responses, which have shown promising efficacy in clinical settings. However, the immunosuppressive tumor microenvironment (TME) and the ineffective vaccine delivery systems hinder the progression of many vaccines beyond phase II trials. This article begins with a comprehensive review of the complex interactions between tumor vaccines and TME, summarizing the current state of vaccine clinical research. Subsequently, we review recent advancements in targeted vaccine delivery systems and explore biomaterial-based tumor vaccines as a strategy to improve the efficacy of both delivery systems and treatment. Finally, we have presented our perspectives on tumor vaccine development, aiming to advance the field towards the creation of more effective tumor vaccines.
Collapse
Affiliation(s)
- Qingsong Zeng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shibo Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ning Leng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
2
|
Grant M, Ni Lee L, Chinnakannan S, Tong O, Kwok J, Cianci N, Tillman L, Saha A, Pereira Almeida V, Leung C. Unlocking cancer vaccine potential: What are the key factors? Hum Vaccin Immunother 2024; 20:2331486. [PMID: 38564321 PMCID: PMC11657071 DOI: 10.1080/21645515.2024.2331486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer is a global health challenge, with changing demographics and lifestyle factors producing an increasing burden worldwide. Screening advancements are enabling earlier diagnoses, but current cancer immunotherapies only induce remission in a small proportion of patients and come at a high cost. Cancer vaccines may offer a solution to these challenges, but they have been mired by poor results in past decades. Greater understanding of tumor biology, coupled with the success of vaccine technologies during the COVID-19 pandemic, has reinvigorated cancer vaccine development. With the first signs of efficacy being reported, cancer vaccines may be beginning to fulfill their potential. Solid tumors, however, present different hurdles than infectious diseases. Combining insights from previous cancer vaccine clinical development and contemporary knowledge of tumor immunology, we ask: who are the 'right' patients, what are the 'right' targets, and which are the 'right' modalities to maximize the chances of cancer vaccine success?
Collapse
|
3
|
Tonelli TP, Eickhoff JC, Johnson LE, Liu G, McNeel DG. Long-term follow up of patients treated with a DNA vaccine (pTVG-hp) for PSA-recurrent prostate cancer. Hum Vaccin Immunother 2024; 20:2395680. [PMID: 39208856 PMCID: PMC11364063 DOI: 10.1080/21645515.2024.2395680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/25/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
We have previously reported two single-agent phase I trials, evaluating the dose or schedule, of a DNA vaccine (pTVG-HP) encoding prostatic acid phosphatase (PAP) administered with GM-CSF as the adjuvant. These were in patients with PSA-recurrent, radiographically non-metastatic, prostate cancer (PCa). We report here the long-term safety and overall survival of these patients. Specifically, 22 patients with non-metastatic, castration-sensitive PCa (nmCSPC) were treated with pTVG-HP, 100-1500 µg, administered over 12 weeks and followed for 15 y. 17 patients with non-metastatic castration-resistant PCa (nmCRPC) were treated with 100 µg pTVG-HP with different schedules of administration over 1 y and followed for 5 y. No adverse events were detected in long-term follow-up from either trial that were deemed possibly related to vaccination. Patients with nmCSPC had a median overall survival of 12.3 y, with 5/22 (23%) alive at 15 y. 8/22 (36%) died due to prostate cancer with a median survival of 11.0 y, and 9/22 (41%) died of other causes. Patients with nmCRPC had a median overall survival of 4.5 y, with 8/17 (47%) alive at 5 y. The presence of T-cells specific for the PAP target antigen was detectable in 6/10 (60%) individuals with nmCSPC, and 3/5 (60%) individuals with nmCRPC, many years after immunization. The detection of immune responses to the vaccine target years after immunization suggests durable immunity can be elicited in patients using a DNA vaccine encoding a tumor-associated antigen.Trial Registration: NCT00582140 and NCT00849121.
Collapse
Affiliation(s)
- Tommaso P. Tonelli
- University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI, USA
| | - Jens C. Eickhoff
- University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI, USA
- Department of Biostatistics, University of Wisconsin, Madison, WI, USA
| | - Laura E. Johnson
- University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI, USA
| | - Glenn Liu
- University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI, USA
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Douglas G. McNeel
- University of Wisconsin Carbone Comprehensive Cancer Center, Madison, WI, USA
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
4
|
Chen J, Ma N, Chen B, Huang Y, Li J, Li J, Chen Z, Wang P, Ran B, Yang J, Bai J, Ning S, Ai J, Wei Q, Liu L, Cao D. Synergistic effects of immunotherapy and adjunctive therapies in prostate cancer management. Crit Rev Oncol Hematol 2024:104604. [PMID: 39732304 DOI: 10.1016/j.critrevonc.2024.104604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
In recent years, cancer immunotherapy has received widespread attention due to significant tumor clearance in some malignancies. Various immunotherapy approaches, including vaccines, immune checkpoint inhibitors, oncolytic virotherapy, bispecific T cell engagers, and adoptive T cell transfer, have completed or are undergoing clinical trials for prostate cancer. Despite immune checkpoint blockade's extraordinary effectiveness in treating a variety of cancers, targeted prostate cancer treatment using the immune system is still in its infancy. Multiple factors including the heterogeneity of prostate cancer, the cold tumor microenvironment, and a low level of neoantigens, contribute to the poor immunotherapy response. Significant effort is being devoted to improving immune-based prostate cancer therapy. Recently, several key discoveries demonstrate that prostate cancer immunotherapy agents may be used to promise better prognosis for patients as part of combination strategies with other agents targeting tumor-associated immune mechanism of resistance. Here, this review comprehensively examines the recent advancements in immunotherapy for prostate cancer, exploring its potential synergistic effects when combined with other treatment modalities to enhance clinical efficacy.
