1
|
Li D, Shao F, Li X, Yu Q, Wu R, Wang J, Wang Z, Wusiman D, Ye L, Guo Y, Tuo Z, Wei W, Yoo KH, Cho WC, Feng D. Advancements and challenges of R-loops in cancers: Biological insights and future directions. Cancer Lett 2025; 610:217359. [PMID: 39613219 DOI: 10.1016/j.canlet.2024.217359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
R-loops involve in various biological processes under human normal physiological conditions. Disruption of R-loops can lead to disease onset and affect the progression of illnesses, particularly in cancers. Herein, we summarized and discussed the regulative networks, phenotypes and future directions of R-loops in cancers. In this review, we highlighted the following insights: (1) R-loops significantly influence cancer development, progression and treatment efficiency by regulating key genes, such as PARPs, BRCA1/2, sex hormone receptors, DHX9, and TOP1. (2) Currently, the ATM, ATR, cGAS/STING, and noncanonical pathways are the main pathways that involve in the regulatory network of R-loops in cancer. (3) Cancer biology can be modulated by R-loops-regulated phenotypes, including RNA methylation, DNA and histone methylation, oxidative stress, immune and inflammation regulation, and senescence. (4) Regulation of R-loops induces kinds of drug resistance in various cancers, suggesting that targeting R-loops maybe a promising way to overcome treatment resistance. (5) The role of R-loops in tumorigenesis remains controversial, and senescence may be a crucial research direction to unravel the mechanism of R-loop-induced tumorigenesis. Looking forward, further studies are needed to elucidate the specific mechanisms of R-loops in cancer, laying the groundwork for preclinical and clinical research.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xinrui Li
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, 315211, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhouting Tuo
- Department of Urological Surgery, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region of China.
| | - Dechao Feng
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| |
Collapse
|
2
|
Hayward BE, Kim GY, Miller CJ, McCann C, Lowery MG, Wood RD, Usdin K. Repeat expansion in a Fragile X model is independent of double strand break repair mediated by Pol θ, Rad52, Rad54l or Rad54b. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.621911. [PMID: 39574643 PMCID: PMC11580960 DOI: 10.1101/2024.11.05.621911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Microsatellite instability is responsible for the human Repeat Expansion Disorders. The mutation responsible differs from classical cancer-associated microsatellite instability (MSI) in that it requires the mismatch repair proteins that normally protect against MSI. LIG4, an enzyme essential for non-homologous end-joining (NHEJ), the major pathway for double-strand break repair (DSBR) in mammalian cells, protects against expansion in mouse models. Thus, NHEJ may compete with the expansion pathway for access to a common intermediate. This raises the possibility that expansion involves an NHEJ-independent form of DSBR. Pol θ, a polymerase involved in the theta-mediated end joining (TMEJ) DSBR pathway, has been proposed to play a role in repeat expansion. Here we examine the effect of the loss of Pol θ on expansion in FXD mouse embryonic stem cells (mESCs), along with the effects of mutations in Rad52 , Rad54l and Rad54b, genes important for multiple DSBR pathways. None of these mutations significantly affected repeat expansion. These observations put major constraints on what pathways are likely to drive expansion. Together with our previous demonstration of the protective effect of nucleases like EXO1 and FAN1, and the importance of Pol β, they suggest a plausible model for late steps in the expansion process.
Collapse
|
3
|
Modafferi S, Esposito F, Tavella S, Gioia U, Francia S. Traffic light at DSB-transit regulation between gene transcription and DNA repair. FEBS Lett 2024. [PMID: 39333024 DOI: 10.1002/1873-3468.15024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/29/2024]
Abstract
Transcription of actively expressed genes is dampened for kilobases around DNA lesions via chromatin modifications. This is believed to favour repair and prevent genome instability. Nonetheless, mounting evidence suggests that transcription may be induced by DNA breakage, resulting in the local de novo synthesis of non-coding RNAs (ncRNAs). Such transcripts have been proposed to play important functions in both DNA damage signalling and repair. Here, we review the recently identified mechanistic details of transcriptional silencing at damaged chromatin, highlighting how post-translational histone modifications can also be modulated by the local synthesis of DNA damage-induced ncRNAs. Finally, we envision that these entangled transcriptional events at DNA breakages can be targeted to modulate DNA repair, with potential implications for locus-specific therapeutic strategies.
Collapse
Affiliation(s)
- Stefania Modafferi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli Sforza"- Consiglio Nazionale delle Ricerche, Pavia, Italy
- PhD Program in Biomolecular Sciences and Biotechnology (SBB), Istituto Universitario di Studi Superiori (IUSS), Pavia, Italy
| | - Francesca Esposito
- Istituto di Genetica Molecolare "Luigi Luca Cavalli Sforza"- Consiglio Nazionale delle Ricerche, Pavia, Italy
- PhD Program in Genetics, Molecular and Cellular Biology (GMCB), University of Pavia, Pavia, Italy
| | - Sara Tavella
- Istituto di Genetica Molecolare "Luigi Luca Cavalli Sforza"- Consiglio Nazionale delle Ricerche, Pavia, Italy
- IFOM-ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Ubaldo Gioia
- Istituto di Genetica Molecolare "Luigi Luca Cavalli Sforza"- Consiglio Nazionale delle Ricerche, Pavia, Italy
- IFOM-ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Sofia Francia
- Istituto di Genetica Molecolare "Luigi Luca Cavalli Sforza"- Consiglio Nazionale delle Ricerche, Pavia, Italy
- IFOM-ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
4
|
Alanazi AR, Parkinson GN, Haider S. Structural Motifs at the Telomeres and Their Role in Regulatory Pathways. Biochemistry 2024; 63:827-842. [PMID: 38481135 PMCID: PMC10993422 DOI: 10.1021/acs.biochem.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Telomeres are specialized structures, found at the ends of linear chromosomes in eukaryotic cells, that play a crucial role in maintaining the stability and integrity of genomes. They are composed of repetitive DNA sequences, ssDNA overhangs, and several associated proteins. The length of telomeres is linked to cellular aging in humans, and deficiencies in their maintenance are associated with various diseases. Key structural motifs at the telomeres serve to protect vulnerable chromosomal ends. Telomeric DNA also has the ability to form diverse complex DNA higher-order structures, including T-loops, D-loops, R-loops, G-loops, G-quadruplexes, and i-motifs, in the complementary C-rich strand. While many essential proteins at telomeres have been identified, the intricacies of their interactions and structural details are still not fully understood. This Perspective highlights recent advancements in comprehending the structures associated with human telomeres. It emphasizes the significance of telomeres, explores various telomeric structural motifs, and delves into the structural biology surrounding telomeres and telomerase. Furthermore, telomeric loops, their topologies, and the associated proteins that contribute to the safeguarding of telomeres are discussed.
