1
|
Seibel J, Anggara K, Delbianco M, Rauschenbach S. Scanning Probe Microscopy Characterization of Biomolecules enabled by Mass-Selective, Soft-landing Electrospray Ion Beam Deposition. Chemphyschem 2024; 25:e202400419. [PMID: 38945838 DOI: 10.1002/cphc.202400419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Scanning probe microscopy (SPM), in particular at low temperature (LT) under ultra-high vacuum (UHV) conditions, offers the possibility of real-space imaging with resolution reaching the atomic level. However, its potential for the analysis of complex biological molecules has been hampered by requirements imposed by sample preparation. Transferring molecules onto surfaces in UHV is typically accomplished by thermal sublimation in vacuum. This approach however is limited by the thermal stability of the molecules, i. e. not possible for biological molecules with low vapour pressure. Bypassing this limitation, electrospray ionisation offers an alternative method to transfer molecules from solution to the gas-phase as intact molecular ions. In soft-landing electrospray ion beam deposition (ESIBD), these molecular ions are subsequently mass-selected and gently landed on surfaces which permits large and thermally fragile molecules to be analyzed by LT-UHV SPM. In this concept, we discuss how ESIBD+SPM prepares samples of complex biological molecules at a surface, offering controls of the molecular structural integrity, three-dimensional shape, and purity. These achievements unlock the analytical potential of SPM which is showcased by imaging proteins, peptides, DNA, glycans, and conjugates of these molecules, revealing details of their connectivity, conformation, and interaction that could not be accessed by any other technique.
Collapse
Affiliation(s)
- Johannes Seibel
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Fritz-Haber Weg 2, D-76131, Karlsruhe, Germany
| | - Kelvin Anggara
- Nanoscale Science Department, Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569, Stuttgart, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476, Potsdam, Germany
| | | |
Collapse
|
2
|
Grabarics M, Mallada B, Edalatmanesh S, Jiménez-Martín A, Pykal M, Ondráček M, Kührová P, Struwe WB, Banáš P, Rauschenbach S, Jelínek P, de la Torre B. Atomically resolved imaging of the conformations and adsorption geometries of individual β-cyclodextrins with non-contact AFM. Nat Commun 2024; 15:9482. [PMID: 39488518 PMCID: PMC11531514 DOI: 10.1038/s41467-024-53555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024] Open
Abstract
Glycans, consisting of covalently linked sugar units, are a major class of biopolymers essential to all known living organisms. To better understand their biological functions and further applications in fields from biomedicine to materials science, detailed knowledge of their structure is essential. However, due to the extraordinary complexity and conformational flexibility of glycans, state-of-the-art glycan analysis methods often fail to provide structural information with atomic precision. Here, we combine electrospray deposition in ultra-high vacuum with non-contact atomic force microscopy and theoretical calculations to unravel the structure of β-cyclodextrin, a cyclic glucose oligomer, with atomic-scale detail. Our results, established on the single-molecule level, reveal the different adsorption geometries and conformations of β-cyclodextrin. The position of individual hydroxy groups and the location of the stabilizing intramolecular H-bonds are deduced from atomically resolved images, enabling the unambiguous assignment of the molecular structure and demonstrating the potential of the method for glycan analysis.
Collapse
Affiliation(s)
- Márkó Grabarics
- Department of Chemistry, University of Oxford, OX1 3QU, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, OX1 3QU, Oxford, UK
| | - Benjamín Mallada
- Institute of Physics, Czech Academy of Sciences, 16200, Prague, Czech Republic
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic
| | - Shayan Edalatmanesh
- Institute of Physics, Czech Academy of Sciences, 16200, Prague, Czech Republic
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic
| | - Alejandro Jiménez-Martín
- Institute of Physics, Czech Academy of Sciences, 16200, Prague, Czech Republic
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, 115 19, Prague, Czech Republic
| | - Martin Pykal
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic
| | - Martin Ondráček
- Institute of Physics, Czech Academy of Sciences, 16200, Prague, Czech Republic
| | - Petra Kührová
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic
| | - Weston B Struwe
- Kavli Institute for Nanoscience Discovery, University of Oxford, OX1 3QU, Oxford, UK
- Department of Biochemistry, University of Oxford, OX1 3QU, Oxford, UK
| | - Pavel Banáš
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic.
| | - Stephan Rauschenbach
- Department of Chemistry, University of Oxford, OX1 3QU, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, OX1 3QU, Oxford, UK.
| | - Pavel Jelínek
- Institute of Physics, Czech Academy of Sciences, 16200, Prague, Czech Republic.
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic.
| | - Bruno de la Torre
- Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic.
- Nanomaterials and Nanotechnology Research Center, CSIC-UNIOVI-PA, 33940, El Entrego, Spain.
| |
Collapse
|
3
|
Ives CM, Singh O, D'Andrea S, Fogarty CA, Harbison AM, Satheesan A, Tropea B, Fadda E. Restoring protein glycosylation with GlycoShape. Nat Methods 2024; 21:2117-2127. [PMID: 39402214 PMCID: PMC11541215 DOI: 10.1038/s41592-024-02464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024]
Abstract
Despite ground-breaking innovations in experimental structural biology and protein structure prediction techniques, capturing the structure of the glycans that functionalize proteins remains a challenge. Here we introduce GlycoShape ( https://glycoshape.org ), an open-access glycan structure database and toolbox designed to restore glycoproteins to their native and functional form in seconds. The GlycoShape database counts over 500 unique glycans so far, covering the human glycome and augmented by elements from a wide range of organisms, obtained from 1 ms of cumulative sampling from molecular dynamics simulations. These structures can be linked to proteins with a robust algorithm named Re-Glyco, directly compatible with structural data in open-access repositories, such as the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) and AlphaFold Protein Structure Database, or own. The quality, performance and broad applicability of GlycoShape is demonstrated by its ability to predict N-glycosylation occupancy, scoring a 93% agreement with experiment, based on screening all proteins in the PDB with a corresponding glycoproteomics profile, for a total of 4,259 N-glycosylation sequons.
Collapse
Affiliation(s)
- Callum M Ives
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Ojas Singh
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Silvia D'Andrea
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | - Carl A Fogarty
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | | | | | | | - Elisa Fadda
- School of Biological Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
4
|
Chen Q, He L, Liu X, Zhu Z, Bai Y, Zhu Y, Liu J, Zhou X, Wu K. An ion soft-landing apparatus for ion transport study with surface potential measurement. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:105118. [PMID: 39436165 DOI: 10.1063/5.0228896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
An apparatus for explorations of ion transport in a medium and across an interface has been constructed. The ion soft-landing technique is used to deposit low-energy ions onto a pre-adsorbed medium layer on a metal substrate. The designed low-energy ion source can produce a mass-filtered ion beam with tens of nanoampere from solid sources such as bulk metals and salts. The kinetic energy of the ion beam can be lower than 1.0 eV, enabling the ions to be soft-landed onto the medium at the surface. A Kelvin probe with a resolution of less than 32 mV is incorporated to measure the surface potential (SP) variation of the ion-landed sample to monitor the ion transport process in the medium. Temperature-programmed SP measurements on an Ag+-adsorbed ice film prepared on Pt(111) reveal that the temperature threshold for the Ag+-induced SP change of the ice film is about 110 K. The apparatus performance demonstrates its potential in studies of ion transport and related phenomena at both macroscopic and microscopic levels.
Collapse
Affiliation(s)
- Qiwei Chen
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Liluo He
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xianzheng Liu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhen Zhu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuchen Bai
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yifan Zhu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jing Liu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiong Zhou
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Yin B, Xie W, Fang S, He S, Ma W, Liang L, Yin Y, Zhou D, Wang Z, Wang D. Research Progress on Saccharide Molecule Detection Based on Nanopores. SENSORS (BASEL, SWITZERLAND) 2024; 24:5442. [PMID: 39205136 PMCID: PMC11360570 DOI: 10.3390/s24165442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Saccharides, being one of the fundamental molecules of life, play essential roles in the physiological and pathological functions of cells. However, their intricate structures pose challenges for detection. Nanopore technology, with its high sensitivity and capability for single-molecule-level analysis, has revolutionized the identification and structural analysis of saccharide molecules. This review focuses on recent advancements in nanopore technology for carbohydrate detection, presenting an array of methods that leverage the molecular complexity of saccharides. Biological nanopore techniques utilize specific protein binding or pore modifications to trigger typical resistive pulses, enabling the high-sensitivity detection of monosaccharides and oligosaccharides. In solid-state nanopore sensing, boronic acid modification and pH gating mechanisms are employed for the specific recognition and quantitative analysis of polysaccharides. The integration of artificial intelligence algorithms can further enhance the accuracy and reliability of analyses. Serving as a crucial tool in carbohydrate detection, we foresee significant potential in the application of nanopore technology for the detection of carbohydrate molecules in disease diagnosis, drug screening, and biosensing, fostering innovative progress in related research domains.
Collapse
Affiliation(s)
- Bohua Yin
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; (B.Y.); (Z.W.)
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Wanyi Xie
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Shaoxi Fang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Shixuan He
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Wenhao Ma
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400714, China
| | - Liyuan Liang
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Yajie Yin
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Daming Zhou
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; (B.Y.); (Z.W.)
| | - Deqiang Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China; (B.Y.); (Z.W.)
- Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, China
| |
Collapse
|
6
|
Mallada B, Villalobos F, Donoso B, Casares R, Longhi G, Mendieta-Moreno JI, Jiménez-Martín A, Haïdour A, Seepersaud R, Rajagopal L, de la Torre B, Millán A, Cuerva JM. Single-Molecule Identification of the Isomers of a Lipidic Antibody Activator. J Phys Chem Lett 2024; 15:6935-6942. [PMID: 38935930 PMCID: PMC11247479 DOI: 10.1021/acs.jpclett.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/29/2024] [Accepted: 05/03/2024] [Indexed: 06/29/2024]
Abstract
Molecular structural elucidation can be accomplished by different techniques, such as nuclear magnetic resonance or X-ray diffraction. However, the former does not give information about the three-dimensional atomic arrangement, and the latter needs crystallizable solid samples. An alternative is direct, real-space visualization of the molecules by cryogenic scanning tunneling microscopy (STM). This technique is usually limited to thermally robust molecules because an annealing step is required for sample deposition. A landmark development has been the coupling of STM with electrospray deposition (ESD), which smooths the process and widens the scope of the visualization technique. In this work, we present the on-surface characterization of air-, light-, and temperature-sensitive rhamnopolyene with relevance in molecular biology. Supported by theoretical calculations, we characterize two isomers of this flexible molecule, confirming the potential of the technique to inspect labile, non-crystallizable compounds.
Collapse
Affiliation(s)
- Benjamin Mallada
- Institute
of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, 78371 Olomouc, Czech Republic
| | - Federico Villalobos
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a la Biomedicina y Medioambiente, C. U. Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| | - Beatriz Donoso
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a la Biomedicina y Medioambiente, C. U. Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| | - Raquel Casares
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a la Biomedicina y Medioambiente, C. U. Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| | - Giovanna Longhi
- Dipartimento
di Medicina Molecolare e Traslazionale, Universitá di Brescia, Viale Europa 11, 25121 Brescia, Italy
| | - Jesús I. Mendieta-Moreno
- Instituto
de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | - Alejandro Jiménez-Martín
- Institute
of Physics, Czech Academy of Sciences, 16200 Prague, Czech Republic
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, 78371 Olomouc, Czech Republic
- Faculty
of Nuclear Sciences and Physical Engineering, Czech Technical University, 11519 Prague, Czech
Republic
| | - Ali Haïdour
- Unidad
de Resonancia Magnética Nuclear, Centro de Instrumentación
Científica, Universidad de Granada, Paseo Juan Osorio s/n, 18071 Granada, Spain
| | - Ravin Seepersaud
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
| | - Lakshmi Rajagopal
- Center
for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington 98109, United States
- Department
of Global Health, University of Washington, Seattle, Washington 98105, United States
- Department
of Pediatrics, University of Washington, Seattle, Washington 98105, United States
| | - Bruno de la Torre
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, 78371 Olomouc, Czech Republic
| | - Alba Millán
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a la Biomedicina y Medioambiente, C. U. Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| | - Juan M. Cuerva
- Departamento
de Química Orgánica, Unidad de Excelencia de Química
Aplicada a la Biomedicina y Medioambiente, C. U. Fuentenueva, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
7
|
Haixia Z, Xijuan Y, Yongxin S, Guochao G, Qiao W, Li C, Zhiguang C. Analysis of the relationship between starch molecular conformation and enzymatic hydrolysis efficiency. Int J Biol Macromol 2024; 271:132570. [PMID: 38782316 DOI: 10.1016/j.ijbiomac.2024.132570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/12/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Resistant starch (RS) is important in controlling diabetes. The primary objective of this study is to examine the impact of molecular conformation on the enzymatic hydrolysis efficiency of starch by α-amylase. And the interactions between starch molecules with different conformations and α-amylase were analysed by using molecule dynamics simulation and molecular docking. It was found, the natural conformational starch molecule was hydrolysed from the middle of the starch chain by α-amylase, producing polysaccharides. The bent PS-conformational starch molecules with multiple O2-O3 intramolecular hydrogen bonds produced by high-pressure was hydrolysed from the head of the starch chain to produce glucose, which is not conducive to RS formation. The stretched H-conformation without intramolecular hydrogen bonds produced by heat treatment was not hydrolysed by α-amylase. However, it occupied the active groove and formed strong interactions with α-amylase, which prevented other starch molecules from binding to α-amylase, thus reducing hydrolysis efficiency. Moreover, the total interaction energies between the three starch molecules and α-amylase were approximately 78 kJ/mol. And several hydrogen bonds were formed between the starch molecules and α-amylase, which provides evidence for the continuous sliding hydrolysis hypothesis of α-amylase. Moreover, these results provide an important reference for elucidating the mechanism of RS formation.
Collapse
Affiliation(s)
- Zhong Haixia
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Sciences, Xichang University, Xichang, Sichuan Province 615000, China; Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai Province 810016, China
| | - Yang Xijuan
- Qinghai Tibetan Plateau Key Laboratory of Agricultural Product Processing, Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai Province 810016, China
| | - She Yongxin
- Institute of Quality Standard and Testing Technology for Agro-products of CAAS, Beijing 100080, China
| | - Gan Guochao
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Sciences, Xichang University, Xichang, Sichuan Province 615000, China
| | - Wen Qiao
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Sciences, Xichang University, Xichang, Sichuan Province 615000, China
| | - Chen Li
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Sciences, Xichang University, Xichang, Sichuan Province 615000, China
| | - Chen Zhiguang
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Sciences, Xichang University, Xichang, Sichuan Province 615000, China.
| |
Collapse
|
8
|
Zviagin A, Boyarkin OV. Ion Spectroscopy Reveals Structural Difference for Proteins Microhydrated by Retention and Condensation of Water. J Phys Chem A 2024. [PMID: 38489273 DOI: 10.1021/acs.jpca.4c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Protein ubiquitin in its +7 charge state microhydrated by 5 and 10 water molecules has been interrogated in the gas phase by cold ion UV/IR spectroscopy. The complexes were formed either by condensing water onto the unfolded bare proteins in a temperature-controlled ion trap or by incomplete dehydration of the folded proteins. In the case of cryogenic condensation, the UV spectra of the complexes exhibit a resolved vibrational structure, which looks similar to the spectrum of bare unfolded ubiquitin. The spectra become, however, broad-band with no structure when complexes of the same size are produced by incomplete dehydration under soft conditions of electrospray ionization. We attribute this spectroscopic dissimilarity to the structural difference of the protein: condensing a few water molecules cannot refold the gas-phase structure of the bare ubiquitin, while the retained water preserves its solution-like folded motif through evaporative cooling. This assessment is firmly confirmed by IR spectroscopy, which reveals the presence of free NH and carboxylic OH stretching vibrations only in the complexes with condensed water.
Collapse
Affiliation(s)
- Andrei Zviagin
- SCI-SB-RB Group, ISIC, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Oleg V Boyarkin
- SCI-SB-RB Group, ISIC, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Lee JY, Li A, Prabhakaran V, Zhang X, Harrilal CPP, Kovarik L, Ibrahim YM, Smith RD, Garimella SV. Mobility Selective Ion Soft-Landing and Characterization Enabled Using Structures for Lossless Ion Manipulation. Anal Chem 2024; 96:3373-3381. [PMID: 38345945 PMCID: PMC11191849 DOI: 10.1021/acs.analchem.3c04328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
While conventional ion-soft landing uses the mass-to-charge (m/z) ratio to achieve molecular selection for deposition, here we demonstrate the use of Structures for Lossless Ion Manipulation (SLIM) for mobility-based ion selection and deposition. The dynamic rerouting capabilities of SLIM were leveraged to enable the rerouting of a selected range of mobilities to a different SLIM path (rather than MS) that terminated at a deposition surface. A selected mobility range from a phosphazene ion mixture was rerouted and deposited with a current pulse (∼150 pA) resembling its mobility peak. In addition, from a mixture of tetra-alkyl ammonium (TAA) ions containing chain lengths of C5-C8, selected chains (C6, C7) were collected on a surface, reconstituted into solution-phase, and subsequently analyzed with a SLIM-qToF to obtain an IMS/MS spectrum, confirming the identity of the selected species. Further, this method was used to characterize triply charged tungsten-polyoxometalate anions, PW12O403- (WPOM). The arrival time distribution of the IMS/MS showed multiple peaks associated with the triply charged anion (PW12O403-), of which a selected ATD was deposited and imaged using TEM. Additionally, the identity of the deposited WPOM was ascertained using energy-dispersive (EDS) spectroscopy. Further, we present theory and computations that reveal ion landing energies, the ability to modulate the energies, and deposition spot sizes.