Collapse
Affiliation(s)
- Jie Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd section, South Renmin Road, Chengdu 610041, China
| | - Bo Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yin Huang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinze Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zeyu Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Puze Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Biao Ran
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiahao Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingxing Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shu Ning
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liangren Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dehong Cao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Du JJ, Zhou SH, Liu J, Zhong XY, Zhang RY, Zhao WX, Wen Y, Su ZH, Lu Z, Guo J. Diphtheria Toxoid-Derived T-Helper Epitope and α-galactosylceramide Synergistically Enhance the Immunogenicity of Glycopeptide Antigen. ACS Pharmacol Transl Sci 2024; 7:3889-3901. [PMID: 39698257 PMCID: PMC11651215 DOI: 10.1021/acsptsci.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 12/20/2024]
Abstract
The tumor-associated antigen MUC1 is an attractive target for immunotherapy, however, its weak immunogenicity limits the induction of antitumor immune responses. To overcome this limitation, in this study, MUC1 glycopeptide was covalently linked with a diphtheria toxin-derived T-helper epitope (DT331-345). Subsequently, the resulting DT-MUC1 glycopeptide was physically mixed with natural killer T cell agonist αGalCer to explore their immunomodulatory synergy. Biological results demonstrated that compared to MUC1+αGalCer and DT-MUC1 groups, the specific IgG antibody titer of DT-MUC1+αGalCer group increased by 189- and 3-fold, respectively, indicating that the diphtheria toxin-derived T-helper epitope synergistically enhanced MUC1 immunogenicity with αGalCer. Moreover, the DT-MUC1+αGalCer vaccine induced potent cellular immune responses and significantly inhibited the growth of B16-MUC1 tumors in vivo. Furthermore, it was found that the anti-MUC1 IgG antibody titer induced by DT-MUC1+αGalCer was equivalent to that induced by palmitoylated DT-MUC1+αGalCer (P1-DT-MUC1+αGalCer) and significantly higher than that induced by doubly palmitoylated DT-MUC1+αGalCer (P2-DT-MUC1+αGalCer), suggesting that the easily synthesized DT-MUC1 may not require lipid chain modification and already possess good amphiphilicity. This is the first time that a diphtheria toxin-derived helper T-helper epitope was covalently linked to a glycopeptide antigen to enhance its immunogenicity, and this study may provide an effective vaccine design strategy for MUC1-targeted antitumor vaccines and offer novel insights into the design of fully synthetic peptide vaccines.
Collapse
Affiliation(s)
- Jing-Jing Du
- Hubei
Key Laboratory of Kidney Disease Pathogenesis and Intervention, College
of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Shi-Hao Zhou
- National
Key Laboratory of Green Pesticide, International Joint Research Center
for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jin Liu
- Hubei
Key Laboratory of Kidney Disease Pathogenesis and Intervention, College
of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Xing-Yuan Zhong
- Hubei
Key Laboratory of Kidney Disease Pathogenesis and Intervention, College
of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Ru-Yan Zhang
- Hubei
Key Laboratory of Kidney Disease Pathogenesis and Intervention, College
of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Wen-Xiang Zhao
- Hubei
Key Laboratory of Kidney Disease Pathogenesis and Intervention, College
of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Yu Wen
- National
Key Laboratory of Green Pesticide, International Joint Research Center
for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zhen-Hong Su
- Hubei
Key Laboratory of Kidney Disease Pathogenesis and Intervention, College
of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Zheng Lu
- Hubei
Key Laboratory of Kidney Disease Pathogenesis and Intervention, College
of Medicine, Hubei Polytechnic University, Huangshi 435003, China
| | - Jun Guo
- National
Key Laboratory of Green Pesticide, International Joint Research Center
for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
6
|
Gu Q, Qi A, Wang N, Zhou Z, Zhou X. Unlocking Immunity: Innovative prostate cancer vaccine strategies. Int Immunopharmacol 2024; 142:113137. [PMID: 39276448 DOI: 10.1016/j.intimp.2024.113137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE Prostate Cancer (PCa) is a leading cause of cancer-related mortality in men, especially in Western societies. The objective of this research is to address the unmet need for effective treatments in advanced or recurrent PCa, where current strategies fall short of offering a cure. The focus is on leveraging immunotherapy and cancer vaccines to target the tumor's unique immunological microenvironment. MAIN RESULTS Despite immunotherapy's success in other cancers, its effectiveness in PCa has been limited by the tumor's immunosuppressive characteristics. However, cancer vaccines that engage Tumor-Specific Antigens (TSA) and Tumor-Associated Antigens (TAA) have emerged as a promising approach. Preclinical and clinical investigations of Dendritic Cell (DC) vaccines, DNA vaccines, mRNA vaccines, peptide vaccines, and viral vectors have shown their potential to elicit anti-tumor immune responses. The exploration of combination therapies with immune checkpoint inhibitors and the advent of novel adjuvants and oral microparticle vaccines present innovative strategies to improve efficacy and compliance. CONCLUSION The development of cancer vaccines for PCa holds significant potential. Future directions include optimizing vaccine design, refining combination therapy strategies, and creating patient-friendly administration methods. The integration of interdisciplinary knowledge and innovative clinical trial designs is essential for advancing personalized and precision immunotherapy for PCa.
