1
|
Pamula MC, Lehmann R. How germ granules promote germ cell fate. Nat Rev Genet 2024; 25:803-821. [PMID: 38890558 DOI: 10.1038/s41576-024-00744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Germ cells are the only cells in the body capable of giving rise to a new organism, and this totipotency hinges on their ability to assemble membraneless germ granules. These specialized RNA and protein complexes are hallmarks of germ cells throughout their life cycle: as embryonic germ granules in late oocytes and zygotes, Balbiani bodies in immature oocytes, and nuage in maturing gametes. Decades of developmental, genetic and biochemical studies have identified protein and RNA constituents unique to germ granules and have implicated these in germ cell identity, genome integrity and gamete differentiation. Now, emerging research is defining germ granules as biomolecular condensates that achieve high molecular concentrations by phase separation, and it is assigning distinct roles to germ granules during different stages of germline development. This organization of the germ cell cytoplasm into cellular subcompartments seems to be critical not only for the flawless continuity through the germline life cycle within the developing organism but also for the success of the next generation.
Collapse
Affiliation(s)
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Gao S, Fang A, Huang Y, Giunchiglia V, Noori A, Schwarz JR, Ektefaie Y, Kondic J, Zitnik M. Empowering biomedical discovery with AI agents. Cell 2024; 187:6125-6151. [PMID: 39486399 DOI: 10.1016/j.cell.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 09/12/2024] [Indexed: 11/04/2024]
Abstract
We envision "AI scientists" as systems capable of skeptical learning and reasoning that empower biomedical research through collaborative agents that integrate AI models and biomedical tools with experimental platforms. Rather than taking humans out of the discovery process, biomedical AI agents combine human creativity and expertise with AI's ability to analyze large datasets, navigate hypothesis spaces, and execute repetitive tasks. AI agents are poised to be proficient in various tasks, planning discovery workflows and performing self-assessment to identify and mitigate gaps in their knowledge. These agents use large language models and generative models to feature structured memory for continual learning and use machine learning tools to incorporate scientific knowledge, biological principles, and theories. AI agents can impact areas ranging from virtual cell simulation, programmable control of phenotypes, and the design of cellular circuits to developing new therapies.
Collapse
Affiliation(s)
- Shanghua Gao
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Ada Fang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA; Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Allston, MA, USA
| | - Yepeng Huang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Valentina Giunchiglia
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Department of Brain Sciences, Imperial College London, London, UK
| | - Ayush Noori
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Harvard College, Cambridge, MA, USA
| | | | - Yasha Ektefaie
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Program in Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Jovana Kondic
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Allston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Data Science Initiative, Cambridge, MA, USA.
| |
Collapse
|
3
|
Fu Y, Land M, Cui R, Kavlashvili T, Kim M, Lieber T, Ryu KW, DeBitetto E, Masilionis I, Saha R, Takizawa M, Baker D, Tigano M, Reznik E, Sharma R, Chaligne R, Thompson CB, Pe'er D, Sfeir A. Engineering mtDNA Deletions by Reconstituting End-Joining in Human Mitochondria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618543. [PMID: 39463974 PMCID: PMC11507875 DOI: 10.1101/2024.10.15.618543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Recent breakthroughs in the genetic manipulation of mitochondrial DNA (mtDNA) have enabled the precise introduction of base substitutions and the effective removal of genomes carrying harmful mutations. However, the reconstitution of mtDNA deletions responsible for severe mitochondrial myopathies and age-related diseases has not yet been achieved in human cells. Here, we developed a method to engineer specific mtDNA deletions in human cells by co-expressing end-joining (EJ) machinery and targeted endonucleases. As a proof-of-concept, we used mito-EJ and mito-ScaI to generate a panel of clonal cell lines harboring a ∼3.5 kb mtDNA deletion with the full spectrum of heteroplasmy. Investigating these isogenic cells revealed a critical threshold of ∼75% deleted genomes, beyond which cells exhibited depletion of OXPHOS proteins, severe metabolic disruption, and impaired growth in galactose-containing media. Single-cell multiomic analysis revealed two distinct patterns of nuclear gene deregulation in response to mtDNA deletion accumulation; one triggered at the deletion threshold and another progressively responding to increasing heteroplasmy. In summary, the co-expression of mito-EJ and programable nucleases provides a powerful tool to model disease-associated mtDNA deletions in different cell types. Establishing a panel of cell lines with a large-scale deletion at varying levels of heteroplasmy is a valuable resource for understanding the impact of mtDNA deletions on diseases and guiding the development of potential therapeutic strategies. Highlights Combining prokaryotic end-joining with targeted endonucleases generates specific mtDNA deletions in human cellsEngineering a panel of cell lines with a large-scale deletion that spans the full spectrum of heteroplasmy75% heteroplasmy is the threshold that triggers mitochondrial and cellular dysfunctionTwo distinct nuclear transcriptional programs in response to mtDNA deletions: threshold-triggered and heteroplasmy-sensing.
Collapse
|
4
|
Rojas-Ríos P, Chartier A, Enjolras C, Cremaschi J, Garret C, Boughlita A, Ramat A, Simonelig M. piRNAs are regulators of metabolic reprogramming in stem cells. Nat Commun 2024; 15:8405. [PMID: 39333531 PMCID: PMC11437085 DOI: 10.1038/s41467-024-52709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Stem cells preferentially use glycolysis instead of oxidative phosphorylation and this metabolic rewiring plays an instructive role in their fate; however, the underlying molecular mechanisms remain largely unexplored. PIWI-interacting RNAs (piRNAs) and PIWI proteins have essential functions in a range of adult stem cells across species. Here, we show that piRNAs and the PIWI protein Aubergine (Aub) are instrumental in activating glycolysis in Drosophila female germline stem cells (GSCs). Higher glycolysis is required for GSC self-renewal and aub loss-of-function induces a metabolic switch in GSCs leading to their differentiation. Aub directly binds glycolytic mRNAs and Enolase mRNA regulation by Aub depends on its 5'UTR. Furthermore, mutations of a piRNA target site in Enolase 5'UTR lead to GSC loss. These data reveal an Aub/piRNA function in translational activation of glycolytic mRNAs in GSCs, and pinpoint a mechanism of regulation of metabolic reprogramming in stem cells based on small RNAs.
Collapse
Affiliation(s)
- Patricia Rojas-Ríos
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Aymeric Chartier
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Camille Enjolras
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Julie Cremaschi
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Céline Garret
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Adel Boughlita
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Anne Ramat
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France
| | - Martine Simonelig
- Institute of Human Genetics, Université de Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
5
|
Gitschlag BL, Pereira CV, Held JP, McCandlish DM, Patel MR. Multiple distinct evolutionary mechanisms govern the dynamics of selfish mitochondrial genomes in Caenorhabditis elegans. Nat Commun 2024; 15:8237. [PMID: 39300074 DOI: 10.1038/s41467-024-52596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
Cells possess multiple mitochondrial DNA (mtDNA) copies, which undergo semi-autonomous replication and stochastic inheritance. This enables mutant mtDNA variants to arise and selfishly compete with cooperative (wildtype) mtDNA. Selfish mitochondrial genomes are subject to selection at different levels: they compete against wildtype mtDNA directly within hosts and indirectly through organism-level selection. However, determining the relative contributions of selection at different levels has proven challenging. We overcome this challenge by combining mathematical modeling with experiments designed to isolate the levels of selection. Applying this approach to many selfish mitochondrial genotypes in Caenorhabditis elegans reveals an unexpected diversity of evolutionary mechanisms. Some mutant genomes persist at high frequency for many generations, despite a host fitness cost, by aggressively outcompeting cooperative genomes within hosts. Conversely, some mutant genomes persist by evading inter-organismal selection. Strikingly, the mutant genomes vary dramatically in their susceptibility to genetic drift. Although different mechanisms can cause high frequency of selfish mtDNA, we show how they give rise to characteristically different distributions of mutant frequency among individuals. Given that heteroplasmic frequency represents a key determinant of phenotypic severity, this work outlines an evolutionary theoretic framework for predicting the distribution of phenotypic consequences among individuals carrying a selfish mitochondrial genome.
Collapse
Affiliation(s)
- Bryan L Gitschlag
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| | - Claudia V Pereira
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - James P Held
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - David M McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Evolutionary Studies, Vanderbilt University, VU Box #34-1634, Nashville, TN, USA.
| |
Collapse
|
6
|
Li J, Wu H, Zhou Y, Liu M, Zhou Y, Chu J, Kamili E, Wang W, Yang J, Lin L, Zhang Q, Yang S, Xu Y. Characterization and trans-generation dynamics of mitogene pool in the silver carp (Hypophthalmichthys molitrix). G3 (BETHESDA, MD.) 2024; 14:jkae101. [PMID: 38922124 PMCID: PMC11491513 DOI: 10.1093/g3journal/jkae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 06/27/2024]
Abstract
Multicopied mitogenome are prone to mutation during replication often resulting in heteroplasmy. The derived variants in a cell, organ, or an individual animal constitute a mitogene pool. The individual mitogene pool is initiated by a small fraction of the egg mitogene pool. However, the characteristics and relationship between them has not yet been investigated. This study quantitatively analyzed the heteroplasmy landscape, genetic loads, and selection strength of the mitogene pool of egg and hatchling in the silver carp (Hypophthalmichthys molitrix) using high-throughput resequencing. The results showed heteroplasmic sites distribute across the whole mitogenome in both eggs and hatchlings. The dominant substitution was Transversion in eggs and Transition in hatching accounting for 95.23%±2.07% and 85.38%±6.94% of total HP sites, respectively. The total genetic loads were 0.293±0.044 in eggs and 0.228±0.022 in hatchlings (P=0.048). The dN/dS ratio was 58.03±38.98 for eggs and 9.44±3.93 for hatchlings (P=0.037). These results suggest that the mitogenomes were under strong positive selection in eggs with tolerance to variants with deleterious effects, while the selection was positive but much weaker in hatchlings showing marked quality control. Based on these findings, we proposed a trans-generation dynamics model to explain differential development mode of the two mitogene pool between oocyte maturation and ontogenesis of offspring. This study sheds light on significance of mitogene pool for persistence of populations and subsequent integration in ecological studies and conservation practices.
