1
|
Zhang M, Liu S, Meng W, Huang Y. Photoredox-Catalyzed Trifluoromethylamination of Alkenes with Concomitant Introduction of a Quinoxalin-2(1 H)-one Moiety. J Org Chem 2025. [PMID: 40314469 DOI: 10.1021/acs.joc.5c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
A photoredox-catalyzed strategy for the difunctionalization of alkenes with quinoxalin-2(1H)-ones and N-CF3 hydroxylamine reagents was developed. This reaction was carried out under photoirradiation conditions, affording the corresponding three-component coupling products in moderate to high yields with excellent regioselectivity. It provides a new protocol to access valuable quinoxalin-2(1H)-one derivatives containing a N-CF3 group.
Collapse
Affiliation(s)
- Meiyu Zhang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Shuai Liu
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Weidong Meng
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| |
Collapse
|
2
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
3
|
Wycich G, Ponce-de-León J, Liu L, Schoenebeck F. Desulfurizative Fluorination of N-CF 3 Thioformamides for the Efficient Synthesis of N(CF 3)(CF 2H) Amines with Enhanced Stability. Angew Chem Int Ed Engl 2025:e202506154. [PMID: 40261156 DOI: 10.1002/anie.202506154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
With poor metabolic stability being a major cause of failure in drug development, there is a pressing need for strategic molecular modifications to optimize for desired properties and function. N-substitution has emerged as a powerful approach, with N-CF3 amines previously demonstrating enhanced lipophilicity and reduced susceptibility to oxidation, albeit inherent instability to hydrolysis. This report discloses the further evolution of this motif-the introduction of an additional N-difluoromethyl unit, resulting in an extraordinary 2000-fold increase in stability. We present the first general synthetic strategy for accessing N(CF3)(CF2H) amines. The method relies on an operationally simple desulfurization-fluorination strategy of N-CF3 thioformamides and is characterized by broad functional group tolerance.
Collapse
Affiliation(s)
- Gina Wycich
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Jaime Ponce-de-León
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Linhao Liu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
4
|
General strategy for the synthesis of N-monofluoromethyl amides. Nat Chem 2025; 17:475-476. [PMID: 40069565 DOI: 10.1038/s41557-025-01769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
|
5
|
Tao M, Qian J, Deng L, Wilson DM, Zhang X, Liu J. Preparation, separation and storage of N-monofluoromethyl amides and carbamates. Nat Chem 2025; 17:532-540. [PMID: 40038519 DOI: 10.1038/s41557-025-01767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025]
Abstract
N-monofluoromethyl (N-CH2F) amides, combining amide and monofluoromethyl motifs, represent a practical modification of the amide bond that can mimic N-CH3 amides. Despite the potential value in transforming peptides and peptidomimetics with N-CH2F, the very existence of this structure has been controversial. Here we report the preparation of N-CH2F amides and carbamates via simple and robust chemical methods. The syntheses of N-CH2F amides were achieved via successive acylation and fluorination of imines and directly used in the modification of drugs, peptides and heteroaryl amides without racemization or epimerization. The use of triethylamine is the key to the separation of N-CH2F amides. The stability of nine structurally diverse N-CH2F amides was tested in eight different media, showing that most compounds remained 60-100% intact for 24 h.
Collapse
Affiliation(s)
- Min Tao
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiasheng Qian
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Linbei Deng
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, China
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Xiangsong Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Jianbo Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Turksoy A, Weßels A, Deckers K, Nielsen CDT, Schoenebeck F. A Photo- and Electrochemistry-Triggered Redox-Neutral Cyclization Strategy to Access Cyclic N-CF 3 Amides. Org Lett 2025; 27:2908-2912. [PMID: 40085428 DOI: 10.1021/acs.orglett.5c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
While the construction of N-CF3 amides has seen significant progress, the current synthetic repertoire is largely limited to noncyclic variants. Here, we report synthetic access to N-CF3 isoindolinones. The developed redox-neutral cyclization leverages amino acid-derived N-CF3 redox-active esters under photo- or electrochemical activation. Mechanistic studies reveal that N-CF3 uniquely enables this disconnection through its distinct electronic impact, which enhances conformational flexibility and lowers the propensity for overoxidation.
Collapse
Affiliation(s)
- Abdurrahman Turksoy
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Andrea Weßels
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Kristina Deckers
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Christian D-T Nielsen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
7
|
Meden A, Knez D, Gobec S. Facile Synthesis of Carbamoyl Fluorides via N-Carbamoylimidazole Activation. ACS OMEGA 2025; 10:6908-6917. [PMID: 40028114 PMCID: PMC11866180 DOI: 10.1021/acsomega.4c09438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/13/2024] [Accepted: 12/27/2024] [Indexed: 03/05/2025]
Abstract
The untapped potential of carbamoyl fluorides for various chemico/biological applications is hampered by the scarcity of straightforward and benign methods for their synthesis. In this report, we disclose a novel mild three-step procedure that avoids exotic, corrosive, and highly toxic reagents. Briefly, commercially available secondary amines are carbamoylated with 1,1'-carbonyldiimidazole, followed by alkylation to improve nucleofugality, and exchange with inorganic KF. This procedure works on a gram scale without chromatographic purification. It is however limited to basic, sterically unhindered secondary amines without alkylation-prone functional groups.
Collapse
Affiliation(s)
- Anže Meden
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Damijan Knez
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
8
|
Zhou K, Xiao Y, Huang Z, Zhao Y. Photocatalyzed Aryl C-H Fluorocarbonylation with CF 2Br 2. Angew Chem Int Ed Engl 2025; 64:e202414933. [PMID: 39269673 DOI: 10.1002/anie.202414933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
The use of abundant and inexpensive fluorine feedstocks to synthesize fluorinated compounds is a promising strategy that has not been extensively investigated. Dibromodifluoromethane (CF2Br2) is an inexpensive fluorine source that has rarely been used for C-H fluoroalkylation. This study reveals an iridium-catalyzed, tunable strategy for synthesizing acyl fluorides and difluorobromomethylated products using CF2Br2. To achieve the desired products, this process only requires the change of solvent (from DMSO to 1,4-dioxane) under blue LED illumination. A variety of arenes and heteroarenes with electron-donating substituents were successfully used, yielding the corresponding products in moderate to good yields. Mechanistic experiments revealed that DMSO served a dual role, functioning as both solvent and nucleophilic reagent in C-H fluorocarbonylation.
Collapse
Affiliation(s)
- Kehan Zhou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yuheng Xiao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453000, P. R. China
| |
Collapse
|
9
|
Wu JY, Huang LL, Fu JL, Li JY, Lin S, Yang S, Huang ZS, Wang H, Li Q. N-Halosuccinimide enables cascade oxidative trifluorination and halogenative cyclization of tryptamine-derived isocyanides. Nat Commun 2024; 15:8917. [PMID: 39414820 PMCID: PMC11484912 DOI: 10.1038/s41467-024-53271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Both the pyrroloindoline core and N-CF3 moiety hold significant importance in medicinal chemistry. However, to date, no instances of constructing N-CF3-containing pyrroloindolines have been reported. Herein, we present a robust and operationally simple approach to assembling such intriguing skeletons from tryptamine-derived isocyanides through a cascade sequence, which includes an oxidative trifluorination and a subsequent halogenative cyclization. Key to the success lies in the development of a facile conversion of isocyanides to N-CF3 moiety with commercially available reagents N-halosuccinimide and Et3N·HF. The protocol features mild reaction conditions, broad functional group tolerance, good to excellent yields, and high diastereoselectivities. In addition, we demonstrate that the halide substituent within the products serves as a versatile functional handle for accessing diverse C3-quaternary-substituted N-CF3-pyrroloindolines.