Collapse
Affiliation(s)
- Jung Y. Lee
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| | - Ailin Li
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| | | | - Xin Zhang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| | | | - Libor Kovarik
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| | - Yehia M. Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| | - Sandilya V.B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA, 99354
| |
Collapse
|
10
|
Delbianco M, Ogawa Y. Visualizing the structural diversity of glycoconjugates. Nat Chem Biol 2024; 20:11-12. [PMID: 38092986 DOI: 10.1038/s41589-023-01502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Affiliation(s)
- Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | - Yu Ogawa
- Univ. Grenoble Alpes, CNRS, CERMAV, Grenoble, France.
| |
Collapse
|
11
|
Wu X, Borca B, Sen S, Koslowski S, Abb S, Rosenblatt DP, Gallardo A, Mendieta-Moreno JI, Nachtigall M, Jelinek P, Rauschenbach S, Kern K, Schlickum U. Molecular sensitised probe for amino acid recognition within peptide sequences. Nat Commun 2023; 14:8335. [PMID: 38097575 PMCID: PMC10721870 DOI: 10.1038/s41467-023-43844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
The combination of low-temperature scanning tunnelling microscopy with a mass-selective electro-spray ion-beam deposition established the investigation of large biomolecules at nanometer and sub-nanometer scale. Due to complex architecture and conformational freedom, however, the chemical identification of building blocks of these biopolymers often relies on the presence of markers, extensive simulations, or is not possible at all. Here, we present a molecular probe-sensitisation approach addressing the identification of a specific amino acid within different peptides. A selective intermolecular interaction between the sensitiser attached at the tip-apex and the target amino acid on the surface induces an enhanced tunnelling conductance of one specific spectral feature, which can be mapped in spectroscopic imaging. Density functional theory calculations suggest a mechanism that relies on conformational changes of the sensitiser that are accompanied by local charge redistributions in the tunnelling junction, which, in turn, lower the tunnelling barrier at that specific part of the peptide.
Collapse
Affiliation(s)
- Xu Wu
- Max Planck Institute for Solid State Research, Stuttgart, Germany
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, 100081, China
| | - Bogdana Borca
- Institute of Applied Physics and Laboratory for Emerging Nanometrology, Technische Universität Braunschweig, 38104, Braunschweig, Germany
- National Institute of Materials Physics, 077125, Magurele, Romania
| | - Suman Sen
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | | | - Sabine Abb
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | | | - Aurelio Gallardo
- Institute of Physics of the Czech Academy of Science, Prague, Czech Republic
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | | | - Matyas Nachtigall
- Institute of Physics of the Czech Academy of Science, Prague, Czech Republic
| | - Pavel Jelinek
- Institute of Physics of the Czech Academy of Science, Prague, Czech Republic.
| | - Stephan Rauschenbach
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
- Department of Chemistry, University of Oxford, Oxford, UK.
| | - Klaus Kern
- Max Planck Institute for Solid State Research, Stuttgart, Germany
- Institut de Physique, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Uta Schlickum
- Max Planck Institute for Solid State Research, Stuttgart, Germany.
- Institute of Applied Physics and Laboratory for Emerging Nanometrology, Technische Universität Braunschweig, 38104, Braunschweig, Germany.
| |
Collapse
|
12
|
Abstract
The structural complexity of glycans poses a serious challenge in the chemical synthesis of glycosides, oligosaccharides and glycoconjugates. Glycan complexity, determined by composition, connectivity, and configuration far exceeds what nature achieves with nucleic acids and proteins. Consequently, glycoside synthesis ranks among the most complex tasks in organic synthesis, despite involving only a simple type of bond-forming reaction. Here, we introduce the fundamental principles of glycoside bond formation and summarize recent advances in glycoside bond formation and oligosaccharide synthesis.
Collapse
Affiliation(s)
- Conor J Crawford
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
13
|
Anggara K, Sršan L, Jaroentomeechai T, Wu X, Rauschenbach S, Narimatsu Y, Clausen H, Ziegler T, Miller RL, Kern K. Direct observation of glycans bonded to proteins and lipids at the single-molecule level. Science 2023; 382:219-223. [PMID: 37824645 PMCID: PMC7615228 DOI: 10.1126/science.adh3856] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023]
Abstract
Proteins and lipids decorated with glycans are found throughout biological entities, playing roles in biological functions and dysfunctions. Current analytical strategies for these glycan-decorated biomolecules, termed glycoconjugates, rely on ensemble-averaged methods that do not provide a full view of positions and structures of glycans attached at individual sites in a given molecule, especially for glycoproteins. We show single-molecule analysis of glycoconjugates by direct imaging of individual glycoconjugate molecules using low-temperature scanning tunneling microscopy. Intact glycoconjugate ions from electrospray are soft-landed on a surface for their direct single-molecule imaging. The submolecular imaging resolution corroborated by quantum mechanical modeling unveils whole structures and attachment sites of glycans in glycopeptides, glycolipids, N-glycoproteins, and O-glycoproteins densely decorated with glycans.
Collapse
Affiliation(s)
- Kelvin Anggara
- Max-Planck Institute for Solid-State Research; Stuttgart, DE-70569, Germany
| | - Laura Sršan
- Institute of Organic Chemistry, University of Tübingen; Tübingen, DE-72076, Germany
| | - Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen; Copenhagen, DK-2200, Denmark
| | - Xu Wu
- Max-Planck Institute for Solid-State Research; Stuttgart, DE-70569, Germany
| | - Stephan Rauschenbach
- Max-Planck Institute for Solid-State Research; Stuttgart, DE-70569, Germany
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford; Oxford, OX1 3TA, United Kingdom
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen; Copenhagen, DK-2200, Denmark
- GlycoDisplay ApS, Copenhagen, DK-2200, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen; Copenhagen, DK-2200, Denmark
| | - Thomas Ziegler
- Institute of Organic Chemistry, University of Tübingen; Tübingen, DE-72076, Germany
| | - Rebecca L. Miller
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen; Copenhagen, DK-2200, Denmark
| | - Klaus Kern
- Max-Planck Institute for Solid-State Research; Stuttgart, DE-70569, Germany
- Institut de Physique, École Polytechnique Fédérale de Lausanne; Lausanne, CH-1015, Switzerland
| |
Collapse
|
14
|
Eisenstein M. Soft-landing methods aim to simplify structural biology. Nature 2023; 622:658-660. [PMID: 37845529 DOI: 10.1038/d41586-023-03236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
|
15
|
Seibel J, Fittolani G, Mirhosseini H, Wu X, Rauschenbach S, Anggara K, Seeberger PH, Delbianco M, Kühne TD, Schlickum U, Kern K. Visualizing Chiral Interactions in Carbohydrates Adsorbed on Au(111) by High-Resolution STM Imaging. Angew Chem Int Ed Engl 2023; 62:e202305733. [PMID: 37522820 DOI: 10.1002/anie.202305733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Carbohydrates are the most abundant organic material on Earth and the structural "material of choice" in many living systems. Nevertheless, design and engineering of synthetic carbohydrate materials presently lag behind that for protein and nucleic acids. Bottom-up engineering of carbohydrate materials demands an atomic-level understanding of their molecular structures and interactions in condensed phases. Here, high-resolution scanning tunneling microscopy (STM) is used to visualize at submolecular resolution the three-dimensional structure of cellulose oligomers assembled on Au(1111) and the interactions that drive their assembly. The STM imaging, supported by ab initio calculations, reveals the orientation of all glycosidic bonds and pyranose rings in the oligomers, as well as details of intermolecular interactions between the oligomers. By comparing the assembly of D- and L-oligomers, these interactions are shown to be enantioselective, capable of driving spontaneous enantioseparation of cellulose chains from its unnatural enantiomer and promoting the formation of engineered carbohydrate assemblies in the condensed phases.
Collapse
Affiliation(s)
- Johannes Seibel
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- Institute of Applied Physics and Laboratory for Emerging Nanometrology, Technische Universität Braunschweig, 38104, Braunschweig, Germany
- Current address: Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | - Giulio Fittolani
- Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
- Institute for Chemistry and Biochemistry, Free University Berlin, 14195, Berlin, Germany
| | - Hossein Mirhosseini
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, 33098, Paderborn, Germany
| | - Xu Wu
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| | - Stephan Rauschenbach
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- Department of Chemistry, University of Oxford, OX13TA, Oxford, UK
| | - Kelvin Anggara
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| | - Peter H Seeberger
- Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
- Institute for Chemistry and Biochemistry, Free University Berlin, 14195, Berlin, Germany
| | - Martina Delbianco
- Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, 33098, Paderborn, Germany
- Center for Advanced Systems Understanding (CASUS) and Helmholtz Zentrum Dresden-Rossendorf, 02826, Görlitz, Germany
| | - Uta Schlickum
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- Institute of Applied Physics and Laboratory for Emerging Nanometrology, Technische Universität Braunschweig, 38104, Braunschweig, Germany
| | - Klaus Kern
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
- Institut de Physique, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
16
|
Neethirajan J, Hache T, Paone D, Pinto D, Denisenko A, Stöhr R, Udvarhelyi P, Pershin A, Gali A, Wrachtrup J, Kern K, Singha A. Controlled Surface Modification to Revive Shallow NV - Centers. NANO LETTERS 2023; 23:2563-2569. [PMID: 36927005 PMCID: PMC10103335 DOI: 10.1021/acs.nanolett.2c04733] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Near-surface negatively charged nitrogen vacancy (NV) centers hold excellent promise for nanoscale magnetic imaging and quantum sensing. However, they often experience charge-state instabilities, leading to strongly reduced fluorescence and NV coherence time, which negatively impact magnetic imaging sensitivity. This occurs even more severely at 4 K and ultrahigh vacuum (UHV, p = 2 × 10-10 mbar). We demonstrate that in situ adsorption of H2O on the diamond surface allows the partial recovery of the shallow NV sensors. Combining these with band-bending calculations, we conclude that controlled surface treatments are essential for implementing NV-based quantum sensing protocols under cryogenic UHV conditions.