Collapse
Affiliation(s)
- Abeer
F R Alanazi
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Gary N Parkinson
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Shozeb Haider
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
- UCL
Centre for Advanced Research Computing, University College London, London WC1H 9RN, United
Kingdom
| |
Collapse
|
5
|
Marcon F, Giunta S, Bignami M. Emerging roles of DNA repair factors in the stability of centromeres. Semin Cell Dev Biol 2024; 156:121-129. [PMID: 37852903 DOI: 10.1016/j.semcdb.2023.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Satellite DNA sequences are an integral part of centromeres, regions critical for faithful segregation of chromosomes during cell division. Because of their complex repetitive structure, satellite DNA may act as a barrier to DNA replication and other DNA based transactions ultimately resulting in chromosome breakage. Over the past two decades, several DNA repair proteins have been shown to bind and function at centromeres. While the importance of these repair factors is highlighted by various structural and numerical chromosome aberrations resulting from their inactivation, their roles in helping to maintain genome stability by solving the intrinsic difficulties of satellite DNA replication or promoting their repair are just starting to emerge. In this review, we summarize the current knowledge on the role of DNA repair and DNA damage response proteins in maintaining the structure and function of centromeres in different contexts. We also report the recent connection between the roles of specific DNA repair factors at these genomic loci with age-related increase of chromosomal instability under physiological and pathological conditions.
Collapse
Affiliation(s)
- Francesca Marcon
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Simona Giunta
- Laboratory of Genome Evolution, Department of Biology and Biotechnologies Charles Darwin, Sapienza University of Rome, 00185, Italy
| | - Margherita Bignami
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
6
|
Xu R, Pan Z, Nakagawa T. Gross Chromosomal Rearrangement at Centromeres. Biomolecules 2023; 14:28. [PMID: 38254628 PMCID: PMC10813616 DOI: 10.3390/biom14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Centromeres play essential roles in the faithful segregation of chromosomes. CENP-A, the centromere-specific histone H3 variant, and heterochromatin characterized by di- or tri-methylation of histone H3 9th lysine (H3K9) are the hallmarks of centromere chromatin. Contrary to the epigenetic marks, DNA sequences underlying the centromere region of chromosomes are not well conserved through evolution. However, centromeres consist of repetitive sequences in many eukaryotes, including animals, plants, and a subset of fungi, including fission yeast. Advances in long-read sequencing techniques have uncovered the complete sequence of human centromeres containing more than thousands of alpha satellite repeats and other types of repetitive sequences. Not only tandem but also inverted repeats are present at a centromere. DNA recombination between centromere repeats can result in gross chromosomal rearrangement (GCR), such as translocation and isochromosome formation. CENP-A chromatin and heterochromatin suppress the centromeric GCR. The key player of homologous recombination, Rad51, safeguards centromere integrity through conservative noncrossover recombination between centromere repeats. In contrast to Rad51-dependent recombination, Rad52-mediated single-strand annealing (SSA) and microhomology-mediated end-joining (MMEJ) lead to centromeric GCR. This review summarizes recent findings on the role of centromere and recombination proteins in maintaining centromere integrity and discusses how GCR occurs at centromeres.
Collapse
Affiliation(s)
- Ran Xu
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Ziyi Pan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
7
|
Li F, Zafar A, Luo L, Denning AM, Gu J, Bennett A, Yuan F, Zhang Y. R-Loops in Genome Instability and Cancer. Cancers (Basel) 2023; 15:4986. [PMID: 37894353 PMCID: PMC10605827 DOI: 10.3390/cancers15204986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
R-loops are unique, three-stranded nucleic acid structures that primarily form when an RNA molecule displaces one DNA strand and anneals to the complementary DNA strand in a double-stranded DNA molecule. R-loop formation can occur during natural processes, such as transcription, in which the nascent RNA molecule remains hybridized with the template DNA strand, while the non-template DNA strand is displaced. However, R-loops can also arise due to many non-natural processes, including DNA damage, dysregulation of RNA degradation pathways, and defects in RNA processing. Despite their prevalence throughout the whole genome, R-loops are predominantly found in actively transcribed gene regions, enabling R-loops to serve seemingly controversial roles. On one hand, the pathological accumulation of R-loops contributes to genome instability, a hallmark of cancer development that plays a role in tumorigenesis, cancer progression, and therapeutic resistance. On the other hand, R-loops play critical roles in regulating essential processes, such as gene expression, chromatin organization, class-switch recombination, mitochondrial DNA replication, and DNA repair. In this review, we summarize discoveries related to the formation, suppression, and removal of R-loops and their influence on genome instability, DNA repair, and oncogenic events. We have also discussed therapeutical opportunities by targeting pathological R-loops.