Collapse
Affiliation(s)
- Jun-Yunzi Wu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Long-Ling Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Luo Fu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Yi Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuang Lin
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuang Yang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Shu Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Honggen Wang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Qingjiang Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
10
|
Jiang L, Lin Z, Liang S, Yi W. Recent Advances in the Synthesis of N-fluoroalkyl Amides/Sulfonamides and Their Carbonyl/Sulfonyl Derivatives. Chem Asian J 2024:e202400909. [PMID: 39212314 DOI: 10.1002/asia.202400909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Organofluorine compounds have consistently demonstrated practical applications in the life sciences due to the fascinating properties imparted by the fluorine substituents. In recent years, significant advancements have been made in the synthesis of N-fluoroalkyl carbonyl and sulfonyl compounds. This review offers a current overview of the various synthetic routes for N-fluoroalkyl amides/sulfonamides and their transformation to new unexplored N-fluoroalkyl carbonyl/sulfonyl derivatives, categorized into three parts based on the different fluoroalkyl groups.
Collapse
Affiliation(s)
- Lvqi Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhongquan Lin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shuaishuai Liang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
11
|
Spennacchio M, Bernús M, Stanić J, Mazzarella D, Colella M, Douglas JJ, Boutureira O, Noël T. A unified flow strategy for the preparation and use of trifluoromethyl-heteroatom anions. Science 2024; 385:991-996. [PMID: 39208115 DOI: 10.1126/science.adq2954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The trifluoromethyl group (CF3) is a key functionality in pharmaceutical and agrochemical development, greatly enhancing the efficacy and properties of resulting compounds. However, attaching the CF3 group to heteroatoms such as sulfur, oxygen, and nitrogen poses challenges because of the lack of general synthetic methods and reliance on bespoke reagents. Here, we present a modular flow platform that streamlines the synthesis of heteroatom-CF3 motifs. Our method uses readily available organic precursors in combination with cesium fluoride as the primary fluorine source, facilitating the rapid generation of N-trifluoromethyl(R) [NCF3(R)], SCF3 (trifluoromethylthio), and OCF3 (trifluoromethoxy) anions on demand without reliance on perfluoroalkyl precursor reagents. This strategy offers a more environmentally friendly synthesis of trifluoromethyl(heteroatom)-containing molecules, with the potential for scalability in manufacturing processes facilitated by flow technology.
Collapse
Affiliation(s)
- Mauro Spennacchio
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy-Drug Sciences, University of Bari "A. Moro," 70125 Bari, Italy
| | - Miguel Bernús
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Jelena Stanić
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
| | - Daniele Mazzarella
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Marco Colella
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory, Department of Pharmacy-Drug Sciences, University of Bari "A. Moro," 70125 Bari, Italy
| | - James J Douglas
- Early Chemical Development, Pharmaceutical Sciences R&D, AstraZeneca, Macclesfield, UK
| | - Omar Boutureira
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
12
|
Pulikkottil F, Burnett JS, Saiter J, Goodall CAI, Claringbold B, Lam K. eFluorination for the Rapid Synthesis of Carbamoyl Fluorides from Oxamic Acids. Org Lett 2024; 26:6103-6108. [PMID: 39016380 PMCID: PMC11287745 DOI: 10.1021/acs.orglett.4c01605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024]
Abstract
In this letter, we disclose the anodic oxidation of oxamic acids in the presence of Et3N·3HF as a practical, scalable, and robust method to rapidly access carbamoyl fluorides from readily available and stable precursors. The simplicity of this method also led us to develop the first flow electrochemical preparation of carbamoyl fluorides, demonstrating scale-up feasibility as a proof of concept.
Collapse
Affiliation(s)
| | | | - Jérémy Saiter
- School of Science, Faculty
of Engineering and Science, University of
Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, United Kingdom
| | - Charles A. I. Goodall
- School of Science, Faculty
of Engineering and Science, University of
Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, United Kingdom
| | - Bini Claringbold
- School of Science, Faculty
of Engineering and Science, University of
Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, United Kingdom
| | - Kevin Lam
- School of Science, Faculty
of Engineering and Science, University of
Greenwich, Chatham Maritime, Chatham, Kent ME4 4TB, United Kingdom
| |
Collapse
|
13
|
Kang X, Wang Z, Shi X, Jiang X, Liu Z, Zhao B. Effective Reduction of CO 2 with Aromatic Amines into N-Formamides Triggered by Noble-Free Metal-Organic Framework Catalysts Under Mild Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311511. [PMID: 38319022 DOI: 10.1002/smll.202311511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/14/2024] [Indexed: 02/07/2024]
Abstract
The reductive transformation of carbon dioxide (CO2) into high-valued N‑formamides matches well with the atom economy and the sustainable development intention. Nevertheless, developing a noble-free metal catalyst under mild reaction conditions is desirable and challenging. Herein, a caged metal-organic framework (MOFs) [H2N(CH3)2]2{[Ni3(µ3-O)(XN)(BDC)3]·6DMF}n (1) (XN = 6″-(pyridin-4-yl)-4,2″:4″,4″'-terpyridine), H2BDC = terephthalic acid) is harvested, presenting high thermal and chemical stabilities. Catalytic investigation reveals that 1 as a renewable noble-free MOFs catalyst can catalyze the CO2 reduction conversion with aromatic amines tolerated by broad functional groups at least ten times, resulting in various formamides in excellent yields and selectivity under the mildest reaction system (room temperature and 1 bar CO2). Density functional theory (DFT) theoretical studies disclose the applicable reaction path, in which the CO2 hydrosilylation process is initiated by the [Ni3] cluster interaction with CO2 via η2-C, O coordination mode. This work may open up an avenue to seek high-efficiency noble-free catalysts in CO2 chemical reduction into high value-added chemicals.
Collapse
Affiliation(s)
- Xiaomin Kang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Zhiqiang Wang
- Department of Basic Courses, Shanxi Agricultural University, Taigu, Shanxi, 030801, P. R. China
| | - Xinlei Shi
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Xiaolei Jiang
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Bin Zhao
- College of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
14
|
Hu C, Jiang L, Guo Z, Mumtaz Y, Liu J, Qin J, Chen Y, Lin Z, Yi W. Synthesis of N-Difluoromethyl Carbonyl Compounds from N-Difluoromethylcarbamoyl Fluorides. Angew Chem Int Ed Engl 2024; 63:e202319758. [PMID: 38353649 DOI: 10.1002/anie.202319758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 03/06/2024]
Abstract
Fluorinated small molecules are commonly used in functional small-molecule chemistry, and N-difluoromethyl (N-CF2H) compounds are particularly intriguing due to their unique and unexplored physiochemical properties. However, despite limited progress, a general methodological approach to the synthesis of N-CF2H compounds remains elusive. Here, guided by computation, we present a simple and practical protocol to access N-CF2H amides and related carbonyl derivatives. The protocol involves a one-pot conversion of thioformamides through desulfurization-fluorination and acylation, providing N-difluoromethylcarbamoyl fluoride building blocks that can be further diversified to a variety of unexplored N-CF2H carbonyl compounds with rich functionality. Additionally, preliminary studies on their properties and stability showcased their potential application in pharmaceuticals and agrochemicals.