Collapse
Affiliation(s)
| | - Toni Hache
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Domenico Paone
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
- 3rd
Institute of Physics and Research Center SCoPE, University of Stuttgart, 70049 Stuttgart, Germany
| | - Dinesh Pinto
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
- Institute
de Physique, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Andrej Denisenko
- 3rd
Institute of Physics and Research Center SCoPE, University of Stuttgart, 70049 Stuttgart, Germany
| | - Rainer Stöhr
- 3rd
Institute of Physics and Research Center SCoPE, University of Stuttgart, 70049 Stuttgart, Germany
| | - Péter Udvarhelyi
- Wigner
Research Centre for Physics, Institute for Solid State Physics and Optics, Budapest, POB 49, H-1525, Hungary
- Department
of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Anton Pershin
- Wigner
Research Centre for Physics, Institute for Solid State Physics and Optics, Budapest, POB 49, H-1525, Hungary
- Department
of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Adam Gali
- Wigner
Research Centre for Physics, Institute for Solid State Physics and Optics, Budapest, POB 49, H-1525, Hungary
- Department
of Atomic Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Joerg Wrachtrup
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
- 3rd
Institute of Physics and Research Center SCoPE, University of Stuttgart, 70049 Stuttgart, Germany
| | - Klaus Kern
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
- Institute
de Physique, École Polytechnique
Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Aparajita Singha
- Max
Planck Institute for Solid State Research, 70569 Stuttgart, Germany
- Center
for
Integrated Quantum Science and Technology IQST, University of Stuttgart, 70049 Stuttgart, Germany
| |
Collapse
|
17
|
Lipton-Duffin J, MacLeod J. Innovations in nanosynthesis: emerging techniques for precision, scalability, and spatial control in reactions of organic molecules on solid surfaces. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:183001. [PMID: 36876935 DOI: 10.1088/1361-648x/acbc01] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The surface science-based approach to synthesising new organic materials on surfaces has gained considerable attention in recent years, owing to its success in facilitating the formation of novel 0D, 1D and 2D architectures. The primary mechanism used to date has been the catalytic transformation of small organic molecules through substrate-enabled reactions. In this Topical Review, we provide an overview of alternate approaches to controlling molecular reactions on surfaces. These approaches include light, electron and ion-initiated reactions, electrospray ionisation deposition-based techniques, collisions of neutral atoms and molecules, and superhydrogenation. We focus on the opportunities afforded by these alternative approaches, in particular where they may offer advantages in terms of selectivity, spatial control or scalability.
Collapse
Affiliation(s)
- Josh Lipton-Duffin
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Australia
- Central Analytical Research Facility, Queensland University of Technology (QUT), Brisbane, Australia
| | - Jennifer MacLeod
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
18
|
Lin MH, Wolf JB, Sletten ET, Cambié D, Danglad-Flores J, Seeberger PH. Enabling Technologies in Carbohydrate Chemistry: Automated Glycan Assembly, Flow Chemistry and Data Science. Chembiochem 2023; 24:e202200607. [PMID: 36382494 DOI: 10.1002/cbic.202200607] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Indexed: 11/17/2022]
Abstract
The synthesis of defined oligosaccharides is a complex task. Several enabling technologies have been introduced in the last two decades to facilitate synthetic access to these valuable biomolecules. In this concept, we describe the technological solutions that have advanced glycochemistry using automated glycan assembly, flow chemistry and data science as examples. We highlight how the synergies between these different technologies can further advance the field, with progress toward the realization of a self-driving lab for glycan synthesis.
Collapse
Affiliation(s)
- Mei-Huei Lin
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Jakob B Wolf
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Eric T Sletten
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Dario Cambié
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - José Danglad-Flores
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
19
|
Biere N, Kreft D, Walhorn V, Schwarzbich S, Glaser T, Anselmetti D. Dinuclear complex-induced DNA melting. J Nanobiotechnology 2023; 21:26. [PMID: 36691056 PMCID: PMC9869567 DOI: 10.1186/s12951-023-01784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
Dinuclear copper complexes have been designed for molecular recognition in order to selectively bind to two neighboring phosphate moieties in the backbone of double strand DNA. Associated biophysical, biochemical and cytotoxic effects on DNA were investigated in previous works, where atomic force microscopy (AFM) in ambient conditions turned out to be a particular valuable asset, since the complexes influence the macromechanical properties and configurations of the strands. To investigate and scrutinize these effects in more depth from a structural point of view, cutting-edge preparation methods and scanning force microscopy under ultra-high vacuum (UHV) conditions were employed to yield submolecular resolution images. DNA strand mechanics and interactions could be resolved on the single base pair level, including the amplified formation of melting bubbles. Even the interaction of singular complex molecules could be observed. To better assess the results, the appearance of treated DNA is also compared to the behavior of untreated DNA in UHV on different substrates. Finally, we present data from a statistical simulation reasoning about the nanomechanics of strand dissociation. This sort of quantitative experimental insights paralleled by statistical simulations impressively shade light on the rationale for strand dissociations of this novel DNA interaction process, that is an important nanomechanistic key and novel approach for the development of new chemotherapeutic agents.
Collapse
Affiliation(s)
- Niklas Biere
- grid.7491.b0000 0001 0944 9128Experimental Biophysics & Applied Nanoscience, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Dennis Kreft
- grid.7491.b0000 0001 0944 9128Experimental Biophysics & Applied Nanoscience, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Volker Walhorn
- grid.7491.b0000 0001 0944 9128Experimental Biophysics & Applied Nanoscience, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Sabrina Schwarzbich
- grid.7491.b0000 0001 0944 9128Lehrstuhl für Anorganische Chemie I, Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Thorsten Glaser
- grid.7491.b0000 0001 0944 9128Lehrstuhl für Anorganische Chemie I, Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| | - Dario Anselmetti
- grid.7491.b0000 0001 0944 9128Experimental Biophysics & Applied Nanoscience, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
20
|
Dal Colle MCS, Fittolani G, Delbianco M. Synthetic Approaches to Break the Chemical Shift Degeneracy of Glycans. Chembiochem 2022; 23:e202200416. [PMID: 36005282 PMCID: PMC10087674 DOI: 10.1002/cbic.202200416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Indexed: 01/25/2023]
Abstract
NMR spectroscopy is the leading technique for determining glycans' three-dimensional structure and dynamic in solution as well as a fundamental tool to study protein-glycan interactions. To overcome the severe chemical shift degeneracy of these compounds, synthetic probes carrying NMR-active nuclei (e. g., 13 C or 19 F) or lanthanide tags have been proposed. These elegant strategies permitted to simplify the complex NMR analysis of unlabeled analogues, shining light on glycans' conformational aspects and interaction with proteins. Here, we highlight some key achievements in the synthesis of specifically labeled glycan probes and their contribution towards the fundamental understanding of glycans.
Collapse
Affiliation(s)
- Marlene C. S. Dal Colle
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Giulio Fittolani
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Martina Delbianco
- Department of Biomolecular SystemsMax-Planck-Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| |
Collapse
|
21
|
Esser TK, Böhning J, Fremdling P, Bharat T, Gault J, Rauschenbach S. Cryo-EM samples of gas-phase purified protein assemblies using native electrospray ion-beam deposition. Faraday Discuss 2022; 240:67-80. [PMID: 36065984 PMCID: PMC9641999 DOI: 10.1039/d2fd00065b] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
An increasing number of studies on biomolecular function indirectly combine mass spectrometry (MS) with imaging techniques such as cryo electron microscopy (cryo-EM). This approach allows information on the homogeneity, stoichiometry, shape, and interactions of native protein complexes to be obtained, complementary to high-resolution protein structures. We have recently demonstrated TEM sample preparation via native electrospray ion-beam deposition (ES-IBD) as a direct link between native MS and cryo-EM. This workflow forms a potential new route to the reliable preparation of homogeneous cryo-EM samples and a better understanding of the relation between native solution-phase and native-like gas-phase structures. However, many aspects of the workflow need to be understood and optimized to obtain performance comparable to that of state-of-the-art cryo-EM. Here, we expand on the previous discussion of key factors by probing the effects of substrate type and deposition energy. We present and discuss micrographs from native ES-IBD samples with amorphous carbon, graphene, and graphene oxide, as well as landing energies in the range between 2 and 150 eV per charge.
Collapse
Affiliation(s)
- Tim K. Esser
- Department of Chemistry, University of OxfordOxfordOX1 3TFUK
| | - Jan Böhning
- Sir William Dunn School of Pathology, University of OxfordSouth Parks RoadOxfordOX1 3REUK
| | - Paul Fremdling
- Department of Chemistry, University of OxfordOxfordOX1 3TFUK
| | - Tanmay Bharat
- Sir William Dunn School of Pathology, University of OxfordSouth Parks RoadOxfordOX1 3REUK,Structural Studies Division, MRC Laboratory of Molecular BiologyFrancis Crick AvenueCambridgeCB2 0QHUK
| | - Joseph Gault
- Department of Chemistry, University of OxfordOxfordOX1 3TFUK
| | - Stephan Rauschenbach
- Department of Chemistry, University of OxfordOxfordOX1 3TFUK,Max Planck Institute for Solid State ResearchHeisenbergstrasse 1StuttgartDE-70569Germany
| |
Collapse
|
22
|
Lageveen‐Kammeijer GSM, Kuster B, Reusch D, Wuhrer M. High sensitivity glycomics in biomedicine. MASS SPECTROMETRY REVIEWS 2022; 41:1014-1039. [PMID: 34494287 PMCID: PMC9788051 DOI: 10.1002/mas.21730] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 05/15/2023]
Abstract
Many analytical challenges in biomedicine arise from the generally high heterogeneity and complexity of glycan- and glycoconjugate-containing samples, which are often only available in minute amounts. Therefore, highly sensitive workflows and detection methods are required. In this review mass spectrometric workflows and detection methods are evaluated for glycans and glycoproteins. Furthermore, glycomic methodologies and innovations that are tailored for enzymatic treatments, chemical derivatization, purification, separation, and detection at high sensitivity are highlighted. The discussion is focused on the analysis of mammalian N-linked and GalNAc-type O-linked glycans.