Collapse
Affiliation(s)
- Qiannan Gu
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, Jiangsu 210009, China
| | - Anning Qi
- Medical Laboratory, Liuhe People's Hospital of Jiangsu Province, Nanjing 211500, Jiangsu, China
| | - Ne Wang
- Jiangning Hospital Tiandi New City Branch, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211198, Jiangsu Province, China
| | - Zhenxian Zhou
- Nanjing Second People's Hospital, 211103, Jiangsu Province, China
| | - Xiaohui Zhou
- China Pharmaceutical University, School of Basic Medicine and Clinical Pharmacy, Nanjing, Jiangsu 210009, China; Jiangning Outpatient Department of China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
7
|
Suzuki N, Shindo Y, Nakajima M, Tsunedomi R, Nagano H. Current status of vaccine immunotherapy for gastrointestinal cancers. Surg Today 2024; 54:1279-1291. [PMID: 38043066 DOI: 10.1007/s00595-023-02773-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/14/2023] [Indexed: 12/05/2023]
Abstract
Recent advances in tumor immunology and molecular drug development have ushered in a new era of cancer immunotherapy. Immunotherapy has shown promising results for several types of tumors, such as advanced melanoma, non-small cell lung cancer, renal cell carcinoma, bladder cancers, and refractory Hodgkin's lymphoma. Similarly, efforts have been made to develop immunotherapies such as adoptive T-cell transplantation, peptide vaccines, and dendritic cell vaccines, specifically for gastrointestinal tumors. However, before the advent of immune checkpoint inhibitors, immunotherapy did not work as well as expected. In this article, we review immunotherapy, focusing on cancer vaccines for gastrointestinal tumors, which generally target eliciting tumor-specific CD8 + cytotoxic T lymphocytes (CTLs). We also review various vaccine therapies and describe the relationship between vaccines and adjuvants. Finally, we discuss prospects for the combination of immunotherapy with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Nobuaki Suzuki
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast, and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
8
|
Pakula H, Pederzoli F, Fanelli GN, Nuzzo PV, Rodrigues S, Loda M. Deciphering the Tumor Microenvironment in Prostate Cancer: A Focus on the Stromal Component. Cancers (Basel) 2024; 16:3685. [PMID: 39518123 PMCID: PMC11544791 DOI: 10.3390/cancers16213685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Prostate cancer progression is significantly affected by its tumor microenvironment, in which mesenchymal cells play a crucial role. Stromal cells are modified by cancer mutations, response to androgens, and lineage plasticity, and in turn, engage with epithelial tumor cells via a complex array of signaling pathways and ligand-receptor interactions, ultimately affecting tumor growth, immune interaction, and response to therapy. The metabolic rewiring and interplay in the microenvironment play an additional role in affecting the growth and progression of prostate cancer. Finally, therapeutic strategies and novel clinical trials with agents that target the stromal microenvironment or disrupt the interaction between cellular compartments are described. This review underscores cancer-associated fibroblasts as essential contributors to prostate cancer biology, emphasizing their potential as prognostic indicators and therapeutic targets.
Collapse
Affiliation(s)
- Hubert Pakula
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (H.P.); (F.P.); (G.N.F.); (P.V.N.); (S.R.)
| | - Filippo Pederzoli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (H.P.); (F.P.); (G.N.F.); (P.V.N.); (S.R.)
| | - Giuseppe Nicolò Fanelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (H.P.); (F.P.); (G.N.F.); (P.V.N.); (S.R.)
| | - Pier Vitale Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (H.P.); (F.P.); (G.N.F.); (P.V.N.); (S.R.)
| | - Silvia Rodrigues
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (H.P.); (F.P.); (G.N.F.); (P.V.N.); (S.R.)
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA; (H.P.); (F.P.); (G.N.F.); (P.V.N.); (S.R.)