Collapse
Affiliation(s)
- Chunyang Hu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lvqi Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zihao Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yasir Mumtaz
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiarong Qin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yixing Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhongquan Lin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
15
|
Zhang RZ, Gao YF, Yu JX, Xu C, Wang M. N-CF 3 Imidoyl Chlorides: Scalable N-CF 3 Nitrilium Precursors for the Construction of N-CF 3 Compounds. Org Lett 2024; 26:2641-2645. [PMID: 38511584 DOI: 10.1021/acs.orglett.4c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A wide range of N-CF3 imidoyl chlorides were synthesized for the first time via the N-trifluoromethylation of nitriles in DCM by using AlCl3-activated PhICF3Cl as the CF3 source. The reactions of them with N-/O-/S-nucleophiles, as well as with 1,3-dipoles, were carried out to efficiently deliver N-CF3 amidines/imidates/thioimidates and N-CF3 azoles, demonstrating that they are a class of scalable NCF3-containing synthons in the synthesis of N-CF3 compounds.
Collapse
Affiliation(s)
- Ru Zhong Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Yan Fang Gao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Jian Xin Yu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Cong Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Mang Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| |
Collapse
|
16
|
Fleetwood TD, Kerr WJ, Mason J. Copper-Mediated N-Trifluoromethylation of O-Benzoylhydroxylamines. Chemistry 2024; 30:e202303314. [PMID: 38018464 PMCID: PMC10952365 DOI: 10.1002/chem.202303314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
The use of trifluoromethyl containing compounds is well established within medicinal chemistry, with a range of approved drugs containing C-CF3 and O-CF3 moieties. However, the utilisation of the N-CF3 functional group remains relatively unexplored. This may be attributed to the challenging synthesis of this unit, with many current methods employing harsh conditions or less accessible reagents. A robust methodology for the N-trifluoromethylation of secondary amines has been developed, which employs an umpolung strategy in the form of a copper-catalysed electrophilic amination. The method is operationally simple, uses mild, inexpensive reagents, and has been used to synthesise a range of novel, structurally complex N-CF3 containing compounds.
Collapse
Affiliation(s)
- Thomas D. Fleetwood
- Medicinal ChemistryGSK Medicines Research CentreGunnels Wood RoadSG1 2NYStevenageEnglandU.K.
- Department of Pure and Applied ChemistryUniversity of StrathclydeG1 1XLGlasgowScotlandU.K.
| | - William J. Kerr
- Department of Pure and Applied ChemistryUniversity of StrathclydeG1 1XLGlasgowScotlandU.K.
| | - Joseph Mason
- Medicinal ChemistryGSK Medicines Research CentreGunnels Wood RoadSG1 2NYStevenageEnglandU.K.
| |
Collapse
|
17
|
Zivkovic F, Wycich G, Liu L, Schoenebeck F. Access to N-Difluoromethyl Amides, (Thio)Carbamates, Ureas, and Formamides. J Am Chem Soc 2024; 146:1276-1281. [PMID: 38180777 PMCID: PMC10913043 DOI: 10.1021/jacs.3c13711] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
The first efficient access to N-difluoromethyl amides, carbamates, thiocarbamates, ureas, formamides, and their derivatives is reported herein. The synthetic strategy relies on the initial synthesis and straightforward derivatization of N-CF2H carbamoyl fluorides, which were prepared through a desulfurization-fluorination of thioformamides (─NH─C(H)═S) coupled with carbonylation. The newly made N-CF2H carbonyl compounds proved to be highly robust and compatible with numerous chemical transformations and downstream derivatizations, underscoring the potential of this novel motif as a building block in complex functional molecules.
Collapse
Affiliation(s)
- Filip
G. Zivkovic
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Gina Wycich
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Linhao Liu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
18
|
Baris N, Dračínský M, Tarábek J, Filgas J, Slavíček P, Ludvíková L, Boháčová S, Slanina T, Klepetářová B, Beier P. Photocatalytic Generation of Trifluoromethyl Nitrene for Alkene Aziridination. Angew Chem Int Ed Engl 2024; 63:e202315162. [PMID: 38081132 DOI: 10.1002/anie.202315162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 01/06/2024]
Abstract
N-Trifluoromethylated organics may be applied in drug design, agrochemical synthesis, and materials science, among other areas. Yet, despite recent advances in the synthesis of aliphatic, cyclic and heterocyclic N-trifluoromethyl compounds, no strategy based on trifluoromethyl nitrene has hitherto been explored. Here we describe the formation of triplet trifluoromethyl nitrene from azidotrifluoromethane, a stable and safe-to-use precursor, by visible light photocatalysis. The addition of CF3 N to alkenes via biradical intermediates afforded previously unknown aziridines substituted with trifluoromethyl group on the nitrogen atom. The obtained aziridines were converted into either N-trifluoromethylimidazolines, via formal [3+2] cycloaddition with nitriles, mediated by a Lewis acid, or into N-trifluoromethylaldimines, via ring opening and aryl group migration mediated by a strong Brønsted acid. Our findings open new opportunities for the development of novel classes of N-CF3 compounds with possible applications in the life sciences.
Collapse
Affiliation(s)
- Norbert Baris
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Ján Tarábek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Josef Filgas
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Lucie Ludvíková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Soňa Boháčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Blanka Klepetářová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Petr Beier
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| |
Collapse
|
19
|
Hooker LV, Bandar JS. Synthetic Advantages of Defluorinative C-F Bond Functionalization. Angew Chem Int Ed Engl 2023; 62:e202308880. [PMID: 37607025 PMCID: PMC10843719 DOI: 10.1002/anie.202308880] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Much progress has been made in the development of methods to both create compounds that contain C-F bonds and to functionalize C-F bonds. As such, C-F bonds are becoming common and versatile synthetic functional handles. This review summarizes the advantages of defluorinative functionalization reactions for small molecule synthesis. The coverage is organized by the type of carbon framework the fluorine is attached to for mono- and polyfluorinated motifs. The main challenges, opportunities and advances of defluorinative functionalization are discussed for each class of organofluorine. Most of the text focuses on case studies that illustrate how defluorofunctionalization can improve routes to synthetic targets or how the properties of C-F bonds enable unique mechanisms and reactions. The broader goal is to showcase the opportunities for incorporating and exploiting C-F bonds in the design of synthetic routes, improvement of specific reactions and advent of new methods.