Collapse
Affiliation(s)
| | - Bernhard Kuster
- Chair for Proteomics and BioanalyticsTechnical University of MunichFreisingGermany
| | - Dietmar Reusch
- Pharma Technical Development EuropeRoche Diagnostics GmbHPenzbergGermany
| | - Manfred Wuhrer
- Leiden University Medical CenterCenter for Proteomics and MetabolomicsLeidenThe Netherlands
| |
Collapse
|
23
|
Fremdling P, Esser TK, Saha B, Makarov AA, Fort KL, Reinhardt-Szyba M, Gault J, Rauschenbach S. A Preparative Mass Spectrometer to Deposit Intact Large Native Protein Complexes. ACS NANO 2022; 16:14443-14455. [PMID: 36037396 PMCID: PMC9527803 DOI: 10.1021/acsnano.2c04831] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Electrospray ion-beam deposition (ES-IBD) is a versatile tool to study the structure and reactivity of molecules from small metal clusters to large protein assemblies. It brings molecules gently into the gas phase, where they can be accurately manipulated and purified, followed by controlled deposition onto various substrates. In combination with imaging techniques, direct structural information on well-defined molecules can be obtained, which is essential to test and interpret results from indirect mass spectrometry techniques. To date, ion-beam deposition experiments are limited to a small number of custom instruments worldwide, and there are no commercial alternatives. Here we present a module that adds ion-beam deposition capabilities to a popular commercial MS platform (Thermo Scientific Q Exactive UHMR mass spectrometer). This combination significantly reduces the overhead associated with custom instruments, while benefiting from established high performance and reliability. We present current performance characteristics including beam intensity, landing-energy control, and deposition spot size for a broad range of molecules. In combination with atomic force microscopy (AFM) and transmission electron microscopy (TEM), we distinguish near-native from unfolded proteins and show retention of the native shape of protein assemblies after dehydration and deposition. Further, we use an enzymatic assay to quantify the activity of a noncovalent protein complex after deposition on a dry surface. Together, these results not only indicate a great potential of ES-IBD for applications in structural biology, but also outline the challenges that need to be solved for it to reach its full potential.
Collapse
Affiliation(s)
- Paul Fremdling
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Tim K. Esser
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Bodhisattwa Saha
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Alexander A. Makarov
- Thermo
Fisher Scientific, Bremen 28199, Germany
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
| | | | | | - Joseph Gault
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Stephan Rauschenbach
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Max
Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| |
Collapse
|
24
|
Esser TK, Böhning J, Fremdling P, Agasid MT, Costin A, Fort K, Konijnenberg A, Gilbert JD, Bahm A, Makarov A, Robinson CV, Benesch JLP, Baker L, Bharat TAM, Gault J, Rauschenbach S. Mass-selective and ice-free electron cryomicroscopy protein sample preparation via native electrospray ion-beam deposition. PNAS NEXUS 2022; 1:pgac153. [PMID: 36714824 PMCID: PMC9802471 DOI: 10.1093/pnasnexus/pgac153] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/03/2022] [Indexed: 02/01/2023]
Abstract
Despite tremendous advances in sample preparation and classification algorithms for electron cryomicroscopy (cryo-EM) and single-particle analysis (SPA), sample heterogeneity remains a major challenge and can prevent access to high-resolution structures. In addition, optimization of preparation conditions for a given sample can be time-consuming. In the current work, it is demonstrated that native electrospray ion-beam deposition (native ES-IBD) is an alternative, reliable approach for the preparation of extremely high-purity samples, based on mass selection in vacuum. Folded protein ions are generated by native electrospray ionization, separated from other proteins, contaminants, aggregates, and fragments, gently deposited on cryo-EM grids, frozen in liquid nitrogen, and subsequently imaged by cryo-EM. We demonstrate homogeneous coverage of ice-free cryo-EM grids with mass-selected protein complexes. SPA reveals that the complexes remain folded and assembled, but variations in secondary and tertiary structures are currently limiting information in 2D classes and 3D EM density maps. We identify and discuss challenges that need to be addressed to obtain a resolution comparable to that of the established cryo-EM workflow. Our results show the potential of native ES-IBD to increase the scope and throughput of cryo-EM for protein structure determination and provide an essential link between gas-phase and solution-phase protein structures.
Collapse
Affiliation(s)
- Tim K Esser
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Jan Böhning
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Paul Fremdling
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Mark T Agasid
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Adam Costin
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Kyle Fort
- Thermo Fisher Scientific, Hanna-Kunath-Straße 11, 28199 Bremen, Germany
| | - Albert Konijnenberg
- Thermo Fisher Scientific, Zwaanstraat 31G/H, 5651 CA Eindhoven, The Netherlands
| | - Joshua D Gilbert
- Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124, USA
| | - Alan Bahm
- Thermo Fisher Scientific, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124, USA
| | - Alexander Makarov
- Thermo Fisher Scientific, Hanna-Kunath-Straße 11, 28199 Bremen, Germany
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Justin L P Benesch
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Lindsay Baker
- Division of Structural Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Tanmay A M Bharat
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Joseph Gault
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Stephan Rauschenbach
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, DE-70569 Stuttgart, Germany
| |
Collapse
|
25
|
Rodríguez-Galván A, Contreras-Torres FF. Scanning Tunneling Microscopy of Biological Structures: An Elusive Goal for Many Years. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3013. [PMID: 36080050 PMCID: PMC9457988 DOI: 10.3390/nano12173013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Scanning tunneling microscopy (STM) is a technique that can be used to directly observe individual biomolecules at near-molecular scale. Within this framework, STM is of crucial significance because of its role in the structural analysis, the understanding the imaging formation, and the development of relative techniques. Four decades after its invention, it is pertinent to ask how much of the early dream has come true. In this study, we aim to overview different analyses for DNA, lipids, proteins, and carbohydrates. The relevance of STM imaging is exhibited as an opportunity to assist measurements and biomolecular identification in nanobiotechnology, nanomedicine, biosensing, and other cutting-edge applications. We believe STM research is still an entire science research ecosystem for joining several areas of expertise towards a goal settlement that has been elusive for many years.
Collapse
Affiliation(s)
- Andrés Rodríguez-Galván
- Carrera de Biología, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edo. Mex., Mexico
| | | |
Collapse
|
26
|
On-Surface Chemistry on Low-Reactive Surfaces. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Zero-dimensional (0D), mono-dimensional (1D), or two-dimensional (2D) nanostructures with well-defined properties fabricated directly on surfaces are of growing interest. The fabrication of covalently bound nanostructures on non-metallic surfaces is very promising in terms of applications, but the lack of surface assistance during their synthesis is still a challenge to achieving the fabrication of large-scale and defect-free nanostructures. We discuss the state-of-the-art approaches recently developed in order to provide covalently bounded nanoarchitectures on passivated metallic surfaces, semiconductors, and insulators.
Collapse
|
27
|
Jiao Y, Yang Y, Zhou L, Chen D, Lu Y. Two Natural Flavonoid Substituted Polysaccharides from Tamarix chinensis: Structural Characterization and Anticomplement Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144532. [PMID: 35889403 PMCID: PMC9315555 DOI: 10.3390/molecules27144532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
Two novel natural flavonoid substituted polysaccharides (MBAP-1 and MBAP-2) were obtained from Tamarix chinensis Lour. and characterized by HPGPC, methylation, ultra-high-performance liquid chromatography-ion trap tandem mass spectrometry (UPLC-IT-MSn), and NMR analysis. The results showed that MBAP-1 was a homogenous heteropolysaccharide with a backbone of 4)-β-d-Glcp-(1→ and →3,4,6)-β-d-Glcp-(1→. MBAP-2 was also a homogenous polysaccharide which possessed a backbone of →3)-α-d-Glcp-(1→, →4)-β-d-Glcp-(1→ and →3,4)-β-d-Glcp-2-OMe-(1→. Both the two polysaccharides were substituted by quercetin and exhibited anticomplement activities in vitro. However, MBAP-1 (CH50: 0.075 ± 0.004 mg/mL) was more potent than MBAP-2 (CH50: 0.249 ± 0.006 mg/mL) and its reduced product, MBAP-1R (CH50: 0.207 ± 0.008 mg/mL), indicating that multiple monosaccharides and uronic acids might contribute to the anticomplement activity of the flavonoid substituted polysaccharides of T. chinensis. Furthermore, the antioxidant activity of MBAP-1 was also more potent than that of MBAP-2. In conclusion, these two flavonoid substituted polysaccharides from T. chinensis were found to be potential oxidant and complement inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Yan Lu
- Correspondence: (D.C.); (Y.L.)