Collapse
Affiliation(s)
- Jinlin Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Hengshu Wu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Yingna Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Manhong Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Yongheng Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Jianing Chu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Elizabeth Kamili
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Wenhui Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Jincheng Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Lijun Lin
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Qi Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| | - Shuhui Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yanchun Xu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation and Utilization, Harbin 150040, China
| |
Collapse
|
7
|
Sinha JK, Jorwal K, Singh KK, Han SS, Bhaskar R, Ghosh S. The Potential of Mitochondrial Therapeutics in the Treatment of Oxidative Stress and Inflammation in Aging. Mol Neurobiol 2024:10.1007/s12035-024-04474-0. [PMID: 39230868 DOI: 10.1007/s12035-024-04474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Mitochondria are central to cellular energy production, and their dysfunction is a major contributor to oxidative stress and chronic inflammation, pivotal factors in aging, and related diseases. With aging, mitochondrial efficiency declines, leading to an increase in ROS and persistent inflammatory responses. Therapeutic interventions targeting mitochondrial health show promise in mitigating these detrimental effects. Antioxidants such as MitoQ and MitoVitE, and supplements like coenzyme Q10 and NAD + precursors, have demonstrated potential in reducing oxidative stress. Additionally, gene therapy aimed at enhancing mitochondrial function, alongside lifestyle modifications such as regular exercise and caloric restriction can ameliorate age-related mitochondrial decline. Exercise not only boosts mitochondrial biogenesis but also improves mitophagy. Enhancing mitophagy is a key strategy to prevent the accumulation of dysfunctional mitochondria, which is crucial for cellular homeostasis and longevity. Pharmacological agents like sulforaphane, SS-31, and resveratrol indirectly promote mitochondrial biogenesis and improve cellular resistance to oxidative damage. The exploration of mitochondrial therapeutics, including emerging techniques like mitochondrial transplantation, offers significant avenues for extending health span and combating age-related diseases. However, translating these findings into clinical practice requires overcoming challenges in precisely targeting dysfunctional mitochondria and optimizing delivery mechanisms for therapeutic agents. Continued research is essential to refine these approaches and fully understand the interplay between mitochondrial dynamics and aging.
Collapse
Affiliation(s)
| | - Khanak Jorwal
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh, 201301, India
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology, Symbiosis International (Deemed University), Pune, Maharashtra, 411057, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang, 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeonsang, 38541, Republic of Korea
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang, 38541, Republic of Korea.
- Research Institute of Cell Culture, Yeungnam University, Gyeonsang, 38541, Republic of Korea.
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh, 201301, India.
| |
Collapse
|
8
|
Wu N, Zheng W, Zhou Y, Tian Y, Tang M, Feng X, Ashrafizadeh M, Wang Y, Niu X, Tambuwala M, Wang L, Tergaonkar V, Sethi G, Klionsky D, Huang L, Gu M. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res Rev 2024; 100:102428. [PMID: 39038742 DOI: 10.1016/j.arr.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yundong Zhou
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL 60532, USA; Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Daniel Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China.
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
9
|
Ru Y, Deng X, Chen J, Zhang L, Xu Z, Lv Q, Long S, Huang Z, Kong M, Guo J, Jiang M. Maternal age enhances purifying selection on pathogenic mutations in complex I genes of mammalian mtDNA. NATURE AGING 2024; 4:1211-1230. [PMID: 39075271 DOI: 10.1038/s43587-024-00672-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/14/2024] [Indexed: 07/31/2024]
Abstract
Mitochondrial diseases, caused mainly by pathogenic mitochondrial DNA (mtDNA) mutations, pose major challenges due to the lack of effective treatments. Investigating the patterns of maternal transmission of mitochondrial diseases could pave the way for preventive approaches. In this study, we used DddA-derived cytosine base editors (DdCBEs) to generate two mouse models, each haboring a single pathogenic mutation in complex I genes (ND1 and ND5), replicating those found in human patients. Our findings revealed that both mutations are under strong purifying selection during maternal transmission and occur predominantly during postnatal oocyte maturation, with increased protein synthesis playing a vital role. Interestingly, we discovered that maternal age intensifies the purifying selection, suggesting that older maternal age may offer a protective effect against the transmission of deleterious mtDNA mutations, contradicting the conventional notion that maternal age correlates with increased transmitted mtDNA mutations. As collecting comprehensive clinical data is needed to understand the relationship between maternal age and transmission patterns in humans, our findings may have profound implications for reproductive counseling of mitochondrial diseases, especially those involving complex I gene mutations.
Collapse
Affiliation(s)
- Yanfei Ru
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
| | - Xiaoling Deng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- Fudan University, Shanghai, China
| | - Jiatong Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Leping Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhe Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
| | - Qunyu Lv
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shiyun Long
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zijian Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- Fudan University, Shanghai, China
| | - Minghua Kong
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jing Guo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Min Jiang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
10
|
Veeraragavan S, Johansen M, Johnston IG. Evolution and maintenance of mtDNA gene content across eukaryotes. Biochem J 2024; 481:1015-1042. [PMID: 39101615 PMCID: PMC11346449 DOI: 10.1042/bcj20230415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Across eukaryotes, most genes required for mitochondrial function have been transferred to, or otherwise acquired by, the nucleus. Encoding genes in the nucleus has many advantages. So why do mitochondria retain any genes at all? Why does the set of mtDNA genes vary so much across different species? And how do species maintain functionality in the mtDNA genes they do retain? In this review, we will discuss some possible answers to these questions, attempting a broad perspective across eukaryotes. We hope to cover some interesting features which may be less familiar from the perspective of particular species, including the ubiquity of recombination outside bilaterian animals, encrypted chainmail-like mtDNA, single genes split over multiple mtDNA chromosomes, triparental inheritance, gene transfer by grafting, gain of mtDNA recombination factors, social networks of mitochondria, and the role of mtDNA dysfunction in feeding the world. We will discuss a unifying picture where organismal ecology and gene-specific features together influence whether organism X retains mtDNA gene Y, and where ecology and development together determine which strategies, importantly including recombination, are used to maintain the mtDNA genes that are retained.
Collapse
Affiliation(s)
| | - Maria Johansen
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Roussou R, Metzler D, Padovani F, Thoma F, Schwarz R, Shraiman B, Schmoller KM, Osman C. Real-time assessment of mitochondrial DNA heteroplasmy dynamics at the single-cell level. EMBO J 2024:10.1038/s44318-024-00183-5. [PMID: 39103491 DOI: 10.1038/s44318-024-00183-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024] Open
Abstract
Mitochondrial DNA (mtDNA) is present in multiple copies within cells and is required for mitochondrial ATP generation. Even within individual cells, mtDNA copies can differ in their sequence, a state known as heteroplasmy. The principles underlying dynamic changes in the degree of heteroplasmy remain incompletely understood, due to the inability to monitor this phenomenon in real time. Here, we employ mtDNA-based fluorescent markers, microfluidics, and automated cell tracking, to follow mtDNA variants in live heteroplasmic yeast populations at the single-cell level. This approach, in combination with direct mtDNA tracking and data-driven mathematical modeling reveals asymmetric partitioning of mtDNA copies during cell division, as well as limited mitochondrial fusion and fission frequencies, as critical driving forces for mtDNA variant segregation. Given that our approach also facilitates assessment of segregation between intact and mutant mtDNA, we anticipate that it will be instrumental in elucidating the mechanisms underlying the purifying selection of mtDNA.
Collapse
Affiliation(s)
- Rodaria Roussou
- Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Graduate School Life Science Munich, 82152, Planegg-Martinsried, Germany
| | - Dirk Metzler
- Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Francesco Padovani
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Felix Thoma
- Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Graduate School Life Science Munich, 82152, Planegg-Martinsried, Germany
| | - Rebecca Schwarz
- Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Boris Shraiman
- Kavli Institute for Theoretical Physics, University of California, 93106, Santa Barbara, CA, USA
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Christof Osman
- Faculty of Biology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
12
|
Tábara LC, Burr SP, Frison M, Chowdhury SR, Paupe V, Nie Y, Johnson M, Villar-Azpillaga J, Viegas F, Segawa M, Anand H, Petkevicius K, Chinnery PF, Prudent J. MTFP1 controls mitochondrial fusion to regulate inner membrane quality control and maintain mtDNA levels. Cell 2024; 187:3619-3637.e27. [PMID: 38851188 DOI: 10.1016/j.cell.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 06/10/2024]
Abstract
Mitochondrial dynamics play a critical role in cell fate decisions and in controlling mtDNA levels and distribution. However, the molecular mechanisms linking mitochondrial membrane remodeling and quality control to mtDNA copy number (CN) regulation remain elusive. Here, we demonstrate that the inner mitochondrial membrane (IMM) protein mitochondrial fission process 1 (MTFP1) negatively regulates IMM fusion. Moreover, manipulation of mitochondrial fusion through the regulation of MTFP1 levels results in mtDNA CN modulation. Mechanistically, we found that MTFP1 inhibits mitochondrial fusion to isolate and exclude damaged IMM subdomains from the rest of the network. Subsequently, peripheral fission ensures their segregation into small MTFP1-enriched mitochondria (SMEM) that are targeted for degradation in an autophagic-dependent manner. Remarkably, MTFP1-dependent IMM quality control is essential for basal nucleoid recycling and therefore to maintain adequate mtDNA levels within the cell.
Collapse
Affiliation(s)
- Luis Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK.
| | - Stephen P Burr
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Michele Frison
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Suvagata R Chowdhury
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Vincent Paupe
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Yu Nie
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Mark Johnson
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jara Villar-Azpillaga
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Filipa Viegas
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Mayuko Segawa
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Hanish Anand
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Kasparas Petkevicius
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Patrick F Chinnery
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|
13
|
Yu S, Cao Z, Cai F, Yao Y, Chang X, Wang X, Zhuang H, Hua ZC. ADT-OH exhibits anti-metastatic activity on triple-negative breast cancer by combinatorial targeting of autophagy and mitochondrial fission. Cell Death Dis 2024; 15:463. [PMID: 38942765 PMCID: PMC11213877 DOI: 10.1038/s41419-024-06829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/30/2024]
Abstract
High basal autophagy and enhanced mitochondrial fission in triple-negative breast cancer (TNBC) cells support cell migration and promote plasticity of cancer cell metabolism. Here, we suggest a novel combination therapy approach for the treatment of TNBC that targets Drp1-mediated mitochondrial fission and autophagy pathways. Hydrogen sulfide (H2S) mediates a myriad of biological processes, including autophagy and mitochondrial function. In this study, we demonstrated that 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), one of the most widely utilized sustained-release H2S donors, effectively suppresses metastasis of TNBC cells in the absence of proliferation inhibition in vitro and in vivo. ADT-OH treatment ameliorated autophagy flux by suppressing autophagosome formation and induced mitochondrial elongation through decreasing expression of dynamin-related protein 1 (Drp1) and increasing expression of mitochondrial fusion protein (Mfn2). At the same time, ADT-OH downregulated mitophagy flux and inhibited mitochondrial function, eventually leading to the inhibition of migration and invasion in TNBC cells. In vivo, intraperitoneal administration of ADT-OH revealed a potent anti-metastatic activity in three different animal models, the MDA-MB-231 orthotopic xenograft model, the 4T1-Luci orthotopic model and the 4T1-Luci tail vein metastasis model. However, ADT-OH has an extremely low water solubility, which is a significant barrier to its effectiveness. Thus, we demonstrated that the solubility of ADT-OH in water can be improved significantly by absorption with hydroxypropyl-β-cyclodextrin (CD). Remarkably, the obtained CD-ADT-OH demonstrated superior anti-cancer effect to ADT-OH in vivo. Altogether, this study describes a novel regulator of mammalian mitochondrial fission and autophagy, with potential utility as an experimental therapeutic agent for metastatic TNBC.
