1
|
Bekaert DV, Barry PH, Broadley MW, Byrne DJ, Marty B, Ramírez CJ, de Moor JM, Rodriguez A, Hudak MR, Subhas AV, Halldórsson SA, Stefánsson A, Caracausi A, Lloyd KG, Giovannelli D, Seltzer AM. Ultrahigh-precision noble gas isotope analyses reveal pervasive subsurface fractionation in hydrothermal systems. SCIENCE ADVANCES 2023; 9:eadg2566. [PMID: 37058557 PMCID: PMC10104464 DOI: 10.1126/sciadv.adg2566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Mantle-derived noble gases in volcanic gases are powerful tracers of terrestrial volatile evolution, as they contain mixtures of both primordial (from Earth's accretion) and secondary (e.g., radiogenic) isotope signals that characterize the composition of deep Earth. However, volcanic gases emitted through subaerial hydrothermal systems also contain contributions from shallow reservoirs (groundwater, crust, atmosphere). Deconvolving deep and shallow source signals is critical for robust interpretations of mantle-derived signals. Here, we use a novel dynamic mass spectrometry technique to measure argon, krypton, and xenon isotopes in volcanic gas with ultrahigh precision. Data from Iceland, Germany, United States (Yellowstone, Salton Sea), Costa Rica, and Chile show that subsurface isotope fractionation within hydrothermal systems is a globally pervasive and previously unrecognized process causing substantial nonradiogenic Ar-Kr-Xe isotope variations. Quantitatively accounting for this process is vital for accurately interpreting mantle-derived volatile (e.g., noble gas and nitrogen) signals, with profound implications for our understanding of terrestrial volatile evolution.
Collapse
Affiliation(s)
- David V. Bekaert
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Université de Lorraine, CNRS, CRPG, F-54000 Nancy, France
| | - Peter H. Barry
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Michael W. Broadley
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Université de Lorraine, CNRS, CRPG, F-54000 Nancy, France
| | - David J. Byrne
- Université de Lorraine, CNRS, CRPG, F-54000 Nancy, France
| | - Bernard Marty
- Université de Lorraine, CNRS, CRPG, F-54000 Nancy, France
| | - Carlos J. Ramírez
- Servicio Geológico Ambiental (SeGeoAm) Heredia, Santo Domingo, Costa Rica
| | - J. Maarten de Moor
- Observatorio Vulcanológico y Sismológico de Costa Rica Universidad Nacional, Heredia, Costa Rica
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87106, USA
| | - Alejandro Rodriguez
- Observatorio Vulcanológico y Sismológico de Costa Rica Universidad Nacional, Heredia, Costa Rica
| | - Michael R. Hudak
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Adam V. Subhas
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | - Andri Stefánsson
- NordVulk, Institute of Earth Sciences, University of Iceland, Reykjavík, Iceland
| | - Antonio Caracausi
- Instituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, 90146 Palermo, Italy
- University of Salamanca, Salamanca, Spain
| | - Karen G. Lloyd
- Microbiology Department, University of Tennessee, Knoxville, TN 37996, USA
| | - Donato Giovannelli
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Department of Biology, University of Naples Federico II, Naples, Italy
- Institute for Marine Biological and Biotechnological Resources, National Research Council of Italy, Ancona, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Alan M. Seltzer
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
2
|
Parai R. A dry ancient plume mantle from noble gas isotopes. Proc Natl Acad Sci U S A 2022; 119:e2201815119. [PMID: 35858358 PMCID: PMC9303854 DOI: 10.1073/pnas.2201815119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/09/2022] [Indexed: 01/16/2023] Open
Abstract
Primordial volatiles were delivered to terrestrial reservoirs during Earth's accretion, and the mantle plume source is thought to have retained a greater proportion of primordial volatiles compared with the upper mantle. This study shows that mantle He, Ne, and Xe isotopes require that the plume mantle had low concentrations of volatiles like Xe and H2O at the end of accretion compared with the upper mantle. A lower extent of mantle processing alone is not sufficient to explain plume noble gas signatures. Ratios of primordial isotopes are used to determine proportions of solar, chondritic, and regassed atmospheric volatiles in the plume mantle and upper mantle. The regassed Ne flux exceeds the regassed Xe flux but has a small impact on the mantle Ne budget. Pairing primordial isotopes with radiogenic systems gives an absolute concentration of 130Xe in the plume source of ∼1.5 × 107 atoms 130Xe/g at the end of accretion, ∼4 times less than that determined for the ancient upper mantle. A record of limited accretion of volatile-rich solids thus survives in the He-Ne-Xe signatures of mantle rocks today. A primordial viscosity contrast originating from a factor of ∼4 to ∼250 times lower H2O concentration in the plume mantle compared with the upper mantle may explain (a) why giant impacts that triggered whole mantle magma oceans did not homogenize the growing planet, (b) why the plume mantle has experienced less processing by partial melting over Earth's history, and (c) how early-formed isotopic heterogeneities may have survived ∼4.5 Gy of solid-state mantle convection.