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, New York, NY 10021, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave, Boston, MA 02215, USA
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX1 2JD, UK
| |
Collapse
|
9
|
Novysedlak R, Guney M, Al Khouri M, Bartolini R, Koumbas Foley L, Benesova I, Ozaniak A, Novak V, Vesely S, Pacas P, Buchler T, Ozaniak Strizova Z. The Immune Microenvironment in Prostate Cancer: A Comprehensive Review. Oncology 2024:1-25. [PMID: 39380471 DOI: 10.1159/000541881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Prostate cancer (PCa) is a malignancy with significant immunosuppressive properties and limited immune activation. This immunosuppression is linked to reduced cytotoxic T cell activity, impaired antigen presentation, and elevated levels of immunosuppressive cytokines and immune checkpoint molecules. Studies demonstrate that cytotoxic CD8+ T cell infiltration correlates with improved survival, while increased regulatory T cells (Tregs) and tumor-associated macrophages (TAMs) are associated with worse outcomes and therapeutic resistance. Th1 cells are beneficial, whereas Th17 cells, producing interleukin-17 (IL-17), contribute to tumor progression. Tumor-associated neutrophils (TANs) and immune checkpoint molecules, such as PD-1/PD-L1 and T cell immunoglobulin-3 (TIM-3) are also linked to advanced stages of PCa. Chemotherapy holds promise in converting the "cold" tumor microenvironment (TME) to a "hot" one by depleting immunosuppressive cells and enhancing tumor immunogenicity. SUMMARY This comprehensive review examines the immune microenvironment in PCa, focusing on the intricate interactions between immune and tumor cells in the TME. It highlights how TAMs, Tregs, cytotoxic T cells, and other immune cell types contribute to tumor progression or suppression and how PCa's low immunogenicity complicates immunotherapy. KEY MESSAGES The infiltration of cytotoxic CD8+ T cells and Th1 cells correlates with better outcomes, while elevated T regs and TAMs promote tumor growth, metastasis, and resistance. TANs and natural killer (NK) cells exhibit dual roles, with higher NK cell levels linked to better prognoses. Immune checkpoint molecules like PD-1, PD-L1, and TIM-3 are associated with advanced disease. Chemotherapy can improve tumor immunogenicity by depleting T regs and myeloid-derived suppressor cells, offering therapeutic promise.
Collapse
Affiliation(s)
- Rene Novysedlak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Miray Guney
- Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Majd Al Khouri
- Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Robin Bartolini
- Lausanne Center for Immuno-oncology Toxicities (LCIT), Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lily Koumbas Foley
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Andrej Ozaniak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Vojtech Novak
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Stepan Vesely
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Pavel Pacas
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Tomas Buchler
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Zuzana Ozaniak Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| |
Collapse
|
10
|
He J, Wu J, Li Z, Zhao Z, Qiu L, Zhu X, Liu Z, Xia H, Hong P, Yang J, Ni L, Lu J. Immunotherapy Vaccines for Prostate Cancer Treatment. Cancer Med 2024; 13:e70294. [PMID: 39463159 PMCID: PMC11513549 DOI: 10.1002/cam4.70294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Therapeutic tumor vaccines have emerged as a compelling avenue for treating patients afflicted with advanced prostate cancer (PCa), particularly those experiencing biochemical relapse or ineligible for surgical intervention. This study serves to consolidate recent research findings on therapeutic vaccines targeting prostate tumors while delineating prevalent challenges within vaccine research and development. METHODS We searched electronic databases, including PubMed, Web of Science, Embase, and Scopus, up to August 31, 2024, using keywords such as 'vaccine', 'prostate cancer', 'immunotherapy', and others. We reviewed studies on various therapeutic vaccines, including dendritic cell-based, antigen, nucleic acid, and tumor cell vaccines. RESULTS Studies consistently showed that therapeutic vaccines, notably DC vaccines, had favorable safety profiles with few adverse effects. These vaccines, with varied antigenic formulations, demonstrated strong clinical outcomes, as indicated by metrics such as PSA response rates (9.5%-58%), extended PSA doubling times (52.9%-89.7%), overall survival durations (17.7-33.8 months), two-year mortality rates (0%-12.5%), biochemical relapse rates (42%-73%), and antigen-specific immune responses (33.3%-71.4% in responsive groups). CONCLUSION While clinical data for tumor vaccines have illuminated robust evidence of tumoricidal activity, the processes of their formulation and deployment are riddled with complexities. Combining vaccines with other therapies may enhance outcomes, and future research should focus on early interventions and deciphering the immune system's role in oncogenesis.
Collapse
Affiliation(s)
- Jide He
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Jialong Wu
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Ziang Li
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Zhenkun Zhao
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Lei Qiu
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Xuehua Zhu
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Zenan Liu
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Haizhui Xia
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Peng Hong
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Jianling Yang
- Institute of Medical Innovation and ResearchPeking University Third HospitalBeijingChina
| | - Ling Ni
- Institute for Immunology and School of MedicineTsinghua University, Medical Research BuildingBeijingChina
| | - Jian Lu
- Department of UrologyPeking University Third HospitalBeijingChina
- State Key Laboratory of Natural and Biomimetic DrugsPeking University
| |
Collapse
|
11
|
Daneva GN, Tsiakanikas P, Adamopoulos PG, Scorilas A. Kallikrein-related peptidases: mechanistic understanding for potential therapeutic targeting in cancer. Expert Opin Ther Targets 2024; 28:875-894. [PMID: 39431595 DOI: 10.1080/14728222.2024.2415014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Human kallikrein-related peptidases (KLKs) represent a subgroup of 15 serine endopeptidases involved in various physiological processes and pathologies, including cancer. AREAS COVERED This review aims to provide a comprehensive overview of the KLK family, highlighting their genomic structure, expression profiles and substrate specificity. We explore the role of KLKs in tumorigenesis, emphasizing their potential as biomarkers and therapeutic targets in cancer treatment. The dysregulated activity of KLKs has been linked to various malignancies, making them promising candidates for cancer diagnostics and therapy. EXPERT OPINION : Recent advancements in understanding the mechanistic pathways of KLK-related tumorigenesis offer new prospects for developing targeted cancer treatments. Expert opinion suggests that while significant progress has been made, further research is necessary to fully exploit KLKs' potential in clinical applications.