Collapse
Affiliation(s)
- Leidy V Hooker
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
20
|
Cho H, Jang S, Lee K, Cha D, Min SJ. Visible-Light-Induced DDQ-Catalyzed Fluorocarbamoylation Using CF 3SO 2Na and Oxygen. Org Lett 2023. [PMID: 37987781 DOI: 10.1021/acs.orglett.3c03335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The synthesis of carbamoyl fluorides via visible-light induced DDQ catalysis of secondary amines is described. This protocol employs sodium trifluorosulfinate and molecular oxygen for the in situ generation of carbonyl difluoride, which is reacted with amines to afford the corresponding carbamoyl fluorides efficiently. Moreover, carbamoyl fluorides are easily transformed to synthetically useful carbonyl compounds under mild reaction conditions.
Collapse
Affiliation(s)
- Huijeong Cho
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Seonga Jang
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Kangjoo Lee
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Dohoon Cha
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Sun-Joon Min
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
- Department of Chemical & Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
21
|
Tao M, Qian J, Chen Z, An LK, Wilson DM, Liu J. General Synthesis of N-CF 3 Heteroaryl Amides via Successive Fluorination and Acylation of Sterically Hindered Isothiocyanates. J Org Chem 2023; 88:15237-15248. [PMID: 37823733 DOI: 10.1021/acs.joc.3c01740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
We report the one-pot synthesis of N-CF3 heteroaryl amides (NTFMHA) from heteroaryl carboxylic acids and sterically hindered isothiocyanates, including various amino acid analogues, in the presence of AgF. The key to this reaction is the utilization of free heteroaryl acyl chlorides, rather than their corresponding hydrochloride salts. This method represents a complementary method of our previous work and enables modification to a variety of previously inaccessible structures, including α-tertiary amines and N-CF3-modified pharmaceuticals.
Collapse
Affiliation(s)
- Min Tao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Jiasheng Qian
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, China
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California 94158, United States
| | - Jianbo Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, China
| |
Collapse
|
22
|
Cadwallader D, Shevchuk D, Tiburcio TR, Le CM. Fluoride-Catalyzed Cross-Coupling of Carbamoyl Fluorides and Alkynylsilanes. Org Lett 2023; 25:7369-7373. [PMID: 37767985 DOI: 10.1021/acs.orglett.3c02871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
We report the synthesis of alkynamides via the cross-coupling of carbamoyl fluorides and alkynylsilanes catalyzed by tetrabutylammonium fluoride (TBAF). In contrast to previously reported transformations of carbamoyl fluorides, C-F bond cleavage is achieved under exceptionally mild conditions (room temperature, low catalyst loadings, and short reaction times) without the need for strongly nucleophilic reagents and/or catalysts. This method offers distinct advantages over transition-metal-catalyzed approaches, such as tolerance to aryl halide moieties and complementary chemoselectivity.
Collapse
Affiliation(s)
- Dusty Cadwallader
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Dmytro Shevchuk
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Tristan R Tiburcio
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Christine M Le
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
23
|
Rosa LLS, Andrade-Júnior FP, Cordeiro LV, Souza HDS, Athayde-Filho PF, Gadelha DDA, Melo DM, Silva DF, Alves DN, Sobreira ALC, Ferreira SRD, Teixeira APC, Farias BKS, Firmino RG, Maia AKHL, Lima EO. Association study between ceftriaxone and a synthetic amide against strains of Pseudomonas aeruginosa. BRAZ J BIOL 2023; 83:e274149. [PMID: 37820207 DOI: 10.1590/1519-6984.274149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/23/2023] [Indexed: 10/13/2023] Open
Abstract
Pseudomonas aeruginosa is a non-lactose fermenting Gram-negative bacteria responsible for causing numerous nosocomial infections. The present research aimed to analyze the anti-Pseudomonas aeruginosa potential of 2-Chloro-N-(4-fluoro-3-nitrophenyl)acetamide (A8). The antibacterial potential of A8 was evaluated from the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Association using the checkerboard method. MIC and MBC values were 512 µg/mL for all P. aeruginosa strains evaluated, demonstrating predominantly bactericidal activity. Furthermore, when A8 was associated with the drug ceftriaxone, pharmacological additivity and indifference were evidenced. In this sense, the synthetic amide was interesting, since it demonstrates the potential to become a possible candidate for an antimicrobial drug.
Collapse
Affiliation(s)
- L L S Rosa
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, PB, Brasil
| | - F P Andrade-Júnior
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, PB, Brasil
| | - L V Cordeiro
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, PB, Brasil
| | - H D S Souza
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Química, João Pessoa, PB, Brasil
| | - P F Athayde-Filho
- Universidade Federal da Paraíba - UFPB, Centro de Ciências Exatas e da Natureza, Programa de Pós-graduação em Química, João Pessoa, PB, Brasil
| | - D D A Gadelha
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, PB, Brasil
| | - D M Melo
- Universidade Federal de Campina Grande - UFCG, Hospital Universitário Alcides Carneiro, Campina Grande, PB, Brasil
| | - D F Silva
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, PB, Brasil
| | - D N Alves
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, PB, Brasil
| | - A L C Sobreira
- Universidade Federal da Paraíba - UFPB, Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos - DITM, João Pessoa, PB, Brasil
| | - S R D Ferreira
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, PB, Brasil
| | - A P C Teixeira
- Universidade Federal da Paraíba - UFPB, Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos - DITM, João Pessoa, PB, Brasil
| | - B K S Farias
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, PB, Brasil
| | - R G Firmino
- Universidade Estadual da Paraíba - UEPB, Programa de Pós-graduação em Psicologia da Saúde, Campina Grande, PB, Brasil
| | - A K H L Maia
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, PB, Brasil
| | - E O Lima
- Universidade Federal da Paraíba - UFPB, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, PB, Brasil
| |
Collapse
|
24
|
Crousse B. Recent Advances in the Syntheses of N-CF 3 Scaffolds up to Their Valorization. CHEM REC 2023; 23:e202300011. [PMID: 36922747 DOI: 10.1002/tcr.202300011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/16/2023] [Indexed: 03/18/2023]
Abstract
This review provides a recent overview of the different synthetic routes of the N-CF3 group. This scaffold can be prepared from the desulfurization of thiocabamoyl fluorides or isothiocyanates with fluoride ions. Electrophilic and radical trifluoromethylations are also a great way to generate this motif. This report also focuses on the valorization of some N-CF3 compounds, which leads to new unknown N-trifluoromethyl derivatives. Finally, the first metabolic stability studies will be given for certain structures.
Collapse
Affiliation(s)
- Benoît Crousse
- BioCIS UMR 8076 CNRS, Building Henri Moissan, Université Paris-Saclay, 17 avenue des sciences, 91400, Orsay, France
| |
Collapse
|
25
|
Liu L, Gu YC, Zhang CP. Recent Advances in the Synthesis and Transformation of Carbamoyl Fluorides, Fluoroformates, and Their Analogues. CHEM REC 2023; 23:e202300071. [PMID: 37098875 DOI: 10.1002/tcr.202300071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/07/2023] [Indexed: 04/27/2023]
Abstract
Carbamoyl fluorides, fluoroformates, and their analogues are a class of important compounds and have been evidenced as versatile building blocks for the preparation of useful molecules in organic chemistry. While major achievements were made in the synthesis of carbamoyl fluorides, fluoroformates, and their analogues in the last half of 20th century, an increasing number of reports have focused on using O/S/Se=CF2 species or their equivalents as the fluorocarbonylation reagents for the direct construction of these compounds from the parent heteroatom-nucleophiles in recent years. This review mainly summarizes the advances in the synthesis and typical application of carbamoyl fluorides, fluoroformates, and their analogues by the halide exchanges and fluorocarbonylation reactions since 1980.