Collapse
Affiliation(s)
- Rita Parai
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130
- McDonnell Center for the Space Sciences, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
3
|
A halogen budget of the bulk silicate Earth points to a history of early halogen degassing followed by net regassing. Proc Natl Acad Sci U S A 2021; 118:2116083118. [PMID: 34916297 DOI: 10.1073/pnas.2116083118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 11/18/2022] Open
Abstract
Halogens are important tracers of various planetary formation and evolution processes, and an accurate understanding of their abundances in the Earth's silicate reservoirs can help us reconstruct the history of interactions among mantle, atmosphere, and oceans. The previous studies of halogen abundances in the bulk silicate Earth (BSE) are based on the assumption of constant ratios of element abundances, which is shown to result in a gross underestimation of the BSE halogen budget. Here we present a more robust approach using a log-log linear model. Using this method, we provide an internally consistent estimate of halogen abundances in the depleted mid-ocean ridge basalts (MORB)-source mantle, the enriched ocean island basalts (OIB)-source mantle, the depleted mantle, and BSE. Unlike previous studies, our results suggest that halogens in BSE are not more depleted compared to elements with similar volatility, thereby indicating sufficient halogen retention during planetary accretion. According to halogen abundances in the depleted mantle and BSE, we estimate that ∼87% of all stable halogens reside in the present-day mantle. Given our understanding of the history of mantle degassing and the evolution of crustal recycling, the revised halogen budget suggests that deep halogen cycle is characterized by efficient degassing in the early Earth and subsequent net regassing in the rest of Earth history. Such an evolution of deep halogen cycle presents a major step toward a more comprehensive understanding of ancient ocean alkalinity, which affects carbon partitioning within the hydrosphere, the stability of crustal and authigenic minerals, and the development of early life.
Collapse
|
4
|
Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling. Proc Natl Acad Sci U S A 2020; 117:30993-31001. [PMID: 33229590 DOI: 10.1073/pnas.2009663117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rare high-3He/4He signatures in ocean island basalts (OIB) erupted at volcanic hotspots derive from deep-seated domains preserved in Earth's interior. Only high-3He/4He OIB exhibit anomalous 182W-an isotopic signature inherited during the earliest history of Earth-supporting an ancient origin of high 3He/4He. However, it is not understood why some OIB host anomalous 182W while others do not. We provide geochemical data for the highest-3He/4He lavas from Iceland (up to 42.9 times atmospheric) with anomalous 182W and examine how Sr-Nd-Hf-Pb isotopic variations-useful for tracing subducted, recycled crust-relate to high 3He/4He and anomalous 182W. These data, together with data on global OIB, show that the highest-3He/4He and the largest-magnitude 182W anomalies are found only in geochemically depleted mantle domains-with high 143Nd/144Nd and low 206Pb/204Pb-lacking strong signatures of recycled materials. In contrast, OIB with the strongest signatures associated with recycled materials have low 3He/4He and lack anomalous 182W. These observations provide important clues regarding the survival of the ancient He and W signatures in Earth's mantle. We show that high-3He/4He mantle domains with anomalous 182W have low W and 4He concentrations compared to recycled materials and are therefore highly susceptible to being overprinted with low 3He/4He and normal (not anomalous) 182W characteristic of subducted crust. Thus, high 3He/4He and anomalous 182W are preserved exclusively in mantle domains least modified by recycled crust. This model places the long-term preservation of ancient high 3He/4He and anomalous 182W in the geodynamic context of crustal subduction and recycling and informs on survival of other early-formed heterogeneities in Earth's interior.