Collapse
Affiliation(s)
- Shihui Yu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Zhiting Cao
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yingying Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Xiaoyao Chang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Xiaoyang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China.
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, P. R. China.
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, P. R. China.
| |
Collapse
|
14
|
Neueder A, Kojer K, Gu Z, Wang Y, Hering T, Tabrizi S, Taanman JW, Orth M. Huntington's disease affects mitochondrial network dynamics predisposing to pathogenic mitochondrial DNA mutations. Brain 2024; 147:2009-2022. [PMID: 38195181 PMCID: PMC11512592 DOI: 10.1093/brain/awae007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/27/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Huntington's disease (HD) predominantly affects the brain, causing a mixed movement disorder, cognitive decline and behavioural abnormalities. It also causes a peripheral phenotype involving skeletal muscle. Mitochondrial dysfunction has been reported in tissues of HD models, including skeletal muscle, and lymphoblast and fibroblast cultures from patients with HD. Mutant huntingtin protein (mutHTT) expression can impair mitochondrial quality control and accelerate mitochondrial ageing. Here, we obtained fresh human skeletal muscle, a post-mitotic tissue expressing the mutated HTT allele at physiological levels since birth, and primary cell lines from HTT CAG repeat expansion mutation carriers and matched healthy volunteers to examine whether such a mitochondrial phenotype exists in human HD. Using ultra-deep mitochondrial DNA (mtDNA) sequencing, we showed an accumulation of mtDNA mutations affecting oxidative phosphorylation. Tissue proteomics indicated impairments in mtDNA maintenance with increased mitochondrial biogenesis of less efficient oxidative phosphorylation (lower complex I and IV activity). In full-length mutHTT expressing primary human cell lines, fission-inducing mitochondrial stress resulted in normal mitophagy. In contrast, expression of high levels of N-terminal mutHTT fragments promoted mitochondrial fission and resulted in slower, less dynamic mitophagy. Expression of high levels of mutHTT fragments due to somatic nuclear HTT CAG instability can thus affect mitochondrial network dynamics and mitophagy, leading to pathogenic mtDNA mutations. We show that life-long expression of mutant HTT causes a mitochondrial phenotype indicative of mtDNA instability in fresh post-mitotic human skeletal muscle. Thus, genomic instability may not be limited to nuclear DNA, where it results in somatic expansion of the HTT CAG repeat length in particularly vulnerable cells such as striatal neurons. In addition to efforts targeting the causative mutation, promoting mitochondrial health may be a complementary strategy in treating diseases with DNA instability such as HD.
Collapse
Affiliation(s)
| | - Kerstin Kojer
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yiqin Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Tanja Hering
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Sarah Tabrizi
- UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Dementia Research Institute at UCL, London WC1N 3BG, UK
| | - Jan-Willem Taanman
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London NW3 2PF, UK
| | - Michael Orth
- Department of Neurology, Ulm University, 89081 Ulm, Germany
- Swiss Huntington Centre, Siloah AG, 3073 Gümligen, Switzerland
- University Hospital of Old Age Psychiatry and Psychotherapy, Bern University, CH-3000 Bern 60, Switzerland
| |
Collapse
|
15
|
Najer T, Doña J, Buček A, Sweet AD, Sychra O, Johnson KP. Mitochondrial genome fragmentation is correlated with increased rates of molecular evolution. PLoS Genet 2024; 20:e1011266. [PMID: 38701107 PMCID: PMC11095710 DOI: 10.1371/journal.pgen.1011266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/15/2024] [Accepted: 04/20/2024] [Indexed: 05/05/2024] Open
Abstract
While mitochondrial genome content and organization is quite diverse across all Eukaryotes, most bilaterian animal mitochondrial genomes (mitogenomes) exhibit highly conserved gene content and organisation, with genes typically encoded on a single circular chromosome. However, many species of parasitic lice (Insecta: Phthiraptera) are among the notable exceptions, having mitogenomes fragmented into multiple circular chromosomes. To better understand the process of mitogenome fragmentation, we conducted a large-scale genomic study of a major group of lice, Amblycera, with extensive taxon sampling. Analyses of the evolution of mitogenome structure across a phylogenomic tree of 90 samples from 53 genera revealed evidence for multiple independent origins of mitogenome fragmentation, some inferred to have occurred less than five million years ago. We leveraged these many independent origins of fragmentation to compare the rates of DNA substitution and gene rearrangement, specifically contrasting branches with fragmented and non-fragmented mitogenomes. We found that lineages with fragmented mitochondrial genomes had significantly higher rates of mitochondrial sequence evolution. In addition, lineages with fragmented mitochondrial genomes were more likely to have mitogenome gene rearrangements than those with single-chromosome mitochondrial genomes. By combining phylogenomics and mitochondrial genomics we provide a detailed portrait of mitogenome evolution across this group of insects with a remarkably unstable mitogenome structure, identifying processes of molecular evolution that are correlated with mitogenome fragmentation.
Collapse
Affiliation(s)
- Tomáš Najer
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
| | - Jorge Doña
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
- Departamento de Biología Animal, Universidad de Granada, Granada, Spain
| | - Aleš Buček
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Okinawa Institute of Science & Technology Graduate University, Onna-son, Okinawa, Japan
| | - Andrew D. Sweet
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, United States of America
| | - Oldřich Sychra
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Kevin P. Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
| |
Collapse
|
16
|
Degli Esposti M. Did mitophagy follow the origin of mitochondria? Autophagy 2024; 20:985-993. [PMID: 38361280 PMCID: PMC11135861 DOI: 10.1080/15548627.2024.2307215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/30/2023] [Accepted: 01/13/2024] [Indexed: 02/17/2024] Open
Abstract
Mitophagy is the process of selective autophagy that removes superfluous and dysfunctional mitochondria. Mitophagy was first characterized in mammalian cells and is now recognized to follow several pathways including basal forms in specific organs. Mitophagy pathways are regulated by multiple, often interconnected factors. The present review aims to streamline this complexity and evaluate common elements that may define the evolutionary origin of mitophagy. Key issues surrounding mitophagy signaling at the mitochondrial surface may fundamentally derive from mitochondrial membrane dynamics. Elements of such membrane dynamics likely originated during the endosymbiosis of the alphaproteobacterial ancestor of our mitochondria but underwent an evolutionary leap forward in basal metazoa that determined the currently known variations in mitophagy signaling.Abbreviations: AGPAT, 1-acylglycerol-3-phosphate O-acyltransferase; ATG, autophagy related; BCL2L13, BCL2 like 13; BNIP3, BCL2 interacting protein 3; BNIP3L, BCL2 interacting protein 3 like; CALCOCO, calcium binding and coiled-coil domain; CL, cardiolipin; ER, endoplasmic reticulum; ERMES, ER-mitochondria encounter structure; FBXL4, F-box and leucine rich repeat protein 4; FUNDC1, FUN14 domain containing 1; GABARAPL1, GABA type A receptor associated protein like 1; HIF, hypoxia inducible factor; IMM, inner mitochondrial membrane; LBPA/BMP, lysobisphosphatidic acid; LIR, LC3-interacting region; LPA, lysophosphatidic acid; MAM, mitochondria-associated membranes; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MCL, monolysocardiolipin; ML, maximum likelihood; NBR1, NBR1 autophagy cargo receptor; OMM, outer mitochondrial membrane; PA, phosphatidic acid; PACS2, phosphofurin acidic cluster sorting protein 2; PC/PLC, phosphatidylcholine; PE, phosphatidylethanolamine; PHB2, prohibitin 2; PINK1, PTEN induced kinase 1; PtdIns, phosphatidylinositol; SAR, Stramenopiles, Apicomplexa and Rhizaria; TAX1BP1, Tax1 binding protein 1; ULK1, unc-51 like autophagy activating kinase 1; VDAC/porin, voltage dependent anion channel.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Center for Genomic Sciences, UNAM Campus de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
17
|
Cao J, Luo Y, Chen Y, Wu Z, Zhang J, Wu Y, Hu W. Maternal mitochondrial function affects paternal mitochondrial inheritance in Drosophila. Genetics 2024; 226:iyae014. [PMID: 38290047 PMCID: PMC10990420 DOI: 10.1093/genetics/iyae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
The maternal inheritance of mitochondria is a widely accepted paradigm, and mechanisms that prevent paternal mitochondria transmission to offspring during spermatogenesis and postfertilization have been described. Although certain species do retain paternal mitochondria, the factors affecting paternal mitochondria inheritance in these cases are unclear. More importantly, the evolutionary benefit of retaining paternal mitochondria and their ultimate fate are unknown. Here we show that transplanted exogenous paternal D. yakuba mitochondria can be transmitted to offspring when maternal mitochondria are dysfunctional in D. melanogaster. Furthermore, we show that the preserved paternal mitochondria are functional, and can be stably inherited, such that the proportion of paternal mitochondria increases gradually in subsequent generations. Our work has important implications that paternal mitochondria inheritance should not be overlooked as a genetic phenomenon in evolution, especially when paternal mitochondria are of significant differences from the maternal mitochondria or the maternal mitochondria are functionally abnormal. Our results improve the understanding of mitochondrial inheritance and provide a new model system for its study.
