1
|
Martins R, Morton EM, Kuthning S, Goes S, Williams HM, Rehkämper M. Primitive asteroids as a major source of terrestrial volatiles. SCIENCE ADVANCES 2024; 10:eado4121. [PMID: 39392884 PMCID: PMC11468921 DOI: 10.1126/sciadv.ado4121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/09/2024] [Indexed: 10/13/2024]
Abstract
The origins of Earth's volatiles are debated. Recent studies showed that meteorites display unique mass-independent isotopic signatures of the volatile element Zn, suggesting that Earth's Zn originated from materials derived from different regions of the Solar System. However, these studies largely omitted meteorites from the differentiated planetesimals thought to represent the Earth's building blocks, which underwent melting and substantial volatile loss. Here, we characterize the mass-independent Zn isotope compositions of meteorites from such planetesimals. We incorporate these results in mixing models that aim to reproduce Earth's abundance and isotope compositions of Zn and other elements. Our results suggest that, while differentiated planetesimals supplied ~70% of Earth's mass, they provided only ~10% of its Zn. The remaining Zn was supplied by primitive materials that did not experience melting and associated volatile loss. Combined with other findings, our results imply that an unmelted primitive material is likely required to establish the volatile budgets of the terrestrial planets.
Collapse
Affiliation(s)
- Rayssa Martins
- Department of Earth Science & Engineering, Imperial College London, London, UK
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Elin M. Morton
- Department of Earth Science & Engineering, Imperial College London, London, UK
| | - Sven Kuthning
- Department of Earth Science & Engineering, Imperial College London, London, UK
| | - Saskia Goes
- Department of Earth Science & Engineering, Imperial College London, London, UK
| | - Helen M. Williams
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - Mark Rehkämper
- Department of Earth Science & Engineering, Imperial College London, London, UK
| |
Collapse
|
2
|
Fischer-Gödde M, Tusch J, Goderis S, Bragagni A, Mohr-Westheide T, Messling N, Elfers BM, Schmitz B, Reimold WU, Maier WD, Claeys P, Koeberl C, Tissot FLH, Bizzarro M, Münker C. Ruthenium isotopes show the Chicxulub impactor was a carbonaceous-type asteroid. Science 2024; 385:752-756. [PMID: 39146402 DOI: 10.1126/science.adk4868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
An impact at Chicxulub, Mexico, occurred 66 million years ago, producing a global stratigraphic layer that marks the boundary between the Cretaceous and Paleogene eras. That layer contains elevated concentrations of platinum-group elements, including ruthenium. We measured ruthenium isotopes in samples taken from three Cretaceous-Paleogene boundary sites, five other impacts that occurred between 36 million to 470 million years ago, and ancient 3.5-billion- to 3.2-billion-year-old impact spherule layers. Our data indicate that the Chicxulub impactor was a carbonaceous-type asteroid, which had formed beyond the orbit of Jupiter. The five other impact structures have isotopic signatures that are more consistent with siliceous-type asteroids, which formed closer to the Sun. The ancient spherule layer samples are consistent with impacts of carbonaceous-type asteroids during Earth's final stages of accretion.