Collapse
|
5
|
Identification of chondritic krypton and xenon in Yellowstone gases and the timing of terrestrial volatile accretion. Proc Natl Acad Sci U S A 2020; 117:13997-14004. [PMID: 32513744 PMCID: PMC7322010 DOI: 10.1073/pnas.2003907117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Volatile elements play a critical role in the evolution of Earth. Nevertheless, the mechanism(s) by which Earth acquired, and was able to preserve its volatile budget throughout its violent accretionary history, remains uncertain. In this study, we analyzed noble gas isotopes in volcanic gases from the Yellowstone mantle plume, thought to sample the deep primordial mantle, to determine the origin of volatiles on Earth. We find that Kr and Xe isotopes within the deep mantle have a similar chondritic origin to those found previously in the upper mantle. This suggests that the Earth has retained chondritic volatiles throughout the accretion and, therefore, terrestrial volatiles cannot not solely be the result of late additions following the Moon-forming impact. Identifying the origin of noble gases in Earth’s mantle can provide crucial constraints on the source and timing of volatile (C, N, H2O, noble gases, etc.) delivery to Earth. It remains unclear whether the early Earth was able to directly capture and retain volatiles throughout accretion or whether it accreted anhydrously and subsequently acquired volatiles through later additions of chondritic material. Here, we report high-precision noble gas isotopic data from volcanic gases emanating from, in and around, the Yellowstone caldera (Wyoming, United States). We show that the He and Ne isotopic and elemental signatures of the Yellowstone gas requires an input from an undegassed mantle plume. Coupled with the distinct ratio of 129Xe to primordial Xe isotopes in Yellowstone compared with mid-ocean ridge basalt (MORB) samples, this confirms that the deep plume and shallow MORB mantles have remained distinct from one another for the majority of Earth’s history. Krypton and xenon isotopes in the Yellowstone mantle plume are found to be chondritic in origin, similar to the MORB source mantle. This is in contrast with the origin of neon in the mantle, which exhibits an isotopic dichotomy between solar plume and chondritic MORB mantle sources. The co-occurrence of solar and chondritic noble gases in the deep mantle is thought to reflect the heterogeneous nature of Earth’s volatile accretion during the lifetime of the protosolar nebula. It notably implies that the Earth was able to retain its chondritic volatiles since its earliest stages of accretion, and not only through late additions.
Collapse
|
6
|
Guo M, Korenaga J. Argon constraints on the early growth of felsic continental crust. SCIENCE ADVANCES 2020; 6:eaaz6234. [PMID: 32671213 PMCID: PMC7314546 DOI: 10.1126/sciadv.aaz6234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/06/2020] [Indexed: 05/31/2023]
Abstract
The continental crust is a major geochemical reservoir, the evolution of which has shaped the surface environment of Earth. In this study, we present a new model of coupled crust-mantle-atmosphere evolution to constrain the growth of continental crust with atmospheric 40Ar/36Ar. Our model is the first to combine argon degassing with the thermal evolution of Earth in a self-consistent manner and to incorporate the effect of crustal recycling and reworking using the distributions of crustal formation and surface ages. Our results suggest that the history of argon degassing favors rapid crustal growth during the early Earth. The mass of continental crust, highly enriched in potassium, is estimated to have already reached >80% of the present-day level during the early Archean. The presence of such potassium-rich, likely felsic, crust has important implications for tectonics, surface environment, and the regime of mantle convection in the early Earth.