Collapse
Affiliation(s)
- Jinguo Cao
- Department of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Mitochondrial Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yuying Luo
- Department of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yonghe Chen
- Department of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| | - Zhaoqi Wu
- Department of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Jiting Zhang
- Department of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yi Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ministry of Education, Ganzhou 341000, China
- Key Laboratory of Genetic and Developmental Related Diseases, Gannan Medical University, Ganzhou 341000, China
| | - Wen Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Gannan Medical University, Ministry of Education, Ganzhou 341000, China
| |
Collapse
|
18
|
Campbell D, Zuryn S. The mechanisms and roles of mitochondrial dynamics in C. elegans. Semin Cell Dev Biol 2024; 156:266-275. [PMID: 37919144 DOI: 10.1016/j.semcdb.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
If mitochondria are the powerhouses of the cell, then mitochondrial dynamics are the power grid that regulates how that energy output is directed and maintained in response to unique physiological demands. Fission and fusion dynamics are highly regulated processes that fine-tune the mitochondrial networks of cells to enable appropriate responses to intrinsic and extrinsic stimuli, thereby maintaining cellular and organismal homeostasis. These dynamics shape many aspects of an organism's healthspan including development, longevity, stress resistance, immunity, and response to disease. In this review, we discuss the latest findings regarding the mechanisms and roles of mitochondrial dynamics by focussing on the nematode Caenorhabditis elegans. Whole live-animal studies in C. elegans have enabled a true organismal-level understanding of the impact that mitochondrial dynamics play in homeostasis over a lifetime.
Collapse
Affiliation(s)
- Daniel Campbell
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
19
|
Spinazzola A, Perez-Rodriguez D, Ježek J, Holt IJ. Mitochondrial DNA competition: starving out the mutant genome. Trends Pharmacol Sci 2024; 45:225-242. [PMID: 38402076 DOI: 10.1016/j.tips.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/26/2024]
Abstract
High levels of pathogenic mitochondrial DNA (mtDNA) variants lead to severe genetic diseases, and the accumulation of such mutants may also contribute to common disorders. Thus, selecting against these mutants is a major goal in mitochondrial medicine. Although mutant mtDNA can drift randomly, mounting evidence indicates that active forces play a role in the selection for and against mtDNA variants. The underlying mechanisms are beginning to be clarified, and recent studies suggest that metabolic cues, including fuel availability, contribute to shaping mtDNA heteroplasmy. In the context of pathological mtDNAs, remodeling of nutrient metabolism supports mitochondria with deleterious mtDNAs and enables them to outcompete functional variants owing to a replicative advantage. The elevated nutrient requirement represents a mutant Achilles' heel because small molecules that restrict nutrient consumption or interfere with nutrient sensing can purge cells of deleterious mtDNAs and restore mitochondrial respiration. These advances herald the dawn of a new era of small-molecule therapies to counteract pathological mtDNAs.
Collapse
Affiliation(s)
- Antonella Spinazzola
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK.
| | - Diego Perez-Rodriguez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Jan Ježek
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Ian J Holt
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK; Biodonostia Health Research Institute, 20014 San Sebastián, Spain; IKERBASQUE (Basque Foundation for Science), 48013 Bilbao, Spain; CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), 28031 Madrid, Spain; Universidad de País Vasco, Barrio Sarriena s/n, 48940 Leioa, Bilbao, Spain.
| |
Collapse
|
20
|
Ng AQE, Chan SN, Pek JW. Nutrient-dependent regulation of a stable intron modulates germline mitochondrial quality control. Nat Commun 2024; 15:1252. [PMID: 38341415 PMCID: PMC10858910 DOI: 10.1038/s41467-024-45651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Mitochondria are inherited exclusively from the mothers and are required for the proper development of embryos. Hence, germline mitochondrial quality is highly regulated during oogenesis to ensure oocyte viability. How nutrient availability influences germline mitochondrial quality control is unclear. Here we find that fasting leads to the accumulation of mitochondrial clumps and oogenesis arrest in Drosophila. Fasting induces the downregulation of the DIP1-Clueless pathway, leading to an increase in the expression of a stable intronic sequence RNA called sisR-1. Mechanistically, sisR-1 localizes to the mitochondrial clumps to inhibit the poly-ubiquitination of the outer mitochondrial protein Porin/VDAC1, thereby suppressing p62-mediated mitophagy. Alleviation of the fasting-induced high sisR-1 levels by either sisR-1 RNAi or refeeding leads to mitophagy, the resumption of oogenesis and an improvement in oocyte quality. Thus, our study provides a possible mechanism by which fasting can improve oocyte quality by modulating the mitochondrial quality control pathway. Of note, we uncover that the sisR-1 response also regulates mitochondrial clumping and oogenesis during protein deprivation, heat shock and aging, suggesting a broader role for this mechanism in germline mitochondrial quality control.
Collapse
Affiliation(s)
- Annabel Qi En Ng
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Seow Neng Chan
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore, 117543, Singapore.
| |
Collapse
|
21
|
Gäbelein CG, Lehmann R. Mechanical activation of mitochondria in germ cell differentiation. Trends Cell Biol 2024; 34:83-84. [PMID: 38135636 DOI: 10.1016/j.tcb.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Mitochondria are activated during stem cell differentiation. Recently, Wang et al. found that mechanical stimulation from tissue surrounding differentiating germ cells in the female fly ovary is necessary to sustain intracellular calcium levels, promoting mitochondrial activity. This suggests a molecular link between cell mechanics and developmental metabolic transitions in eukaryotes.
Collapse
Affiliation(s)
- Christoph G Gäbelein
- Whitehead Institute and Department of Biology, MIT, 455 Mainstreet, Cambridge, MA 02142, USA
| | - Ruth Lehmann
- Whitehead Institute and Department of Biology, MIT, 455 Mainstreet, Cambridge, MA 02142, USA.
| |
Collapse
|
22
|
Kang X, Yan L, Wang J. Spatiotemporal Distribution and Function of Mitochondria in Oocytes. Reprod Sci 2024; 31:332-340. [PMID: 37605038 DOI: 10.1007/s43032-023-01331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Mitochondria are energy provider organelles in eukaryotic cells that contain their own specific genome. This review addresses structural and functional properties of mitochondria, focusing on recent discoveries about the changes in quality and number of mitochondria per cell during oocyte development. We highlight how oocyte mitochondria exhibit stage-specific morphology and characteristics at different stages of development, in sharp contrast to the elongated mitochondria present in somatic cells. We then evaluate the latest transcriptomic data to elucidate the complex functions of mitochondria during oocyte maturation and the impact of mitochondria on oocyte development. Finally, we describe the methodological progress of mitochondrial replacement therapy to rescue oocytes with developmental disorders or mitochondrial diseases, hoping to provide a guiding reference to future clinical applications.
Collapse
Affiliation(s)
- Xin Kang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Liying Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
| | - Jing Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
- Research Units of Comprehensive Diagnosis and Treatment of Oocyte Maturation Arrest, Chinese Academy of Medical Sciences, Beijing, 100191, China.
| |
Collapse
|
23
|
Korolija M, Sukser V, Vlahoviček K. Mitochondrial point heteroplasmy: insights from deep-sequencing of human replicate samples. BMC Genomics 2024; 25:48. [PMID: 38200446 PMCID: PMC10782721 DOI: 10.1186/s12864-024-09963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Human mitochondrial heteroplasmy is an extensively investigated phenomenon in the context of medical diagnostics, forensic identification and molecular evolution. However, technical limitations of high-throughput sequencing hinder reliable determination of point heteroplasmies (PHPs) with minor allele frequencies (MAFs) within the noise threshold. RESULTS To investigate the PHP landscape at an MAF threshold down to 0.1%, we sequenced whole mitochondrial genomes at approximately 7.700x coverage, in multiple technical and biological replicates of longitudinal blood and buccal swab samples from 11 human donors (159 libraries in total). The results obtained by two independent sequencing platforms and bioinformatics pipelines indicate distinctive PHP patterns below and above the 1% MAF cut-off. We found a high inter-individual prevalence of low-level PHPs (MAF < 1%) at polymorphic positions of the mitochondrial DNA control region (CR), their tissue preference, and a tissue-specific minor allele linkage. We also established the position-dependent potential of minor allele expansion in PHPs, and short-term PHP instability in a mitotically active tissue. We demonstrate that the increase in sensitivity of PHP detection to minor allele frequencies below 1% within a robust experimental and analytical pipeline, provides new information with potential applicative value. CONCLUSIONS Our findings reliably show different mutational loads between tissues at sub-1% allele frequencies, which may serve as an informative medical biomarker of time-dependent, tissue-specific mutational burden, or help discriminate forensically relevant tissues in a single person, close maternal relatives or unrelated individuals of similar phylogenetic background.
Collapse
Affiliation(s)
- Marina Korolija
- Biology and Fibres Department, Forensic Science Centre "Ivan Vučetić", Ministry of the Interior of the Republic of Croatia, Ilica 335, HR-10000, Zagreb, Croatia.
| | - Viktorija Sukser
- Biology and Fibres Department, Forensic Science Centre "Ivan Vučetić", Ministry of the Interior of the Republic of Croatia, Ilica 335, HR-10000, Zagreb, Croatia
| | - Kristian Vlahoviček
- Bioinformatics group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000, Zagreb, Croatia
| |
Collapse
|
24
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
25
|
Spradling AC. The Ancient Origin and Function of Germline Cysts. Results Probl Cell Differ 2024; 71:3-21. [PMID: 37996670 DOI: 10.1007/978-3-031-37936-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Gamete production in most animal species is initiated within an evolutionarily ancient multicellular germline structure, the germline cyst, whose interconnected premeiotic cells synchronously develop from a single progenitor arising just downstream from a stem cell. Cysts in mice, Drosophila, and many other animals protect developing sperm, while in females, cysts generate nurse cells that guard sister oocytes from transposons (TEs) and help them grow and build a Balbiani body. However, the origin and extreme evolutionary conservation of germline cysts remains a mystery. We suggest that cysts arose in ancestral animals like Hydra and Planaria whose multipotent somatic and germline stem cells (neoblasts) express genes conserved in all animal germ cells and frequently begin differentiation in cysts. A syncytial state is proposed to help multipotent stem cell chromatin transition to an epigenetic state with heterochromatic domains suitable for TE repression and specialized function. Most modern animals now lack neoblasts but have retained stem cells and cysts in their early germlines, which continue to function using this ancient epigenetic strategy.