Collapse
Affiliation(s)
- Fang Li
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alyan Zafar
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Liang Luo
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ariana Maria Denning
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jun Gu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ansley Bennett
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
8
|
Sharma AB, Ramlee MK, Kosmin J, Higgs MR, Wolstenholme A, Ronson GE, Jones D, Ebner D, Shamkhi N, Sims D, Wijnhoven PWG, Forment JV, Gibbs-Seymour I, Lakin ND. C16orf72/HAPSTR1/TAPR1 functions with BRCA1/Senataxin to modulate replication-associated R-loops and confer resistance to PARP disruption. Nat Commun 2023; 14:5003. [PMID: 37591890 PMCID: PMC10435583 DOI: 10.1038/s41467-023-40779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023] Open
Abstract
While the toxicity of PARP inhibitors to cells with defects in homologous recombination (HR) is well established, other synthetic lethal interactions with PARP1/PARP2 disruption are poorly defined. To inform on these mechanisms we conducted a genome-wide screen for genes that are synthetic lethal with PARP1/2 gene disruption and identified C16orf72/HAPSTR1/TAPR1 as a novel modulator of replication-associated R-loops. C16orf72 is critical to facilitate replication fork restart, suppress DNA damage and maintain genome stability in response to replication stress. Importantly, C16orf72 and PARP1/2 function in parallel pathways to suppress DNA:RNA hybrids that accumulate at stalled replication forks. Mechanistically, this is achieved through an interaction of C16orf72 with BRCA1 and the RNA/DNA helicase Senataxin to facilitate their recruitment to RNA:DNA hybrids and confer resistance to PARP inhibitors. Together, this identifies a C16orf72/Senataxin/BRCA1-dependent pathway to suppress replication-associated R-loop accumulation, maintain genome stability and confer resistance to PARP inhibitors.
Collapse
Affiliation(s)
| | | | - Joel Kosmin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Martin R Higgs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Amy Wolstenholme
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - George E Ronson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Dylan Jones
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Noor Shamkhi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - David Sims
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Paul W G Wijnhoven
- Early Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK
| | - Josep V Forment
- Early Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK
| | - Ian Gibbs-Seymour
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Nicholas D Lakin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK.
| |
Collapse
|
9
|
Nie C, Zhou XA, Zhou J, Liu Z, Gu Y, Liu W, Zhan J, Li S, Xiong Y, Zhou M, Shen Q, Wang W, Yang E, Wang J. A transcription-independent mechanism determines rapid periodic fluctuations of BRCA1 expression. EMBO J 2023; 42:e111951. [PMID: 37334492 PMCID: PMC10390875 DOI: 10.15252/embj.2022111951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
BRCA1 expression is highly regulated to prevent genomic instability and tumorigenesis. Dysregulation of BRCA1 expression correlates closely with sporadic basal-like breast cancer and ovarian cancer. The most significant characteristic of BRCA1 regulation is periodic expression fluctuation throughout the cell cycle, which is important for the orderly progression of different DNA repair pathways throughout the various cell cycle phases and for further genomic stability. However, the underlying mechanism driving this phenomenon is poorly understood. Here, we demonstrate that RBM10-mediated RNA alternative splicing coupled to nonsense-mediated mRNA decay (AS-NMD), rather than transcription, determines the periodic fluctuations in G1/S-phase BRCA1 expression. Furthermore, AS-NMD broadly regulates the expression of period genes, such as DNA replication-related genes, in an uneconomical but more rapid manner. In summary, we identified an unexpected posttranscriptional mechanism distinct from canonical processes that mediates the rapid regulation of BRCA1 as well as other period gene expression during the G1/S-phase transition and provided insights into potential targets for cancer therapy.
Collapse
Affiliation(s)
- Chen Nie
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Xiao Albert Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Jiadong Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Zelin Liu
- Department of Medical Bioinformatics, Institute of Systems Biomedicine, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Yangyang Gu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Wanchang Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Jun Zhan
- Department of Anatomy, Histology and Embryology, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Shiwei Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Yundong Xiong
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Mei Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Qinjian Shen
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Weibin Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| | - Ence Yang
- Department of Medical Bioinformatics, Institute of Systems Biomedicine, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems BiologyPeking University Health Science CenterBeijingChina
| |
Collapse
|
10
|
Strzelec M, Detka J, Mieszczak P, Sobocińska MK, Majka M. Immunomodulation—a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. Front Immunol 2023; 14:1127704. [PMID: 36969193 PMCID: PMC10033545 DOI: 10.3389/fimmu.2023.1127704] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, there has been a tremendous development of biotechnological, pharmacological, and medical techniques which can be implemented in the functional modulation of the immune system components. Immunomodulation has attracted much attention because it offers direct applications in both basic research and clinical therapy. Modulation of a non-adequate, amplified immune response enables to attenuate the clinical course of a disease and restore homeostasis. The potential targets to modulate immunity are as multiple as the components of the immune system, thus creating various possibilities for intervention. However, immunomodulation faces new challenges to design safer and more efficacious therapeutic compounds. This review offers a cross-sectional picture of the currently used and newest pharmacological interventions, genomic editing, and tools for regenerative medicine involving immunomodulation. We reviewed currently available experimental and clinical evidence to prove the efficiency, safety, and feasibility of immunomodulation in vitro and in vivo. We also reviewed the advantages and limitations of the described techniques. Despite its limitations, immunomodulation is considered as therapy itself or as an adjunct with promising results and developing potential.