Collapse
Affiliation(s)
- Mario Fischer-Gödde
- Institut für Geologie und Mineralogie, University of Cologne, 50674 Cologne, Germany
| | - Jonas Tusch
- Institut für Geologie und Mineralogie, University of Cologne, 50674 Cologne, Germany
| | - Steven Goderis
- Archeology, Environmental Changes and Geochemistry Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Alessandro Bragagni
- Department of Earth Sciences, University of Florence, 50121 Firenze, Italy
- Institute of Marine Sciences, National Research Council, 40129 Bologna, Italy
| | - Tanja Mohr-Westheide
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115 Berlin, Germany
| | - Nils Messling
- Geochemistry and Isotope Geology Department, Geoscience Center, University of Göttingen, 37073 Göttingen, Germany
| | - Bo-Magnus Elfers
- Zentrallabor, Technical University Hamburg, 21073 Hamburg, Germany
| | - Birger Schmitz
- Astrogeobiology Laboratory, Lund University, SE-22100 Lund, Sweden
| | - Wolf U Reimold
- Laboratório de Geocronologia e Geoquímica Isotópica, Instituto de Geociências, Universidade de Brasília, CEP 70910-900 Brasília, DF, Brazil
| | - Wolfgang D Maier
- School of Earth and Ocean Sciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Philippe Claeys
- Archeology, Environmental Changes and Geochemistry Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Christian Koeberl
- Department of Lithospheric Research, University of Vienna, A-1090 Vienna, Austria
| | - François L H Tissot
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena CA 91125, USA
| | - Martin Bizzarro
- Center for Star and Planet Formation, Globe Institute, University of Copenhagen, DK-1350 Copenhagen, Denmark
| | - Carsten Münker
- Institut für Geologie und Mineralogie, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
3
|
Wang W, Walter MJ, Brodholt JP, Huang S. Early planetesimal differentiation and late accretion shaped Earth's nitrogen budget. Nat Commun 2024; 15:4169. [PMID: 38755135 PMCID: PMC11099130 DOI: 10.1038/s41467-024-48500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
The relative roles of protoplanetary differentiation versus late accretion in establishing Earth's life-essential volatile element inventory are being hotly debated. To address this issue, we employ first-principles calculations to investigate nitrogen (N) isotope fractionation during Earth's accretion and differentiation. We find that segregation of an iron core would enrich heavy N isotopes in the residual silicate, while evaporation within a H2-dominated nebular gas produces an enrichment of light N isotope in the planetesimals. The combined effect of early planetesimal evaporation followed by core formation enriches the bulk silicate Earth in light N isotopes. If Earth is comprised primarily of enstatite-chondrite-like material, as indicated by other isotope systems, then late accretion of carbonaceous-chondrite-like material must contribute ~ 30-100% of the N budget in present-day bulk silicate Earth. However, mass balance using N isotope constraints shows that the late veneer contributes only a limited amount of other volatile elements (e.g., H, S, and C) to Earth.
Collapse
Affiliation(s)
- Wenzhong Wang
- Deep Space Exploration Lab/School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui, China.
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, 20015, USA.
- Department of Earth Sciences, University College London, London, WC1E 6BT, UK.
| | - Michael J Walter
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, 20015, USA
| | - John P Brodholt
- Department of Earth Sciences, University College London, London, WC1E 6BT, UK
- The Centre of Planetary Habitability, University of Oslo, Oslo, Norway
| | - Shichun Huang
- Department of Earth, Environmenral, & Planetary Sciences, University of Tennessee at Knoxville, Knoxville, TN, USA
| |
Collapse
|
4
|
Paschek K, Lee M, Semenov DA, Henning TK. Prebiotic Vitamin B 3 Synthesis in Carbonaceous Planetesimals. Chempluschem 2024; 89:e202300508. [PMID: 37847591 DOI: 10.1002/cplu.202300508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Aqueous chemistry within carbonaceous planetesimals is promising for synthesizing prebiotic organic matter essential to all life. Meteorites derived from these planetesimals delivered these life building blocks to the early Earth, potentially facilitating the origins of life. Here, we studied the formation of vitamin B3 as it is an important precursor of the coenzyme NAD(P)(H), which is essential for the metabolism of all life as we know it. We propose a new reaction mechanism based on known experiments in the literature that explains the synthesis of vitamin B3. It combines the sugar precursors glyceraldehyde or dihydroxyacetone with the amino acids aspartic acid or asparagine in aqueous solution without oxygen or other oxidizing agents. We performed thermochemical equilibrium calculations to test the thermodynamic favorability. The predicted vitamin B3 abundances resulting from this new pathway were compared with measured values in asteroids and meteorites. We conclude that competition for reactants and decomposition by hydrolysis are necessary to explain the prebiotic content of meteorites. In sum, our model fits well into the complex network of chemical pathways active in this environment.