Collapse
Affiliation(s)
- Lei Liu
- School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG426EY, UK
| | - Cheng-Pan Zhang
- School of Materials Science and Engineering & School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
26
|
McKnight EA, Arora R, Pradhan E, Fujisato YH, Ajayi AJ, Lautens M, Zeng T, Le CM. BF 3-Catalyzed Intramolecular Fluorocarbamoylation of Alkynes via Halide Recycling. J Am Chem Soc 2023; 145:11012-11018. [PMID: 37172320 DOI: 10.1021/jacs.3c03982] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A BF3-catalyzed atom-economical fluorocarbamoylation reaction of alkyne-tethered carbamoyl fluorides is reported. The catalyst acts as both a fluoride source and Lewis acid activator, thereby enabling the formal insertion of alkynes into strong C-F bonds through a halide recycling mechanism. The developed method provides access to 3-(fluoromethylene) oxindoles and γ-lactams with excellent stereoselectivity, including fluorinated derivatives of known protein kinase inhibitors. Experimental and computational studies support a stepwise mechanism for the fluorocarbamoylation reaction involving a turnover-limiting cyclization step, followed by internal fluoride transfer from a BF3-coordinated carbamoyl adduct. For methylene oxindoles, a thermodynamically driven Z-E isomerization is facilitated by a transition state with aromatic character. In contrast, this aromatic stabilization is not relevant for γ-lactams, which results in a higher barrier for isomerization and the exclusive formation of the Z-isomer.
Collapse
Affiliation(s)
- E Ali McKnight
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Ramon Arora
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ekadashi Pradhan
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Yuriko H Fujisato
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Ayonitemi J Ajayi
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Mark Lautens
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Tao Zeng
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Christine M Le
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
27
|
Lei Z, Chang W, Guo H, Feng J, Zhang Z. A Brief Review on the Synthesis of the N-CF3 Motif in Heterocycles. Molecules 2023; 28:molecules28073012. [PMID: 37049775 PMCID: PMC10095997 DOI: 10.3390/molecules28073012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
The trifluoromethyl group is widely recognized for its significant role in the fields of medicinal chemistry and material science due to its unique electronic and steric properties that can alter various physiochemical properties of the parent molecule, such as lipophilicity, acidity, and hydrogen bonding capabilities. Compared to the well-established C-trifluoromethylation, N-trifluoromethylation has received lesser attention. Considering the extensive contribution of nitrogen to drug molecules, it is predicted that constructing N-trifluoromethyl (N-CF3) motifs will be of great significance in pharmaceutical and agrochemical industries. This review is mainly concerned with the synthesis of heterocycles containing this motif. In three-membered heterocycles containing the N-CF3 motif, the existing literature mostly demonstrated the synthetic strategy, as it does for four- and larger-membered heterocycles. Certain structures, such as oxaziridines, could serve as an oxidant or building blocks in organic synthesis. In five-membered heterocycles, it has been reported that N-CF3 azoles showed a higher lipophilicity and a latent increased metabolic stability and Caco-2-permeability compared with their N-CH3 counterparts, illustrating the potential of the N-CF3 motif. Various N-CF3 analogues of drugs or bioactive molecules, such as sildenafil analogue, have been obtained. In general, the N-CF3 motif is developing and has great potential in bioactive molecules or materials. Give the recent development in this motif, it is foreseeable that its synthesis methods and applications will become more and more extensive. In this paper, we present an overview of the synthesis of N-CF3 heterocycles, categorized on the basis of the number of rings (three-, four-, five-, six- and larger-membered heterocycles), and focus on the five-membered heterocycles containing the N-CF3 group.
Collapse
|
28
|
Zhang D, Xue Y, Zheng X, Zhang C, Li Y. Multi-heterointerfaces for selective and efficient urea production. Natl Sci Rev 2023; 10:nwac209. [PMID: 36817842 PMCID: PMC9935990 DOI: 10.1093/nsr/nwac209] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
A major impediment to industrial urea synthesis is the lack of catalysts with high selectivity and activity, which inhibits the efficient industrial production of urea. Here, we report a new catalyst system suitable for the highly selective synthesis of industrial urea by in situ growth of graphdiyne on the surface of cobalt-nickel mixed oxides. Such a catalyst is a multi-heterojunction interfacial structure resulting in the obvious incomplete charge-transfer phenomenon between a graphdiyne and metal oxide interface and multiple intermolecular interactions. These intrinsic characteristics are the origin of the high performance of the catalyst. Studies on the mechanism reveal that the catalyst could effectively optimize the adsorption/desorption capacities of the intermediate and promote direct C-N coupling by significantly suppressing by-product reactions toward the formation of H2, CO, N2 and NH3. The catalyst can selectively synthesize urea directly from nitrite and carbon dioxide in water at room temperature and pressure, and exhibits a record-high Faradaic efficiency of 64.3%, nitrogen selectivity (Nurea-selectivity) of 86.0%, carbon selectivity (Curea-selectivity) of ∼100%, as well as urea yield rates of 913.2 μg h-1 mgcat -1 and remarkable long-term stability.
Collapse
Affiliation(s)
- Danyan Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yurui Xue
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xuchen Zheng
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Zhang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuliang Li
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Bao L, Wang ZX, Chen XY. Photoinduced N-Heterocyclic Nitrenium-Catalyzed Single Electron Reduction of Acyl Fluorides for Phenanthridine Synthesis. Org Lett 2023; 25:565-568. [PMID: 36637257 DOI: 10.1021/acs.orglett.3c00049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Acyl fluorides are versatile reagents in organic synthesis. However, there is no precedent to employ acyl fluorides as acyl radical precursors. We herein report an N-heterocyclic nitrenium iodide salt-catalyzed photoreduction of acyl fluorides to produce acyl radicals, which could react with 2-isocyanobiaryls to afford various carbonyl phenanthridines.
Collapse
Affiliation(s)
- Lei Bao
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049, China.,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049, China.,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| |
Collapse
|
30
|
Newton JJ, Engüdar G, Brooke AJ, Nodwell MB, Horngren-Rhodes H, Martin RE, Schaffer P, Britton R, Friesen CM. Rapid 18 F- and 19 F-Difluoromethylation through Desulfurative Fluorination of Transient N-, O-, and C-Linked Dithioles. Chemistry 2023; 29:e202202862. [PMID: 36318597 DOI: 10.1002/chem.202202862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 12/14/2022]
Abstract
The difluoromethyl group plays an important role in modern medicinal and agrochemistry. While several difluoromethylation reagents have been reported, these typically rely on difluoromethyl carbenes or anions, or target specific processes. Here, we describe a conceptually unique and general process for O-H, N-H and C-H difluoromethylation that involves the formation of a transient dithiole followed by facile desulfurative fluorination using silver(I) fluoride. We also introduce the 5,6-dimethoxy-1,3-benzodithiole (DMBDT) function, which undergoes sufficiently rapid desulfurative fluorination to additionally support 18 F-difluoromethylation. This new process is compatible with the wide range of functional groups typically encountered in medicinal chemistry campaigns, and the use of Ag18 F is demonstrated in the production of 18 F-labeled derivatives of testosterone, perphenazine, and melatonin, 58.0±2.2, 20.4±0.3 and 32.2±3.6 MBq μmol-1 , respectively. We expect that the DMBDT group and this 18 F/19 F-difluoromethylation process will inspire and support new efforts in medicinal chemistry, agrochemistry and radiotracer production.