Collapse
Affiliation(s)
- Allan C Spradling
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, MD, USA.
| |
Collapse
|
26
|
Agarwala S, Dhabal S, Mitra K. Significance of quantitative analyses of the impact of heterogeneity in mitochondrial content and shape on cell differentiation. Open Biol 2024; 14:230279. [PMID: 38228170 PMCID: PMC10791538 DOI: 10.1098/rsob.230279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024] Open
Abstract
Mitochondria, classically known as the powerhouse of cells, are unique double membrane-bound multifaceted organelles carrying a genome. Mitochondrial content varies between cell types and precisely doubles within cells during each proliferating cycle. Mitochondrial content also increases to a variable degree during cell differentiation triggered after exit from the proliferating cycle. The mitochondrial content is primarily maintained by the regulation of mitochondrial biogenesis, while damaged mitochondria are eliminated from the cells by mitophagy. In any cell with a given mitochondrial content, the steady-state mitochondrial number and shape are determined by a balance between mitochondrial fission and fusion processes. The increase in mitochondrial content and alteration in mitochondrial fission and fusion are causatively linked with the process of differentiation. Here, we critically review the quantitative aspects in the detection methods of mitochondrial content and shape. Thereafter, we quantitatively link these mitochondrial properties in differentiating cells and highlight the implications of such quantitative link on stem cell functionality. Finally, we discuss an example of cell size regulation predicted from quantitative analysis of mitochondrial shape and content. To highlight the significance of quantitative analyses of these mitochondrial properties, we propose three independent rationale based hypotheses and the relevant experimental designs to test them.
Collapse
Affiliation(s)
- Swati Agarwala
- Department of Biology, Ashoka University, Delhi (NCR), India
| | - Sukhamoy Dhabal
- Department of Biology, Ashoka University, Delhi (NCR), India
| | - Kasturi Mitra
- Department of Biology, Ashoka University, Delhi (NCR), India
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
27
|
Brubacher JL. Female Germline Cysts in Animals: Evolution and Function. Results Probl Cell Differ 2024; 71:23-46. [PMID: 37996671 DOI: 10.1007/978-3-031-37936-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Germline cysts are syncytia formed by incomplete cytokinesis of mitotic germline precursors (cystoblasts) in which the cystocytes are interconnected by cytoplasmic bridges, permitting the sharing of molecules and organelles. Among animals, such cysts are a nearly universal feature of spermatogenesis and are also often involved in oogenesis. Recent, elegant studies have demonstrated remarkable similarities in the oogenic cysts of mammals and insects, leading to proposals of widespread conservation of these features among animals. Unfortunately, such claims obscure the well-described diversity of female germline cysts in animals and ignore major taxa in which female germline cysts appear to be absent. In this review, I explore the phylogenetic patterns of oogenic cysts in the animal kingdom, with a focus on the hexapods as an informative example of a clade in which such cysts have been lost, regained, and modified in various ways. My aim is to build on the fascinating insights of recent comparative studies, by calling for a more nuanced view of evolutionary conservation. Female germline cysts in the Metazoa are an example of a phenomenon that-though essential for the continuance of many, diverse animal lineages-nevertheless exhibits intriguing patterns of evolutionary innovation, loss, and convergence.
Collapse
|
28
|
Udagawa O. Oocyte Health and Quality: Implication of Mitochondria-related Organelle Interactions. Results Probl Cell Differ 2024; 73:25-42. [PMID: 39242373 DOI: 10.1007/978-3-031-62036-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Among factors like hormonal imbalance and uterine condition, oocyte quality is regarded as one of the key factors involved in age-related decline in the reproductive capacity. Here, are discussions about the functions played by organelles within the oocyte in forming the next generation that is more suitable for survival. Many insights on the adaptation to aging and maintenance of quality can be obtained from: interactions between mitochondria and other organelles that enable the long life of primordial oocytes; characteristics of organelle interactions after breaking dormancy from primary oocytes to mature oocytes; and characteristics of interactions between mitochondria and other organelles of aged oocytes collected during the ovulatory cycle from elderly individuals and animals. This information would potentially be beneficial to the development of future therapeutic methods or agents.
Collapse
Affiliation(s)
- Osamu Udagawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
29
|
Komatsu M, Takuma H, Imai S, Yamane M, Takahashi M, Ikegawa T, Bai H, Ogawa H, Kawahara M. Dual barrier system against xenomitochondrial contamination in mouse embryos. Sci Rep 2023; 13:23058. [PMID: 38155240 PMCID: PMC10754889 DOI: 10.1038/s41598-023-50444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023] Open
Abstract
Heteroplasmic mammalian embryos between genetically distant species fail to develop to term, preventing transmission of xenomitochondrial DNA to progeny. However, there is no direct evidence indicating the mechanisms by which species specificity of the mitochondrial genome is ensured during mammalian development. Here, we have uncovered a two-step strategy underlying the prevention of xenomitochondrial DNA transmission in mouse embryos harboring bovine mitochondria (mtB-M embryos). First, mtB-M embryos showed metabolic disorder by transient increase of reactive oxygen species at the 4-cell stage, resulting in repressed development. Second, trophoblasts of mtB-M embryos led to implantation failure. Therefore, we tested cell aggregation with tetraploid embryos to compensate for the placentation of mtB-M embryos. The 14 mtB-M embryos harboring bovine mtDNAs developed to term at embryonic day 19.5. Taken together, our results show that contamination of bovine mtDNA is prohibited by embryonic lethality due to metabolic disruption and failure of placentation, suggesting these represent xenomitochondrial elimination mechanisms in mammalian embryos.
Collapse
Affiliation(s)
- Masaya Komatsu
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
- Hokkaido Agricultural Research Center, NARO, Sapporo, Hokkaido, 062-8555, Japan
| | - Hikaru Takuma
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Shun Imai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Maiko Yamane
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Masashi Takahashi
- Graduate School of Global Food Resources/Global Center for Food, Land and Water Resources, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Takuto Ikegawa
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Hanako Bai
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan
| | - Hidehiko Ogawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Manabu Kawahara
- Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, 060-8589, Japan.
| |
Collapse
|
30
|
Holcombe J, Weavers H. Functional-metabolic coupling in distinct renal cell types coordinates organ-wide physiology and delays premature ageing. Nat Commun 2023; 14:8405. [PMID: 38110414 PMCID: PMC10728150 DOI: 10.1038/s41467-023-44098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023] Open
Abstract
Precise coupling between cellular physiology and metabolism is emerging as a vital relationship underpinning tissue health and longevity. Nevertheless, functional-metabolic coupling within heterogenous microenvironments in vivo remains poorly understood due to tissue complexity and metabolic plasticity. Here, we establish the Drosophila renal system as a paradigm for linking mechanistic analysis of metabolism, at single-cell resolution, to organ-wide physiology. Kidneys are amongst the most energetically-demanding organs, yet exactly how individual cell types fine-tune metabolism to meet their diverse, unique physiologies over the life-course remains unclear. Integrating live-imaging of metabolite and organelle dynamics with spatio-temporal genetic perturbation within intact functional tissue, we uncover distinct cellular metabolic signatures essential to support renal physiology and healthy ageing. Cell type-specific programming of glucose handling, PPP-mediated glutathione regeneration and FA β-oxidation via dynamic lipid-peroxisomal networks, downstream of differential ERR receptor activity, precisely match cellular energetic demands whilst limiting damage and premature senescence; however, their dramatic dysregulation may underlie age-related renal dysfunction.
Collapse
Affiliation(s)
- Jack Holcombe
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Helen Weavers
- School of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
31
|
Quan Y, Shou D, Yang S, Cheng J, Li Y, Huang C, Chen H, Zhou Y. Mdivi1 ameliorates mitochondrial dysfunction in non-alcoholic steatohepatitis by inhibiting JNK/MFF signaling. J Gastroenterol Hepatol 2023; 38:2215-2227. [PMID: 37839851 DOI: 10.1111/jgh.16372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND AND AIMS Mitochondrial dysfunction plays a crucial role in the progression of non-alcoholic steatohepatitis (NASH). Mitochondrial division inhibitor 1 (Mdivi1) is a potential inhibitor of dynamin-related protein (Drp1) and mitochondrial fission. However, the therapeutic effect of Mdivi1 against NASH and its underlying molecular mechanisms remain unclear. METHODS In this study, we established mouse models of NASH by inducing high-fat/high-cholesterol (HFHC) or methionine- and choline-deficient (MCD) diets and treated the animals with 5 mg/kg/day Mdivi1 or placebo. RESULTS Treatment with Mdivi1 significantly alleviated diet-induced fatty liver phenotypes, including increased liver weight/body weight ratio, insulin resistance, hepatic lipid accumulation, steatohepatitis, and liver injury. Furthermore, Mdivi1 treatment suppressed HFHC or MCD diet-induced changes in the expression of genes related to lipid metabolism and inflammatory cytokines. Additionally, Mdivi1 reduced macrophage infiltration in the injured liver and promoted polarization of macrophages towards the M1 phenotype. At the molecular level, Mdivi1 attenuated mitochondrial fission by reducing Drp1 activation and expression, thereby decreasing mitochondrial reactive oxygen species accumulation and mitochondrial DNA damage. Moreover, Mdivi1-treated mice exhibited elevated levels of phosphorylated-c-Jun N-terminal kinase (p-JNK), mitochondrial fission factor (MFF), cleaved caspase 3 protein, and TUNEL-positive cell expression in the liver, suggesting that Mdivi1 might ameliorate mitochondrial dysfunction and reduce hepatocyte apoptosis by inhibiting the JNK/MFF pathway. CONCLUSION Collectively, Mdivi1 protected against diet-induced NASH by restoring mitochondrial homeostasis and function, potentially through its inhibitory effect on the JNK/MFF pathway. Consequently, further investigation of Mdivi1 as a promising drug for NASH treatment is warranted.
Collapse
Affiliation(s)
- Ying Quan
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Diwen Shou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Siqi Yang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiemin Cheng
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongqiang Li
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huiting Chen
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
32
|
Yamashita YM. Asymmetric Stem Cell Division and Germline Immortality. Annu Rev Genet 2023; 57:181-199. [PMID: 37552892 DOI: 10.1146/annurev-genet-022123-040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Germ cells are the only cell type that is capable of transmitting genetic information to the next generation, which has enabled the continuation of multicellular life for the last 1.5 billion years. Surprisingly little is known about the mechanisms supporting the germline's remarkable ability to continue in this eternal cycle, termed germline immortality. Even unicellular organisms age at a cellular level, demonstrating that cellular aging is inevitable. Extensive studies in yeast have established the framework of how asymmetric cell division and gametogenesis may contribute to the resetting of cellular age. This review examines the mechanisms of germline immortality-how germline cells reset the aging of cells-drawing a parallel between yeast and multicellular organisms.
