1
|
Dowling QM, Park YJ, Fries CN, Gerstenmaier NC, Ols S, Yang EC, Wargacki AJ, Dosey A, Hsia Y, Ravichandran R, Walkey CD, Burrell AL, Veesler D, Baker D, King NP. Hierarchical design of pseudosymmetric protein nanocages. Nature 2024:10.1038/s41586-024-08360-6. [PMID: 39695230 DOI: 10.1038/s41586-024-08360-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/06/2024] [Indexed: 12/20/2024]
Abstract
Discrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions1,2. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry3. Here, inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials. We computationally designed pseudosymmetric heterooligomeric components and used them to create discrete, cage-like protein assemblies with icosahedral symmetry containing 240, 540 and 960 subunits. At 49, 71 and 96 nm diameter, these nanocages are the largest bounded computationally designed protein assemblies generated to date. More broadly, by moving beyond strict symmetry, our work substantially broadens the variety of self-assembling protein architectures that are accessible through design.
Collapse
Affiliation(s)
- Quinton M Dowling
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Chelsea N Fries
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Neil C Gerstenmaier
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sebastian Ols
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Erin C Yang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Adam J Wargacki
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Yang Hsia
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Carl D Walkey
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Anika L Burrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Osiński N, Majsterkiewicz K, Pakosz-Stępień Z, Azuma Y, Biela AP, Gaweł S, Heddle JG. Designed, Programmable Protein Cages Utilizing Diverse Metal Coordination Geometries Show Reversible, pH-Dependent Assembly. Macromol Rapid Commun 2024:e2400712. [PMID: 39676522 DOI: 10.1002/marc.202400712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Indexed: 12/17/2024]
Abstract
The rational design and production of a novel series of engineered protein cages are presented, which have emerged as versatile and adaptable platforms with significant applications in biomedicine. These protein cages are assembled from multiple protein subunits, and precise control over their interactions is crucial for regulating assembly and disassembly, such as the on-demand release of encapsulated therapeutic agents. This approach employs a homo-undecameric, ring-shaped protein scaffold with strategically positioned metal binding sites. These engineered proteins can self-assemble into highly stable cages in the presence of cobalt or zinc ions. Furthermore, the cages can be disassembled on demand by employing external triggers such as chelating agents and changes in pH. Interestingly, for certain triggers, the disassembly process is reversible, allowing the cages to reassemble upon reversal or outcompeting of triggering conditions/agents. This work offers a promising platform for the development of advanced drug delivery systems and other biomedical applications.
Collapse
Affiliation(s)
- Norbert Osiński
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, Kraków, 30384, Poland
| | - Karolina Majsterkiewicz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30387, Poland
- Postgraduate School of Molecular Medicine, ul. Żwirki i Wigury 61, Warsaw, 02091, Poland
| | | | - Yusuke Azuma
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30387, Poland
| | - Artur P Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30387, Poland
- National Synchrotron Radiation Centre SOLARIS, Czerwone Maki 98, Kraków, 30392, Poland
| | - Szymon Gaweł
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, Kraków, 30384, Poland
| | - Jonathan G Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30387, Poland
- School of Biological and Biomedical Sciences, Durham University, Durham, DH1-3LE, UK
| |
Collapse
|
3
|
Vidmar S, Šmidlehner T, Aupič J, Strmšek Ž, Ljubetič A, Xiao F, Hu G, Liu C, Beck F, Erdmann PS, Jerala R. Beyond Dimerization: Harnessing Tetrameric Coiled-Coils for Nanostructure Assembly. Angew Chem Int Ed Engl 2024:e202422075. [PMID: 39666653 DOI: 10.1002/anie.202422075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
Versatile DNA and polypeptide-based structures have been designed based on complementary modules. However, polypeptides can also form higher oligomeric states. We investigated the introduction of tetrameric modules as a substitute for coiled-coil dimerization units used in previous modular nanostructures. Tetramerizing helical bundles can run in parallel or antiparallel orientation, expanding the number of topological solutions for modular nanostructures. Furthermore, this strategy facilitates the construction of nanostructures from two identical polypeptide chains. Importantly, tetrameric modules substantially stabilized protein nanostructures against air-water interface denaturation, enabling the determination of the first cryo-electron microscopy three-dimensional structure of a coiled-coil-based nanostructure, confirming the designed agreement of the modules forming a tetrahedral cage.
Collapse
Affiliation(s)
- Sara Vidmar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary Doctoral Programme in Biomedicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tamara Šmidlehner
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Jana Aupič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Žiga Strmšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Fei Xiao
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Guang Hu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chuan Liu
- Human Technopole, Milan, Italy
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Florian Beck
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
| |
Collapse
|
4
|
Li L, Ye L, Shi Y, Yin L, Chen G. Liquid Phase Exfoliation of Protein Parent Crystals into Nanosheets and Fibrils Based on Orthogonal Supramolecular Interactions. J Am Chem Soc 2024; 146:31992-32002. [PMID: 39530760 DOI: 10.1021/jacs.4c11921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Proteins are attractive building blocks for fabricating diverse and precise nanomaterials. However, the facile fabrication of multidimensional artificial assemblies is highly challenging. Here, inspired by the large-scale production technique of inorganic nanomaterials, we demonstrate the application of liquid phase exfoliation (LPE) on native protein ConA by the design of synthetic ligands. These ligands provide distinct in-plane and out-of-plane supramolecular interactions, allowing the generation of multidimensional architectures based on the same protein by dissociating a single interaction in solution, including 3D porous protein crystals, 2D sizable nanosheets, and 1D fibrils. Importantly, the exfoliated 2D sheets were dozens of times larger than the self-assembled nanosheets, resulting in a dramatic enhancement of the intrinsic bioactivity of the building blocks by receptor clustering and less endocytosis. These findings enable the successful application of LPE on biomacromolecules and open up an alternative avenue to generate advanced multidimensional nanomaterials, without the need for complex protein design and careful adjustment of self-assembly conditions.
Collapse
Affiliation(s)
- Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Linfei Ye
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yiwei Shi
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Lin Yin
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Duan M, Lv C, Zang J, Leng X, Zhao G, Zhang T. Metals at the Helm: Revolutionizing Protein Assembly and Applications. Macromol Biosci 2024; 24:e2400126. [PMID: 39239781 DOI: 10.1002/mabi.202400126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Indexed: 09/07/2024]
Abstract
Protein assembly is an essential process in biological systems, where proteins self-assemble into complex structures with diverse functions. Inspired by the exquisite control over protein assembly in nature, scientists have been exploring ways to design and assemble protein structures with precise control over their topologies and functions. One promising approach for achieving this goal is through metal coordination, which utilizes metal-binding motifs to mediate protein-protein interactions and assemble protein complexes with controlled stoichiometry and geometry. Metal coordination provides a modular and tunable approach for protein assembly and de novo structure design, where the metal ion acts as a molecular glue that holds the protein subunits together in a specific orientation. Metal-coordinated protein assemblies have shown great potential for developing functional metalloproteinase, novel biomaterials and integrated drug delivery systems. In this review, an overview of the recent advances in protein assemblies benefited from metal coordination is provided, focusing on various protein arrangements in different dimensions including protein oligomers, protein nanocage and higher-order protein architectures. Moreover, the key metal-binding motifs and strategies used to assemble protein structures with precise control over their properties are highlighted. The potential applications of metal-mediated protein assemblies in biotechnology and biomedicine are also discussed.
Collapse
Affiliation(s)
- Maoping Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaojing Leng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tuo Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
6
|
Cheng PM, Jia T, Li CY, Qi MQ, Du MH, Su HF, Sun QF, Long LS, Zheng LS, Kong XJ. Bottom-up construction of chiral metal-peptide assemblies from metal cluster motifs. Nat Commun 2024; 15:9034. [PMID: 39426962 PMCID: PMC11490616 DOI: 10.1038/s41467-024-53320-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
The exploration of artificial metal-peptide assemblies (MPAs) is one of the most exciting fields because of their great potential for simulating the dynamics and functionality of natural proteins. However, unfavorable enthalpy changes make forming discrete complexes with large and adaptable cavities from flexible peptide ligands challenging. Here, we present a strategy integrating metal-cluster building blocks and peptides to create chiral metal-peptide assemblies and get a family of enantiopure [R-/S-Ni3L2]n (n = 2, 3, 6) MPAs, including the R-/S-Ni6L4 capsule, the S-Ni9L6 trigonal prism, and the R-/S-Ni18L12 octahedron cage. X-ray crystallography shows MPA formation reactions are highly solvent-condition-dependent, resulting in significant changes in ligand conformation and discrete cavity sizes. Moreover, we demonstrate that a structure transformation from Ni18L12 to Ni9L6 in the presence of benzopyrone molecules depends on the peptide conformational selection in crystallization. This work reveals that a metal-cluster building block approach enables facile bottom-up construction of artificial metal-peptide assemblies.