Collapse
|
11
|
Pelletier D, Rivera B, Fabian MR, Foulkes WD. miRNA biogenesis and inherited disorders: clinico-molecular insights. Trends Genet 2023; 39:401-414. [PMID: 36863945 DOI: 10.1016/j.tig.2023.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 03/04/2023]
Abstract
MicroRNAs (miRNAs) play vital roles in the regulation of gene expression, a process known as miRNA-induced gene silencing. The human genome codes for many miRNAs, and their biogenesis relies on a handful of genes, including DROSHA, DGCR8, DICER1, and AGO1/2. Germline pathogenic variants (GPVs) in these genes cause at least three distinct genetic syndromes, with clinical manifestations that range from hyperplastic/neoplastic entities to neurodevelopmental disorders (NDDs). Over the past decade, DICER1 GPVs have been shown to lead to tumor predisposition. Moreover, recent findings have provided insight into the clinical consequences arising from GPVs in DGCR8, AGO1, and AGO2. Here we provide a timely update with respect to how GPVs in miRNA biogenesis genes alter miRNA biology and ultimately lead to their clinical manifestations.
Collapse
Affiliation(s)
- Dylan Pelletier
- Department of Human Genetics, Medicine, McGill University, Montreal, QC, Canada; Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada; Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Barbara Rivera
- Molecular Mechanisms and Experimental Therapy in Oncology Program - Oncobell, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Marc R Fabian
- Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - William D Foulkes
- Department of Human Genetics, Medicine, McGill University, Montreal, QC, Canada; Cancer Axis, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada; Cancer Research Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
12
|
Liu J, Zhang H, Xia P, Zhu Y, Xu K, Liu Z, Yuan Y. Genome stability‑related lncRNA ZFPM2‑AS1 promotes tumor progression via miR‑3065‑5p/XRCC4 in hepatocellular carcinoma. Int J Oncol 2023; 62:19. [PMID: 36524359 PMCID: PMC9812252 DOI: 10.3892/ijo.2022.5467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have a certain link to genomic stability (GS). However, the regulatory relationship of lncRNAs and GS has not been thoroughly investigated in hepatocellular carcinoma (HCC). In the present study, samples were retrieved from The Cancer Genome Atlas with somatic mutations and lncRNA expression data. Cox regression analysis was used to identify independent prognostic factors. The RNA levels were determined by reverse transcription‑quantitative PCR and protein levels were detected by western blot analysis. Cell Counting Kit‑8 and colony‑formation assays were used to assess cell viability. Cell migration was measured by wound‑healing and Transwell assays. Cell apoptosis and cell‑cycle progression were evaluated by flow cytometry. GS was detected by alkaline comet and chromosomal aberration assays. A xenograft model and lung metastasis model were used to assess the role of zinc finger protein, FOG family member 2 antisense 1 (ZFPM2‑AS1) in tumor growth in vivo. The molecular mechanisms underlying the biological functions of ZFPM2‑AS1 were investigated through bioinformatics prediction, RNA pull‑down and luciferase reporter assays. A total of 85 genomic instability‑related lncRNAs were identified and a prognostic model was developed. The prognostic model exhibited good predictive power (area under the receiver operating characteristic curve, 0.786). ZFPM2‑AS1 was significantly upregulated in tumor tissues (P<0.001) and it promoted DNA damage repair (P<0.01) and tumor progression in vitro and in vivo. Luciferase reporter assays demonstrated that miR‑3065‑5p was able to bind directly with ZFPM2‑AS1 and X‑ray repair cross complementing 4 (XRCC4). ZFPM2‑AS1 upregulated XRCC4 expression by acting as a sponge (P<0.001). In the present study, a prognostic model for HCC was developed and validated, and one lncRNA of its components was experimentally investigated. ZFPM2‑AS1 regulates XRCC4 by sponging miR‑3065‑5p to promote GS and HCC progression.
Collapse
Affiliation(s)
- Jie Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| | - Hao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| | - Peng Xia
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| | - Yimin Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| | - Kequan Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| | - Zhisu Liu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| | - Yufeng Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary and Pancreatic Diseases of Hubei Province, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
13
|
Sun B, Sherrin M, Roy R. Unscheduled epigenetic modifications cause genome instability and sterility through aberrant R-loops following starvation. Nucleic Acids Res 2022; 51:84-98. [PMID: 36504323 PMCID: PMC9841415 DOI: 10.1093/nar/gkac1155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
During starvation, organisms modify both gene expression and metabolism to adjust to the energy stress. We previously reported that Caenorhabditis elegans lacing AMP-activated protein kinase (AMPK) exhibit transgenerational reproductive defects associated with abnormally elevated trimethylated histone H3 at lysine 4 (H3K4me3) levels in the germ line following recovery from acute starvation. Here, we show that these H3K4me3 marks are significantly increased at promoters, driving aberrant transcription elongation resulting in the accumulation of R-loops in starved AMPK mutants. DNA-RNA immunoprecipitation followed by high-throughput sequencing (DRIP-seq) analysis demonstrated that a significant proportion of the genome was affected by R-loop formation. This was most pronounced in the promoter-transcription start site regions of genes, in which the chromatin was modified by H3K4me3. Like H3K4me3, the R-loops were also found to be heritable, likely contributing to the transgenerational reproductive defects typical of these mutants following starvation. Strikingly, AMPK mutant germ lines show considerably more RAD-51 (the RecA recombinase) foci at sites of R-loop formation, potentially sequestering them from their roles at meiotic breaks or at sites of induced DNA damage. Our study reveals a previously unforeseen role of AMPK in maintaining genome stability following starvation. The downstream effects of R-loops on DNA damage sensitivity and germline stem cell integrity may account for inappropriate epigenetic modification that occurs in numerous human disorders, including various cancers.