Collapse
Affiliation(s)
- Glykeria N Daneva
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Liu D, Wang L, Guo Y. Advances in and prospects of immunotherapy for prostate cancer. Cancer Lett 2024; 601:217155. [PMID: 39127338 DOI: 10.1016/j.canlet.2024.217155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Immunotherapy has shown promising therapeutic effects in hematological malignancies and certain solid tumors and has emerged as a critical and highly potential treatment modality for cancer. However, prostate cancer falls under the category of immune-resistant cold tumors, for which immunotherapy exhibits limited efficacy in patients with solid tumors. Thus, it is important to gain a deeper understanding of the tumor microenvironment in prostate cancer to facilitate immune system activation and overcome immune suppression to advance immunotherapy for prostate cancer. In this review, we discuss the immunosuppressive microenvironment of prostate cancer, which is characterized by the presence of few tumor-infiltrating lymphocytes, abundant immunosuppressive cells, low immunogenicity, and a noninflammatory phenotype, which significantly influences the efficacy of immunotherapy for prostate cancer. Immunotherapy is mainly achieved by activating the host immune system and overcoming immunosuppression. In this regard, we summarize the therapeutic advances in immune checkpoint blockade, immunogenic cell death, reversal of the immunosuppressive tumor microenvironment, tumor vaccines, immune adjuvants, chimeric antigen receptor T-cell therapy, and overcoming penetration barriers in prostate cancer, with the aim of providing novel research insights and approaches to enhance the effectiveness of immunotherapy for prostate cancer.
Collapse
Affiliation(s)
- Deng Liu
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China; Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
13
|
Mundhara N, Sadhukhan P. Cracking the Codes behind Cancer Cells' Immune Evasion. Int J Mol Sci 2024; 25:8899. [PMID: 39201585 PMCID: PMC11354234 DOI: 10.3390/ijms25168899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Immune evasion is a key phenomenon in understanding tumor recurrence, metastasis, and other critical steps in tumor progression. The tumor microenvironment (TME) is in constant flux due to the tumor's ability to release signals that affect it, while immune cells within it can impact cancer cell behavior. Cancer cells undergo several changes, which can change the enrichment of different immune cells and modulate the activity of existing immune cells in the tumor microenvironment. Cancer cells can evade immune surveillance by downregulating antigen presentation or expressing immune checkpoint molecules. High levels of tumor-infiltrating lymphocytes (TILs) correlate with better outcomes, and robust immune responses can control tumor growth. On the contrary, increased enrichment of Tregs, myeloid-derived suppressor cells, and M2-like anti-inflammatory macrophages can hinder effective immune surveillance and predict poor prognosis. Overall, understanding these immune evasion mechanisms guides therapeutic strategies. Researchers aim to modulate the TME to enhance immune surveillance and improve patient outcomes. In this review article, we strive to summarize the composition of the tumor immune microenvironment, factors affecting the tumor immune microenvironment (TIME), and different therapeutic modalities targeting the immune cells. This review is a first-hand reference to understand the basics of immune surveillance and immune evasion.
Collapse
Affiliation(s)
| | - Pritam Sadhukhan
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
14
|
Deng J, Yuan S, Pan W, Li Q, Chen Z. Nanotherapy to Reshape the Tumor Microenvironment: A New Strategy for Prostate Cancer Treatment. ACS OMEGA 2024; 9:26878-26899. [PMID: 38947792 PMCID: PMC11209918 DOI: 10.1021/acsomega.4c03055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024]
Abstract
Prostate cancer (PCa) is the second most common cancer in males worldwide. Androgen deprivation therapy (ADT) is the primary treatment method used for PCa. Although more effective androgen synthesis and antiandrogen inhibitors have been developed for clinical practice, hormone resistance increases the incidence of ADT-insensitive prostate cancer and poor prognoses. The tumor microenvironment (TME) has become a research hotspot with efforts to identify treatment targets based on the characteristics of the TME to improve prognosis. Herein, we introduce the basic characteristics of the PCa TME and the side effects of traditional prostate cancer treatments. We further highlight the emergence of novel nanotherapy strategies, their therapeutic mechanisms, and their effects on the PCa microenvironment. With further research, clinical applications of nanotherapy for PCa are expected in the near future. Collectively, this Review provides a valuable resource regarding the various nanotherapy types, demonstrating their broad clinical prospects to improve the quality of life in patients with PCa.