Collapse
Affiliation(s)
- Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Howard Hughes Medical Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
33
|
Yan MQ, Zhu BH, Liu XH, Yang YM, Duan XY, Wang Y, Sun H, Feng M, Li T, Liu XM. Mitoguardin 1 and 2 promote granulosa cell proliferation by activating AKT and regulating the Hippo-YAP1 signaling pathway. Cell Death Dis 2023; 14:779. [PMID: 38012141 PMCID: PMC10682431 DOI: 10.1038/s41419-023-06312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Mitochondria have been identified to be involved in oxidative phosphorylation, lipid metabolism, cell death, and cell proliferation. Previous studies have demonstrated that mitoguardin (Miga), a mitochondrial protein that governs mitochondrial fusion, mitochondria-endoplasmic reticulum (ER) contacts, lipid formation, and autophagy, is crucial for ovarian endocrine and follicular development. Nevertheless, whether mammalian MIGA1 or MIGA2 (MIGA1,-2) regulates ovarian granulosa cell proliferation remains unclear. This study revealed that mammalian MIGA1,-2 promotes cell proliferation and regulates the phosphorylation and localization of Yes-associated protein 1 (YAP1) in ovarian granulosa cells. MIGA2 upregulation resulted in reduced YAP1 activity, while MIGA2 removal led to increased YAP1 activity. Further analysis indicated that MIGA1,-2 regulated YAP1 via the Hippo signaling pathway and regulated protein kinase B (AKT) activity in collaboration with YAP1. In addition, lysophosphatidic acid (LPA) regulated MIGA2 expression and AKT activity by activating YAP1. Briefly, we demonstrated that the mitochondrial MIGA1 and MIGA2, especially MIGA2, promoted cellular proliferation by activating AKT and regulating the Hippo/YAP1 signaling pathway in ovarian granulosa cells, which may contribute to the molecular pathogenesis of reproductive endocrine diseases, such as polycystic ovary syndrome (PCOS).
Collapse
Affiliation(s)
- Ming-Qi Yan
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, 250021, Jinan, China
| | - Bing-Hong Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 250014, Jinan, China
| | - Xiao-Hong Liu
- Department of Infection Control, Jen Ching Memorial Hospital, 215300, Kunshan, China
| | - Yu-Meng Yang
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, 250021, Jinan, China
| | - Xiu-Yun Duan
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, 250021, Jinan, China
| | - Yong Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University; Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, 250021, Jinan, China
| | - Hui Sun
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University; Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, 250021, Jinan, China
| | - Mei Feng
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, 250021, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Tao Li
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China
| | - Xiao-Man Liu
- Department of Central Laboratory, Shandong Provincial Hospital, Shandong University, 250021, Jinan, China.
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University; Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, 250021, Jinan, China.
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021, Jinan, China.
| |
Collapse
|
34
|
Zhang R, Fang J, Qi T, Zhu S, Yao L, Fang G, Li Y, Zang X, Xu W, Hao W, Liu S, Yang D, Chen D, Yang J, Ma X, Wu L. Maternal aging increases offspring adult body size via transmission of donut-shaped mitochondria. Cell Res 2023; 33:821-834. [PMID: 37500768 PMCID: PMC10624822 DOI: 10.1038/s41422-023-00854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
Maternal age at childbearing has continued to increase in recent decades. However, whether and how it influences offspring adult traits are largely unknown. Here, using adult body size as the primary readout, we reveal that maternal rather than paternal age has an evolutionarily conserved effect on offspring adult traits in humans, Drosophila, and Caenorhabditis elegans. Elucidating the mechanisms of such effects in humans and other long-lived animals remains challenging due to their long life course and difficulties in conducting in vivo studies. We thus employ the short-lived and genetically tractable nematode C. elegans to explore the mechanisms underlying the regulation of offspring adult trait by maternal aging. By microscopic analysis, we find that old worms transmit aged mitochondria with a donut-like shape to offspring. These mitochondria are rejuvenated in the offspring's early life, with their morphology fully restored before adulthood in an AMPK-dependent manner. Mechanistically, we demonstrate that early-life mitochondrial dysfunction activates AMPK, which in turn not only alleviates mitochondrial abnormalities but also activates TGFβ signaling to increase offspring adult size. Together, our findings provide mechanistic insight into the ancient role of maternal aging in shaping the traits of adult offspring.
Collapse
Affiliation(s)
- Runshuai Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jinan Fang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Ting Qi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Shihao Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Luxia Yao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Guicun Fang
- Microscopy Core Facility, Westlake University, Hangzhou, Zhejiang, China
| | - Yunsheng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiao Zang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Weina Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Wanyu Hao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shouye Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, QLD, Australia
| | - Dan Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Di Chen
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Jian Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| | - Xianjue Ma
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| | - Lianfeng Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang, China.
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
Yan MQ, Wang Y, Wang Z, Liu XH, Yang YM, Duan XY, Sun H, Liu XM. Mitoguardin2 Is Associated With Hyperandrogenism and Regulates Steroidogenesis in Human Ovarian Granulosa Cells. J Endocr Soc 2023; 7:bvad034. [PMID: 36936714 PMCID: PMC10016062 DOI: 10.1210/jendso/bvad034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 03/04/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrinopathy characterized by hyperandrogenism, anovulation, and polycystic ovaries, in which hyperandrogenism manifests by excess androgen and other steroid hormone abnormalities. Mitochondrial fusion is essential in steroidogenesis, while the role of mitochondrial fusion in granulosa cells of hyperandrogenic PCOS patients remains unclear. In this study, mRNA expression of mitochondrial fusion genes mitoguardin1, -2 (MIGA 1, -2) was significantly increased in granulosa cells of hyperandrogenic PCOS but not PCOS with normal androgen levels, their mRNA expression positively correlated with testosterone levels. Dihydrotestosterone (DHT) treatment in mice led to high expression of MIGA2 in granulosa cells of ovulating follicles. Testosterone or forskolin/ phorbol 12-myristate 13-acetate treatments increased expression of MIGA2 and the steroidogenic acute regulatory protein (StAR) in KGN cells. MIGA2 interacted with StAR and induced StAR localization on mitochondria. Furthermore, MIGA2 overexpression significantly increased cAMP-activated protein kinase A (PKA) and phosphorylation of AMP-activated protein kinase (pAMPK) at T172 but inhibited StAR protein expression. However, MIGA2 overexpression increased CYP11A1, HSD3B2, and CYP19A1 mRNA expression. As a result, MIGA2 overexpression decreased progesterone but increased estradiol synthesis. Besides the androgen receptor, testosterone or DHT might also regulate MIGA2 and pAMPK (T172) through LH/choriogonadotropin receptor-mediated PKA signaling. Taken together, these findings indicate that testosterone regulates MIGA2 via PKA/AMP-activated protein kinase signaling in ovarian granulosa cells. It is suggested mitochondrial fusion in ovarian granulosa cells is associated with hyperandrogenism and potentially leads to abnormal steroidogenesis in PCOS.
Collapse
Affiliation(s)
- Ming-Qi Yan
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., China
| | - Yong Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Zhao Wang
- Center for Reproductive Medicine, Shandong University, Key Laboratory for Reproductive Endocrinology of Ministry of Education, Jinan 250012, China
| | - Xiao-Hong Liu
- Department of Infection Control, Jen Ching Memorial Hospital, Kunshan 215300, China
| | - Yu-Meng Yang
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Xiu-Yun Duan
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Hui Sun
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan 250021, China
| | - Xiao-Man Liu
- Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan 250021, China
| |
Collapse
|
36
|
Glastad RC, Johnston IG. Mitochondrial network structure controls cell-to-cell mtDNA variability generated by cell divisions. PLoS Comput Biol 2023; 19:e1010953. [PMID: 36952562 PMCID: PMC10072490 DOI: 10.1371/journal.pcbi.1010953] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 04/04/2023] [Accepted: 02/15/2023] [Indexed: 03/25/2023] Open
Abstract
Mitochondria are highly dynamic organelles, containing vital populations of mitochondrial DNA (mtDNA) distributed throughout the cell. Mitochondria form diverse physical structures in different cells, from cell-wide reticulated networks to fragmented individual organelles. These physical structures are known to influence the genetic makeup of mtDNA populations between cell divisions, but their influence on the inheritance of mtDNA at divisions remains less understood. Here, we use statistical and computational models of mtDNA content inside and outside the reticulated network to quantify how mitochondrial network structure can control the variances of inherited mtDNA copy number and mutant load. We assess the use of moment-based approximations to describe heteroplasmy variance and identify several cases where such an approach has shortcomings. We show that biased inclusion of one mtDNA type in the network can substantially increase heteroplasmy variance (acting as a genetic bottleneck), and controlled distribution of network mass and mtDNA through the cell can conversely reduce heteroplasmy variance below a binomial inheritance picture. Network structure also allows the generation of heteroplasmy variance while controlling copy number inheritance to sub-binomial levels, reconciling several observations from the experimental literature. Overall, different network structures and mtDNA arrangements within them can control the variances of key variables to suit a palette of different inheritance priorities.
Collapse
Affiliation(s)
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
37
|
Yao YL, Ma XY, Wang TY, Yan JY, Chen NF, Hong JS, Liu BQ, Xu ZQ, Zhang N, Lv C, Sun X, Luan JB. A bacteriocyte symbiont determines whitefly sex ratio by regulating mitochondrial function. Cell Rep 2023; 42:112102. [PMID: 36774548 DOI: 10.1016/j.celrep.2023.112102] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/28/2022] [Accepted: 01/26/2023] [Indexed: 02/13/2023] Open
Abstract
Nutritional symbionts influence host reproduction, but the underlying molecular mechanisms are largely unclear. We previously found that the bacteriocyte symbiont Hamiltonella impacts the sex ratio of the whitefly Bemisia tabaci. Hamiltonella synthesizes folate by cooperation with the whitefly. Folate deficiency by Hamiltonella elimination or whitefly gene silencing distorted whitefly sex ratio, and folate supplementation restored the sex ratio. Hamiltonella deficiency or gene silencing altered histone H3 lysine 9 trimethylation (H3K9me3) level, which was restored by folate supplementation. Genome-wide chromatin immunoprecipitation-seq analysis of H3K9me3 indicated mitochondrial dysfunction in symbiont-deficient whiteflies. Hamiltonella deficiency compromised mitochondrial quality of whitefly ovaries. Repressing ovary mitochondrial function led to distorted whitefly sex ratio. These findings indicate that the symbiont-derived folate regulates host histone methylation modifications, which thereby impacts ovary mitochondrial function, and finally determines host sex ratio. Our study suggests that a nutritional symbiont can regulate animal reproduction in a way that differs from reproductive manipulators.