Collapse
Affiliation(s)
- Klaus Paschek
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
| | - Mijin Lee
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
| | - Dmitry A Semenov
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, House F, D-81377, Munich, Germany
| | - Thomas K Henning
- Max Planck Institute for Astronomy, Königstuhl 17, D-69117, Heidelberg, Germany
| |
Collapse
|
5
|
Xu Y, Szilas K, Zhang L, Zhu JM, Wu G, Zhang J, Qin B, Sun Y, Pearson DG, Liu J. Ni isotopes provide a glimpse of Earth's pre-late-veneer mantle. SCIENCE ADVANCES 2023; 9:eadj2170. [PMID: 38100586 PMCID: PMC11649070 DOI: 10.1126/sciadv.adj2170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Moderately siderophile (e.g., Ni) and highly siderophile elements (HSEs) in the bulk silicate Earth (BSE) are believed to be partly or near-completely delivered by late accretion after the depletion caused by metallic core formation. However, the extent and rate of remixing of late-accreted materials that equilibrated with Earth's pre-late-veneer mantle have long been debated. Observing evidence of this siderophile element-depleted pre-late-veneer mantle would provide powerful confirmation of this model of early mantle evolution. We find that the mantle source of the ~3.8-billion-year-old (Ga) Narssaq ultramafic cumulates from Southwest Greenland exhibits a subtle 60Ni/58Ni excess of ~0.05 per mil and contains a clear HSE deficiency of ~60% relative to the BSE. The intermediate Ni isotopic composition and HSE abundances of the ~3.8-Ga Narssaq mantle mark a transitional Eoarchean snapshot as the poorly mixed 3.8-Ga mantle containing elements of pre-late-veneer mantle material transitions to modern Earth's mantle.
Collapse
Affiliation(s)
- Yong Xu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, China
| | - Kristoffer Szilas
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
| | - Lingyu Zhang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
| | - Jian-Ming Zhu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, China
| | - Guangliang Wu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, China
| | - Bin Qin
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, China
| | - Yao Sun
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, China
| | - D. Graham Pearson
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jingao Liu
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, China
| |
Collapse
|
6
|
Newcombe ME, Nielsen SG, Peterson LD, Wang J, Alexander CMO, Sarafian AR, Shimizu K, Nittler LR, Irving AJ. Degassing of early-formed planetesimals restricted water delivery to Earth. Nature 2023; 615:854-857. [PMID: 36922597 DOI: 10.1038/s41586-023-05721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 01/06/2023] [Indexed: 03/17/2023]
Abstract
The timing of delivery and the types of body that contributed volatiles to the terrestrial planets remain highly debated1,2. For example, it is unknown if differentiated bodies, such as that responsible for the Moon-forming giant impact, could have delivered substantial volatiles3,4 or if smaller, undifferentiated objects were more probable vehicles of water delivery5-7. Here we show that the water contents of minerals in achondrite meteorites (mantles or crusts of differentiated planetesimals) from both the inner and outer portions of the early Solar System are ≤2 μg g-1 H2O. These are among the lowest values ever reported for extraterrestrial minerals. Our results demonstrate that differentiated planetesimals efficiently degassed before or during melting. This finding implies that substantial amounts of water could only have been delivered to Earth by means of unmelted material.
Collapse
Affiliation(s)
| | - S G Nielsen
- NIRVANA Laboratories, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | - J Wang
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
| | - C M O'D Alexander
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
| | | | - K Shimizu
- University of Wisconsin, Madison, WI, USA
| | - L R Nittler
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
- School Of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | - A J Irving
- University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Nie NX, Wang D, Torrano ZA, Carlson RW, O'D Alexander CM, Shahar A. Meteorites have inherited nucleosynthetic anomalies of potassium-40 produced in supernovae. Science 2023; 379:372-376. [PMID: 36701465 DOI: 10.1126/science.abn1783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Meteorites record processes that occurred before and during the formation of the Solar System in the form of nucleosynthetic anomalies: isotopic compositions that differ from the Solar System patterns. Nucleosynthetic anomalies are rarely seen in volatile elements such as potassium at bulk meteorite scale. We measured potassium isotope ratios in 32 meteorites and identified nucleosynthetic anomalies in the isotope potassium-40. The anomalies are larger and more variable in carbonaceous chondrite (CC) meteorites than in noncarbonaceous (NC) meteorites, indicating that CCs inherited more material produced in supernova nucleosynthesis. The potassium-40 anomaly of Earth is close to that of the NCs, implying that Earth's potassium was mostly delivered by NCs.