Collapse
Affiliation(s)
- Bing Sun
- To whom correspondence should be addressed.
| | - McLean Sherrin
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | - Richard Roy
- Correspondence may also be addressed to Richard Roy. Tel: +1 514 398 6437;
| |
Collapse
|
14
|
Kaminski N, Wondisford AR, Kwon Y, Lynskey ML, Bhargava R, Barroso-González J, García-Expósito L, He B, Xu M, Mellacheruvu D, Watkins SC, Modesti M, Miller KM, Nesvizhskii AI, Zhang H, Sung P, O'Sullivan RJ. RAD51AP1 regulates ALT-HDR through chromatin-directed homeostasis of TERRA. Mol Cell 2022; 82:4001-4017.e7. [PMID: 36265488 PMCID: PMC9713952 DOI: 10.1016/j.molcel.2022.09.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/10/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
Alternative lengthening of telomeres (ALT) is a homology-directed repair (HDR) mechanism of telomere elongation that controls proliferation in subsets of aggressive cancer. Recent studies have revealed that telomere repeat-containing RNA (TERRA) promotes ALT-associated HDR (ALT-HDR). Here, we report that RAD51AP1, a crucial ALT factor, interacts with TERRA and utilizes it to generate D- and R-loop HR intermediates. We also show that RAD51AP1 binds to and might stabilize TERRA-containing R-loops as RAD51AP1 depletion reduces R-loop formation at telomere DNA breaks. Proteomic analyses uncover a role for RAD51AP1-mediated TERRA R-loop homeostasis in a mechanism of chromatin-directed suppression of TERRA and prevention of transcription-replication collisions (TRCs) during ALT-HDR. Intriguingly, we find that both TERRA binding and this non-canonical function of RAD51AP1 require its intrinsic SUMO-SIM regulatory axis. These findings provide insights into the multi-contextual functions of RAD51AP1 within the ALT mechanism and regulation of TERRA.
Collapse
Affiliation(s)
- Nicole Kaminski
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anne R Wondisford
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Michelle Lee Lynskey
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ragini Bhargava
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan Barroso-González
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laura García-Expósito
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Boxue He
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Meng Xu
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Dattatreya Mellacheruvu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Simon C Watkins
- Department of Cell Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, CNRS UMR7258, Inserm UMR1068, Aix Marseille Université U105, Institut Paoli Calmettes, 27 Boulevard Lei Roure CS30059, 13273 Marseille Cedex 09, France
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2506 Speedway, Austin, TX 78712, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Huaiying Zhang
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Petermann E, Lan L, Zou L. Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Nat Rev Mol Cell Biol 2022; 23:521-540. [PMID: 35459910 DOI: 10.1038/s41580-022-00474-x] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
RNA-DNA hybrids are generated during transcription, DNA replication and DNA repair and are crucial intermediates in these processes. When RNA-DNA hybrids are stably formed in double-stranded DNA, they displace one of the DNA strands and give rise to a three-stranded structure called an R-loop. R-loops are widespread in the genome and are enriched at active genes. R-loops have important roles in regulating gene expression and chromatin structure, but they also pose a threat to genomic stability, especially during DNA replication. To keep the genome stable, cells have evolved a slew of mechanisms to prevent aberrant R-loop accumulation. Although R-loops can cause DNA damage, they are also induced by DNA damage and act as key intermediates in DNA repair such as in transcription-coupled repair and RNA-templated DNA break repair. When the regulation of R-loops goes awry, pathological R-loops accumulate, which contributes to diseases such as neurodegeneration and cancer. In this Review, we discuss the current understanding of the sources of R-loops and RNA-DNA hybrids, mechanisms that suppress and resolve these structures, the impact of these structures on DNA repair and genome stability, and opportunities to therapeutically target pathological R-loops.
Collapse
Affiliation(s)
- Eva Petermann
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Brickner JR, Garzon JL, Cimprich KA. Walking a tightrope: The complex balancing act of R-loops in genome stability. Mol Cell 2022; 82:2267-2297. [PMID: 35508167 DOI: 10.1016/j.molcel.2022.04.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 12/14/2022]
Abstract
Although transcription is an essential cellular process, it is paradoxically also a well-recognized cause of genomic instability. R-loops, non-B DNA structures formed when nascent RNA hybridizes to DNA to displace the non-template strand as single-stranded DNA (ssDNA), are partially responsible for this instability. Yet, recent work has begun to elucidate regulatory roles for R-loops in maintaining the genome. In this review, we discuss the cellular contexts in which R-loops contribute to genomic instability, particularly during DNA replication and double-strand break (DSB) repair. We also summarize the evidence that R-loops participate as an intermediate during repair and may influence pathway choice to preserve genomic integrity. Finally, we discuss the immunogenic potential of R-loops and highlight their links to disease should they become pathogenic.