Collapse
Affiliation(s)
- Meng Guo
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| | | |
Collapse
|
7
|
Hydrothermal 15N15N abundances constrain the origins of mantle nitrogen. Nature 2020; 580:367-371. [DOI: 10.1038/s41586-020-2173-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/04/2020] [Indexed: 11/08/2022]
|
8
|
Bekaert DV, Broadley MW, Marty B. The origin and fate of volatile elements on Earth revisited in light of noble gas data obtained from comet 67P/Churyumov-Gerasimenko. Sci Rep 2020; 10:5796. [PMID: 32242104 PMCID: PMC7118078 DOI: 10.1038/s41598-020-62650-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 03/17/2020] [Indexed: 11/25/2022] Open
Abstract
The origin of terrestrial volatiles remains one of the most puzzling questions in planetary sciences. The timing and composition of chondritic and cometary deliveries to Earth has remained enigmatic due to the paucity of reliable measurements of cometary material. This work uses recently measured volatile elemental ratios and noble gas isotope data from comet 67P/Churyumov-Gerasimenko (67P/C-G), in combination with chondritic data from the literature, to reconstruct the composition of Earth’s ancient atmosphere. Comets are found to have contributed ~20% of atmospheric heavy noble gases (i.e., Kr and Xe) but limited amounts of other volatile elements (water, halogens and likely organic materials) to Earth. These cometary noble gases were likely mixed with chondritic - and not solar - sources to form the atmosphere. We show that an ancient atmosphere composed of chondritic and cometary volatiles is more enriched in Xe relative to the modern atmosphere, requiring that 8–12 times the present-day inventory of Xe was lost to space. This potentially resolves the long-standing mystery of Earth’s “missing xenon”, with regards to both Xe elemental depletion and isotopic fractionation in the atmosphere. The inferred Kr/H2O and Xe/H2O of the initial atmosphere suggest that Earth’s surface volatiles might not have been fully delivered by the late accretion of volatile-rich carbonaceous chondrites. Instead, “dry” materials akin to enstatite chondrites potentially constituted a significant source of chondritic volatiles now residing on the Earth’s surface. We outline the working hypotheses, implications and limitations of this model in the last section of this contribution.
Collapse
Affiliation(s)
- David V Bekaert
- Centre de Recherches Pétrographiques et Géochimiques, UMR 7358 CNRS - Université de Lorraine, 15 rue Notre Dame des Pauvres, BP 20, 54501, Vandoeuvre-lès-Nancy, France.
| | - Michael W Broadley
- Centre de Recherches Pétrographiques et Géochimiques, UMR 7358 CNRS - Université de Lorraine, 15 rue Notre Dame des Pauvres, BP 20, 54501, Vandoeuvre-lès-Nancy, France.
| | - Bernard Marty
- Centre de Recherches Pétrographiques et Géochimiques, UMR 7358 CNRS - Université de Lorraine, 15 rue Notre Dame des Pauvres, BP 20, 54501, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
9
|
Catling DC, Zahnle KJ. The Archean atmosphere. SCIENCE ADVANCES 2020; 6:eaax1420. [PMID: 32133393 PMCID: PMC7043912 DOI: 10.1126/sciadv.aax1420] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/10/2019] [Indexed: 05/05/2023]
Abstract
The atmosphere of the Archean eon-one-third of Earth's history-is important for understanding the evolution of our planet and Earth-like exoplanets. New geological proxies combined with models constrain atmospheric composition. They imply surface O2 levels <10-6 times present, N2 levels that were similar to today or possibly a few times lower, and CO2 and CH4 levels ranging ~10 to 2500 and 102 to 104 times modern amounts, respectively. The greenhouse gas concentrations were sufficient to offset a fainter Sun. Climate moderation by the carbon cycle suggests average surface temperatures between 0° and 40°C, consistent with occasional glaciations. Isotopic mass fractionation of atmospheric xenon through the Archean until atmospheric oxygenation is best explained by drag of xenon ions by hydrogen escaping rapidly into space. These data imply that substantial loss of hydrogen oxidized the Earth. Despite these advances, detailed understanding of the coevolving solid Earth, biosphere, and atmosphere remains elusive, however.