Collapse
Affiliation(s)
- Josiah J Newton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.,Neufeld Science Centre, Department of Chemistry, Trinity Western University, 22500 University Drive, Langley, British Columbia, V2Y 1Y1, Canada
| | - Gökçe Engüdar
- Life Sciences Division, TRIUMF Vancouver, British Columbia, V6T 2A3(Canada), Department of Radiology, 775 Laurel Street, 11th floor, Vancouver, BC V5Z 1M9, Canada
| | - Alan J Brooke
- Neufeld Science Centre, Department of Chemistry, Trinity Western University, 22500 University Drive, Langley, British Columbia, V2Y 1Y1, Canada
| | - Matthew B Nodwell
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Holly Horngren-Rhodes
- Neufeld Science Centre, Department of Chemistry, Trinity Western University, 22500 University Drive, Langley, British Columbia, V2Y 1Y1, Canada
| | - Rainer E Martin
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Paul Schaffer
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.,Life Sciences Division, TRIUMF Vancouver, British Columbia, V6T 2A3(Canada), Department of Radiology, 775 Laurel Street, 11th floor, Vancouver, BC V5Z 1M9, Canada
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Chadron M Friesen
- Neufeld Science Centre, Department of Chemistry, Trinity Western University, 22500 University Drive, Langley, British Columbia, V2Y 1Y1, Canada
| |
Collapse
|
31
|
Zivkovic FG, D-T Nielsen C, Schoenebeck F. Access to N-CF 3 Formamides by Reduction of N-CF 3 Carbamoyl Fluorides. Angew Chem Int Ed Engl 2022; 61:e202213829. [PMID: 36308723 PMCID: PMC10099374 DOI: 10.1002/anie.202213829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 11/06/2022]
Abstract
The departure into unknown chemical space is essential for the discovery of new properties and function. We herein report the first synthetic access to N-trifluoromethylated formamides. The method involves the reduction of bench-stable NCF3 carbamoyl fluorides and is characterized by operational simplicity and mildness, tolerating a broad range of functional groups as well as stereocenters. The newly made N-CF3 formamide motif proved to be highly robust and compatible with diverse chemical transformations, underscoring its potential as building block in complex functional molecules.
Collapse
Affiliation(s)
- Filip G Zivkovic
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Christian D-T Nielsen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
32
|
Kelebekli L. Synthesis and hydrolysis of monocarbamate from allylic 1,4-dicarbamate: Bis-homodichloroinositol. Carbohydr Res 2022; 522:108681. [PMID: 36166876 DOI: 10.1016/j.carres.2022.108681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 11/27/2022]
Abstract
The synthesis of novel bis-homodichloroinositol with a configuration similar to that of conduritol-D is reported for the first time. The photooxygenation of cis-dichloro-diene obtained using cyclooctatetraene as the starting molecule afforted the tricyclic endoperoxide. The reduction of the endoperoxide with thiourea gave the corresponding allylic cis-diol. Formation of the bis-carbamate groups with p-TsNCO of allylic cis-diol followed by the [(dba)3Pd2CHCl3] in the presence of trimethylsilyl azide, gave a new monocarbamate as well as oxazolidinone derivative. Oxidation of the double bond in the monocarbamate with osmium tetraoxide followed by acetylation furnished the desired monocarbamate triacetate. Eventually, the desired halogenated bicyclo[4.2.0] inositol (bis-homodichloroinositol) were obtained in high yield by hydrolysis of the acetate groups and monocarbanate group by potassium carbonate in methanol. Characterization of all the synthesized compounds were performed by FT-IR, 1H NMR, 13C NMR, COSY (2D-NMR), HRMS, and Elemental Analysis techniques.
Collapse
Affiliation(s)
- Latif Kelebekli
- Department of Chemistry, Faculty of Sciences and Arts, Ordu University, 52200, Ordu, Turkey.
| |
Collapse
|
33
|
Hwang C, Lee Y, Kim M, Seo Y, Cho SH. Diborylmethyl Group as a Transformable Building Block for the Diversification of Nitrogen‐Containing Molecules. Angew Chem Int Ed Engl 2022; 61:e202209079. [DOI: 10.1002/anie.202209079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 01/16/2023]
Affiliation(s)
- Chiwon Hwang
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Yeosan Lee
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Minjae Kim
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Younggyu Seo
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE) Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
34
|
Cadwallader D, Tiburcio TR, Cieszynski GA, Le CM. Synthesis of Carbamoyl Fluorides Using a Difluorophosgene Surrogate Derived from Difluorocarbene and Pyridine N-Oxides. J Org Chem 2022; 87:11457-11468. [PMID: 35972076 DOI: 10.1021/acs.joc.2c01017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a method for the synthesis of carbamoyl fluorides from secondary amines using bench-stable, inexpensive, and readily accessible starting materials that, when combined, yield a surrogate for toxic difluorophosgene (COF2) gas. In contrast to state-of-the-art methods for the synthesis of carbamoyl fluorides, our protocol does not require the use of pre-functionalized substrates, the preparation of light-, temperature-, and/or moisture-sensitive chemicals, or the application of explosive fluorinating reagents.
Collapse
Affiliation(s)
- Dusty Cadwallader
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Tristan R Tiburcio
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - George A Cieszynski
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Christine M Le
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
35
|
Turksoy A, Bouayad‐Gervais S, Schoenebeck F. N
‐CF
3
Imidazolidin‐2‐one Derivatives via Photocatalytic and Silver‐Catalyzed Cyclizations. Chemistry 2022; 28:e202201435. [DOI: 10.1002/chem.202201435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Abdurrahman Turksoy
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Samir Bouayad‐Gervais
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
36
|
Sirirungruang S, Ad O, Privalsky TM, Ramesh S, Sax JL, Dong H, Baidoo EEK, Amer B, Khosla C, Chang MCY. Engineering site-selective incorporation of fluorine into polyketides. Nat Chem Biol 2022; 18:886-893. [PMID: 35817967 PMCID: PMC10030150 DOI: 10.1038/s41589-022-01070-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/23/2022] [Indexed: 02/01/2023]
Abstract
Although natural products and synthetic small molecules both serve important medicinal functions, their structures and chemical properties are relatively distinct. To expand the molecular diversity available for drug discovery, one strategy is to blend the effective attributes of synthetic and natural molecules. A key feature found in synthetic compounds that is rare in nature is the use of fluorine to tune drug behavior. We now report a method to site-selectively incorporate fluorine into complex structures to produce regioselectively fluorinated full-length polyketides. We engineered a fluorine-selective trans-acyltransferase to produce site-selectively fluorinated erythromycin precursors in vitro. We further demonstrated that these analogs could be produced in vivo in Escherichia coli on engineering of the fluorinated extender unit pool. By using engineered microbes, elaborate fluorinated compounds can be produced by fermentation, offering the potential for expanding the identification and development of bioactive fluorinated small molecules.