Collapse
Affiliation(s)
- Juan Deng
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
- The
First Clinical College of Guangdong Medical University, Zhanjiang, 524023, China
| | - Shaofei Yuan
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Wenjie Pan
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Qimeng Li
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| | - Zhonglin Chen
- The
Third Affiliated Hospital of Wenzhou Medical university, Wenzhou, 325200, China
| |
Collapse
|
15
|
Feng Y, He C, Liu C, Shao B, Wang D, Wu P. Exploring the Complexity and Promise of Tumor Immunotherapy in Drug Development. Int J Mol Sci 2024; 25:6444. [PMID: 38928150 PMCID: PMC11204037 DOI: 10.3390/ijms25126444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer represents a significant threat to human health, and traditional chemotherapy or cytotoxic therapy is no longer the sole or preferred approach for managing malignant tumors. With advanced research into the immunogenicity of tumor cells and the growing elderly population, tumor immunotherapy has emerged as a prominent therapeutic option. Its significance in treating elderly cancer patients is increasingly recognized. In this study, we review the conceptual classifications and benefits of immunotherapy, and discuss recent developments in new drugs and clinical progress in cancer treatment through various immunotherapeutic modalities with different mechanisms. Additionally, we explore the impact of immunosenescence on the effectiveness of cancer immunotherapy and propose innovative and effective strategies to rejuvenate senescent T cells.
Collapse
Affiliation(s)
| | | | | | | | - Dong Wang
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.F.); (C.H.); (C.L.); (B.S.)
| | - Peijie Wu
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.F.); (C.H.); (C.L.); (B.S.)
| |
Collapse
|
16
|
Liu Q, Ma H. Cancer biotherapy: review and prospect. Clin Exp Med 2024; 24:114. [PMID: 38801637 PMCID: PMC11130057 DOI: 10.1007/s10238-024-01376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Malignant tumors pose a grave threat to the quality of human life. The prevalence of malignant tumors in China is steadily rising. Presently, clinical interventions encompass surgery, radiotherapy, and pharmaceutical therapy in isolation or combination. Nonetheless, these modalities fail to completely eradicate malignant tumor cells, frequently leading to metastasis and recurrence. Conversely, tumor biotherapy has emerged as an encouraging fourth approach in preventing and managing malignant tumors owing to its safety, efficacy, and minimal adverse effects. Currently, a range of tumor biotherapy techniques are employed, including gene therapy, tumor vaccines, monoclonal antibody therapy, cancer stem cell therapy, cytokine therapy, and adoptive cellular immunotherapy. This study aims to comprehensively review the latest developments in biological treatments for malignant tumors.
Collapse
Affiliation(s)
- Qi Liu
- Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Department of Thoracic Oncology, The Second Affiliated Hospital of Zunyi Medical University, Guizhou, 56300, Zunyi, China
| | - Hu Ma
- Zunyi Medical University, Zunyi, Guizhou, 563000, China.
- Department of Thoracic Oncology, The Second Affiliated Hospital of Zunyi Medical University, Guizhou, 56300, Zunyi, China.
| |
Collapse
|
17
|
Paul AK, Melson JW, Hirani S, Muthusamy S. Systemic therapy landscape of advanced prostate cancer. Adv Cancer Res 2024; 161:367-402. [PMID: 39032954 DOI: 10.1016/bs.acr.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is the most commonly diagnosed cancer in American men and 2nd leading cause of cancer-related deaths in the United States. Androgen deprivation therapy (ADT) is the backbone of treatment for advanced prostate cancer. Over the past several decades a number of new therapeutics, such as novel androgen receptor pathway inhibitors, targeted agents and radionuclide therapies, have been introduced for the treatment of prostate cancers. These agents have been demonstrated to improve clinical outcomes of prostate cancer patients in randomized clinical trials. In addition, new therapeutic strategies, such as early intensification of ADT, novel treatment combinations, and treatment sequencing, are expected to improve outcomes further. In this clinical review, we discuss the changing treatment landscape for advanced prostate cancer with a focus on new therapeutics.
Collapse
Affiliation(s)
- Asit K Paul
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Richmond, VA, United States.
| | - John W Melson
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Richmond, VA, United States
| | - Samina Hirani
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States
| | - Selvaraj Muthusamy
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
18
|
Zhou SH, Zhang RY, Wen Y, Zou YK, Ding D, Bian MM, Cui HY, Guo J. Multifunctional Lipidated Protein Carrier with a Built-In Adjuvant as a Universal Vaccine Platform Potently Elevates Immunogenicity of Weak Antigens. J Med Chem 2024; 67:6822-6838. [PMID: 38588468 DOI: 10.1021/acs.jmedchem.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Weak antigens represented by MUC1 are poorly immunogenic, which greatly constrains the development of relevant vaccines. Herein, we developed a multifunctional lipidated protein as a carrier, in which the TLR1/2 agonist Pam3CSK4 was conjugated to the N-terminus of MUC1-loaded carrier protein BSA through pyridoxal 5'-phosphate-mediated transamination reaction. The resulting Pam3CSK4-BSA-MUC1 conjugate was subsequently incorporated into liposomes, which biomimics the membrane structure of tumor cells. The results indicated that this lipidated protein carrier significantly enhanced antigen uptake by APCs and obviously augmented the retention of the vaccine at the injection site. Compared with the BSA-MUC1 and BSA-MUC1 + Pam3CSK4 groups, Pam3CSK4-BSA-MUC1 evoked 22- and 11-fold increases in MUC1-specific IgG titers. Importantly, Pam3CSK4-BSA-MUC1 elicited robust cellular immunity and significantly inhibited tumor growth. This is the first time that lipidated protein was constructed to enhance antigen immunogenicity, and this universal carrier platform exhibits promise for utilization in various vaccines, holding the potential for further clinical application.