Collapse
Affiliation(s)
- Joshua R Brickner
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jada L Garzon
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
Gómez-González B, Dutta A, Feng W. Editorial: The Role of RNA in Genome Stability: To Wreck or Repair? Front Mol Biosci 2022; 9:848217. [PMID: 35224000 PMCID: PMC8865954 DOI: 10.3389/fmolb.2022.848217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Belén Gómez-González
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC, Seville, Spain
- *Correspondence: Belén Gómez-González, ; Arijit Dutta, ; Wenyi Feng,
| | - Arijit Dutta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- *Correspondence: Belén Gómez-González, ; Arijit Dutta, ; Wenyi Feng,
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
- *Correspondence: Belén Gómez-González, ; Arijit Dutta, ; Wenyi Feng,
| |
Collapse
|
18
|
Nojima T, Proudfoot NJ. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nat Rev Mol Cell Biol 2022; 23:389-406. [DOI: 10.1038/s41580-021-00447-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
|
19
|
Cantor SB, Sellers WR, Pathania S, Greenberg RA. David Livingston (1941-2021). Mol Cell 2022. [PMID: 34995508 DOI: 10.1016/j.molcel.2021.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - William R Sellers
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02115, USA
| | - Shailja Pathania
- Center for Personalized Cancer Therapy, Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| |
Collapse
|
20
|
OUP accepted manuscript. FEMS Yeast Res 2022; 22:6574410. [DOI: 10.1093/femsyr/foac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 11/14/2022] Open
|
21
|
Krishnan R, Patel PS, Hakem R. BRCA1 and Metastasis: Outcome of Defective DNA Repair. Cancers (Basel) 2021; 14:cancers14010108. [PMID: 35008272 PMCID: PMC8749860 DOI: 10.3390/cancers14010108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary BRCA1 has critical functions in accurately repairing double stand breaks in the DNA through a process known as homologous recombination. BRCA1 also has various functions in other cellular processes that safeguard the genome. Thus, mutations or silencing of this tumor suppressor significantly increases the risk of developing breast, ovarian, and other cancers. Metastasis refers to the spread of cancer to other parts of the body and is the leading cause of cancer-related deaths. In this review, we discuss the mechanisms by which BRCA1 mutations contribute to the metastatic and aggressive nature of the tumor cells. Abstract Heritable mutations in BRCA1 and BRCA2 genes are a major risk factor for breast and ovarian cancer. Inherited mutations in BRCA1 increase the risk of developing breast cancers by up to 72% and ovarian cancers by up to 69%, when compared to individuals with wild-type BRCA1. BRCA1 and BRCA2 (BRCA1/2) are both important for homologous recombination-mediated DNA repair. The link between BRCA1/2 mutations and high susceptibility to breast cancer is well established. However, the potential impact of BRCA1 mutation on the individual cell populations within a tumor microenvironment, and its relation to increased aggressiveness of cancer is not well understood. The objective of this review is to provide significant insights into the mechanisms by which BRCA1 mutations contribute to the metastatic and aggressive nature of the tumor cells.
Collapse
Affiliation(s)
- Rehna Krishnan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (R.K.); (P.S.P.)
| | - Parasvi S. Patel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (R.K.); (P.S.P.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Razqallah Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; (R.K.); (P.S.P.)
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: or
| |
Collapse
|
22
|
RPA phosphorylation facilitates RAD52 dependent homologous recombination in BRCA-deficient cells. Mol Cell Biol 2021; 42:e0052421. [PMID: 34928169 DOI: 10.1128/mcb.00524-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Loss of RAD52 is synthetically lethal in BRCA-deficient cells, owing to its role in backup homologous recombination (HR) repair of DNA double-strand breaks (DSBs). In HR in mammalian cells, DSBs are processed to single-stranded DNA (ssDNA) overhangs, which are then bound by Replication Protein A(RPA). RPA is exchanged for RAD51 by mediator proteins: in mammals BRCA2 is the primary mediator, however, RAD52 provides an alternative mediator pathway in BRCA-deficient cells. RAD51 stimulates strand exchange between homologous DNA duplexes, a critical step in HR. RPA phosphorylation and de-phosphorylation are important for HR, but its effect on RAD52 mediator function is unknown. Here, we show that RPA phosphorylation is required for RAD52 to salvage HR in BRCA-deficient cells. Using BRCA2-depleted human cells, in which the only available mediator pathway is RAD52-dependent, the expression of phosphorylation-deficient RPA mutant reduced HR. Furthermore, RPA-phospho-mutant cells showed reduced association of RAD52 with RAD51. Interestingly, there was no effect of RPA phosphorylation on RAD52 recruitment to repair foci. Finally, we show that RPA phosphorylation does not affect RAD52-dependent ssDNA annealing. Thus, although RAD52 can be recruited independently of RPA's phosphorylation status, RPA phosphorylation is required for RAD52's association with RAD51, and its subsequent promotion of RAD52-mediated HR.
Collapse
|
23
|
Shaw A, Gullerova M. Home and Away: The Role of Non-Coding RNA in Intracellular and Intercellular DNA Damage Response. Genes (Basel) 2021; 12:1475. [PMID: 34680868 PMCID: PMC8535248 DOI: 10.3390/genes12101475] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
Non-coding RNA (ncRNA) has recently emerged as a vital component of the DNA damage response (DDR), which was previously believed to be solely regulated by proteins. Many species of ncRNA can directly or indirectly influence DDR and enhance DNA repair, particularly in response to double-strand DNA breaks, which may hold therapeutic potential in the context of cancer. These include long non-coding RNA (lncRNA), microRNA, damage-induced lncRNA, DNA damage response small RNA, and DNA:RNA hybrid structures, which can be categorised as cis or trans based on the location of their synthesis relative to DNA damage sites. Mechanisms of RNA-dependent DDR include the recruitment or scaffolding of repair factors at DNA break sites, the regulation of repair factor expression, and the stabilisation of repair intermediates. DDR can also be communicated intercellularly via exosomes, leading to bystander responses in healthy neighbour cells to generate a population-wide response to damage. Many microRNA species have been directly implicated in the propagation of bystander DNA damage, autophagy, and radioresistance, which may prove significant for enhancing cancer treatment via radiotherapy. Here, we review recent developments centred around ncRNA and their contributions to intracellular and intercellular DDR mechanisms.