Collapse
Affiliation(s)
- Pei-Ming Cheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Tao Jia
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Chong-Yang Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ming-Qiang Qi
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Ming-Hao Du
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hai-Feng Su
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
| |
Collapse
|
7
|
Zhou W, Li Y, Partridge BE, Mirkin CA. Engineering Anisotropy into Organized Nanoscale Matter. Chem Rev 2024; 124:11063-11107. [PMID: 39315621 DOI: 10.1021/acs.chemrev.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Programming the organization of discrete building blocks into periodic and quasi-periodic arrays is challenging. Methods for organizing materials are particularly important at the nanoscale, where the time required for organization processes is practically manageable in experiments, and the resulting structures are of interest for applications spanning catalysis, optics, and plasmonics. While the assembly of isotropic nanoscale objects has been extensively studied and described by empirical design rules, recent synthetic advances have allowed anisotropy to be programmed into macroscopic assemblies made from nanoscale building blocks, opening new opportunities to engineer periodic materials and even quasicrystals with unnatural properties. In this review, we define guidelines for leveraging anisotropy of individual building blocks to direct the organization of nanoscale matter. First, the nature and spatial distribution of local interactions are considered and three design rules that guide particle organization are derived. Subsequently, recent examples from the literature are examined in the context of these design rules. Within the discussion of each rule, we delineate the examples according to the dimensionality (0D-3D) of the building blocks. Finally, we use geometric considerations to propose a general inverse design-based construction strategy that will enable the engineering of colloidal crystals with unprecedented structural control.
Collapse
Affiliation(s)
- Wenjie Zhou
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuanwei Li
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin E Partridge
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Azuma Y, Gaweł S, Pasternak M, Woźnicka O, Pyza E, Heddle JG. Reengineering of an Artificial Protein Cage for Efficient Packaging of Active Enzymes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312286. [PMID: 38738740 DOI: 10.1002/smll.202312286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/01/2024] [Indexed: 05/14/2024]
Abstract
Protein cages that readily encapsulate active enzymes of interest present useful nanotools for delivery and catalysis, wherein those with programmable disassembly characteristics serve as particularly attractive platforms. Here, a general guest packaging system based on an artificial protein cage, TRAP-cage, the disassembly of which can be induced by the addition of reducing agents, is established. In this system, TRAP-cage with SpyCatcher moieties in the lumen is prepared using genetic modification of the protein building block and assembled into a cage structure with either monovalent gold ions or molecular crosslinkers. The resulting protein cage can efficiently capture guest proteins equipped with a SpyTag by simply mixing them in an aqueous solution. This post-assembly loading system, which circumvents the exposure of guests to thiol-reactive crosslinkers, enables the packaging of enzymes possessing a catalytic cysteine or a metal cofactor while retaining their catalytic activity.
Collapse
Affiliation(s)
- Yusuke Azuma
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
| | - Szymon Gaweł
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, Krakow, 30-348, Poland
| | - Monika Pasternak
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, Krakow, 30-348, Poland
| | - Olga Woźnicka
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland
| | - Elżbieta Pyza
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland
| | - Jonathan G Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Krakow, 30-387, Poland
| |
Collapse
|
9
|
Zhang M, Wang X, Xu S, Ge F, Paixao IC, Song J, Yu DJ. MetalTrans: A Biological Language Model-Based Approach for Predicting Disease-Associated Mutations in Protein Metal-Binding Sites. J Chem Inf Model 2024; 64:6216-6229. [PMID: 39092854 DOI: 10.1021/acs.jcim.4c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The critical importance of accurately predicting mutations in protein metal-binding sites for advancing drug discovery and enhancing disease diagnostic processes cannot be overstated. In response to this imperative, MetalTrans emerges as an accurate predictor for disease-associated mutations in protein metal-binding sites. The core innovation of MetalTrans lies in its seamless integration of multifeature splicing with the Transformer framework, a strategy that ensures exhaustive feature extraction. Central to MetalTrans's effectiveness is its deep feature combination strategy, which merges evolutionary-scale modeling amino acid embeddings with ProtTrans embeddings, thus shedding light on the biochemical properties of proteins. Employing the Transformer component, MetalTrans leverages the self-attention mechanism to delve into higher-level representations. Utilizing mutation site information for feature fusion not only enriches the feature set but also sidesteps the common pitfall of overestimation linked to protein sequence-based predictions. This nuanced approach to feature fusion is a key differentiator, enabling MetalTrans to outperform existing methods significantly, as evidenced by comparative analyses. Our evaluations across varied metal binding site data sets (specifically Zn, Ca, Mg, and Mix) underscore MetalTrans's superior performance, which achieved the average AUC values of 0.971, 0.965, 0.980, and 0.945 on multiple 5-fold cross-validation, respectively. Remarkably, against the multichannel convolutional neural network method on a benchmark independent test set, MetalTrans demonstrated unparalleled robustness and superiority, boasting the AUC score of 0.998 on multiple 5-fold cross-validation. Our comprehensive examination of the predicted outcomes further confirms the effectiveness of the model. The source codes, data sets, and prediction results for MetalTrans can be accessed for academic usage at https://github.com/EduardWang/MetalTrans.
Collapse
Affiliation(s)
- Ming Zhang
- School of Computer, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, China
| | - Xiaohua Wang
- School of Computer, Jiangsu University of Science and Technology, 666 Changhui Road, Zhenjiang 212100, China
| | - Shanruo Xu
- Duke Kunshan University, Duke Avenue, Kunshan, Jiangsu 215316, China
| | - Fang Ge
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ian Costa Paixao
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Jiangning Song
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
- Monash Data Futures Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Dong-Jun Yu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China
| |
Collapse
|
10
|
Vijayakumar S, Alberstein RG, Zhang Z, Lu YS, Chan A, Wahl CE, Ha JS, Hunka DE, Boss GR, Sailor MJ, Tezcan FA. Designed 2D protein crystals as dynamic molecular gatekeepers for a solid-state device. Nat Commun 2024; 15:6326. [PMID: 39068153 PMCID: PMC11283500 DOI: 10.1038/s41467-024-50567-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
The sensitivity and responsiveness of living cells to environmental changes are enabled by dynamic protein structures, inspiring efforts to construct artificial supramolecular protein assemblies. However, despite their sophisticated structures, designed protein assemblies have yet to be incorporated into macroscale devices for real-life applications. We report a 2D crystalline protein assembly of C98/E57/E66L-rhamnulose-1-phosphate aldolase (CEERhuA) that selectively blocks or passes molecular species when exposed to a chemical trigger. CEERhuA crystals are engineered via cobalt(II) coordination bonds to undergo a coherent conformational change from a closed state (pore dimensions <1 nm) to an ajar state (pore dimensions ~4 nm) when exposed to an HCN(g) trigger. When layered onto a mesoporous silicon (pSi) photonic crystal optical sensor configured to detect HCN(g), the 2D CEERhuA crystal layer effectively blocks interferents that would otherwise result in a false positive signal. The 2D CEERhuA crystal layer opens in selective response to low-ppm levels of HCN(g), allowing analyte penetration into the pSi sensor layer for detection. These findings illustrate that designed protein assemblies can function as dynamic components of solid-state devices in non-aqueous environments.
Collapse
Affiliation(s)
- Sanahan Vijayakumar
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert G Alberstein
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Zhiyin Zhang
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yi-Sheng Lu
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Adriano Chan
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - James S Ha
- Leidos, 4161 Campus Point Ct, San Diego, CA, 92121, USA
- Battelle, 505 King Ave Columbus, Ohio, OH, 43201, USA
| | | | - Gerry R Boss
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael J Sailor
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - F Akif Tezcan
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
11
|
Szyszka TN, Andreas MP, Lie F, Miller LM, Adamson LSR, Fatehi F, Twarock R, Draper BE, Jarrold MF, Giessen TW, Lau YH. Point mutation in a virus-like capsid drives symmetry reduction to form tetrahedral cages. Proc Natl Acad Sci U S A 2024; 121:e2321260121. [PMID: 38722807 PMCID: PMC11098114 DOI: 10.1073/pnas.2321260121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/25/2024] [Indexed: 05/18/2024] Open
Abstract
Protein capsids are a widespread form of compartmentalization in nature. Icosahedral symmetry is ubiquitous in capsids derived from spherical viruses, as this geometry maximizes the internal volume that can be enclosed within. Despite the strong preference for icosahedral symmetry, we show that simple point mutations in a virus-like capsid can drive the assembly of unique symmetry-reduced structures. Starting with the encapsulin from Myxococcus xanthus, a 180-mer bacterial capsid that adopts the well-studied viral HK97 fold, we use mass photometry and native charge detection mass spectrometry to identify a triple histidine point mutant that forms smaller dimorphic assemblies. Using cryoelectron microscopy, we determine the structures of a precedented 60-mer icosahedral assembly and an unexpected 36-mer tetrahedron that features significant geometric rearrangements around a new interaction surface between capsid protomers. We subsequently find that the tetrahedral assembly can be generated by triple-point mutation to various amino acids and that even a single histidine point mutation is sufficient to form tetrahedra. These findings represent a unique example of tetrahedral geometry when surveying all characterized encapsulins, HK97-like capsids, or indeed any virus-derived capsids reported in the Protein Data Bank, revealing the surprising plasticity of capsid self-assembly that can be accessed through minimal changes in the protein sequence.