Collapse
Affiliation(s)
- Ya-Lin Yao
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin-Yu Ma
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Tian-Yu Wang
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Jin-Yang Yan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Nai-Fei Chen
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Ji-Sheng Hong
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Bing-Qi Liu
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zi-Qi Xu
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Nuo Zhang
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Chao Lv
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiang Sun
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
38
|
Ayachit MS, Shravage BV. Atg1 modulates mitochondrial dynamics to promote germline stem cell maintenance in Drosophila. Biochem Biophys Res Commun 2023; 643:192-202. [PMID: 36621115 DOI: 10.1016/j.bbrc.2022.11.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Mitochondrial dynamics (fusion and fission) are necessary for stem cell maintenance and differentiation. However, the relationship between mitophagy, mitochondrial dynamics and stem cell exhaustion needs to be clearly understood. Here we report the multifaceted role of Atg1 in mitophagy, mitochondrial dynamics and stem cell maintenance in female germline stem cells (GSCs) in Drosophila. We found that depletion of Atg1 in GSCs leads to impaired autophagy and mitophagy as measured by reduced formation of autophagosomes, increased accumulation of p62/Ref (2)P and accumulation of damaged mitochondria. Disrupting Atg1 function led to mitochondrial fusion in developing cysts. The fusion resulted from an increase in Marf levels in both GSCs and cysts, and the fusion phenotype could be rescued by overexpression of Drp1 or by depleting Marf via RNAi in Atg1-depleted cyst cells. Interestingly, double knockdown of both Atg1:Drp1 led to the significant loss of germ cells (GCs) as compared to Atg1KD and Drp1KD. Strikingly, Atg1:Marf double knockdown leads to a dramatic loss of GSCs, GCs and a total loss of vitellogenic stages, suggesting a block in oogenesis. Overall, our results demonstrate that Drp1, Marf and Atg1 function together to influence female GSC maintenance, their differentiation into cysts and oogenesis in Drosophila.
Collapse
Affiliation(s)
- Minal S Ayachit
- Developmental Biology Group, MACS-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India
| | - Bhupendra V Shravage
- Developmental Biology Group, MACS-Agharkar Research Institute, Gopal Ganesh Agarkar Road, Pune, 411004, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
39
|
Shimpi GG, Bentlage B. Ancient endosymbiont-mediated transmission of a selfish gene provides a model for overcoming barriers to gene transfer into animal mitochondrial genomes. Bioessays 2023; 45:e2200190. [PMID: 36412071 DOI: 10.1002/bies.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
Abstract
In contrast to bilaterian animals, non-bilaterian mitochondrial genomes contain atypical genes, often attributed to horizontal gene transfer (HGT) as an ad hoc explanation. Although prevalent in plants, HGT into animal mitochondrial genomes is rare, lacking suitable explanatory models for their occurrence. HGT of the mismatch DNA repair gene (mtMutS) from giant viruses to octocoral (soft corals and their kin) mitochondrial genomes provides a model for how barriers to HGT to animal mitochondria may be overcome. A review of the available literature suggests that this HGT was mediated by an alveolate endosymbiont infected with a lysogenic phycodnavirus that enabled insertion of the homing endonuclease containing mtMutS into octocoral mitochondrial genomes. We posit that homing endonuclease domains and similar selfish elements play a crucial role in such inter-domain gene transfers. Understanding the role of selfish genetic elements in HGT has the potential to aid development of tools for manipulating animal mitochondrial DNA.
Collapse
|
40
|
Mitochondrial remodelling is essential for female germ cell differentiation and survival. PLoS Genet 2023; 19:e1010610. [PMID: 36696418 PMCID: PMC9901744 DOI: 10.1371/journal.pgen.1010610] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/06/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Stem cells often possess immature mitochondria with few inner membrane invaginations, which increase as stem cells differentiate. Despite this being a conserved feature across many stem cell types in numerous organisms, how and why mitochondria undergo such remodelling during stem cell differentiation has remained unclear. Here, using Drosophila germline stem cells (GSCs), we show that Complex V drives mitochondrial remodelling during the early stages of GSC differentiation, prior to terminal differentiation. This endows germline mitochondria with the capacity to generate large amounts of ATP required for later egg growth and development. Interestingly, impairing mitochondrial remodelling prior to terminal differentiation results in endoplasmic reticulum (ER) lipid bilayer stress, Protein kinase R-like ER kinase (PERK)-mediated activation of the Integrated Stress Response (ISR) and germ cell death. Taken together, our data suggest that mitochondrial remodelling is an essential and tightly integrated aspect of stem cell differentiation. This work sheds light on the potential impact of mitochondrial dysfunction on stem and germ cell function, highlighting ER lipid bilayer stress as a potential major driver of phenotypes caused by mitochondrial dysfunction.
Collapse
|
41
|
Burgstaller JP, Chiaratti MR. Mitochondrial Inheritance Following Nuclear Transfer: From Cloned Animals to Patients with Mitochondrial Disease. Methods Mol Biol 2023; 2647:83-104. [PMID: 37041330 DOI: 10.1007/978-1-0716-3064-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Mitochondria are indispensable power plants of eukaryotic cells that also act as a major biochemical hub. As such, mitochondrial dysfunction, which can originate from mutations in the mitochondrial genome (mtDNA), may impair organism fitness and lead to severe diseases in humans. MtDNA is a multi-copy, highly polymorphic genome that is uniparentally transmitted through the maternal line. Several mechanisms act in the germline to counteract heteroplasmy (i.e., coexistence of two or more mtDNA variants) and prevent expansion of mtDNA mutations. However, reproductive biotechnologies such as cloning by nuclear transfer can disrupt mtDNA inheritance, resulting in new genetic combinations that may be unstable and have physiological consequences. Here, we review the current understanding of mitochondrial inheritance, with emphasis on its pattern in animals and human embryos generated by nuclear transfer.
Collapse
Affiliation(s)
- Jörg P Burgstaller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Marcos R Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil.
| |
Collapse
|
42
|
Kremer LS, Bozhilova LV, Rubalcava-Gracia D, Filograna R, Upadhyay M, Koolmeister C, Chinnery PF, Larsson NG. A role for BCL2L13 and autophagy in germline purifying selection of mtDNA. PLoS Genet 2023; 19:e1010573. [PMID: 36608143 PMCID: PMC9851501 DOI: 10.1371/journal.pgen.1010573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/19/2023] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
Mammalian mitochondrial DNA (mtDNA) is inherited uniparentally through the female germline without undergoing recombination. This poses a major problem as deleterious mtDNA mutations must be eliminated to avoid a mutational meltdown over generations. At least two mechanisms that can decrease the mutation load during maternal transmission are operational: a stochastic bottleneck for mtDNA transmission from mother to child, and a directed purifying selection against transmission of deleterious mtDNA mutations. However, the molecular mechanisms controlling these processes remain unknown. In this study, we systematically tested whether decreased autophagy contributes to purifying selection by crossing the C5024T mouse model harbouring a single pathogenic heteroplasmic mutation in the tRNAAla gene of the mtDNA with different autophagy-deficient mouse models, including knockouts of Parkin, Bcl2l13, Ulk1, and Ulk2. Our study reveals a statistically robust effect of knockout of Bcl2l13 on the selection process, and weaker evidence for the effect of Ulk1 and potentially Ulk2, while no statistically significant impact is seen for knockout of Parkin. This points at distinctive roles of these players in germline purifying selection. Overall, our approach provides a framework for investigating the roles of other important factors involved in the enigmatic process of purifying selection and guides further investigations for the role of BCL2L13 in the elimination of non-synonymous mutations in protein-coding genes.
Collapse
Affiliation(s)
- Laura S. Kremer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lyuba V. Bozhilova
- MRC Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Diana Rubalcava-Gracia
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Roberta Filograna
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mamta Upadhyay
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Koolmeister
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrick F. Chinnery
- MRC Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neuroscience, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (PFC); (N-GL)
| | - Nils-Göran Larsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (PFC); (N-GL)
| |
Collapse
|
43
|
Taslim TH, Hussein AM, Keshri R, Ishibashi JR, Chan TC, Nguyen BN, Liu S, Brewer D, Harper S, Lyons S, Garver B, Dang J, Balachandar N, Jhajharia S, Castillo DD, Mathieu J, Ruohola-Baker H. Stress-induced reversible cell-cycle arrest requires PRC2/PRC1-mediated control of mitophagy in Drosophila germline stem cells and human iPSCs. Stem Cell Reports 2022; 18:269-288. [PMID: 36493777 PMCID: PMC9860083 DOI: 10.1016/j.stemcr.2022.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Following acute genotoxic stress, both normal and tumorous stem cells can undergo cell-cycle arrest to avoid apoptosis and later re-enter the cell cycle to regenerate daughter cells. However, the mechanism of protective, reversible proliferative arrest, "quiescence," remains unresolved. Here, we show that mitophagy is a prerequisite for reversible quiescence in both irradiated Drosophila germline stem cells (GSCs) and human induced pluripotent stem cells (hiPSCs). In GSCs, mitofission (Drp1) or mitophagy (Pink1/Parkin) genes are essential to enter quiescence, whereas mitochondrial biogenesis (PGC1α) or fusion (Mfn2) genes are crucial for exiting quiescence. Furthermore, mitophagy-dependent quiescence lies downstream of mTOR- and PRC2-mediated repression and relies on the mitochondrial pool of cyclin E. Mitophagy-dependent reduction of cyclin E in GSCs and in hiPSCs during mTOR inhibition prevents the usual G1/S transition, pushing the cells toward reversible quiescence (G0). This alternative method of G1/S control may present new opportunities for therapeutic purposes.