Collapse
Affiliation(s)
- David C. Catling
- Department of Earth and Space Sciences and cross-campus Astrobiology Program, Box 351310, University of Washington, Seattle, WA 98195, USA
| | - Kevin J. Zahnle
- Space Sciences Division, NASA Ames Research Center, MS 245-3, Moffett Field, CA 94035, USA
| |
Collapse
|
10
|
Buttitta D, Caracausi A, Chiaraluce L, Favara R, Gasparo Morticelli M, Sulli A. Continental degassing of helium in an active tectonic setting (northern Italy): the role of seismicity. Sci Rep 2020; 10:162. [PMID: 31932635 PMCID: PMC6957705 DOI: 10.1038/s41598-019-55678-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/21/2019] [Indexed: 11/09/2022] Open
Abstract
In order to investigate the variability of helium degassing in continental regions, its release from rocks and emission into the atmosphere, here we studied the degassing of volatiles in a seismically active region of northern Italy (MwMAX = 6) at the Nirano-Regnano mud volcanic system. The emitted gases in the study area are CH4-dominated and it is the carrier for helium (He) transfer through the crust. Carbon and He isotopes unequivocally indicate that crustal-derived fluids dominate these systems. An high-resolution 3-dimensional reconstruction of the gas reservoirs feeding the observed gas emissions at the surface permits to estimate the amount of He stored in the natural reservoirs. Our study demonstrated that the in-situ production of 4He in the crust and a long-lasting diffusion through the crust are not the main processes that rule the He degassing in the region. Furthermore, we demonstrated that micro-fracturation due to the field of stress that generates the local seismicity increases the release of He from the rocks and can sustain the excess of He in the natural reservoirs respect to the steady-state diffusive degassing. These results prove that (1) the transport of volatiles through the crust can be episodic as function of rock deformation and seismicity and (2) He can be used to highlight changes in the stress field and related earthquakes.
Collapse
Affiliation(s)
- Dario Buttitta
- Istituto Nazionale di Geofisica e Vulcanologia, sezione di Palermo, Palermo, Italy.
| | - Antonio Caracausi
- Istituto Nazionale di Geofisica e Vulcanologia, sezione di Palermo, Palermo, Italy.
| | - Lauro Chiaraluce
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Nazionale Terremoti, Roma, Italy
| | - Rocco Favara
- Istituto Nazionale di Geofisica e Vulcanologia, sezione di Palermo, Palermo, Italy
| | | | - Attilio Sulli
- Dipartimento di Scienze della Terra e del Mare, Università di Palermo, Palermo, Italy
| |
Collapse
|
11
|
Geochemical evidence for high volatile fluxes from the mantle at the end of the Archaean. Nature 2019; 575:485-488. [PMID: 31748723 DOI: 10.1038/s41586-019-1745-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/17/2019] [Indexed: 11/08/2022]
Abstract
The exchange of volatile species-water, carbon dioxide, nitrogen and halogens-between the mantle and the surface of the Earth has been a key driver of environmental changes throughout Earth's history. Degassing of the mantle requires partial melting and is therefore linked to mantle convection, whose regime and vigour in the Earth's distant past remain poorly constrained1,2. Here we present direct geochemical constraints on the flux of volatiles from the mantle. Atmospheric xenon has a monoisotopic excess of 129Xe, produced by the decay of extinct 129I. This excess was mainly acquired during Earth's formation and early evolution3, but mantle degassing has also contributed 129Xe to the atmosphere through geological time. Atmospheric xenon trapped in samples from the Archaean eon shows a slight depletion of 129Xe relative to the modern composition4,5, which tends to disappear in more recent samples5,6. To reconcile this deficit in the Archaean atmosphere by mantle degassing would require the degassing rate of Earth at the end of the Archaean to be at least one order of magnitude higher than today. We demonstrate that such an intense activity could not have occurred within a plate tectonics regime. The most likely scenario is a relatively short (about 300 million years) burst of mantle activity at the end of the Archaean (around 2.5 billion years ago). This lends credence to models advocating a magmatic origin for drastic environmental changes during the Neoarchaean era, such as the Great Oxidation Event.
Collapse
|