Collapse
Affiliation(s)
| | - Omer Ad
- Department of Chemistry, University of California, Berkeley, CA, USA
| | | | - Swetha Ramesh
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Joel L Sax
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Hongjun Dong
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Edward E K Baidoo
- Joint Bioenergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Energy, Agile BioFoundry, Emeryville, CA, USA
| | - Bashar Amer
- Joint Bioenergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chaitan Khosla
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Michelle C Y Chang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
37
|
Bonnefoy C, Chefdeville E, Tourvieille C, Panossian A, Hanquet G, Leroux F, Toulgoat F, Billard T. Study of Carbamoyl Fluoride: Synthesis, Properties and Applications. Chemistry 2022; 28:e202201589. [PMID: 35639343 DOI: 10.1002/chem.202201589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 12/14/2022]
Abstract
Carbamoyl fluoride is a fluorinated group that, to this date, remains underexplored, probably due to the lack of data concerning its properties. In this paper, a study of carbamoyl fluoride is presented. Stability studies, in particular under physiological conditions, and lipophilicity measurement were performed. A new easy, safe, inexpensive, and metal-free synthesis method is also described. Finally, a potential use in radiochemistry through a 18 F/19 F isotopic exchange is demonstrated.
Collapse
Affiliation(s)
- Clémence Bonnefoy
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, CNRS, Université Lyon 1, 1 rue Victor Grignard, 69622, Lyon, France
| | - Emmanuel Chefdeville
- NMR Centre, Univ Lyon, Université Lyon 1, CNRS, 1 rue Victor Grignard, 69622, Lyon, France
| | | | - Armen Panossian
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 67000, Strasbourg, France
| | - Gilles Hanquet
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 67000, Strasbourg, France
| | - Frédéric Leroux
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, 67000, Strasbourg, France
| | - Fabien Toulgoat
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, CNRS, Université Lyon 1, 1 rue Victor Grignard, 69622, Lyon, France.,CPE, Lyon Campus LyonTech-La Doua, 43 Bd du 11 novembre 1918, 69616, Villeurbanne, France
| | - Thierry Billard
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, CNRS, Université Lyon 1, 1 rue Victor Grignard, 69622, Lyon, France.,CERMEP-In vivo imaging Groupement Hospitalier Est, 59 Bd Pinel, 69677, Lyon, France
| |
Collapse
|
38
|
Hwang C, Lee Y, Kim M, Seo Y, Cho SH. Diborylmethyl Group as a Transformable Building Block for the Diversification of Nitrogen‐Containing Molecules. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chiwon Hwang
- POSTECH: Pohang University of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Yeosan Lee
- POSTECH: Pohang University of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Minjae Kim
- POSTECH: Pohang University of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Younggyu Seo
- POSTECH: Pohang University of Science and Technology Chemistry KOREA, REPUBLIC OF
| | - Seung Hwan Cho
- Pohang University of Science and Technology (POSTECH) Chemistry San 31, HyojadongNamgu 37673 Pohang KOREA, REPUBLIC OF
| |
Collapse
|
39
|
Taponard A, Jarrosson T, Khrouz L, Médebielle M, Broggi J, Tlili A. Metal-Free SF 6 Activation: A New SF 5 -Based Reagent Enables Deoxyfluorination and Pentafluorosulfanylation Reactions. Angew Chem Int Ed Engl 2022; 61:e202204623. [PMID: 35471641 DOI: 10.1002/anie.202204623] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 12/13/2022]
Abstract
The activation of SF6 , a potent greenhouse gas, under metal-free and visible light conditions is reported. Herein, mechanistic investigations including EPR spectroscopy, NMR studies and cyclic voltammetry allowed the rational design of a new fluorinating reagent which was synthesized from the 2-electron activation of SF6 with commercially available TDAE. This new SF5 -based reagent was efficiently employed for the deoxyfluorination of CO2 and the fluorinative desulfurization of CS2 allowing the formation of useful fluorinated amines. Moreover, for the first time we demonstrated that our SF5 -based reagent could afford the mild generation of Cl-SF5 gas. This finding was exploited for the chloro-pentafluorosulfanylation of alkynes and alkenes.
Collapse
Affiliation(s)
- Alexis Taponard
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Tristan Jarrosson
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Lhoussain Khrouz
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, 69364, Lyon, France
| | - Maurice Médebielle
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Julie Broggi
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire (ICR)ICR UMR 7273, Faculty of Pharmacy, 27 Bd Jean Moulin, 13385, Marseille, France
| | - Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| |
Collapse
|
40
|
Taponard A, Jarrosson T, Khrouz L, Médebielle M, Broggi J, Tlili A. Metal‐Free SF
6
Activation: A New SF
5
‐Based Reagent Enables Deoxyfluorination and Pentafluorosulfanylation Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexis Taponard
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Tristan Jarrosson
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Lhoussain Khrouz
- ENSL, CNRS, Laboratoire de Chimie UMR 5182 46 allée d'Italie 69364 Lyon France
| | - Maurice Médebielle
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Julie Broggi
- Aix Marseille Univ, CNRS Institut de Chimie Radicalaire (ICR)ICR UMR 7273 Faculty of Pharmacy 27 Bd Jean Moulin 13385 Marseille France
| | - Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| |
Collapse
|
41
|
Bouayad-Gervais S, Nielsen CDT, Turksoy A, Sperger T, Deckers K, Schoenebeck F. Access to Cyclic N-Trifluoromethyl Ureas through Photocatalytic Activation of Carbamoyl Azides. J Am Chem Soc 2022; 144:6100-6106. [PMID: 35333063 DOI: 10.1021/jacs.2c02004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We report the mild activation of carbamoyl azides to the corresponding nitrenes using a blue light/[Ir]-catalyzed strategy, which enables stereospecific access to N-trifluoromethyl imidazolidinones and benzimidazolones. These novel structural motifs proved to be highly robust, allowing their downstream diversification. On the basis of our combined computational and experimental studies, we propose that an electron rebound with the excited metal catalyst is undergone, involving a reduction-triggered nitrogen loss, followed by oxidation to the corresponding carbamoyl nitrene and subsequent C-H insertion.
Collapse
Affiliation(s)
- Samir Bouayad-Gervais
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Christian D-T Nielsen
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Abdurrahman Turksoy
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Theresa Sperger
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Kristina Deckers
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
42
|
Zhang RZ, Huang W, Zhang RX, Xu C, Wang M. Synthesis of N-CF 3 Amidines/Imidates/Thioimidates via N-CF 3 Nitrilium Ions. Org Lett 2022; 24:2393-2398. [PMID: 35302381 DOI: 10.1021/acs.orglett.2c00647] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient methodology for the synthesis of a wide range of N-CF3 imidic acid derivatives is presented. In this reaction, N-CF3 nitrilium ions were generated via N-trifluoromethylation of nitriles using PhICF3Cl under catalysis with DMAP, followed by the capture of N-, O-, or S-centered nucleophiles to give diverse N-CF3 amidines, imidates, and thioimidates. The method provides a platform for preparing N-CF3 compounds with potential applications.