Collapse
Affiliation(s)
- Taylor N. Szyszka
- School of Chemistry, The University of Sydney, Camperdown, NSW2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Camperdown, NSW2006, Australia
| | - Michael P. Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI48109
| | - Felicia Lie
- School of Chemistry, The University of Sydney, Camperdown, NSW2006, Australia
| | - Lohra M. Miller
- Chemistry Department, Indiana University, Bloomington, IN47405
| | | | - Farzad Fatehi
- Department of Mathematics, University of York, YorkYO10 5DD, United Kingdom
- York Cross-Disciplinary Centre for Systems Analysis, University of York, YorkYO10 5DD, United Kingdom
| | - Reidun Twarock
- Department of Mathematics, University of York, YorkYO10 5DD, United Kingdom
- York Cross-Disciplinary Centre for Systems Analysis, University of York, YorkYO10 5DD, United Kingdom
- Department of Biology, University of York, YorkYO10 5DD, United Kingdom
| | | | | | - Tobias W. Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI48109
| | - Yu Heng Lau
- School of Chemistry, The University of Sydney, Camperdown, NSW2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Camperdown, NSW2006, Australia
| |
Collapse
|
12
|
Jeon H, Han AR, Oh S, Park JG, Namkoong M, Bang KM, Kim HM, Kim NK, Hwang KY, Hur K, Lee BJ, Heo J, Kim S, Song HK, Cho H, Lee IG. Polymorphic Self-Assembly with Procedural Flexibility for Monodisperse Quaternary Protein Structures of DegQ Enzymes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308837. [PMID: 38351715 DOI: 10.1002/adma.202308837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/08/2024] [Indexed: 02/29/2024]
Abstract
As large molecular tertiary structures, some proteins can act as small robots that find, bind, and chaperone target protein clients, showing the potential to serve as smart building blocks in self-assembly fields. Instead of using such intrinsic functions, most self-assembly methodologies for proteins aim for de novo-designed structures with accurate geometric assemblies, which can limit procedural flexibility. Here, a strategy enabling polymorphic clustering of quaternary proteins, exhibiting simplicity and flexibility of self-assembling paths for proteins in forming monodisperse quaternary cage particles is presented. It is proposed that the enzyme protomer DegQ, previously solved at low resolution, may potentially be usable as a threefold symmetric building block, which can form polyhedral cages incorporated by the chaperone action of DegQ in the presence of protein clients. To obtain highly monodisperse cage particles, soft, and hence, less resistive client proteins, which can program the inherent chaperone activity of DegQ to efficient formations of polymorphic cages, depending on the size of clients are utilized. By reconstructing the atomic resolution cryogenic electron microscopy DegQ structures using obtained 12- and 24-meric clusters, the polymorphic clustering of DegQ enzymes is validated in terms of soft and rigid domains, which will provide effective routes for protein self-assemblies with procedural flexibility.
Collapse
Affiliation(s)
- Hanul Jeon
- Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Ah-Reum Han
- Center for Biomolecular and Cellular Structure, Life Science Cluster, Institute for Basic Science (IBS), 55, Expo-ro, Daejeon, 34126, Republic of Korea
| | - Sangmin Oh
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jin-Gyeong Park
- Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Myeong Namkoong
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Kyeong-Mi Bang
- Advanced Analysis Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Life Science, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Life Science Cluster, Institute for Basic Science (IBS), 55, Expo-ro, Daejeon, 34126, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Daejeon, 34126, Republic of Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kahyun Hur
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Science, Seoul National University, 599, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- College of Pharmacy, Ajou University, 206, Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea
| | - Jeongyun Heo
- Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Sehoon Kim
- Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyun Kyu Song
- Department of Life Science, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyesung Cho
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
13
|
Hori M, Steinauer A, Tetter S, Hälg J, Manz EM, Hilvert D. Stimulus-responsive assembly of nonviral nucleocapsids. Nat Commun 2024; 15:3576. [PMID: 38678040 PMCID: PMC11055949 DOI: 10.1038/s41467-024-47808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Controlled assembly of a protein shell around a viral genome is a key step in the life cycle of many viruses. Here we report a strategy for regulating the co-assembly of nonviral proteins and nucleic acids into highly ordered nucleocapsids in vitro. By fusing maltose binding protein to the subunits of NC-4, an engineered protein cage that encapsulates its own encoding mRNA, we successfully blocked spontaneous capsid assembly, allowing isolation of the individual monomers in soluble form. To initiate RNA-templated nucleocapsid formation, the steric block can be simply removed by selective proteolysis. Analyses by transmission and cryo-electron microscopy confirmed that the resulting assemblies are structurally identical to their RNA-containing counterparts produced in vivo. Enzymatically triggered cage formation broadens the range of RNA molecules that can be encapsulated by NC-4, provides unique opportunities to study the co-assembly of capsid and cargo, and could be useful for studying other nonviral and viral assemblies.
Collapse
Affiliation(s)
- Mao Hori
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda-ku, Tokyo, Japan
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LIBN, Lausanne, Switzerland
| | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Jamiro Hälg
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Eva-Maria Manz
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
14
|
Gladkov N, Scott EA, Meador K, Lee EJ, Laganowsky AD, Yeates TO, Castells‐Graells R. Design of a symmetry-broken tetrahedral protein cage by a method of internal steric occlusion. Protein Sci 2024; 33:e4973. [PMID: 38533546 PMCID: PMC10966355 DOI: 10.1002/pro.4973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Methods in protein design have made it possible to create large and complex, self-assembling protein cages with diverse applications. These have largely been based on highly symmetric forms exemplified by the Platonic solids. Prospective applications of protein cages would be expanded by strategies for breaking the designed symmetry, for example, so that only one or a few (instead of many) copies of an exterior domain or motif might be displayed on their surfaces. Here we demonstrate a straightforward design approach for creating symmetry-broken protein cages able to display singular copies of outward-facing domains. We modify the subunit of an otherwise symmetric protein cage through fusion to a small inward-facing domain, only one copy of which can be accommodated in the cage interior. Using biochemical methods and native mass spectrometry, we show that co-expression of the original subunit and the modified subunit, which is further fused to an outward-facing anti-GFP DARPin domain, leads to self-assembly of a protein cage presenting just one copy of the DARPin protein on its exterior. This strategy of designed occlusion provides a facile route for creating new types of protein cages with unique properties.
Collapse
Affiliation(s)
- Nika Gladkov
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Elena A. Scott
- Department of ChemistryTexas A&M UniversityCollege StationTexasUSA
| | - Kyle Meador
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Eric J. Lee
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
| | | | - Todd O. Yeates
- Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesCaliforniaUSA
- Molecular Biology InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
- UCLA‐DOE Institute for Genomics and ProteomicsLos AngelesCaliforniaUSA
| | | |
Collapse
|
15
|
Son S, Song WJ. Programming interchangeable and reversible heterooligomeric protein self-assembly using a bifunctional ligand. Chem Sci 2024; 15:2975-2983. [PMID: 38404387 PMCID: PMC10882485 DOI: 10.1039/d3sc05448a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024] Open
Abstract
Protein design for self-assembly allows us to explore the emergence of protein-protein interfaces through various chemical interactions. Heterooligomers, unlike homooligomers, inherently offer a comprehensive range of structural and functional variations. Besides, the macromolecular repertoire and their applications would significantly expand if protein components could be easily interchangeable. This study demonstrates that a rationally designed bifunctional linker containing an enzyme inhibitor and maleimide can guide the formation of diverse protein heterooligomers in an easily applicable and exchangeable manner without extensive sequence optimizations. As proof of concept, we selected four structurally and functionally unrelated proteins, carbonic anhydrase, aldolase, acetyltransferase, and encapsulin, as building block proteins. The combinations of two proteins with the bifunctional linker yielded four two-component heterooligomers with discrete sizes, shapes, and enzyme activities. Besides, the overall size and formation kinetics of the heterooligomers alter upon adding metal chelators, acidic buffer components, and reducing agents, showing the reversibility and tunability in the protein self-assembly. Given that the functional groups of both the linker and protein components are readily interchangeable, our work broadens the scope of protein-assembled architectures and their potential applications as functional biomaterials.
Collapse
Affiliation(s)
- Soyeun Son
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Republic of Korea
| | - Woon Ju Song
- Department of Chemistry, College of Natural Sciences, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
16
|
Lu Q, Xu Y, Poppleton E, Zhou K, Sulc P, Stephanopoulos N, Ke Y. DNA-Nanostructure-Guided Assembly of Proteins into Programmable Shapes. NANO LETTERS 2024; 24:1703-1709. [PMID: 38278134 PMCID: PMC10853956 DOI: 10.1021/acs.nanolett.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
The development of methods to synthesize artificial protein complexes with precisely controlled configurations will enable diverse biological and medical applications. Using DNA to link proteins provides programmability that can be difficult to achieve with other methods. Here, we use DNA origami as an "assembler" to guide the linking of protein-DNA conjugates using a series of oligonucleotide hybridization and displacement operations. We constructed several isomeric protein nanostructures, including a dimer, two types of trimer structures, and three types of tetramer assemblies, on a DNA origami platform by using a C3-symmetric building block composed of a protein trimer modified with DNA handles. Our approach expands the scope for the precise assembly of protein-based nanostructures and will enable the formulation of functional protein complexes with stoichiometric and geometric control.
Collapse
Affiliation(s)
- Qinyi Lu
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yang Xu
- Biodesign
Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Erik Poppleton
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Kun Zhou
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Petr Sulc
- Biodesign
Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Nicholas Stephanopoulos
- Biodesign
Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85287, United States
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Yonggang Ke
- Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
17
|
Szyszka TN, Andreas MP, Lie F, Miller LM, Adamson LSR, Fatehi F, Twarock R, Draper BE, Jarrold MF, Giessen TW, Lau YH. Point mutation in a virus-like capsid drives symmetry reduction to form tetrahedral cages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.579038. [PMID: 38370832 PMCID: PMC10871247 DOI: 10.1101/2024.02.05.579038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Protein capsids are a widespread form of compartmentalisation in nature. Icosahedral symmetry is ubiquitous in capsids derived from spherical viruses, as this geometry maximises the internal volume that can be enclosed within. Despite the strong preference for icosahedral symmetry, we show that simple point mutations in a virus-like capsid can drive the assembly of novel symmetry-reduced structures. Starting with the encapsulin from Myxococcus xanthus, a 180-mer bacterial capsid that adopts the well-studied viral HK97 fold, we use mass photometry and native charge detection mass spectrometry to identify a triple histidine point mutant that forms smaller dimorphic assemblies. Using cryo-EM, we determine the structures of a precedented 60-mer icosahedral assembly and an unprecedented 36-mer tetrahedron that features significant geometric rearrangements around a novel interaction surface between capsid protomers. We subsequently find that the tetrahedral assembly can be generated by triple point mutation to various amino acids, and that even a single histidine point mutation is sufficient to form tetrahedra. These findings represent the first example of tetrahedral geometry across all characterised encapsulins, HK97-like capsids, or indeed any virus-derived capsids reported in the Protein Data Bank, revealing the surprising plasticity of capsid self-assembly that can be accessed through minimal changes in protein sequence.