Collapse
Affiliation(s)
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK;
| |
Collapse
|
24
|
Vohhodina J, Goehring LJ, Liu B, Kong Q, Botchkarev VV, Huynh M, Liu Z, Abderazzaq FO, Clark AP, Ficarro SB, Marto JA, Hatchi E, Livingston DM. BRCA1 binds TERRA RNA and suppresses R-Loop-based telomeric DNA damage. Nat Commun 2021; 12:3542. [PMID: 34112789 PMCID: PMC8192922 DOI: 10.1038/s41467-021-23716-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
R-loop structures act as modulators of physiological processes such as transcription termination, gene regulation, and DNA repair. However, they can cause transcription-replication conflicts and give rise to genomic instability, particularly at telomeres, which are prone to forming DNA secondary structures. Here, we demonstrate that BRCA1 binds TERRA RNA, directly and physically via its N-terminal nuclear localization sequence, as well as telomere-specific shelterin proteins in an R-loop-, and a cell cycle-dependent manner. R-loop-driven BRCA1 binding to CpG-rich TERRA promoters represses TERRA transcription, prevents TERRA R-loop-associated damage, and promotes its repair, likely in association with SETX and XRN2. BRCA1 depletion upregulates TERRA expression, leading to overly abundant TERRA R-loops, telomeric replication stress, and signs of telomeric aberrancy. Moreover, BRCA1 mutations within the TERRA-binding region lead to an excess of TERRA-associated R-loops and telomeric abnormalities. Thus, normal BRCA1/TERRA binding suppresses telomere-centered genome instability. BRCA1-mediated resolution of R-loops has previously been described. Here the authors reveal a functional association of BRCA1 with TERRA RNA at telomeres, which develops in an R-loop-, and a cell cycle-dependent manner.
Collapse
Affiliation(s)
- Jekaterina Vohhodina
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Liana J Goehring
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ben Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Qing Kong
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Vladimir V Botchkarev
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Mai Huynh
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zhiqi Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fieda O Abderazzaq
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Allison P Clark
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elodie Hatchi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - David M Livingston
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Palancade B, Rothstein R. The Ultimate (Mis)match: When DNA Meets RNA. Cells 2021; 10:cells10061433. [PMID: 34201169 PMCID: PMC8227541 DOI: 10.3390/cells10061433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/20/2022] Open
Abstract
RNA-containing structures, including ribonucleotide insertions, DNA:RNA hybrids and R-loops, have recently emerged as critical players in the maintenance of genome integrity. Strikingly, different enzymatic activities classically involved in genome maintenance contribute to their generation, their processing into genotoxic or repair intermediates, or their removal. Here we review how this substrate promiscuity can account for the detrimental and beneficial impacts of RNA insertions during genome metabolism. We summarize how in vivo and in vitro experiments support the contribution of DNA polymerases and homologous recombination proteins in the formation of RNA-containing structures, and we discuss the role of DNA repair enzymes in their removal. The diversity of pathways that are thus affected by RNA insertions likely reflects the ancestral function of RNA molecules in genome maintenance and transmission.
Collapse
Affiliation(s)
- Benoit Palancade
- Institut Jacques Monod, Université de Paris, CNRS, F-75006 Paris, France
- Correspondence: (B.P.); (R.R.)
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence: (B.P.); (R.R.)
| |
Collapse
|
26
|
Verma P, Greenberg RA. Communication between chromatin and homologous recombination. Curr Opin Genet Dev 2021; 71:1-9. [PMID: 34098484 DOI: 10.1016/j.gde.2021.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022]
Abstract
Higher-order chromatin packing serves as a structural barrier to the recognition and repair of genomic lesions. The initiation and outcome of the repair response is dictated by a highly coordinated yet complex interplay between chromatin modifying enzymes and their cognate readers, damage induced chemical modifications, nucleosome density, transcriptional state, and cell cycle-dependent availability of DNA repair machinery. The physical and chemical properties of the DNA lesions themselves further regulate the nature of ensuing chromatin responses. Here we review recent discoveries across these various contexts, where chromatin regulates the homology-guided double-strand break repair mechanism, homologous recombination, and also highlight the key knowledge gaps vital to generate a holistic understanding of this process and its contributions to genome integrity.
Collapse
Affiliation(s)
- Priyanka Verma
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Roger A Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Ouyang J, Yadav T, Zhang JM, Yang H, Rheinbay E, Guo H, Haber DA, Lan L, Zou L. RNA transcripts stimulate homologous recombination by forming DR-loops. Nature 2021; 594:283-288. [PMID: 33981036 PMCID: PMC8855348 DOI: 10.1038/s41586-021-03538-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Homologous recombination (HR) repairs DNA double-strand breaks (DSBs) in the S and G2 phases of the cell cycle1-3. Several HR proteins are preferentially recruited to DSBs at transcriptionally active loci4-10, but how transcription promotes HR is poorly understood. Here we develop an assay to assess the effect of local transcription on HR. Using this assay, we find that transcription stimulates HR to a substantial extent. Tethering RNA transcripts to the vicinity of DSBs recapitulates the effects of local transcription, which suggests that transcription enhances HR through RNA transcripts. Tethered RNA transcripts stimulate HR in a sequence- and orientation-dependent manner, indicating that they function by forming DNA-RNA hybrids. In contrast to most HR proteins, RAD51-associated protein 1 (RAD51AP1) only promotes HR when local transcription is active. RAD51AP1 drives the formation of R-loops in vitro and is required for tethered RNAs to stimulate HR in cells. Notably, RAD51AP1 is necessary for the DSB-induced formation of DNA-RNA hybrids in donor DNA, linking R-loops to D-loops. In vitro, RAD51AP1-generated R-loops enhance the RAD51-mediated formation of D-loops locally and give rise to intermediates that we term 'DR-loops', which contain both DNA-DNA and DNA-RNA hybrids and favour RAD51 function. Thus, at DSBs in transcribed regions, RAD51AP1 promotes the invasion of RNA transcripts into donor DNA, and stimulates HR through the formation of DR-loops.