| |
Collapse
|
28
|
Jooß K, McGee JP, Kelleher NL. Native Mass Spectrometry at the Convergence of Structural Biology and Compositional Proteomics. Acc Chem Res 2022; 55:1928-1937. [PMID: 35749283 DOI: 10.1021/acs.accounts.2c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusBiology is driven by a vast set of molecular interactions that evolved over billions of years. Just as covalent modifications like acetylations and phosphorylations can change a protein's function, so too can noncovalent interactions with metals, small molecules, and other proteins. However, much of the language of protein-level biology is left either undiscovered or inferred, as traditional methods used in the field of proteomics use conditions that dissociate noncovalent interactions and denature proteins.Just in the past few years, mass spectrometry (MS) has evolved the capacity to preserve and subsequently characterize the complete composition of endogenous protein complexes. Using this "native" type of mass spectrometry, a complex can be activated to liberate some or all of its subunits, typically via collisions with neutral gas or solid surfaces and isolated before further characterization ("Native Top-Down MS," or nTDMS). The subunit mass, the parent ion mass, and the fragment ions of the activated subunits can be used to piece together the precise molecular composition of the parent complex. When performed en masse in discovery mode (i.e., "native proteomics"), the interactions of life─including protein modifications─will eventually be clarified and linked to dysfunction in human disease states.In this Account, we describe the current and future components of the native MS toolkit, covering the challenges the field faces to characterize ever larger bioassemblies. Each of the three pillars of native proteomics are addressed: (i) separations, (ii) top-down mass spectrometry, and (iii) integration with structural biology. Complexes such as endogenous nucleosomes can be targeted now using nTDMS, whereas virus particles, exosomes, and high-density lipoprotein particles will be tackled in the coming few years. The future work to adequately address the size and complexity of mega- to gigadalton complexes will include native separations, single ion mass spectrometry, and new data types. The use of nTDMS in discovery mode will incorporate native-compatible separation techniques to maximize the number of proteoforms in complexes identified. With a new wave of innovations, both targeted and discovery mode nTDMS will expand to include extremely scarce and exceedingly heterogeneous bioassemblies. Understanding the proteinaceous interactions of life and how they go wrong (e.g., misfolding, forming complexes in dysfunctional stoichiometries and configurations) will not only inform the development of life-restoring therapeutics but also deepen our understanding of life at the molecular level.
Collapse
Affiliation(s)
- Kevin Jooß
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - John P McGee
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
29
|
Gao Z, He Y, He Q, Wei W, Luo Y, Ma Z, Chen W, Chu F, Zhang S, Liu Y, Pan Y. Multidimensional identification of disaccharide isomers based on non-covalent complexes and tandem mass spectrometry. Talanta 2022; 249:123674. [PMID: 35717753 DOI: 10.1016/j.talanta.2022.123674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Glycans are the most abundant organic polymers in nature. They are essential to living organisms and regulate a wide range of biological functions. However, mass spectrometry-based identification of glycan isomers remains challenging due to the complexity of their structures including their complex compositions, linkages, and anomeric configurations. In this study, two novel complex ions, the mononuclear copper-bound dimeric ions [(Cu2+)(A)(L-His)-H]+ and the mononuclear copper-bound quaternary ions [(Cu2+)(A)(L-Ser)3-H]+ (where A denotes a disaccharide, and L-Ser/His denotes l-serine/histidine), were designed for the collision-induced dissociation-based identification and relative quantification of 14 disaccharide isomers. When the unique fragmentation patterns of the above two types of complex ions were mapped into a three-dimensional vector, all the isomers were completely distinguished. Of note, the established method is able to identify mixtures of linkage isomers only using tandem mass spectrometry based on linkage-specific fragment ions of histidine-based complex ions. Finally, the method was successfully applied to the identification and relative quantification of two disaccharide isomers (lactose and sucrose) in dairy beverages. In conclusion, the established method is sensitive to subtle structural differences in disaccharide isomers and has the potential to be used for the differentiation of various glycans.
Collapse
Affiliation(s)
- Zhan Gao
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Yuwen He
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Quan He
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Wei Wei
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Yuanqing Luo
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Zihan Ma
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Weiwei Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Fengjian Chu
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Shuheng Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Yaqin Liu
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, Zhejiang, PR China.
| |
Collapse
|
30
|
Walz A, Stoiber K, Huettig A, Schlichting H, Barth JV. Navigate Flying Molecular Elephants Safely to the Ground: Mass-Selective Soft Landing up to the Mega-Dalton Range by Electrospray Controlled Ion-Beam Deposition. Anal Chem 2022; 94:7767-7778. [PMID: 35609119 PMCID: PMC9178560 DOI: 10.1021/acs.analchem.1c04495] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The prototype of a highly versatile and efficient preparative mass spectrometry system used for the deposition of molecules in ultrahigh vacuum (UHV) is presented, along with encouraging performance data obtained using four model species that are thermolabile or not sublimable. The test panel comprises two small organic compounds, a small and very large protein, and a large DNA species covering a 4-log mass range up to 1.7 MDa as part of a broad spectrum of analyte species evaluated to date. Three designs of innovative ion guides, a novel digital mass-selective quadrupole (dQMF), and a standard electrospray ionization (ESI) source are combined to an integrated device, abbreviated electrospray controlled ion-beam deposition (ES-CIBD). Full control is achieved by (i) the square-wave-driven radiofrequency (RF) ion guides with steadily tunable frequencies, including a dQMF allowing for investigation, purification, and deposition of a virtually unlimited m/z range, (ii) the adjustable landing energy of ions down to ∼2 eV/z enabling integrity-preserving soft landing, (iii) the deposition in UHV with high ion beam intensity (up to 3 nA) limiting contaminations and deposition time, and (iv) direct coverage control via the deposited charge. The maximum resolution of R = 650 and overall efficiency up to Ttotal = 4.4% calculated from the solution to UHV deposition are advantageous, whereby the latter can be further enhanced by optimizing ionization performance. In the setup presented, a scanning tunneling microscope (STM) is attached for in situ UHV investigations of deposited species, demonstrating a selective, structure-preserving process and atomically clean layers.
Collapse
Affiliation(s)
- Andreas Walz
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - Karolina Stoiber
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - Annette Huettig
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - Hartmut Schlichting
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| | - Johannes V Barth
- Physics Department E20, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
31
|
Wu D, Robinson CV. Understanding glycoprotein structural heterogeneity and interactions: Insights from native mass spectrometry. Curr Opin Struct Biol 2022; 74:102351. [DOI: 10.1016/j.sbi.2022.102351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/25/2022]
|
32
|
Technical pipeline for screening microbial communities as a function of substrate specificity through fluorescent labelling. Commun Biol 2022; 5:444. [PMID: 35545700 PMCID: PMC9095699 DOI: 10.1038/s42003-022-03383-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 04/20/2022] [Indexed: 12/16/2022] Open
Abstract
The study of specific glycan uptake and metabolism is an effective tool in aiding with the continued unravelling of the complexities in the human gut microbiome. To this aim fluorescent labelling of glycans may provide a powerful route towards this target. Here, we successfully used the fluorescent label 2-aminobenzamide (2-AB) to monitor and study microbial degradation of labelled glycans. Both single strain and co-cultured fermentations of microbes from the common human-gut derived Bacteroides genus, are able to grow when supplemented with 2-AB labelled glycans of different monosaccharide composition, degrees of acetylation and polymerization. Utilizing a multifaceted approach that combines chromatography, mass spectrometry, microscopy and flow cytometry techniques, it is possible to better understand the metabolism of labelled glycans in both supernatants and at a single cell level. We envisage this combination of complementary techniques will help further the understanding of substrate specificity and the role it plays within microbial communities. A reductive amination-based fluorophore labelling of complex wood-derived glycans provides a proof-of-principle multi-modal platform for monitoring glycan uptake by bacteria.
Collapse
|
33
|
Sodano F, Cristiano C, Rolando B, Marini E, Lazzarato L, Cuozzo M, Albrizio S, Russo R, Rimoli MG. Galactosylated Prodrugs: A Strategy to Improve the Profile of Nonsteroidal Anti-Inflammatory Drugs. Pharmaceuticals (Basel) 2022; 15:552. [PMID: 35631377 PMCID: PMC9142922 DOI: 10.3390/ph15050552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Carbohydrates are one of the most abundant and important classes of biomolecules. The variety in their structures makes them valuable carriers that can improve the pharmaceutical phase, pharmacokinetics and pharmacodynamics of well-known drugs. D-galactose is a simple, naturally occurring monosaccharide sugar that has been extensively studied for use as a carrier and has proven to be valuable in this role. With the aim of validating the galactose-prodrug approach, we have investigated the galactosylated prodrugs ibuprofen, ketoprofen, flurbiprofen and indomethacin, which we have named IbuGAL, OkyGAL, FluGAL and IndoGAL, respectively. Their physicochemical profiles in terms of lipophilicity, solubility and chemical stability have been evaluated at different physiological pH values, as have human serum stability and serum protein binding. Ex vivo intestinal permeation experiments were performed to provide preliminary insights into the oral bioavailability of the galactosylated prodrugs. Finally, their anti-inflammatory, analgesic and ulcerogenic activities were investigated in vivo in mice after oral treatment. The present results, taken together with those of previous studies, undoubtedly validate the galactosylated prodrug strategy as a problem-solving technique that can overcome the disadvantages of NSAIDs.