Collapse
Affiliation(s)
- Taylor N Szyszka
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Michael P Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Felicia Lie
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Lohra M Miller
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Lachlan S R Adamson
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Farzad Fatehi
- Department of Mathematics, University of York, York, UK
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK
| | - Reidun Twarock
- Department of Mathematics, University of York, York, UK
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Benjamin E Draper
- Megadalton Solutions Inc., 3750 E Bluebird Ln, Bloomington, IN 47401, USA
| | - Martin F Jarrold
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu Heng Lau
- School of Chemistry, The University of Sydney, Camperdown, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
18
|
Cao B, Yang H, Yu Z. A Novel Strategy for the Characterization of Self-Assembled Structures Using the Static Solid-State Phosphorus Nuclear Magnetic Resonance Technique. J Phys Chem Lett 2024; 15:262-266. [PMID: 38165310 DOI: 10.1021/acs.jpclett.3c03281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Structural characterization of assemblies in solutions is essential for understanding the relationship between the structure and material properties. In this study, we introduce a novel approach to investigate amphiphilic self-assemblies in solutions using the phospholipid molecule 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (Lyso PC) as a 31P NMR probe. The high natural abundance and gyromagnetic ratio of 31P make it one of the most sensitive nuclei in the low-frequency region, enabling efficient detection even in dilute solutions. Lyso PC can readily co-assemble with amphiphilic molecules and ions in aqueous solutions, forming various structures, such as hexagonal, lamellar, and micellar assemblies. The characteristic line shapes of these assemblies reflect the chemical environment around the probe and provide insights into the different phase states of the assemblies. This strategy offers a simple, cost-effective, and static method for obtaining structural information about various assemblies. Our work not only introduces a sensitive probe for characterizing assemblies in a solvent environment but also inspires new ideas for the development of similar spectroscopic probes.
Collapse
Affiliation(s)
- Bobo Cao
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Haijun Yang
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhiwu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
19
|
Varma VA, Jaglan S, Khan MY, Babu SB. Breaking the size constraint for nano cages using annular patchy particles. Phys Chem Chem Phys 2024; 26:1385-1395. [PMID: 38112010 DOI: 10.1039/d3cp03681b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Engineering structures like nanocages, shells, and containers, by self-assembly of colloids is a challenging problem. One of the main challenges is to define the shape of the individual subunits to control the radius of the closed shell structures. In this work, we have proposed a simple model for the subunit, which comprises a spheroidal or spherical hardcore decorated with an annular patch. The self-assembly of these building blocks leads to the formation of monodispersed spherical cages (close shells) or containers (curved clusters). For a spheroid with a given bonding range, the curvature of the shell is analytically related to only the patch angle of the building blocks and independent of the shape of the subunits. This model with only one control parameter can be used to engineer cages with the desired radius, which also have been verified using thermodynamic calculations. In the phase diagram of the system, 4 phases are identified which includes gas, closed shell, partially closed (containers) shell and percolated structures. When the diameters of the spherical cages formed are small, we observe an icosahedral symmetry similar to virus capsids. We also observed that the kinetics of the cage formation is very similar to the nucleation and growth kinetics of viruses and is the key factor in determining the yield of closed shells.
Collapse
Affiliation(s)
- Vikki Anand Varma
- Out of Equilibrium Group, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Simmie Jaglan
- Out of Equilibrium Group, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Mohd Yasir Khan
- Out of Equilibrium Group, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Sujin B Babu
- Out of Equilibrium Group, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
20
|
Wang Q, Wang Y, Jian X, Wang N, Li C, Liu H. Site-specific crosslinking and assembly of tetrameric β-glucuronidase improve glycyrrhizin hydrolysis. Biotechnol Bioeng 2023; 120:3570-3584. [PMID: 37707439 DOI: 10.1002/bit.28556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
In this study, eight nonconserved residues with exposed surfaces and flexible conformations of the homotetrameric PGUS (β-glucuronidase from Aspergillus oryzae Li-3) were identified. Single-point mutation into cysteine enabled the thiol-maleimide reaction and site-specific protein assembly using a two-arm polyethylene glycol (PEG)-maleimide crosslinker (Mal2 ). The Mal2 (1k) (with 1 kDa PEG spacer)-crosslinked PGUS assemblies showed low crosslinking efficiency and unimproved thermostability except for G194C-Mal2 (1k). To improve the crosslinking efficiency, a lengthened crosslinker Mal2 (2k) (with 2 kDa PEG spacer) was used to produce PGUS assembly and a highly improved thermostability was achieved with a half-life of 47.2-169.2 min at 70°C, which is 1.04-3.74 times that of wild type PGUS. It is found that the thermostability of PGUS assembly was closely associated with the formation of inter-tetramer assembly and intratetramer crosslinking, rather than the PEGylation of the enzyme. Therefore, the four-arm PEG-maleimide crosslinker Mal4 (2k) (with 2 kDa PEG spacer) was employed to simultaneously increase the inter-tetramer assembly and intratetramer crosslinking, and the resulting PGUS assemblies showed further improved thermostabilities compared with Mal2 (2k)-crosslinked assemblies. Finally, the application of PGUS assemblies with significantly improved thermostability to the bioconversion of GL proved that the PGUS assembly is a strong catalyst for glycyrrhizin (GL) hydrolysis in industrial applications.
Collapse
Affiliation(s)
- Qibin Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
| | - Yingying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
| | - Xing Jian
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
| | - Ning Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
- Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, P.R. China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, P.R. China
| | - Hu Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P.R. China
| |
Collapse
|
21
|
Gladkov N, Scott EA, Meador K, Lee EJ, Laganowsky AD, Yeates TO, Castells-Graells R. Design of a symmetry-broken tetrahedral protein cage by a method of internal steric occlusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566319. [PMID: 37986890 PMCID: PMC10659388 DOI: 10.1101/2023.11.08.566319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Methods in protein design have made it possible to create large and complex, self-assembling protein cages with diverse applications. These have largely been based on highly symmetric forms exemplified by the Platonic solids. Prospective applications of protein cages would be expanded by strategies for breaking the designed symmetry, e.g., so that only one or a few (instead of many) copies of an exterior domain or motif might be displayed on their surfaces. Here we demonstrate a straightforward design approach for creating symmetry-broken protein cages able to display singular copies of outward-facing domains. We modify the subunit of an otherwise symmetric protein cage through fusion to a small inward-facing domain, only one copy of which can be accommodated in the cage interior. Using biochemical methods and native mass spectrometry, we show that co-expression of the original subunit and the modified subunit, which is further fused to an outward-facing anti-GFP DARPin domain, leads to self-assembly of a protein cage presenting just one copy of the DARPin protein on its exterior. This strategy of designed occlusion provides a facile route for creating new types of protein cages with unique properties.
Collapse
Affiliation(s)
- Nika Gladkov
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
| | - Elena A. Scott
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States of America
| | - Kyle Meador
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
| | - Eric J. Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
| | - Arthur D. Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX 77843, United States of America
| | - Todd O. Yeates
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, United States of America
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, United States of America
| | - Roger Castells-Graells
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, United States of America
| |
Collapse
|
22
|
Seitz I, Saarinen S, Kumpula EP, McNeale D, Anaya-Plaza E, Lampinen V, Hytönen VP, Sainsbury F, Cornelissen JJLM, Linko V, Huiskonen JT, Kostiainen MA. DNA-origami-directed virus capsid polymorphism. NATURE NANOTECHNOLOGY 2023; 18:1205-1212. [PMID: 37460794 PMCID: PMC10575778 DOI: 10.1038/s41565-023-01443-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/06/2023] [Indexed: 10/15/2023]
Abstract
Viral capsids can adopt various geometries, most iconically characterized by icosahedral or helical symmetries. Importantly, precise control over the size and shape of virus capsids would have advantages in the development of new vaccines and delivery systems. However, current tools to direct the assembly process in a programmable manner are exceedingly elusive. Here we introduce a modular approach by demonstrating DNA-origami-directed polymorphism of single-protein subunit capsids. We achieve control over the capsid shape, size and topology by employing user-defined DNA origami nanostructures as binding and assembly platforms, which are efficiently encapsulated within the capsid. Furthermore, the obtained viral capsid coatings can shield the encapsulated DNA origami from degradation. Our approach is, moreover, not limited to a single type of capsomers and can also be applied to RNA-DNA origami structures to pave way for next-generation cargo protection and targeting strategies.
Collapse
Affiliation(s)
- Iris Seitz
- Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - Sharon Saarinen
- Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - Esa-Pekka Kumpula
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Donna McNeale
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | | | - Vili Lampinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Jeroen J L M Cornelissen
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, Enschede, Netherlands
| | - Veikko Linko
- Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
- LIBER Center of Excellence, Aalto University, Aalto, Finland
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Mauri A Kostiainen
- Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland.