Collapse
Affiliation(s)
- Nicole X Nie
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | - Da Wang
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA.,International Center for Planetary Science, College of Earth Sciences, Chengdu University of Technology, 610059 Chengdu, China
| | - Zachary A Torrano
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | - Richard W Carlson
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | - Conel M O'D Alexander
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | - Anat Shahar
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| |
Collapse
|
8
|
Frossard P, Israel C, Bouvier A, Boyet M. Earth's composition was modified by collisional erosion. Science 2022; 377:1529-1532. [PMID: 36173863 DOI: 10.1126/science.abq7351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The samarium-146 (146Sm)-neodymium-142 (142Nd) short-lived decay system (half-life of 103 million years) is a powerful tracer of the early mantle-crust evolution of planetary bodies. However, an increased 142Nd/144Nd in modern terrestrial rocks relative to chondrite meteorites has been proposed to be caused by nucleosynthetic anomalies, obscuring early Earth's differentiation history. We use stepwise dissolution of primitive chondrites to quantify nucleosynthetic contributions on the composition of chondrites. After correction for nucleosynthetic anomalies, Earth and the silicate parts of differentiated planetesimals contain resolved excesses of 142Nd relative to chondrites. We conclude that only collisional erosion of primordial crusts can explain such compositions. This process associated with planetary accretion must have produced substantial loss of incompatible elements, including long-term heat-producing elements such as uranium, thorium, and potassium.
Collapse
Affiliation(s)
- Paul Frossard
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France.,Institute of Geochemistry and Petrology, ETH Zürich, Zürich, Switzerland
| | - Claudine Israel
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France
| | - Audrey Bouvier
- Bayerisches Geoinstitut, Universität Bayreuth, 95447 Bayreuth, Germany.,Department of Earth Sciences, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Maud Boyet
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France
| |
Collapse
|
9
|
Abstract
Due to active plate tectonics, there are no direct rock archives covering the first ca. 500 million y of Earth’s history. Therefore, insights into Hadean geodynamics rely on indirect observations from geochemistry. We present a high-precision 182W dataset for rocks from the Kaapvaal Craton, southern Africa, revealing the presence of Hadean protocrustal remnants in Earth’s mantle. This has broad implications for geochemists, geophysicists, and modelers, as it bridges contrasting 182W isotope patterns in Archean and modern mantle-derived rocks. The data reveal the origin of seismically and isotopically anomalous domains in the deep mantle and also provide firm evidence for the operation of silicate differentiation processes during the first 60 million y of Earth’s history. With plate tectonics operating on Earth, the preservation potential for mantle reservoirs from the Hadean Eon (>4.0 Ga) has been regarded as very small. The quest for such early remnants has been spurred by the observation that many Archean rocks exhibit excesses of 182W, the decay product of short-lived 182Hf. However, it remains speculative whether Archean 182W anomalies and also 182W deficits found in many young ocean island basalts (OIBs) mirror primordial Hadean mantle differentiation or merely variable contributions from older meteorite building blocks delivered to the growing Earth. Here, we present a high-precision 182W isotope dataset for 3.22- to 3.55-Ga-old rocks from the Kaapvaal Craton, southern Africa. In expanding previous work, our study reveals widespread 182W deficits in different rock units from the Kaapvaal Craton and also the discovery of a negative covariation between short-lived 182W and long-lived 176Hf–143Nd–138Ce patterns, a trend of global significance. Among different models, these distinct patterns can be best explained by the presence of recycled mafic restites from Hadean protocrust in the ancient mantle beneath the Kaapvaal Craton. Further, the data provide unambiguous evidence for the operation of silicate differentiation processes on Earth during the lifetime of 182Hf, that is, the first 60 million y after solar system formation. The striking isotopic similarity between recycled protocrust and the low-182W endmember of modern OIBs might also constitute the missing link bridging 182W isotope systematics in Archean and young mantle-derived rocks.