Collapse
Affiliation(s)
- Shi-Hao Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ru-Yan Zhang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yu Wen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yong-Ke Zou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Dong Ding
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Miao-Miao Bian
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hong-Ying Cui
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jun Guo
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
19
|
Xie X, Zhang J, Wang Y, Shi W, Tang R, Tang Q, Sun S, Wu R, Xu S, Wang M, Liang X, Cui L. Nanomaterials augmented bioeffects of ultrasound in cancer immunotherapy. Mater Today Bio 2024; 24:100926. [PMID: 38179429 PMCID: PMC10765306 DOI: 10.1016/j.mtbio.2023.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
Immunotherapy as a milestone in cancer treatment has made great strides in the past decade, but it is still limited by low immune response rates and immune-related adverse events. Utilizing bioeffects of ultrasound to enhance tumor immunotherapy has attracted more and more attention, including sonothermal, sonomechanical, sonodynamic and sonopiezoelectric immunotherapy. Moreover, the emergence of nanomaterials has further improved the efficacy of ultrasound mediated immunotherapy. However, most of the summaries in this field are about a single aspect of the biological effects of ultrasound, which is not comprehensive and complete currently. This review proposes the recent progress of nanomaterials augmented bioeffects of ultrasound in cancer immunotherapy. The concept of immunotherapy and the application of bioeffects of ultrasound in cancer immunotherapy are initially introduced. Then, according to different bioeffects of ultrasound, the representative paradigms of nanomaterial augmented sono-immunotherapy are described, and their mechanisms are discussed. Finally, the challenges and application prospects of nanomaterial augmented ultrasound mediated cancer immunotherapy are discussed in depth, hoping to pave the way for cancer immunotherapy and promote the clinical translation of ultrasound mediated cancer immunotherapy through the reasonable combination of nanomaterials augmented ultrasonic bioeffects.
Collapse
Affiliation(s)
- Xinxin Xie
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Jinxia Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Wanrui Shi
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Rui Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Suhui Sun
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Ruiqi Wu
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Shuyu Xu
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Mengxin Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| | - Ligang Cui
- Department of Ultrasound, Peking University Third Hospital, Beijing, 100191, P.R. China
| |
Collapse
|
20
|
Fernandes R, Costa C, Fernandes R, Barros AN. Inflammation in Prostate Cancer: Exploring the Promising Role of Phenolic Compounds as an Innovative Therapeutic Approach. Biomedicines 2023; 11:3140. [PMID: 38137361 PMCID: PMC10740737 DOI: 10.3390/biomedicines11123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Prostate cancer (PCa) remains a significant global health concern, being a major cause of cancer morbidity and mortality worldwide. Furthermore, profound understanding of the disease is needed. Prostate inflammation caused by external or genetic factors is a central player in prostate carcinogenesis. However, the mechanisms underlying inflammation-driven PCa remain poorly understood. This review dissects the diagnosis methods for PCa and the pathophysiological mechanisms underlying the disease, clarifying the dynamic interplay between inflammation and leukocytes in promoting tumour development and spread. It provides updates on recent advances in elucidating and treating prostate carcinogenesis, and opens new insights for the use of bioactive compounds in PCa. Polyphenols, with their noteworthy antioxidant and anti-inflammatory properties, along with their synergistic potential when combined with conventional treatments, offer promising prospects for innovative therapeutic strategies. Evidence from the use of polyphenols and polyphenol-based nanoparticles in PCa revealed their positive effects in controlling tumour growth, proliferation, and metastasis. By consolidating the diverse features of PCa research, this review aims to contribute to increased understanding of the disease and stimulate further research into the role of polyphenols and polyphenol-based nanoparticles in its management.
Collapse
Affiliation(s)
- Raquel Fernandes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Cátia Costa
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Rúben Fernandes
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa, 4249-004 Porto, Portugal;
- CECLIN, Centro de Estudos Clínicos, Hospital Fernando Pessoa, 4420-096 Gondomar, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana Novo Barros
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| |
Collapse
|
21
|
Abstract
The use of cancer vaccines is considered a promising therapeutic strategy in clinical oncology, which is achieved by stimulating antitumor immunity with tumor antigens delivered in the form of cells, peptides, viruses, and nucleic acids. The ideal cancer vaccine has many advantages, including low toxicity, specificity, and induction of persistent immune memory to overcome tumor heterogeneity and reverse the immunosuppressive microenvironment. Many therapeutic vaccines have entered clinical trials for a variety of cancers, including melanoma, breast cancer, lung cancer, and others. However, many challenges, including single antigen targeting, weak immunogenicity, off-target effects, and impaired immune response, have hindered their broad clinical translation. In this review, we introduce the principle of action, components (including antigens and adjuvants), and classification (according to applicable objects and preparation methods) of cancer vaccines, summarize the delivery methods of cancer vaccines, and review the clinical and theoretical research progress of cancer vaccines. We also present new insights into cancer vaccine technologies, platforms, and applications as well as an understanding of potential next-generation preventive and therapeutic vaccine technologies, providing a broader perspective for future vaccine design.