Collapse
Affiliation(s)
- Ru Zhong Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wanqiao Huang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ru Xue Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Cong Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Mang Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
43
|
Wang F, Fu R, Chen J, Rong J, Wang E, Zhang J, Zhang Z, Jiang Y. Metal-free synthesis of gem-difluorinated heterocycles from enaminones and difluorocarbene precursors. Chem Commun (Camb) 2022; 58:3477-3480. [PMID: 35191446 DOI: 10.1039/d2cc00383j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A cascade strategy to synthesise gem-difluorinated 2H-furans from reactions of BrCF2CO2Et with enaminones has been described. The reactions tolerate a wide variety of functional groups under metal-free conditions. An active aminocyclopropane is proposed to be a key intermediate through the cyclopropanation of difluorocarbene with enaminones, which further triggers a regioselective C-C bond cleavage in situ to afford the corresponding gem-difluorinated 2H-furans.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Rui Fu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Jie Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China. .,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jiaxin Rong
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Enfu Wang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jian Zhang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Zhengyu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China.
| | - Yaojia Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China. .,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
44
|
Fu R, Liu Y, Wu T, Zhang X, Zhu Y, Luo J, Zhang Z, Jiang Y. Metal-free synthesis of β-aminoketones by the reductive hydroamination of ynones. Chem Commun (Camb) 2022; 58:3525-3528. [PMID: 35195654 DOI: 10.1039/d2cc00169a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study describes a cascade method for the synthesis of β-aminoketones through the reductive hydroamination of alkynes under very mild metal-free conditions. It allows for the rapid conversion of ynones and amines into corresponding β-aminoketones with a broad substrate scope and diverse functionalities. This straightforward and easy-to-handle reaction process can be successfully applied for the synthesis of Proroxan and Propipocaine, offering a potential option for the synthesis of drug molecules with the β-aminoketone skeleton.
Collapse
Affiliation(s)
- Rui Fu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Yu Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Tao Wu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Xinyu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Yang Zhu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Jiangbin Luo
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zhengyu Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Yaojia Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. .,Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
45
|
Liu S, Huang Y, Wang J, Qing FL, Xu XH. General Synthesis of N-Trifluoromethyl Compounds with N-Trifluoromethyl Hydroxylamine Reagents. J Am Chem Soc 2022; 144:1962-1970. [DOI: 10.1021/jacs.1c12467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Shuai Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Yangen Huang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Juan Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Feng-Ling Qing
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
46
|
Zhang RZ, Zhang RX, Wang S, Xu C, Guan W, Wang M. An N-Trifluoromethylation/Cyclization Strategy for Accessing Diverse N-Trifluoromethyl Azoles from Nitriles and 1,3-Dipoles. Angew Chem Int Ed Engl 2022; 61:e202110749. [PMID: 34704326 DOI: 10.1002/anie.202110749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/27/2021] [Indexed: 01/14/2023]
Abstract
N-Trifluoromethyl azoles are valuable targets in medicinal chemistry, but their synthesis is challenging. Classical preparation of N-CF3 azoles relies on the functional group interconversions but suffers from tedious N-pre-functionalization and unfriendly agents. Introduction of the CF3 onto the nitrogen of heterocycles provides a direct route to such motifs, but the N-trifluoromethylation remains underdeveloped. Reported here is an alternative and scalable cyclization strategy based on NCF3 -containing synthons for constructing N-CF3 azoles. The approach involves the N-trifluoromethylation of nitriles followed by a [3+2] cyclization between resulting N-CF3 nitrilium derivatives and 1,3-dipoles. PhICF3 Cl was an effective CF3 source for the transformation. As a result, a generic platform is established to divergently synthesize N-trifluoromethylated tetrazoles, imidazoles, and 1,2,3-triazoles by using sodium azide, activated methylene isocyanides, and diazo compounds as dipoles.
Collapse
Affiliation(s)
- Ru Zhong Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Ru Xue Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Shuang Wang
- Institute of Functional of Material, College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Cong Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Wei Guan
- Institute of Functional of Material, College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Mang Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| |
Collapse
|
47
|
Zhang RZ, Zhang RX, Wang S, Xu C, Guan W, Wang M. An
N
‐Trifluoromethylation/Cyclization Strategy for Accessing Diverse
N
‐Trifluoromethyl Azoles from Nitriles and 1,3‐Dipoles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ru Zhong Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis College of Chemistry Northeast Normal University 5268 Renmin Street Changchun 130024 China
| | - Ru Xue Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis College of Chemistry Northeast Normal University 5268 Renmin Street Changchun 130024 China
| | - Shuang Wang
- Institute of Functional of Material College of Chemistry Northeast Normal University 5268 Renmin Street Changchun 130024 China
| | - Cong Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis College of Chemistry Northeast Normal University 5268 Renmin Street Changchun 130024 China
| | - Wei Guan
- Institute of Functional of Material College of Chemistry Northeast Normal University 5268 Renmin Street Changchun 130024 China
| | - Mang Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis College of Chemistry Northeast Normal University 5268 Renmin Street Changchun 130024 China
| |
Collapse
|
48
|
Liu X, Wang S, Gao C, Guan W, Wang M. Reassembly and functionalization of N-CF 3 pyridinium salts: synthesis of nicotinaldehydes. Org Chem Front 2022. [DOI: 10.1039/d2qo00242f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented hydrolyzation-triggered ring opening and recyclization cascade to construct biologically interesting nicotinaldehydes.
Collapse
Affiliation(s)
- Xiaowei Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Shuang Wang
- Institute of Functional of Material, College of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Chi Gao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wei Guan
- Institute of Functional of Material, College of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Mang Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, College of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
49
|
Yan ZH, Li WC, Wu YH, Yan QB, Wei ZL, Liao WW. Electrochemical cyclization of N-cyanamide alkenes with CF 3SO 2Na to access C, N-(bis)trifluoromethylated cyclic amidines and related compounds. Org Chem Front 2022. [DOI: 10.1039/d2qo01323a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemical trifluoromethylative cyclization of N-cyanamide alkenes and alkynes is presented, which afforded (bis)-C,N-trifluoromethylated cyclic amidines, azines and amides with selective multiple bond formations in a controllable manner.
Collapse
Affiliation(s)
- Zhi-Hua Yan
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wen-Cheng Li
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yu-Heng Wu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Qi-Bo Yan
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhong-Lin Wei
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
50
|
Peng J, Liao C, Bauer C, Seebeck FP. Fluorinated
S
‐Adenosylmethionine as a Reagent for Enzyme‐Catalyzed Fluoromethylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jiaming Peng
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Cangsong Liao
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Carsten Bauer
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| | - Florian P. Seebeck
- Department of Chemistry University of Basel Mattenstrasse 24a 4002 Basel Switzerland
| |
Collapse
|