Collapse
Affiliation(s)
- Federica Sodano
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy; (C.C.); (M.C.); (S.A.); (R.R.); (M.G.R.)
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (B.R.); (E.M.); (L.L.)
| | - Claudia Cristiano
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy; (C.C.); (M.C.); (S.A.); (R.R.); (M.G.R.)
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (B.R.); (E.M.); (L.L.)
| | - Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (B.R.); (E.M.); (L.L.)
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (B.R.); (E.M.); (L.L.)
| | - Mariarosaria Cuozzo
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy; (C.C.); (M.C.); (S.A.); (R.R.); (M.G.R.)
| | - Stefania Albrizio
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy; (C.C.); (M.C.); (S.A.); (R.R.); (M.G.R.)
| | - Roberto Russo
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy; (C.C.); (M.C.); (S.A.); (R.R.); (M.G.R.)
| | - Maria Grazia Rimoli
- Department of Pharmacy, “Federico II” University of Naples, 80131 Naples, Italy; (C.C.); (M.C.); (S.A.); (R.R.); (M.G.R.)
| |
Collapse
|
34
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
35
|
Du J, Anderson CT, Xiao C. Dynamics of pectic homogalacturonan in cellular morphogenesis and adhesion, wall integrity sensing and plant development. NATURE PLANTS 2022; 8:332-340. [PMID: 35411046 DOI: 10.1038/s41477-022-01120-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Homogalacturonan (HG) is the most abundant pectin subtype in plant cell walls. Although it is a linear homopolymer, its modification states allow for complex molecular encoding. HG metabolism affects its structure, chemical properties, mobility and binding capacity, allowing it to interact dynamically with other polymers during wall assembly and remodelling and to facilitate anisotropic cell growth, cell adhesion and separation, and organ morphogenesis. HGs have also recently been found to function as signalling molecules that transmit information about wall integrity to the cell. Here we highlight recent advances in our understanding of the dual functions of HG as a dynamic structural component of the cell wall and an initiator of intrinsic and environmental signalling. We also predict how HG might interconnect the cell wall, plasma membrane and intracellular components with transcriptional networks to regulate plant growth and development.
Collapse
Affiliation(s)
- Juan Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Charles T Anderson
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
36
|
Ran W, Walz A, Stoiber K, Knecht P, Xu H, Papageorgiou AC, Huettig A, Cortizo‐Lacalle D, Mora‐Fuentes JP, Mateo‐Alonso A, Schlichting H, Reichert J, Barth JV. Depositing Molecular Graphene Nanoribbons on Ag(111) by Electrospray Controlled Ion Beam Deposition: Self-Assembly and On-Surface Transformations. Angew Chem Int Ed Engl 2022; 61:e202111816. [PMID: 35077609 PMCID: PMC9305426 DOI: 10.1002/anie.202111816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/31/2022]
Abstract
The chemical processing of low-dimensional carbon nanostructures is crucial for their integration in future devices. Here we apply a new methodology in atomically precise engineering by combining multistep solution synthesis of N-doped molecular graphene nanoribbons (GNRs) with mass-selected ultra-high vacuum electrospray controlled ion beam deposition on surfaces and real-space visualisation by scanning tunnelling microscopy. We demonstrate how this method yields solely a controllable amount of single, otherwise unsublimable, GNRs of 2.9 nm length on a planar Ag(111) surface. This methodology allows for further processing by employing on-surface synthesis protocols and exploiting the reactivity of the substrate. Following multiple chemical transformations, the GNRs provide reactive building blocks to form extended, metal-organic coordination polymers.
Collapse
Affiliation(s)
- Wei Ran
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Andreas Walz
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Karolina Stoiber
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Peter Knecht
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Hongxiang Xu
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | | | - Annette Huettig
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Diego Cortizo‐Lacalle
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
| | - Juan P. Mora‐Fuentes
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastianSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Hartmut Schlichting
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Joachim Reichert
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Johannes V. Barth
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| |
Collapse
|
37
|
Ran W, Walz A, Stoiber K, Knecht P, Xu H, Papageorgiou AC, Huettig A, Cortizo‐Lacalle D, Mora‐Fuentes JP, Mateo‐Alonso A, Schlichting H, Reichert J, Barth JV. Depositing Molecular Graphene Nanoribbons on Ag(111) by Electrospray Controlled Ion Beam Deposition: Self‐Assembly and On‐Surface Transformations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wei Ran
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Andreas Walz
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Karolina Stoiber
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Peter Knecht
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Hongxiang Xu
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Anthoula C. Papageorgiou
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Annette Huettig
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Diego Cortizo‐Lacalle
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Juan P. Mora‐Fuentes
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Aurelio Mateo‐Alonso
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastian Spain
- Ikerbasque, Basque Foundation for Science Bilbao Spain
| | - Hartmut Schlichting
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Joachim Reichert
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| | - Johannes V. Barth
- Physics Department E20 Technical University of Munich James Franck Straße 1 85748 Garching Germany
| |
Collapse
|
38
|
Wan Y, Xu X, Gilbert RG, Sullivan MA. A Review on the Structure and Anti-Diabetic (Type 2) Functions of β-Glucans. Foods 2021; 11:57. [PMID: 35010185 PMCID: PMC8750484 DOI: 10.3390/foods11010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes, a long-term chronic metabolic disease, causes severe and increasing economic and health problems globally. There is growing evidence that β-glucans can function as bioactive macromolecules that help control type 2 diabetes with minimal side effects. However, conflicting conclusions about the antidiabetic activities of β-glucans have been published, potentially resulting from incomplete understanding of their precise structural characteristics. This review aims to increase clarity on the structure-function relationships of β-glucans in treating type 2 diabetes by examining detailed structural and conformational features of naturally derived β-glucans, as well as both chemical and instrumental methods used in their characterization, and their underlying anti-diabetic mechanisms. This may help to uncover additional structure and function relationships and to expand applications of β-glucans.
Collapse
Affiliation(s)
- Yujun Wan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China;
| | - Robert G. Gilbert
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia;
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Mitchell A. Sullivan
- Glycation and Diabetes Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4072, Australia
| |
Collapse
|
39
|
Low-energy electron holography imaging of conformational variability of single-antibody molecules from electrospray ion beam deposition. Proc Natl Acad Sci U S A 2021; 118:2112651118. [PMID: 34911762 PMCID: PMC8713884 DOI: 10.1073/pnas.2112651118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Molecular imaging at the single-molecule level of large and flexible proteins such as monoclonal IgG antibodies is possible by low-energy electron holography after chemically selective sample preparation by native electrospray ion beam deposition (ES-IBD) from native solution conditions. The single-molecule nature of the measurement allows the mapping of the structural variability of the molecules that originates from their intrinsic flexibility and from different adsorption geometries. Additionally, we can distinguish gas-phase–related conformations and conformations induced by the landing of the molecules on the surface. Our results underpin the relation between the gas-phase structure of protein ions created by native electrospray ionization (ESI) and the native protein structure and are of relevance for structural biology applications in the gas phase. Imaging of proteins at the single-molecule level can reveal conformational variability, which is essential for the understanding of biomolecules. To this end, a biologically relevant state of the sample must be retained during both sample preparation and imaging. Native electrospray ionization (ESI) can transfer even the largest protein complexes into the gas phase while preserving their stoichiometry and overall shape. High-resolution imaging of protein structures following native ESI is thus of fundamental interest for establishing the relation between gas phase and solution structure. Taking advantage of low-energy electron holography’s (LEEH) unique capability of imaging individual proteins with subnanometer resolution, we investigate the conformational flexibility of Herceptin, a monoclonal IgG antibody, deposited by native electrospray mass-selected ion beam deposition (ES-IBD) on graphene. Images reconstructed from holograms reveal a large variety of conformers. Some of these conformations can be mapped to the crystallographic structure of IgG, while others suggest that a compact, gas-phase–related conformation, adopted by the molecules during ES-IBD, is retained. We can steer the ratio of those two types of conformations by changing the landing energy of the protein on the single-layer graphene surface. Overall, we show that LEEH can elucidate the conformational heterogeneity of inherently flexible proteins, exemplified here by IgG antibodies, and thereby distinguish gas-phase collapse from rearrangement on surfaces.
Collapse
|
40
|
Abstract
Glycosylation, one of the most common post-translational modifications in mammalian cells, impacts many biological processes such as cell adhesion, proliferation and differentiation. As the most abundant glycoprotein in human serum, immunoglobulin G (IgG) plays a vital role in immune response and protection. There is a growing body of evidence suggests that IgG structure and function are modulated by attached glycans, especially N-glycans, and aberrant glycosylation is associated with disease states. In this chapter, we review IgG glycan repertoire and function, strategies for profiling IgG N-glycome and recent studies. Mass spectrometry (MS) based techniques are the most powerful tools for profiling IgG glycome. IgG glycans can be divided into high-mannose, biantennary complex and hybrid types, modified with mannosylation, core-fucosylation, galactosylation, bisecting GlcNAcylation, or sialylation. Glycosylation of IgG affects antibody half-life and their affinity and avidity for antigens, regulates crystallizable fragment (Fc) structure and Fcγ receptor signaling, as well as antibody effector function. Because of their critical roles, IgG N-glycans appear to be promising biomarkers for various disease states. Specific IgG glycosylation can convert a pro-inflammatory response to an anti-inflammatory activity. Accordingly, IgG glycoengineering provides a powerful approach to potentially develop effective drugs and treat disease. Based on the understanding of the functional role of IgG glycans, the development of vaccines with enhanced capacity and long-term protection are possible in the near future.