Collapse
Affiliation(s)
- Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
| | - Tribhuwan Yadav
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Haibo Yang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Esther Rheinbay
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Hongshan Guo
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Charlestown, MA, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Charlestown, MA, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
28
|
San Martin Alonso M, Noordermeer S. Untangling the crosstalk between BRCA1 and R-loops during DNA repair. Nucleic Acids Res 2021; 49:4848-4863. [PMID: 33755171 PMCID: PMC8136775 DOI: 10.1093/nar/gkab178] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/13/2023] Open
Abstract
R-loops are RNA:DNA hybrids assembled during biological processes but are also linked to genetic instability when formed out of their natural context. Emerging evidence suggests that the repair of DNA double-strand breaks requires the formation of a transient R-loop, which eventually must be removed to guarantee a correct repair process. The multifaceted BRCA1 protein has been shown to be recruited at this specific break-induced R-loop, and it facilitates mechanisms in order to regulate R-loop removal. In this review, we discuss the different potential roles of BRCA1 in R-loop homeostasis during DNA repair and how these processes ensure faithful DSB repair.
Collapse
Affiliation(s)
- Marta San Martin Alonso
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sylvie M Noordermeer
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
29
|
Lee SR, Pollard DA, Galati DF, Kelly ML, Miller B, Mong C, Morris MN, Roberts-Nygren K, Kapler GM, Zinkgraf M, Dang HQ, Branham E, Sasser J, Tessier E, Yoshiyama C, Matsumoto M, Turman G. Disruption of a ∼23-24 nucleotide small RNA pathway elevates DNA damage responses in Tetrahymena thermophila. Mol Biol Cell 2021; 32:1335-1346. [PMID: 34010017 PMCID: PMC8694037 DOI: 10.1091/mbc.e20-10-0631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endogenous RNA interference (RNAi) pathways regulate a wide range of cellular processes in diverse eukaryotes, yet in the ciliated eukaryote, Tetrahymena thermophila, the cellular purpose of RNAi pathways that generate ∼23–24 nucleotide (nt) small (s)RNAs has remained unknown. Here, we investigated the phenotypic and gene expression impacts on vegetatively growing cells when genes involved in ∼23–24 nt sRNA biogenesis are disrupted. We observed slower proliferation and increased expression of genes involved in DNA metabolism and chromosome organization and maintenance in sRNA biogenesis mutants RSP1Δ, RDN2Δ, and RDF2Δ. In addition, RSP1Δ and RDN2Δ cells frequently exhibited enlarged chromatin extrusion bodies, which are nonnuclear, DNA-containing structures that may be akin to mammalian micronuclei. Expression of homologous recombination factor Rad51 was specifically elevated in RSP1Δ and RDN2Δ strains, with Rad51 and double-stranded DNA break marker γ-H2A.X localized to discrete macronuclear foci. In addition, an increase in Rad51 and γ-H2A.X foci was also found in knockouts of TWI8, a macronucleus-localized PIWI protein. Together, our findings suggest that an evolutionarily conserved role for RNAi pathways in maintaining genome integrity may be extended even to the early branching eukaryotic lineage that gave rise to Tetrahymena thermophila.
Collapse
Affiliation(s)
- Suzanne R Lee
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Daniel A Pollard
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Domenico F Galati
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Megan L Kelly
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Brian Miller
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Christina Mong
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Megan N Morris
- Biology Department, Western Washington University, Bellingham, WA 98225
| | | | - Geoffrey M Kapler
- Molecular and Cellular Medicine, Texas A&M University, College Station, TX 77843
| | - Matthew Zinkgraf
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Hung Q Dang
- Molecular and Cellular Medicine, Texas A&M University, College Station, TX 77843
| | - Erica Branham
- Molecular and Cellular Medicine, Texas A&M University, College Station, TX 77843
| | - Jason Sasser
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Erin Tessier
- Biology Department, Western Washington University, Bellingham, WA 98225
| | | | - Maya Matsumoto
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Gaea Turman
- Biology Department, Western Washington University, Bellingham, WA 98225
| |
Collapse
|
30
|
R-loops as Janus-faced modulators of DNA repair. Nat Cell Biol 2021; 23:305-313. [PMID: 33837288 DOI: 10.1038/s41556-021-00663-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/05/2021] [Indexed: 02/01/2023]
Abstract
R-loops are non-B DNA structures with intriguing dual consequences for gene expression and genome stability. In addition to their recognized roles in triggering DNA double-strand breaks (DSBs), R-loops have recently been demonstrated to accumulate in cis to DSBs, especially those induced in transcriptionally active loci. In this Review, we discuss whether R-loops actively participate in DSB repair or are detrimental by-products that must be removed to avoid genome instability.
Collapse
|