- LIBER Center of Excellence, Aalto University, Aalto, Finland.
| |
Collapse
|
23
|
Han K, Zhang Z, Tezcan FA. Spatially Patterned, Porous Protein Crystals as Multifunctional Materials. J Am Chem Soc 2023; 145:19932-19944. [PMID: 37642457 DOI: 10.1021/jacs.3c06348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
While the primary use of protein crystals has historically been in crystallographic structure determination, they have recently emerged as promising materials with many advantageous properties such as high porosity, biocompatibility, stability, structural and functional versatility, and genetic/chemical tailorability. Here, we report that the utility of protein crystals as functional materials can be further augmented through their spatial patterning and control of their morphologies. To this end, we took advantage of the chemically and kinetically controllable nature of ferritin self-assembly and constructed core-shell crystals with chemically distinct domains, tunable structural patterns, and morphologies. The spatial organization within ferritin crystals enabled the generation of patterned, multi-enzyme frameworks with cooperative catalytic behavior. We further exploited the differential growth kinetics of ferritin crystal facets to assemble Janus-type architectures with an anisotropic arrangement of chemically distinct domains. These examples represent a step toward using protein crystals as reaction vessels for complex multi-step reactions and broadening their utility as functional, solid-state materials. Our results demonstrate that morphology control and spatial patterning, which are key concepts in materials science and nanotechnology, can also be applied for engineering protein crystals.
Collapse
Affiliation(s)
- Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - F Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
24
|
Nie J, Sun Y, Cheng X, Wen G, Liu X, Cheng M, Zhao J, Li W. Plant Protein-Peptide Supramolecular Polymers with Reliable Tissue Adhesion for Surgical Sealing. Adv Healthc Mater 2023; 12:e2203301. [PMID: 36960795 DOI: 10.1002/adhm.202203301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/08/2023] [Indexed: 03/25/2023]
Abstract
The fusion of protein science and peptide science opens up new frontiers in creating innovative biomaterials. Herein, a new kind of adhesive soft materials based on a natural occurring plant protein and short peptides via a simple co-assembly route are explored. The hydrophobic zein is supercharged by sodium dodecyl sulfate to form a stable protein colloid, which is intended to interact with charge-complementary short peptides via multivalent ionic and hydrogen bonds, forming adhesive materials at macroscopic level. The adhesion performance of the resulting soft materials can be fine-manipulated by customizing the peptide sequences. The adhesive materials can resist over 78 cmH2 O of bursting pressure, which is high enough to meet the sealing requirements of dural defect. Dural sealing and repairing capability of the protein-peptide biomaterials are further identified in rat and rabbit models. In vitro and in vivo assays demonstrate that the protein-peptide adhesive shows excellent anti-swelling property, low cell cytotoxicity, hemocompatibility, and inflammation response. In particular, the protein-peptide supramolecular biomaterials can in vivo dissociate and degrade within two weeks, which can well match with the time-window of the dural repairing. This work underscores the versatility and availability of the supramolecular toolbox in the easy-to-implement fabrication of protein-peptide biomaterials.
Collapse
Affiliation(s)
- Junlian Nie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Yingchuan Sun
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130014, P. R. China
| | - Xueliang Cheng
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130014, P. R. China
| | - Guang Wen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Xiaohuan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| | - Meng Cheng
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130014, P. R. China
| | - Jianwu Zhao
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130014, P. R. China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, P. R. China
| |
Collapse
|
25
|
Mallik BB, Stanislaw J, Alawathurage TM, Khmelinskaia A. De Novo Design of Polyhedral Protein Assemblies: Before and After the AI Revolution. Chembiochem 2023; 24:e202300117. [PMID: 37014094 DOI: 10.1002/cbic.202300117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
Self-assembling polyhedral protein biomaterials have gained attention as engineering targets owing to their naturally evolved sophisticated functions, ranging from protecting macromolecules from the environment to spatially controlling biochemical reactions. Precise computational design of de novo protein polyhedra is possible through two main types of approaches: methods from first principles, using physical and geometrical rules, and more recent data-driven methods based on artificial intelligence (AI), including deep learning (DL). Here, we retrospect first principle- and AI-based approaches for designing finite polyhedral protein assemblies, as well as advances in the structure prediction of such assemblies. We further highlight the possible applications of these materials and explore how the presented approaches can be combined to overcome current challenges and to advance the design of functional protein-based biomaterials.
Collapse
Affiliation(s)
- Bhoomika Basu Mallik
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Jenna Stanislaw
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Tharindu Madhusankha Alawathurage
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
| | - Alena Khmelinskaia
- Transdisciplinary Research Area, "Building Blocks of Matter and Fundamental Interactions (TRA Matter)", University of Bonn, 53121, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, 53115, Bonn, Germany
- Current address: Department of Chemistry, Ludwig Maximillian University, 80539, Munich, Germany
| |
Collapse
|
26
|
Sheffler W, Yang EC, Dowling Q, Hsia Y, Fries CN, Stanislaw J, Langowski MD, Brandys M, Li Z, Skotheim R, Borst AJ, Khmelinskaia A, King NP, Baker D. Fast and versatile sequence-independent protein docking for nanomaterials design using RPXDock. PLoS Comput Biol 2023; 19:e1010680. [PMID: 37216343 PMCID: PMC10237659 DOI: 10.1371/journal.pcbi.1010680] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/02/2023] [Accepted: 04/09/2023] [Indexed: 05/24/2023] Open
Abstract
Computationally designed multi-subunit assemblies have shown considerable promise for a variety of applications, including a new generation of potent vaccines. One of the major routes to such materials is rigid body sequence-independent docking of cyclic oligomers into architectures with point group or lattice symmetries. Current methods for docking and designing such assemblies are tailored to specific classes of symmetry and are difficult to modify for novel applications. Here we describe RPXDock, a fast, flexible, and modular software package for sequence-independent rigid-body protein docking across a wide range of symmetric architectures that is easily customizable for further development. RPXDock uses an efficient hierarchical search and a residue-pair transform (RPX) scoring method to rapidly search through multidimensional docking space. We describe the structure of the software, provide practical guidelines for its use, and describe the available functionalities including a variety of score functions and filtering tools that can be used to guide and refine docking results towards desired configurations.
Collapse
Affiliation(s)
- William Sheffler
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Erin C. Yang
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Graduate Program in Biological Physics, Structure & Design, University of Washington, Seattle, Washington, United States of America
| | - Quinton Dowling
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Yang Hsia
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Chelsea N. Fries
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Jenna Stanislaw
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Transdisciplinary Research Area “Building Blocks of Matter and Fundamental Interactions (TRA Matter)”, University of Bonn, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Mark D. Langowski
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, United States of America
| | - Marisa Brandys
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Zhe Li
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Rebecca Skotheim
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
| | - Andrew J. Borst
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Alena Khmelinskaia
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Transdisciplinary Research Area “Building Blocks of Matter and Fundamental Interactions (TRA Matter)”, University of Bonn, Bonn, Germany
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
27
|
Tang Q, Shi L, Yang B, Liu W, Li B, Jin Y. A biomineralized bi-functional hybrid nanoflower to effectively combat bacteria via a glucose-powered cascade catalytic reaction. J Mater Chem B 2023; 11:3413-3421. [PMID: 36994587 DOI: 10.1039/d2tb02704f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The bacterial resistance due to the abuse of conventional antibiotics is regarded as a major problem for bacterial-induced infections and chronic wound healing. There is an urgent need to explore alternative antimicrobial strategies and functional materials with excellent antibacterial efficacy. Herein, guanosine monophosphate (GMP) and glucose oxidase (GOD) were coordinated with copper ions to obtain a bi-functional hybrid nanoflower (Cu-GMP/GODNF) as a cascade catalyst for promoting antibacterial efficacy. Besides the efficient conversion of glucose to hydrogen peroxide, the produced gluconic acid by loading GOD can supply a compatible catalytic environment to substantially improve the peroxidase activity for generating more toxic reactive oxygen species (ROS). So, the glucose-powered cascade catalytic reaction effectively killed bacteria. Moreover, H2O2 self-supplied by glucose can reduce harmful side effects of exogenous H2O2. Meanwhile, the adhesion between the Cu-GMP/GODNF and the bacterial membrane can enhance the antibacterial efficacy. Therefore, the achieved bi-functional hybrid nanoflower exhibited high efficiency and biocompatibility for killing bacteria in diabetes-related infections.
Collapse
Affiliation(s)
- Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Bing Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
28
|
Oohora K. Supramolecular assembling systems of hemoproteins using chemical modifications. J INCL PHENOM MACRO 2023. [DOI: 10.1007/s10847-023-01181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
|
29
|
Ji J, Hossain MS, Krueger EN, Zhang Z, Nangia S, Carpentier B, Martel M, Nangia S, Mozhdehi D. Lipidation Alters the Structure and Hydration of Myristoylated Intrinsically Disordered Proteins. Biomacromolecules 2023; 24:1244-1257. [PMID: 36757021 PMCID: PMC10017028 DOI: 10.1021/acs.biomac.2c01309] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/25/2023] [Indexed: 02/10/2023]
Abstract
Lipidated proteins are an emerging class of hybrid biomaterials that can integrate the functional capabilities of proteins into precisely engineered nano-biomaterials with potential applications in biotechnology, nanoscience, and biomedical engineering. For instance, fatty-acid-modified elastin-like polypeptides (FAMEs) combine the hierarchical assembly of lipids with the thermoresponsive character of elastin-like polypeptides (ELPs) to form nanocarriers with emergent temperature-dependent structural (shape or size) characteristics. Here, we report the biophysical underpinnings of thermoresponsive behavior of FAMEs using computational nanoscopy, spectroscopy, scattering, and microscopy. This integrated approach revealed that temperature and molecular syntax alter the structure, contact, and hydration of lipid, lipidation site, and protein, aligning with the changes in the nanomorphology of FAMEs. These findings enable a better understanding of the biophysical consequence of lipidation in biology and the rational design of the biomaterials and therapeutics that rival the exquisite hierarchy and capabilities of biological systems.