Collapse
|
10
|
Paschek K, Kohler K, Pearce BKD, Lange K, Henning TK, Trapp O, Pudritz RE, Semenov DA. Possible Ribose Synthesis in Carbonaceous Planetesimals. Life (Basel) 2022; 12:404. [PMID: 35330155 PMCID: PMC8955445 DOI: 10.3390/life12030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 12/03/2022] Open
Abstract
The origin of life might be sparked by the polymerization of the first RNA molecules in Darwinian ponds during wet-dry cycles. The key life-building block ribose was found in carbonaceous chondrites. Its exogenous delivery onto the Hadean Earth could be a crucial step toward the emergence of the RNA world. Here, we investigate the formation of ribose through a simplified version of the formose reaction inside carbonaceous chondrite parent bodies. Following up on our previous studies regarding nucleobases with the same coupled physico-chemical model, we calculate the abundance of ribose within planetesimals of different sizes and heating histories. We perform laboratory experiments using catalysts present in carbonaceous chondrites to infer the yield of ribose among all pentoses (5Cs) forming during the formose reaction. These laboratory yields are used to tune our theoretical model that can only predict the total abundance of 5Cs. We found that the calculated abundances of ribose were similar to the ones measured in carbonaceous chondrites. We discuss the possibilities of chemical decomposition and preservation of ribose and derived constraints on time and location in planetesimals. In conclusion, the aqueous formose reaction might produce most of the ribose in carbonaceous chondrites. Together with our previous studies on nucleobases, we found that life-building blocks of the RNA world could be synthesized inside parent bodies and later delivered onto the early Earth.
Collapse
Affiliation(s)
- Klaus Paschek
- Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany; (K.K.); (T.K.H.); (O.T.); (D.A.S.)
| | - Kai Kohler
- Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany; (K.K.); (T.K.H.); (O.T.); (D.A.S.)
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, House F, 81377 Munich, Germany
| | - Ben K. D. Pearce
- Origins Institute, McMaster University, ABB, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada; (B.K.D.P.); (R.E.P.)
- Department of Physics and Astronomy, McMaster University, ABB, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Kevin Lange
- Institute for Theoretical Astrophysics, Center for Astronomy, Heidelberg University, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany;
| | - Thomas K. Henning
- Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany; (K.K.); (T.K.H.); (O.T.); (D.A.S.)
| | - Oliver Trapp
- Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany; (K.K.); (T.K.H.); (O.T.); (D.A.S.)
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, House F, 81377 Munich, Germany
| | - Ralph E. Pudritz
- Origins Institute, McMaster University, ABB, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada; (B.K.D.P.); (R.E.P.)
- Department of Physics and Astronomy, McMaster University, ABB, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
| | - Dmitry A. Semenov
- Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany; (K.K.); (T.K.H.); (O.T.); (D.A.S.)
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, House F, 81377 Munich, Germany
| |
Collapse
|
11
|
Deep-mantle krypton reveals Earth's early accretion of carbonaceous matter. Nature 2021; 600:462-467. [PMID: 34912082 DOI: 10.1038/s41586-021-04092-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/04/2021] [Indexed: 11/09/2022]
Abstract
Establishing when, and from where, carbon, nitrogen and water were delivered to Earth is a fundamental objective in understanding the origin of habitable planets such as Earth. Yet, volatile delivery to Earth remains controversial1-5. Krypton isotopes provide insights on volatile delivery owing to their substantial isotopic variations among sources6-10, although pervasive atmospheric contamination has hampered analytical efforts. Here we present the full suite of krypton isotopes from the deep mantle of the Galápagos and Iceland plumes, which have the most primitive helium, neon and tungsten isotopic compositions11-16. Except for 86Kr, the krypton isotopic compositions are similar to a mixture of chondritic and atmospheric krypton. These results suggest early accretion of carbonaceous material by proto-Earth and rule out any combination of hydrodynamic loss with outgassing of the deep or shallow mantle to explain atmospheric noble gases. Unexpectedly, the deep-mantle sources have a deficit in the neutron-rich 86Kr relative to the average composition of carbonaceous meteorites, which suggests a nucleosynthetic anomaly. Although the relative depletion of neutron-rich isotopes on Earth compared with carbonaceous meteorites has been documented for a range of refractory elements1,17,18, our observations suggest such a depletion for a volatile element. This finding indicates that accretion of volatile and refractory elements occurred simultaneously, with krypton recording concomitant accretion of non-solar volatiles from more than one type of material, possibly including outer Solar System planetesimals.