Collapse
Affiliation(s)
- Nian Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Xiangyu Xiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Ziqiang Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
22
|
Slovin SF. Immunotherapy combinations for metastatic castration-resistant prostate cancer - failed trials and future aspects. Curr Opin Urol 2023:00042307-990000000-00100. [PMID: 37395505 DOI: 10.1097/mou.0000000000001115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
PURPOSE OF REVIEW Immunotherapy, a treatment modality currently synonymous with immune checkpoint blockade remains a challenge for prostate cancer. Despite multiple phase 3 trials using checkpoint inhibitors in combinatorial approaches, there have been no benefits to date in overall survival or radiographic progression free survival. However, newer strategies prevail that are directed to a variety of unique cell surface antigens. These strategies include unique vaccines, chimeric antigen receptor (CAR) T, bispecific T cell engager platforms, and antibody-drug conjugates. RECENT FINDINGS New antigens are being targeted by various immunologic strategies. These antigens are pan-carcinoma as they may be expressed on a variety of cancers but remains effective targets for therapeutic attack. SUMMARY Immunotherapy with checkpoint inhibitors alone or in combination with a variety of agents such as chemotherapy, poly-ADP ribose polymerase (PARP) inhibitors or novel biologics have met with failure in the endpoints of overall survival (OS) and radiographic progresson-free survival (rPFS). Despite these efforts, other immunologic efforts to develop unique tumor-targeted strategies should be continued.
Collapse
Affiliation(s)
- Susan F Slovin
- Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
23
|
Peng S, Yan Y, Ngai T, Li J, Ogino K, Xia Y. Development and Optimal Immune Strategy of an Alum-Stabilized Pickering emulsion for Cancer Vaccines. Vaccines (Basel) 2023; 11:1169. [PMID: 37514985 PMCID: PMC10383433 DOI: 10.3390/vaccines11071169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Therapeutic cancer vaccines are considered as one of the most cost-effective ways to eliminate cancer cells. Although many efforts have been invested into improving their therapeutic effect, transient maturation and activations of dendritic cells (DCs) cause weak responses and hamper the subsequent T cell responses. Here, we report on an alum-stabilized Pickering emulsion (APE) that can load a high number of antigens and continue to release them for extensive maturation and activations of antigen-presenting cells (APCs). After two vaccinations, APE/OVA induced both IFN-γ-secreting T cells (Th1) and IL-4-secreting T cells (Th2), generating effector CD8+ T cells against tumor growth. Additionally, although they boosted the cellular immune responses in the spleen, we found that multiple administrations of cancer vaccines (three or four times in 3-day intervals) may increase the immunosuppression with more PD-1+ CD8+ and LAG-3+ CD8+ T cells within the tumor environment, leading to the diminished overall anti-tumor efficacy. Combining this with anti-PD-1 antibodies evidently hindered the suppressive effect of multiple vaccine administrations, leading to the amplified tumor regression in B16-OVA-bearing mice.
Collapse
Affiliation(s)
- Sha Peng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Tokyo 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Tokyo 184-8588, Japan
| | - Yumeng Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jianjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Kenji Ogino
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Tokyo 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Tokyo 184-8588, Japan
| | - Yufei Xia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
24
|
Mebarek S, Skafi N, Brizuela L. Targeting Sphingosine 1-Phosphate Metabolism as a Therapeutic Avenue for Prostate Cancer. Cancers (Basel) 2023; 15:2732. [PMID: 37345069 DOI: 10.3390/cancers15102732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Prostate cancer (PC) is the second most common cancer in men worldwide. More than 65% of men diagnosed with PC are above 65. Patients with localized PC show high long-term survival, however with the disease progression into a metastatic form, it becomes incurable, even after strong radio- and/or chemotherapy. Sphingosine 1-phosphate (S1P) is a bioactive lipid that participates in all the steps of oncogenesis including tumor cell proliferation, survival, migration, invasion, and metastatic spread. The S1P-producing enzymes sphingosine kinases 1 and 2 (SK1 and SK2), and the S1P degrading enzyme S1P lyase (SPL), have been shown to be highly implicated in the onset, development, and therapy resistance of PC during the last 20 years. In this review, the most important studies demonstrating the role of S1P and S1P metabolic partners in PC are discussed. The different in vitro, ex vivo, and in vivo models of PC that were used to demonstrate the implication of S1P metabolism are especially highlighted. Furthermore, the most efficient molecules targeting S1P metabolism that are under preclinical and clinical development for curing PC are summarized. Finally, the possibility of targeting S1P metabolism alone or combined with other therapies in the foreseeable future as an alternative option for PC patients is discussed. Research Strategy: PubMed from INSB was used for article research. First, key words "prostate & sphingosine" were used and 144 articles were found. We also realized other combinations of key words as "prostate cancer bone metastasis" and "prostate cancer treatment". We used the most recent reviews to illustrate prostate cancer topic and sphingolipid metabolism overview topic.
Collapse
Affiliation(s)
- Saida Mebarek
- CNRS UMR 5246, INSA Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), 69622 Lyon, France
| | - Najwa Skafi
- CNRS, LAGEPP UMR 5007, University of Lyon, Université Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Leyre Brizuela
- CNRS UMR 5246, INSA Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), 69622 Lyon, France
| |
Collapse
|