Collapse
Affiliation(s)
- Jingjing Ji
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Md Shahadat Hossain
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Emily N. Krueger
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Zhe Zhang
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Shivangi Nangia
- Department
of Chemistry, University of Hartford, West Hartford, Connecticut 06117, United States
| | - Britnie Carpentier
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Mae Martel
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Shikha Nangia
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department
of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
30
|
Ohara N, Kawakami N, Arai R, Adachi N, Moriya T, Kawasaki M, Miyamoto K. Reversible Assembly of an Artificial Protein Nanocage Using Alkaline Earth Metal Ions. J Am Chem Soc 2023; 145:216-223. [PMID: 36541447 DOI: 10.1021/jacs.2c09537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein nanocages are of increasing interest for use as drug capsules, but the encapsulation and release of drug molecules at appropriate times require the reversible association and dissociation of the nanocages. One promising approach to addressing this challenge is the design of metal-dependent associating proteins. Such designed proteins typically have Cys or His residues at the protein surface for connecting the associating proteins through metal-ion coordination. However, Cys and His residues favor interactions with soft and borderline metal ions, such as Au+ and Zn2+, classified by the hard and soft acids and bases concept, restricting the types of metal ions available to drive association. Here, we show the alkaline earth (AE) metal-dependent association of the recently designed artificial protein nanocage TIP60, which is composed of 60-mer fusion proteins. The introduction of a Glu (hard base) mutation to the fusion protein (K67E mutant) prevented the formation of the 60-mer but formed the expected cage structure in the presence of Ca, Sr, or Ba ions (hard acids). Cryogenic electron microscopy (cryo-EM) analysis indicated a Ba ion at the interface of the subunits. Furthermore, we demonstrated the encapsulation and release of single-stranded DNA molecules using this system. Our results provide insights into the design of AE metal-dependent association and dissociation mechanisms for proteins.
Collapse
Affiliation(s)
- Naoya Ohara
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Norifumi Kawakami
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Ryoichi Arai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Ueda, Nagano 386-8567, Japan.,Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Naruhiko Adachi
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba 305-0801, Japan
| | - Toshio Moriya
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba 305-0801, Japan
| | - Masato Kawasaki
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba 305-0801, Japan
| | - Kenji Miyamoto
- Department of Bioscience and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
31
|
Oohora K, Hayashi T. Preparation of Cage-Like Micellar Assemblies of Engineered Hemoproteins. Methods Mol Biol 2023; 2671:95-108. [PMID: 37308640 DOI: 10.1007/978-1-0716-3222-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Natural protein assemblies have encouraged scientists to create large supramolecular systems consisting of various protein motifs. In the case of hemoproteins containing heme as a cofactor, several approaches have been reported to form artificial assemblies with various structures such as fibers, sheets, networks, and cages. This chapter describes the design, preparation, and characterization of cage-like micellar assemblies for chemically modified hemoproteins including hydrophilic protein units attached to hydrophobic molecules. Detailed procedures are described for constructing specific systems using cytochrome b562 and hexameric tyrosine-coordinated heme protein as hemoprotein units with heme-azobenzene conjugate and poly-N-isopropylacrylamide as attached molecules.
Collapse
Affiliation(s)
- Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Japan.
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Japan.
| |
Collapse
|
32
|
Liu Y, Chen X, Yin S, Chang X, Lv C, Zang J, Leng X, Zhang T, Zhao G. Directed Self-Assembly of Dimeric Building Blocks into Networklike Protein Origami to Construct Hydrogels. ACS NANO 2022; 16:19472-19481. [PMID: 36315654 DOI: 10.1021/acsnano.2c09391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Engineering proteins to construct self-assemblies is of crucial significance not only for understanding the sophisticated living systems but also for fabricating advanced materials with unexplored functions. However, due to the inherent chemical heterogeneity and structural complexity of the protein surface, designing complex protein assemblies in an anisotropic fashion remains challenging. Here, we describe a self-assembly approach to fabricating protein origami with a networklike structure by designing dual noncovalent interactions on the different positions of a single protein building block. With dimeric proteins as building blocks, 1D protein filaments were constructed by the designed metal coordination at key protein interfaces. Subsequently, the network superstructures were created by the cross-linking of the 1D protein filaments at branch point linkages through the second designed π-π stacking interactions. Notably, upon increasing the protein concentration, the formed protein networks convert into hydrogels with reversible, injectable, and self-healing properties, which have the ability to promote bone regeneration. This strategy could be used to fabricate other protein-based materials with unexplored functions.
Collapse
Affiliation(s)
- Yu Liu
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Xuemin Chen
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Shuhua Yin
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Xiaoxi Chang
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Xiaojing Leng
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing 100083, People's Republic of China
| |
Collapse
|
33
|
Winegar PH, Figg CA, Teplensky MH, Ramani N, Mirkin CA. Modular Nucleic Acid Scaffolds for Synthesizing Monodisperse and Sequence-Encoded Antibody Oligomers. Chem 2022; 8:3018-3030. [PMID: 36405374 PMCID: PMC9674055 DOI: 10.1016/j.chempr.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthesizing protein oligomers that contain exact numbers of multiple different proteins in defined architectures is challenging. DNA-DNA interactions can be used to program protein assembly into oligomers; however, existing methods require changes to DNA design to achieve different numbers and oligomeric sequences of proteins. Herein, we develop a modular DNA scaffold that uses only six synthetic oligonucleotides to organize proteins into defined oligomers. As a proof-of-concept, model proteins (antibodies) are oligomerized into dimers and trimers, where antibody function is retained. Illustrating the modularity of this technique, dimer and trimer building blocks are then assembled into pentamers containing three different antibodies in an exact stoichiometry and oligomeric sequence. In sum, this report describes a generalizable method for organizing proteins into monodisperse, sequence-encoded oligomers using DNA. This advance will enable studies into how oligomeric protein sequences affect material properties in areas spanning pharmaceutical development, cascade catalysis, synthetic photosynthesis, and membrane transport.
Collapse
Affiliation(s)
- Peter H. Winegar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- These authors contributed equally
| | - C. Adrian Figg
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- These authors contributed equally
| | - Michelle H. Teplensky
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Namrata Ramani
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Lead contact
| |
Collapse
|
34
|
Lee J, Yang M, Song WJ. The expanded landscape of metalloproteins by genetic incorporation of noncanonical amino acids. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jaehee Lee
- Department of Chemistry Seoul National University Seoul South Korea
| | - Minwoo Yang
- Department of Chemistry Seoul National University Seoul South Korea
| | - Woon Ju Song
- Department of Chemistry Seoul National University Seoul South Korea
| |
Collapse
|
35
|
Hoffnagle AM, Eng VH, Markel U, Tezcan F. Computationally Guided Redesign of a Heme-free Cytochrome with Native-like Structure and Stability. Biochemistry 2022; 61:2063-2072. [PMID: 36106943 PMCID: PMC9949987 DOI: 10.1021/acs.biochem.2c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metals can play key roles in stabilizing protein structures, but ensuring their proper incorporation is a challenge when a metalloprotein is overexpressed in a non-native cellular environment. Here, we have used computational protein design tools to redesign cytochrome b562 (cyt b562), which relies on the binding of its heme cofactor to achieve its proper fold, into a stable, heme-free protein. The resulting protein, ApoCyt, features only four mutations and no metal-ligand or covalent bonds, yet displays improved stability over cyt b562. Mutagenesis studies and X-ray crystal structures reveal that the increase in stability is due to the computationally prescribed mutations, which stabilize the protein fold through a combination of hydrophobic packing interactions, hydrogen bonds, and cation-π interactions. Upon installation of the relevant mutations, ApoCyt is capable of assembling into previously reported, cytochrome-based trimeric and tetrameric assemblies, demonstrating that ApoCyt retains the structure and assembly properties of cyt b562. The successful design of ApoCyt therefore enables further functional diversification of cytochrome-based assemblies and demonstrates that structural metal cofactors can be replaced by a small number of well-designed, non-covalent interactions.
Collapse
Affiliation(s)
| | | | | | - F.Akif Tezcan
- Corresponding Author: F. Akif Tezcan, Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States.
| |
Collapse
|
36
|
Fang H, Tyukodi B, Rogers WB, Hagan MF. Polymorphic self-assembly of helical tubules is kinetically controlled. SOFT MATTER 2022; 18:6716-6728. [PMID: 36039801 PMCID: PMC9472595 DOI: 10.1039/d2sm00679k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
In contrast to most self-assembling synthetic materials, which undergo unbounded growth, many biological self-assembly processes are self-limited. That is, the assembled structures have one or more finite dimensions that are much larger than the size scale of the individual monomers. In many such cases, the finite dimension is selected by a preferred curvature of the monomers, which leads to self-closure of the assembly. In this article, we study an example class of self-closing assemblies: cylindrical tubules that assemble from triangular monomers. By combining kinetic Monte Carlo simulations, free energy calculations, and simple theoretical models, we show that a range of programmable size scales can be targeted by controlling the intricate balance between the preferred curvature of the monomers and their interaction strengths. However, their assembly is kinetically controlled-the tubule morphology is essentially fixed shortly after closure, resulting in a distribution of tubule widths that is significantly broader than the equilibrium distribution. We develop a simple kinetic model based on this observation and the underlying free-energy landscape of assembling tubules that quantitatively describes the distributions. Our results are consistent with recent experimental observations of tubule assembly from triangular DNA origami monomers. The modeling framework elucidates design principles for assembling self-limited structures from synthetic components, such as artificial microtubules that have a desired width and chirality.