Collapse
|
12
|
Worsham EA, Kleine T. Late accretionary history of Earth and Moon preserved in lunar impactites. SCIENCE ADVANCES 2021; 7:eabh2837. [PMID: 34714676 PMCID: PMC8555905 DOI: 10.1126/sciadv.abh2837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Late accretion describes the final addition of Earth’s mass following Moon formation and includes a period of Late Heavy Bombardment (LHB), which occurred either as a short-lived cataclysm triggered by a late giant planet orbital instability or a declining bombardment during late accretion. Using genetically characteristic ruthenium and molybdenum isotope compositions of lunar impact–derived rocks, we show that the impactors during the LHB and the entire period of late accretion were the same type of bodies and that they originated in the terrestrial planet region. Because a cataclysmic LHB would have, in part, resulted in compositionally distinct projectiles, we conclude that the LHB reflects the tail end of accretion. This implies that the giant planet orbital instability occurred during the main phase of planet formation. Last, because of their inner solar system origin, late-accreted bodies cannot be the primary source of Earth’s water.
Collapse
Affiliation(s)
- Emily A. Worsham
- Institut für Planetologie, University of Münster, Wilhelm-Klemm-Str. 10, Münster 48149, Germany
| | - Thorsten Kleine
- Institut für Planetologie, University of Münster, Wilhelm-Klemm-Str. 10, Münster 48149, Germany
| |
Collapse
|
13
|
Sakuraba H, Kurokawa H, Genda H, Ohta K. Numerous chondritic impactors and oxidized magma ocean set Earth's volatile depletion. Sci Rep 2021; 11:20894. [PMID: 34686749 PMCID: PMC8536732 DOI: 10.1038/s41598-021-99240-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/22/2021] [Indexed: 11/22/2022] Open
Abstract
Earth’s surface environment is largely influenced by its budget of major volatile elements: carbon (C), nitrogen (N), and hydrogen (H). Although the volatiles on Earth are thought to have been delivered by chondritic materials, the elemental composition of the bulk silicate Earth (BSE) shows depletion in the order of N, C, and H. Previous studies have concluded that non-chondritic materials are needed for this depletion pattern. Here, we model the evolution of the volatile abundances in the atmosphere, oceans, crust, mantle, and core through the accretion history by considering elemental partitioning and impact erosion. We show that the BSE depletion pattern can be reproduced from continuous accretion of chondritic bodies by the partitioning of C into the core and H storage in the magma ocean in the main accretion stage and atmospheric erosion of N in the late accretion stage. This scenario requires a relatively oxidized magma ocean (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\log _{10} f_{{\mathrm{O}}_2}$$\end{document}log10fO2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gtrsim$$\end{document}≳\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{IW}}$$\end{document}IW\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$-2$$\end{document}-2, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f_{{\mathrm{O}}_2}$$\end{document}fO2 is the oxygen fugacity, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm{IW}$$\end{document}IW is \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\log _{10} f_{{\mathrm{O}}_2}^{\mathrm{IW}}$$\end{document}log10fO2IW, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f_{{\mathrm{O}}_2}^{\mathrm{IW}}$$\end{document}fO2IW is \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f_{{\mathrm{O}}_2}$$\end{document}fO2 at the iron-wüstite buffer), the dominance of small impactors in the late accretion, and the storage of H and C in oceanic water and carbonate rocks in the late accretion stage, all of which are naturally expected from the formation of an Earth-sized planet in the habitable zone.
Collapse
Affiliation(s)
- Haruka Sakuraba
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan.
| | - Hiroyuki Kurokawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Hidenori Genda
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Kenji Ohta
- Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
14
|
Suer TA, Siebert J, Remusat L, Day JMD, Borensztajn S, Doisneau B, Fiquet G. Reconciling metal-silicate partitioning and late accretion in the Earth. Nat Commun 2021; 12:2913. [PMID: 34006864 PMCID: PMC8131616 DOI: 10.1038/s41467-021-23137-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/30/2021] [Indexed: 11/09/2022] Open
Abstract
Highly siderophile elements (HSE), including platinum, provide powerful geochemical tools for studying planet formation. Late accretion of chondritic components to Earth after core formation has been invoked as the main source of mantle HSE. However, core formation could also have contributed to the mantle's HSE content. Here we present measurements of platinum metal-silicate partitioning coefficients, obtained from laser-heated diamond anvil cell experiments, which demonstrate that platinum partitioning into metal is lower at high pressures and temperatures. Consequently, the mantle was likely enriched in platinum immediately following core-mantle differentiation. Core formation models that incorporate these results and simultaneously account for collateral geochemical constraints, lead to excess platinum in the mantle. A subsequent process such as iron exsolution or sulfide segregation is therefore required to remove excess platinum and to explain the mantle's modern HSE signature. A vestige of this platinum-enriched mantle can potentially account for 186Os-enriched ocean island basalt lavas.