Collapse
Affiliation(s)
- Tommy H Taslim
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Abdiasis M Hussein
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Riya Keshri
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Julien R Ishibashi
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Tung C Chan
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Bich N Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Shuozhi Liu
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Daniel Brewer
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Stuart Harper
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Scott Lyons
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Ben Garver
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Jimmy Dang
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Nanditaa Balachandar
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA; Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Samriddhi Jhajharia
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA; Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Debra Del Castillo
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Julie Mathieu
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA; Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA.
| |
Collapse
|
44
|
Sing TL, Brar GA, Ünal E. Gametogenesis: Exploring an Endogenous Rejuvenation Program to Understand Cellular Aging and Quality Control. Annu Rev Genet 2022; 56:89-112. [PMID: 35878627 PMCID: PMC9712276 DOI: 10.1146/annurev-genet-080320-025104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gametogenesis is a conserved developmental program whereby a diploid progenitor cell differentiates into haploid gametes, the precursors for sexually reproducing organisms. In addition to ploidy reduction and extensive organelle remodeling, gametogenesis naturally rejuvenates the ensuing gametes, leading to resetting of life span. Excitingly, ectopic expression of the gametogenesis-specific transcription factor Ndt80 is sufficient to extend life span in mitotically dividing budding yeast, suggesting that meiotic rejuvenation pathways can be repurposed outside of their natural context. In this review, we highlight recent studies of gametogenesis that provide emerging insight into natural quality control, organelle remodeling, and rejuvenation strategies that exist within a cell. These include selective inheritance, programmed degradation, and de novo synthesis, all of which are governed by the meiotic gene expression program entailing many forms of noncanonical gene regulation. Finally, we highlight critical questions that remain in the field and provide perspective on the implications of gametogenesis research on human health span.
Collapse
Affiliation(s)
- Tina L Sing
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Gloria A Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| |
Collapse
|
45
|
Spradling AC, Niu W, Yin Q, Pathak M, Maurya B. Conservation of oocyte development in germline cysts from Drosophila to mouse. eLife 2022; 11:83230. [PMID: 36445738 PMCID: PMC9708067 DOI: 10.7554/elife.83230] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Recent studies show that pre-follicular mouse oogenesis takes place in germline cysts, highly conserved groups of oogonial cells connected by intercellular bridges that develop as nurse cells as well as an oocyte. Long studied in Drosophila and insect gametogenesis, female germline cysts acquire cytoskeletal polarity and traffic centrosomes and organelles between nurse cells and the oocyte to form the Balbiani body, a conserved marker of polarity. Mouse oocyte development and nurse cell dumping are supported by dynamic, cell-specific programs of germline gene expression. High levels of perinatal germ cell death in this species primarily result from programmed nurse cell turnover after transfer rather than defective oocyte production. The striking evolutionary conservation of early oogenesis mechanisms between distant animal groups strongly suggests that gametogenesis and early embryonic development in vertebrates and invertebrates share even more in common than currently believed.
Collapse
Affiliation(s)
- Allan C Spradling
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Wanbao Niu
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Qi Yin
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Madhulika Pathak
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Bhawana Maurya
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| |
Collapse
|
46
|
Chiaratti MR, Chinnery PF. Modulating mitochondrial DNA mutations: factors shaping heteroplasmy in the germ line and somatic cells. Pharmacol Res 2022; 185:106466. [PMID: 36174964 DOI: 10.1016/j.phrs.2022.106466] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Abstract
Until recently it was thought that most humans only harbor one type of mitochondrial DNA (mtDNA), however, deep sequencing and single-cell analysis has shown the converse - that mixed populations of mtDNA (heteroplasmy) are the norm. This is important because heteroplasmy levels can change dramatically during transmission in the female germ line, leading to high levels causing severe mitochondrial diseases. There is also emerging evidence that low level mtDNA mutations contribute to common late onset diseases such as neurodegenerative disorders and cardiometabolic diseases because the inherited mutation levels can change within developing organs and non-dividing cells over time. Initial predictions suggested that the segregation of mtDNA heteroplasmy was largely stochastic, with an equal tendency for levels to increase or decrease. However, transgenic animal work and single-cell analysis have shown this not to be the case during germ-line transmission and in somatic tissues during life. Mutation levels in specific mtDNA regions can increase or decrease in different contexts and the underlying molecular mechanisms are starting to be unraveled. In this review we provide a synthesis of recent literature on the mechanisms of selection for and against mtDNA variants. We identify the most pertinent gaps in our understanding and suggest ways these could be addressed using state of the art techniques.
Collapse
Affiliation(s)
- Marcos R Chiaratti
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil.
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
47
|
Palozzi JM, Jeedigunta SP, Minenkova AV, Monteiro VL, Thompson ZS, Lieber T, Hurd TR. Mitochondrial DNA quality control in the female germline requires a unique programmed mitophagy. Cell Metab 2022; 34:1809-1823.e6. [PMID: 36323236 DOI: 10.1016/j.cmet.2022.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Mitochondria have their own DNA (mtDNA), which is susceptible to the accumulation of disease-causing mutations. To prevent deleterious mutations from being inherited, the female germline has evolved a conserved quality control mechanism that remains poorly understood. Here, through a large-scale screen, we uncover a unique programmed germline mitophagy (PGM) that is essential for mtDNA quality control. We find that PGM is developmentally triggered as germ cells enter meiosis by inhibition of the target of rapamycin complex 1 (TORC1). We identify a role for the RNA-binding protein Ataxin-2 (Atx2) in coordinating the timing of PGM with meiosis. We show that PGM requires the mitophagy receptor BNIP3, mitochondrial fission and translation factors, and members of the Atg1 complex, but not the mitophagy factors PINK1 and Parkin. Additionally, we report several factors that are critical for germline mtDNA quality control and show that pharmacological manipulation of one of these factors promotes mtDNA quality control.
Collapse
Affiliation(s)
- Jonathan M Palozzi
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Swathi P Jeedigunta
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Anastasia V Minenkova
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Vernon L Monteiro
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Zoe S Thompson
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Toby Lieber
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Thomas R Hurd
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
48
|
Radzvilavicius AL, Johnston IG. Organelle bottlenecks facilitate evolvability by traversing heteroplasmic fitness valleys. Front Genet 2022; 13:974472. [PMID: 36386853 PMCID: PMC9650085 DOI: 10.3389/fgene.2022.974472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/11/2022] [Indexed: 07/09/2024] Open
Abstract
Bioenergetic organelles-mitochondria and plastids-retain their own genomes (mtDNA and ptDNA), and these organelle DNA (oDNA) molecules are vital for eukaryotic life. Like all genomes, oDNA must be able to evolve to suit new environmental challenges. However, mixed oDNA populations in cells can challenge cellular bioenergetics, providing a penalty to the appearance and adaptation of new mutations. Here we show that organelle "bottlenecks," mechanisms increasing cell-to-cell oDNA variability during development, can overcome this mixture penalty and facilitate the adaptation of beneficial mutations. We show that oDNA heteroplasmy and bottlenecks naturally emerge in evolutionary simulations subjected to fluctuating environments, demonstrating that this evolvability is itself evolvable. Usually thought of as a mechanism to clear damaging mutations, organelle bottlenecks therefore also resolve the tension between intracellular selection for pure cellular oDNA populations and the "bet-hedging" need for evolvability and adaptation to new environments. This general theory suggests a reason for the maintenance of organelle heteroplasmy in cells, and may explain some of the observed diversity in organelle maintenance and inheritance across taxa.
Collapse
Affiliation(s)
- Arunas L. Radzvilavicius
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
49
|
Schwartz AZA, Tsyba N, Abdu Y, Patel MR, Nance J. Independent regulation of mitochondrial DNA quantity and quality in Caenorhabditis elegans primordial germ cells. eLife 2022; 11:e80396. [PMID: 36200990 PMCID: PMC9536838 DOI: 10.7554/elife.80396] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria harbor an independent genome, called mitochondrial DNA (mtDNA), which contains essential metabolic genes. Although mtDNA mutations occur at high frequency, they are inherited infrequently, indicating that germline mechanisms limit their accumulation. To determine how germline mtDNA is regulated, we examined the control of mtDNA quantity and quality in C. elegans primordial germ cells (PGCs). We show that PGCs combine strategies to generate a low point in mtDNA number by segregating mitochondria into lobe-like protrusions that are cannibalized by adjacent cells, and by concurrently eliminating mitochondria through autophagy, reducing overall mtDNA content twofold. As PGCs exit quiescence and divide, mtDNAs replicate to maintain a set point of ~200 mtDNAs per germline stem cell. Whereas cannibalism and autophagy eliminate mtDNAs stochastically, we show that the kinase PTEN-induced kinase 1 (PINK1), operating independently of Parkin and autophagy, preferentially reduces the fraction of mutant mtDNAs. Thus, PGCs employ parallel mechanisms to control both the quantity and quality of the founding population of germline mtDNAs.
Collapse
Affiliation(s)
- Aaron ZA Schwartz
- Department of Cell Biology, NYU Grossman School of MedicineNew YorkUnited States
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of MedicineNew YorkUnited States
| | - Nikita Tsyba
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Yusuff Abdu
- Department of Cell Biology, NYU Grossman School of MedicineNew YorkUnited States
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of MedicineNew YorkUnited States
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
- Diabetes Research and Training Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Jeremy Nance
- Department of Cell Biology, NYU Grossman School of MedicineNew YorkUnited States
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
50
|
Dua N, Seshadri A, Badrinarayanan A. DarT-mediated mtDNA damage induces dynamic reorganization and selective segregation of mitochondria. J Cell Biol 2022; 221:213451. [PMID: 36074064 PMCID: PMC9463037 DOI: 10.1083/jcb.202205104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are dynamic organelles that play essential roles in cell growth and survival. Processes of fission and fusion are critical for the distribution, segregation, and maintenance of mitochondria and their genomes (mtDNA). While recent work has revealed the significance of mitochondrial organization for mtDNA maintenance, the impact of mtDNA perturbations on mitochondrial dynamics remains less understood. Here, we develop a tool to induce mitochondria-specific DNA damage using a mitochondrial-targeted base modifying bacterial toxin, DarT. Following damage, we observe dynamic reorganization of mitochondrial networks, likely driven by mitochondrial dysfunction. Changes in the organization are associated with the loss of mtDNA, independent of mitophagy. Unexpectedly, perturbation to exonuclease function of mtDNA replicative polymerase, Mip1, results in rapid loss of mtDNA. Our data suggest that, under damage, partitioning of defective mtDNA and organelle are de-coupled, with emphasis on mitochondrial segregation independent of its DNA. Together, our work underscores the importance of genome maintenance on mitochondrial function, which can act as a modulator of organelle organization and segregation.
Collapse
Affiliation(s)
- Nitish Dua
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Akshaya Seshadri
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, Bangalore, Karnataka, India.,SASTRA University, Thanjavur, Tamil Nadu, India
| | - Anjana Badrinarayanan
- National Centre for Biological Sciences - Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| |
Collapse
|