Collapse
Affiliation(s)
- Huang Fang
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
| | - Botond Tyukodi
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
- Department of Physics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania
| | - W Benjamin Rogers
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
| |
Collapse
|
37
|
Li L, Chen G. Precise Assembly of Proteins and Carbohydrates for Next-Generation Biomaterials. J Am Chem Soc 2022; 144:16232-16251. [PMID: 36044681 DOI: 10.1021/jacs.2c04418] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The complexity and diversity of biomacromolecules make them a unique class of building blocks for generating precise assemblies. They are particularly available to a new generation of biomaterials integrated with living systems due to their intrinsic properties such as accurate recognition, self-organization, and adaptability. Therefore, many excellent approaches have been developed, leading to a variety of quite practical outcomes. Here, we review recent advances in the fabrication and application of artificially precise assemblies by employing proteins and carbohydrates as building blocks, followed by our perspectives on some of new challenges, goals, and opportunities for the future research directions in this field.
Collapse
Affiliation(s)
- Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China.,Multiscale Research Institute for Complex Systems, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
38
|
Tsidilkovski L, Mohajerani F, Hagan MF. Microcompartment assembly around multicomponent fluid cargoes. J Chem Phys 2022; 156:245104. [PMID: 35778087 PMCID: PMC9249432 DOI: 10.1063/5.0089556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article describes dynamical simulations of the assembly of an icosahedral protein shell around a bicomponent fluid cargo. Our simulations are motivated by bacterial microcompartments, which are protein shells found in bacteria that assemble around a complex of enzymes and other components involved in certain metabolic processes. The simulations demonstrate that the relative interaction strengths among the different cargo species play a key role in determining the amount of each species that is encapsulated, their spatial organization, and the nature of the shell assembly pathways. However, the shell protein–shell protein and shell protein–cargo component interactions that help drive assembly and encapsulation also influence cargo composition within certain parameter regimes. These behaviors are governed by a combination of thermodynamic and kinetic effects. In addition to elucidating how natural microcompartments encapsulate multiple components involved within reaction cascades, these results have implications for efforts in synthetic biology to colocalize alternative sets of molecules within microcompartments to accelerate specific reactions. More broadly, the results suggest that coupling between self-assembly and multicomponent liquid–liquid phase separation may play a role in the organization of the cellular cytoplasm.
Collapse
Affiliation(s)
- Lev Tsidilkovski
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
39
|
Aupič J, Lapenta F, Strmšek Ž, Merljak E, Plaper T, Jerala R. Metal ion-regulated assembly of designed modular protein cages. SCIENCE ADVANCES 2022; 8:eabm8243. [PMID: 35714197 PMCID: PMC9205593 DOI: 10.1126/sciadv.abm8243] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Coiled-coil (CC) dimers are versatile, customizable building modules for the design of diverse protein architectures unknown in nature. Incorporation of dynamic self-assembly, regulated by a selected chemical signal, represents an important challenge in the construction of functional polypeptide nanostructures. Here, we engineered metal binding sites to render an orthogonal set of CC heterodimers Zn(II)-responsive as a generally applicable principle. The designed peptides assemble into CC heterodimers only in the presence of Zn(II) ions, reversibly dissociate by metal ion sequestration, and additionally act as pH switches, with low pH triggering disassembly. The developed Zn(II)-responsive CC set is used to construct programmable folding of CC-based nanostructures, from protein triangles to a two-chain bipyramidal protein cage that closes and opens depending on the metal ion. This demonstrates that dynamic self-assembly can be designed into CC-based protein cages by incorporation of metal ion-responsive CC building modules that act as conformational switches and that could also be used in other contexts.
Collapse
Affiliation(s)
- Jana Aupič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Fabio Lapenta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
| | - Žiga Strmšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Estera Merljak
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- Interdisciplinary Doctoral Programme in Biomedicine, University of Ljubljana, Kongresni trg 12, SI-1000 Ljubljana, Slovenia
| | - Tjaša Plaper
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- Interdisciplinary Doctoral Programme in Biomedicine, University of Ljubljana, Kongresni trg 12, SI-1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Trg OF 13, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
40
|
Li X, Bai Y, Luo Q, Xu J, Chen T, Liu J. Morphological Selectivity of a Protein Self-Assembly System with a Repertoire of Diverse Interaction Modes. ACS Macro Lett 2022; 11:675-679. [PMID: 35570806 DOI: 10.1021/acsmacrolett.2c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiple metal chelating sites were incorporated onto the second mitochondria-derived activator of caspase (SMAC) building blocks. The combination of different binding sites generated a repertoire of diverse binding modes, among which two different microfilament types (small and large) with distinct patterns were selected under thermodynamic control. Furthermore, the two microfilaments exhibited a pronounced secondary assembly trend due to the potential noncovalent interactions on the protein surfaces. Coupled with stereoselectivity, they presented a strong self-recognition effect and underwent two distinct reassembly patterns. That is, the large filaments self-associated in pairs to form "interlocked chain" structures, while the small ones twisted to form protein helical bundles. This work represents one of the few studies of selective self-assembly of self-assembled protein assemblies. Such an idea may provide inspiration for constructing more sophisticated protein architectures in the future.
Collapse
Affiliation(s)
- Xiumei Li
- Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yushi Bai
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, California 94143, United States
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jiayun Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
41
|
Curtis RW, Scrudders KL, Ulcickas JRW, Simpson GJ, Low-Nam ST, Chmielewski J. Supramolecular Assembly of His-Tagged Fluorescent Protein Guests within Coiled-Coil Peptide Crystal Hosts: Three-Dimensional Ordering and Protein Thermal Stability. ACS Biomater Sci Eng 2022; 8:1860-1866. [PMID: 35377599 PMCID: PMC9840175 DOI: 10.1021/acsbiomaterials.2c00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The use of biomaterials for the inclusion and stabilization of biopolymers is an ongoing challenge. Herein, we disclose three-dimensional (3D) coiled-coil peptide crystals with metal ions that include and overgrow His-tagged fluorescent proteins within the crystal. The protein guests are found within two symmetry-related growth sectors of the crystalline host that are associated with faces of the growing crystal that display ligands for metal ions. The fluorescent proteins are included within this "hourglass" region of the crystals at a notably high level, display order within the crystal hosts, and demonstrate sufficiently tight packing to enable energy transfer between a donor-acceptor pair. His-tagged fluorescent proteins display remarkable thermal stability to denaturation over extended periods of time (days) at high temperatures when within the crystals. Ultimately, this strategy may prove useful for the prolonged storage of thermally sensitive biopolymer guests within a 3D crystalline matrix.
Collapse
Affiliation(s)
- Ryan W. Curtis
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Kevin L. Scrudders
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - James R. W. Ulcickas
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Garth J. Simpson
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Shalini T. Low-Nam
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| |
Collapse
|
42
|
Sharma M, Biela AP, Kowalczyk A, Borzęcka-Solarz K, Piette BMAG, Gaweł S, Bishop J, Kukura P, Benesch JLP, Imamura M, Scheuring S, Heddle JG. Shape-Morphing of an Artificial Protein Cage with Unusual Geometry Induced by a Single Amino Acid Change. ACS NANOSCIENCE AU 2022; 2:404-413. [PMID: 36281256 PMCID: PMC9585630 DOI: 10.1021/acsnanoscienceau.2c00019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Artificial protein
cages are constructed from multiple protein
subunits. The interaction between the subunits, notably the angle
formed between them, controls the geometry of the resulting cage.
Here, using the artificial protein cage, “TRAP-cage”,
we show that a simple alteration in the position of a single amino
acid responsible for Au(I)-mediated subunit–subunit interactions
in the constituent ring-shaped building blocks results in a more acute
dihedral angle between them. In turn, this causes a dramatic shift
in the structure from a 24-ring cage with an octahedral symmetry to
a 20-ring cage with a C2 symmetry. This symmetry change is accompanied
by a decrease in the number of Au(I)-mediated bonds between cysteines
and a concomitant change in biophysical properties of the cage.
Collapse
Affiliation(s)
- Mohit Sharma
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
- School of Molecular Medicine, Medical University of Warsaw, Warsaw 02-091, Poland
| | - Artur P. Biela
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| | - Agnieszka Kowalczyk
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
- Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków 30-348, Poland
| | - Kinga Borzęcka-Solarz
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| | | | - Szymon Gaweł
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| | - Joshua Bishop
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K
| | - Philipp Kukura
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K
| | - Justin L. P. Benesch
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, U.K
| | - Motonori Imamura
- Department of Anesthesiology, Weill Cornell Medicine, New York City, New York 10065, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, New York 10065, United States
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York City, New York 10065, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York City, New York 10065, United States
| | - Jonathan G. Heddle
- Malopolska Center of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków 30-387, Poland
| |
Collapse
|
43
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
44
|
Liu Y, Zang J, Leng X, Zhao G. A short helix regulates conversion of dimeric and 24-meric ferritin architectures. Int J Biol Macromol 2022; 203:535-542. [PMID: 35120932 DOI: 10.1016/j.ijbiomac.2022.01.174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/28/2022]
Abstract
The inter-subunit interaction at the protein interfaces plays a key role in protein self-assembly, through which enabling protein self-assembly controllable is of great importance for preparing the novel nanoscale protein materials with unexplored properties. Different from normal 24-meric ferritin, archaeal ferritin, Thermotoga maritima ferritin (TmFtn) naturally occurs as a dimer, which can assemble into a 24-mer nanocage induced by salts. However, the regulation mechanism of protein self-assembly underlying this phenomenon remains unclear. Here, a combination of the computational energy simulation and key interface reconstruction revealed that a short helix involved interactions at the C4 interface are mainly responsible for the existence of such dimer. Agreeing with this idea, deletion of such short helix of each subunit triggers it to be a stable dimer, which losses the ability to reassemble into 24-meric ferritin in the presence of salts in solution. Further support for this idea comes from the observation that grafting a small helix from human H ferritin onto archaeal subunit resulted in a stable 24-mer protein nanocage even in the absence of salts. Thus, these findings demonstrate that adjusting the interactions at the protein interfaces appears to be a facile, effective approach to control subunit assembly into different protein architectures.