Collapse
Affiliation(s)
- Terry-Ann Suer
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Museum National d'Histoire Naturelle, Sorbonne Université, Paris, France. .,Department of Earth and Planetary Science, Harvard University, Cambridge, MA, USA.
| | - Julien Siebert
- Institut de Physique du Globe de Paris, UMR CNRS 7154, Paris, France.,Institut Universitaire de France, Paris, France
| | - Laurent Remusat
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Museum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - James M D Day
- Department of Earth and Planetary Science, Harvard University, Cambridge, MA, USA.,Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | | | - Beatrice Doisneau
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Museum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Guillaume Fiquet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Museum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| |
Collapse
|
15
|
Wang SJ, Wang W, Zhu JM, Wu Z, Liu J, Han G, Teng FZ, Huang S, Wu H, Wang Y, Wu G, Li W. Nickel isotopic evidence for late-stage accretion of Mercury-like differentiated planetary embryos. Nat Commun 2021; 12:294. [PMID: 33436633 PMCID: PMC7803775 DOI: 10.1038/s41467-020-20525-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/30/2020] [Indexed: 11/09/2022] Open
Abstract
Earth's habitability is closely tied to its late-stage accretion, during which impactors delivered the majority of life-essential volatiles. However, the nature of these final building blocks remains poorly constrained. Nickel (Ni) can be a useful tracer in characterizing this accretion as most Ni in the bulk silicate Earth (BSE) comes from the late-stage impactors. Here, we apply Ni stable isotope analysis to a large number of meteorites and terrestrial rocks, and find that the BSE has a lighter Ni isotopic composition compared to chondrites. Using first-principles calculations based on density functional theory, we show that core-mantle differentiation cannot produce the observed light Ni isotopic composition of the BSE. Rather, the sub-chondritic Ni isotopic signature was established during Earth's late-stage accretion, probably through the Moon-forming giant impact. We propose that a highly reduced sulfide-rich, Mercury-like body, whose mantle is characterized by light Ni isotopic composition, collided with and merged into the proto-Earth during the Moon-forming giant impact, producing the sub-chondritic Ni isotopic signature of the BSE, while delivering sulfur and probably other volatiles to the Earth.
Collapse
Affiliation(s)
- Shui-Jiong Wang
- State Key Laboratory of Geological Processes and Minerals Resources, China University of Geosciences, Beijing, 100083, China.
| | - Wenzhong Wang
- Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China.,Department of Earth Sciences, University College London, London, WC1E 6BT, UK.,CAS Center for Excellence in Comparative Planetology, USTC, Hefei, China
| | - Jian-Ming Zhu
- State Key Laboratory of Geological Processes and Minerals Resources, China University of Geosciences, Beijing, 100083, China
| | - Zhongqing Wu
- Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China.,CAS Center for Excellence in Comparative Planetology, USTC, Hefei, China
| | - Jingao Liu
- State Key Laboratory of Geological Processes and Minerals Resources, China University of Geosciences, Beijing, 100083, China
| | - Guilin Han
- State Key Laboratory of Geological Processes and Minerals Resources, China University of Geosciences, Beijing, 100083, China
| | - Fang-Zhen Teng
- Isotope Laboratory, Department of Earth and Space Science, University of Washington, Seattle, WA, 98195, USA
| | - Shichun Huang
- Department of Geoscience, University of Nevada, Las Vegas, NV, 89154, USA
| | - Hongjie Wu
- State Key Laboratory of Geological Processes and Minerals Resources, China University of Geosciences, Beijing, 100083, China
| | - Yujian Wang
- State Key Laboratory of Geological Processes and Minerals Resources, China University of Geosciences, Beijing, 100083, China
| | - Guangliang Wu
- State Key Laboratory of Geological Processes and Minerals Resources, China University of Geosciences, Beijing, 100083, China
| | - Weihan Li
- State Key Laboratory of Geological Processes and Minerals Resources, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
16
|
Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling. Proc Natl Acad Sci U S A 2020; 117:30993-31001. [PMID: 33229590 DOI: 10.1073/pnas.2009663117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rare high-3He/4He signatures in ocean island basalts (OIB) erupted at volcanic hotspots derive from deep-seated domains preserved in Earth's interior. Only high-3He/4He OIB exhibit anomalous 182W-an isotopic signature inherited during the earliest history of Earth-supporting an ancient origin of high 3He/4He. However, it is not understood why some OIB host anomalous 182W while others do not. We provide geochemical data for the highest-3He/4He lavas from Iceland (up to 42.9 times atmospheric) with anomalous 182W and examine how Sr-Nd-Hf-Pb isotopic variations-useful for tracing subducted, recycled crust-relate to high 3He/4He and anomalous 182W. These data, together with data on global OIB, show that the highest-3He/4He and the largest-magnitude 182W anomalies are found only in geochemically depleted mantle domains-with high 143Nd/144Nd and low 206Pb/204Pb-lacking strong signatures of recycled materials. In contrast, OIB with the strongest signatures associated with recycled materials have low 3He/4He and lack anomalous 182W. These observations provide important clues regarding the survival of the ancient He and W signatures in Earth's mantle. We show that high-3He/4He mantle domains with anomalous 182W have low W and 4He concentrations compared to recycled materials and are therefore highly susceptible to being overprinted with low 3He/4He and normal (not anomalous) 182W characteristic of subducted crust. Thus, high 3He/4He and anomalous 182W are preserved exclusively in mantle domains least modified by recycled crust. This model places the long-term preservation of ancient high 3He/4He and anomalous 182W in the geodynamic context of crustal subduction and recycling and informs on survival of other early-formed heterogeneities in Earth's interior.
Collapse
|
17
|
Sossi PA, Burnham AD, Badro J, Lanzirotti A, Newville M, O'Neill HSC. Redox state of Earth's magma ocean and its Venus-like early atmosphere. SCIENCE ADVANCES 2020; 6:6/48/eabd1387. [PMID: 33239296 PMCID: PMC7688334 DOI: 10.1126/sciadv.abd1387] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/07/2020] [Indexed: 05/24/2023]
Abstract
Exchange between a magma ocean and vapor produced Earth's earliest atmosphere. Its speciation depends on the oxygen fugacity (fO2) set by the Fe3+/Fe2+ ratio of the magma ocean at its surface. Here, we establish the relationship between fO2 and Fe3+/Fe2+ in quenched liquids of silicate Earth-like composition at 2173 K and 1 bar. Mantle-derived rocks have Fe3+/(Fe3++Fe2+) = 0.037 ± 0.005, at which the magma ocean defines an fO2 0.5 log units above the iron-wüstite buffer. At this fO2, the solubilities of H-C-N-O species in the magma ocean produce a CO-rich atmosphere. Cooling and condensation of H2O would have led to a prebiotic terrestrial atmosphere composed of CO2-N2, in proportions and at pressures akin to those observed on Venus. Present-day differences between Earth's atmosphere and those of her planetary neighbors result from Earth's heliocentric location and mass, which allowed geologically long-lived oceans, in-turn facilitating CO2 drawdown and, eventually, the development of life.
Collapse
Affiliation(s)
- Paolo A Sossi
- Institute of Geochemistry and Petrology, ETH Zürich, Sonneggstrasse 5, CH-8092 Zürich, Switzerland.
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75005 Paris, France
| | - Antony D Burnham
- Research School of Earth Sciences, Australian National University, 61 Mills Rd, 2601 Canberra, Australia
| | - James Badro
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75005 Paris, France
| | - Antonio Lanzirotti
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA
| | - Matt Newville
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, USA
| | - Hugh St C O'Neill
- Research School of Earth Sciences, Australian National University, 61 Mills Rd, 2601 Canberra, Australia
| |
Collapse
|
18
|
|