Collapse
Affiliation(s)
- Yu Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Jiachen Zang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Xiaojing Leng
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Guanghua Zhao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| |
Collapse
|
45
|
Villegas JA, Sinha NJ, Teramoto N, Von Bargen CD, Pochan DJ, Saven JG. Computational Design of Single-Peptide Nanocages with Nanoparticle Templating. Molecules 2022; 27:1237. [PMID: 35209027 PMCID: PMC8874777 DOI: 10.3390/molecules27041237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 01/25/2023] Open
Abstract
Protein complexes perform a diversity of functions in natural biological systems. While computational protein design has enabled the development of symmetric protein complexes with spherical shapes and hollow interiors, the individual subunits often comprise large proteins. Peptides have also been applied to self-assembly, and it is of interest to explore such short sequences as building blocks of large, designed complexes. Coiled-coil peptides are promising subunits as they have a symmetric structure that can undergo further assembly. Here, an α-helical 29-residue peptide that forms a tetrameric coiled coil was computationally designed to assemble into a spherical cage that is approximately 9 nm in diameter and presents an interior cavity. The assembly comprises 48 copies of the designed peptide sequence. The design strategy allowed breaking the side chain conformational symmetry within the peptide dimer that formed the building block (asymmetric unit) of the cage. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) techniques showed that one of the seven designed peptide candidates assembled into individual nanocages of the size and shape. The stability of assembled nanocages was found to be sensitive to the assembly pathway and final solution conditions (pH and ionic strength). The nanocages templated the growth of size-specific Au nanoparticles. The computational design serves to illustrate the possibility of designing target assemblies with pre-determined specific dimensions using short, modular coiled-coil forming peptide sequences.
Collapse
Affiliation(s)
- José A. Villegas
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.A.V.); (C.D.V.B.)
| | - Nairiti J. Sinha
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; (N.J.S.); (N.T.)
| | - Naozumi Teramoto
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; (N.J.S.); (N.T.)
| | - Christopher D. Von Bargen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.A.V.); (C.D.V.B.)
| | - Darrin J. Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; (N.J.S.); (N.T.)
| | - Jeffery G. Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.A.V.); (C.D.V.B.)
| |
Collapse
|
46
|
Stupka I, Azuma Y, Biela AP, Imamura M, Scheuring S, Pyza E, Woźnicka O, Maskell DP, Heddle JG. Chemically induced protein cage assembly with programmable opening and cargo release. SCIENCE ADVANCES 2022; 8:eabj9424. [PMID: 34985943 PMCID: PMC8730398 DOI: 10.1126/sciadv.abj9424] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Engineered protein cages are promising tools that can be customized for applications in medicine and nanotechnology. A major challenge is developing a straightforward strategy for endowing cages with bespoke, inducible disassembly. Such cages would allow release of encapsulated cargoes at desired timing and location. Here, we achieve such programmable disassembly using protein cages, in which the subunits are held together by different molecular cross-linkers. This modular system enables cage disassembly to be controlled in a condition-dependent manner. Structural details of the resulting cages were determined using cryo–electron microscopy, which allowed observation of bridging cross-linkers at intended positions. Triggered disassembly was demonstrated by high-speed atomic force microscopy and subsequent cargo release using an encapsulated Förster resonance energy transfer pair whose signal depends on the quaternary structure of the cage.
Collapse
Affiliation(s)
- Izabela Stupka
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Postgraduate School of Molecular Medicine, 02-091 Warsaw, Poland
| | - Yusuke Azuma
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Artur P. Biela
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Motonori Imamura
- Department of Anesthesiology, Weill Cornell Medicine, New York City, NY 10065, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York City, NY 10065, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York City, NY 10065, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York City, NY 10065, USA
| | - Elżbieta Pyza
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Olga Woźnicka
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Daniel P. Maskell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Jonathan G. Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
47
|
Abstract
Natural metalloproteins perform many functions - ranging from sensing to electron transfer and catalysis - in which the position and property of each ligand and metal, is dictated by protein structure. De novo protein design aims to define an amino acid sequence that encodes a specific structure and function, providing a critical test of the hypothetical inner workings of (metallo)proteins. To date, de novo metalloproteins have used simple, symmetric tertiary structures - uncomplicated by the large size and evolutionary marks of natural proteins - to interrogate structure-function hypotheses. In this Review, we discuss de novo design applications, such as proteins that induce complex, increasingly asymmetric ligand geometries to achieve function, as well as the use of more canonical ligand geometries to achieve stability. De novo design has been used to explore how proteins fine-tune redox potentials and catalyse both oxidative and hydrolytic reactions. With an increased understanding of structure-function relationships, functional proteins including O2-dependent oxidases, fast hydrolases, and multi-proton/multi-electron reductases, have been created. In addition, proteins can now be designed using xeno-biological metals or cofactors and principles from inorganic chemistry to derive new-to-nature functions. These results and the advances in computational protein design suggest a bright future for the de novo design of diverse, functional metalloproteins.
Collapse
Affiliation(s)
- Matthew J. Chalkley
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| | - Samuel I. Mann
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| |
Collapse
|
48
|
Bindl D, Mandal PK, Allmendinger L, Huc I. Discrete Stacked Dimers of Aromatic Oligoamide Helices. Angew Chem Int Ed Engl 2021; 61:e202116509. [PMID: 34962351 PMCID: PMC9305948 DOI: 10.1002/anie.202116509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 12/03/2022]
Abstract
Tight binding was observed between the C‐terminal cross section of aromatic oligoamide helices in aqueous solution, leading to the formation of discrete head‐to‐head dimers in slow exchange on the NMR timescale with the corresponding monomers. The nature and structure of the dimers was evidenced by 2D NOESY and DOSY spectroscopy, mass spectrometry and X‐ray crystallography. The binding interface involves a large hydrophobic aromatic surface and hydrogen bonding. Dimerization requires that helices have the same handedness and the presence of a C‐terminal carboxy function. The protonation state of the carboxy group plays a crucial role, resulting in pH dependence of the association. Dimerization is also influenced by neighboring side chains and can be programmed to selectively produce heteromeric aggregates.
Collapse
Affiliation(s)
- Daniel Bindl
- LMU München: Ludwig-Maximilians-Universitat Munchen, Pharmacy, GERMANY
| | - Pradeep K Mandal
- LMU München: Ludwig-Maximilians-Universitat Munchen, Pharmacy, GERMANY
| | - Lars Allmendinger
- LMU München: Ludwig-Maximilians-Universitat Munchen, Pharmacy, GERMANY
| | - Ivan Huc
- Ludwig-Maximilians-Universitat Munchen, Pharmacy, Butenandtstraße 5 - 13, 81377, Munich, GERMANY
| |
Collapse
|
49
|
Bindl D, Mandal PK, Allmendinger L, Huc I. Discrete Stacked Dimers of Aromatic Oligoamide Helices. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202116509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniel Bindl
- LMU München: Ludwig-Maximilians-Universitat Munchen Pharmacy GERMANY
| | - Pradeep K. Mandal
- LMU München: Ludwig-Maximilians-Universitat Munchen Pharmacy GERMANY
| | - Lars Allmendinger
- LMU München: Ludwig-Maximilians-Universitat Munchen Pharmacy GERMANY
| | - Ivan Huc
- Ludwig-Maximilians-Universitat Munchen Pharmacy Butenandtstraße 5 - 13 81377 Munich GERMANY
| |
Collapse
|
50
|
Artificial protein assemblies with well-defined supramolecular protein nanostructures. Biochem Soc Trans 2021; 49:2821-2830. [PMID: 34812854 DOI: 10.1042/bst20210808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Nature uses a wide range of well-defined biomolecular assemblies in diverse cellular processes, where proteins are major building blocks for these supramolecular assemblies. Inspired by their natural counterparts, artificial protein-based assemblies have attracted strong interest as new bio-nanostructures, and strategies to construct ordered protein assemblies have been rapidly expanding. In this review, we provide an overview of very recent studies in the field of artificial protein assemblies, with the particular aim of introducing major assembly methods and unique features of these assemblies. Computational de novo designs were used to build various assemblies with artificial protein building blocks, which are unrelated to natural proteins. Small chemical ligands and metal ions have also been extensively used for strong and bio-orthogonal protein linking. Here, in addition to protein assemblies with well-defined sizes, protein oligomeric and array structures with rather undefined sizes (but with definite repeat protein assembly units) also will be discussed in the context of well-defined protein nanostructures. Lastly, we will introduce multiple examples showing how protein assemblies can be effectively used in various fields such as therapeutics and vaccine development. We believe that structures and functions of artificial protein assemblies will be continuously evolved, particularly according to specific application goals.
Collapse
|