Collapse
|
41
|
Wang J, Zhao J, Nie S, Xie M, Li S. Mass spectrometry for structural elucidation and sequencing of carbohydrates. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
43
|
Molina M, Cioci G, Moulis C, Séverac E, Remaud-Siméon M. Bacterial α-Glucan and Branching Sucrases from GH70 Family: Discovery, Structure-Function Relationship Studies and Engineering. Microorganisms 2021; 9:microorganisms9081607. [PMID: 34442685 PMCID: PMC8398850 DOI: 10.3390/microorganisms9081607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 01/12/2023] Open
Abstract
Glucansucrases and branching sucrases are classified in the family 70 of glycoside hydrolases. They are produced by lactic acid bacteria occupying very diverse ecological niches (soil, buccal cavity, sourdough, intestine, dairy products, etc.). Usually secreted by their producer organisms, they are involved in the synthesis of α-glucans from sucrose substrate. They contribute to cell protection while promoting adhesion and colonization of different biotopes. Dextran, an α-1,6 linked linear α-glucan, was the first microbial polysaccharide commercialized for medical applications. Advances in the discovery and characterization of these enzymes have remarkably enriched the available diversity with new catalysts. Research into their molecular mechanisms has highlighted important features governing their peculiarities thus opening up many opportunities for engineering these catalysts to provide new routes for the transformation of sucrose into value-added molecules. This article reviews these different aspects with the ambition to show how they constitute the basis for promising future developments.
Collapse
|
44
|
Rinke G, Harnau L, Rauschenbach S. Material and Charge Transport of Large Organic Salt Clusters and Nanoparticles in Electrospray Ion Beam Deposition. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1648-1658. [PMID: 33656859 DOI: 10.1021/jasms.0c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrospray ion beam deposition (ES-IBD) or ion soft landing has been demonstrated as a technique suitable for processing nonvolatile molecules in vacuum under perfectly controlled conditions, an approach also desirable for the deposition of nanoparticles. Here, we present results from several approaches to generate, characterize, and deposit nanoparticle ion beams in vacuum for deposition. We focus on cluster ion beams generated by ESI of organic salt solutions. Small cluster ions of the salts appear in the mass spectra as defined peaks. In addition, we find nanoparticle-sized aggregates, appearing as a low intensity background at high m/z-ratio, and show by IBD experiments that these clusters carry the major amount of material in the ion beam. This transition from clusters to nanoparticles, and their successful deposition, shows that ES-IBD can in principle handle ion beams of very heavy and highly charged nanoparticles. In related experiments, however, we found the deposition of nanoparticles from dispersions to be of low reproducibility, due to the lack of control by mass spectrometry.
Collapse
Affiliation(s)
- Gordon Rinke
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, DE-70569 Stuttgart, Germany
| | - Ludger Harnau
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, DE-70569 Stuttgart, Germany
| | - Stephan Rauschenbach
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, DE-70569 Stuttgart, Germany
| |
Collapse
|
45
|
Li J, Telychko M, Yin J, Zhu Y, Li G, Song S, Yang H, Li J, Wu J, Lu J, Wang X. Machine Vision Automated Chiral Molecule Detection and Classification in Molecular Imaging. J Am Chem Soc 2021; 143:10177-10188. [PMID: 34227379 DOI: 10.1021/jacs.1c03091] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Scanning probe microscopy (SPM) is recognized as an essential characterization tool in a broad range of applications, allowing for real-space atomic imaging of solid surfaces, nanomaterials, and molecular systems. Recently, the imaging of chiral molecular nanostructures via SPM has become a matter of increased scientific and technological interest due to their imminent use as functional platforms in a wide scope of applications, including nonlinear chiroptics, enantioselective catalysis, and enantiospecific sensing. Due to the time-consuming and error-prone image analysis process, a highly efficient analytic framework capable of identifying complex chiral patterns in SPM images is needed. Here, we adopted a state-of-the-art machine vision algorithm to develop a one-image-one-system deep learning framework for the analysis of SPM images. To demonstrate its accuracy and versatility, we employed it to determine the chirality of the molecules comprising two supramolecular self-assemblies with two distinct chiral organization patterns. Our framework accurately detected the position and labeled the chirality of each molecule. This framework underpins the tremendous potential of machine learning algorithms for the automated recognition of complex SPM image patterns in a wide range of research disciplines.
Collapse
Affiliation(s)
- Jiali Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Mykola Telychko
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jun Yin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yixin Zhu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Guangwu Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shaotang Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Haitao Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jing Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,Centre for Advanced 2D Materials (CA2DM), National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Xiaonan Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
46
|
Jiang H, Qin X, Wang Q, Xu Q, Wang J, Wu Y, Chen W, Wang C, Zhang T, Xing D, Zhang R. Application of carbohydrates in approved small molecule drugs: A review. Eur J Med Chem 2021; 223:113633. [PMID: 34171659 DOI: 10.1016/j.ejmech.2021.113633] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/24/2022]
Abstract
Carbohydrates are an important energy source and play numerous key roles in all living organisms. Carbohydrates chemistry involved in diagnosis and treatment of diseases has been attracting increasing attention. Carbohydrates could be one of the major focuses of new drug discovery. Currently, however, carbohydrate-containing drugs account for only a small percentage of all drugs in clinical use, which does not match the important roles of carbohydrates in the organism. In other words, carbohydrates are a relatively untapped source of new drugs and therefore may offer exciting novel therapeutic opportunities. Here, we presented an overview of the application of carbohydrates in approved small molecule drugs and emphasized and evaluated the roles of carbohydrates in those drugs. The potential development direction of carbohydrate-containing drugs was presented after summarizing the advantages and challenges of carbohydrates in the development of new drugs.
Collapse
Affiliation(s)
- Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Xiaofei Qin
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Qi Wang
- Department of Critical Medicine, Hainan Maternal and Children's Medical Center, Haikou, 570312, China
| | - Qi Xu
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology Shandong Academy of Sciences, Jinan, China
| | - Jie Wang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Yudong Wu
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Wujun Chen
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Chao Wang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Tingting Zhang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
47
|
Abstract
![]()
Polysaccharides are
Nature’s most abundant biomaterials
essential for plant cell wall construction and energy storage. Seemingly
minor structural differences result in entirely different functions:
cellulose, a β (1–4) linked glucose polymer, forms fibrils
that can support large trees, while amylose, an α (1–4)
linked glucose polymer forms soft hollow fibers used for energy storage.
A detailed understanding of polysaccharide structures requires pure
materials that cannot be isolated from natural sources. Automated
Glycan Assembly provides quick access to trans-linked
glycans analogues of cellulose, but the stereoselective installation
of multiple cis-glycosidic linkages present in amylose
has not been possible to date. Here, we identify thioglycoside building
blocks with different protecting group patterns that, in concert with
temperature and solvent control, achieve excellent stereoselectivity
during the synthesis of linear and branched α-glucan polymers
with up to 20 cis-glycosidic linkages. The molecules
prepared with the new method will serve as probes to understand the
biosynthesis and the structure of α-glucans.
Collapse
Affiliation(s)
- Yuntao Zhu
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
48
|
Abstract
The monomer sequence dictates the structure and properties of natural polymers. Such a structure–property relationship is well known for polypeptides and polynucleotides but not for polysaccharides, the most abundant biopolymers on Earth. Here, we establish the structure–property relationship for a polysaccharide at the atomic level by determining molecular flexibility of carbohydrate chains with defined sequences. The chain flexibility can be engineered one linkage at a time by chemical substitution and conformation change, highlighting how the primary and secondary structures of a carbohydrate dictate its flexibility—a critical observable in the de novo design of carbohydrate materials. Our approach can be extended to establish the structure–property relationship at the atomic level of any molecule that can be electrosprayed. Correlating the structures and properties of a polymer to its monomer sequence is key to understanding how its higher hierarchy structures are formed and how its macroscopic material properties emerge. Carbohydrate polymers, such as cellulose and chitin, are the most abundant materials found in nature whose structures and properties have been characterized only at the submicrometer level. Here, by imaging single-cellulose chains at the nanoscale, we determine the structure and local flexibility of cellulose as a function of its sequence (primary structure) and conformation (secondary structure). Changing the primary structure by chemical substitutions and geometrical variations in the secondary structure allow the chain flexibility to be engineered at the single-linkage level. Tuning local flexibility opens opportunities for the bottom-up design of carbohydrate materials.
Collapse
|
49
|
Favreau B, Yeni O, Ollivier S, Boustie J, Dévéhat FL, Guégan JP, Fanuel M, Rogniaux H, Brédy R, Compagnon I, Ropartz D, Legentil L, Ferrières V. Synthesis of an Exhaustive Library of Naturally Occurring Gal f-Man p and Gal p-Man p Disaccharides. Toward Fingerprinting According to Ring Size by Advanced Mass Spectrometry-Based IM-MS and IRMPD. J Org Chem 2021; 86:6390-6405. [PMID: 33877829 DOI: 10.1021/acs.joc.1c00250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nature offers a huge diversity of glycosidic derivatives. Among numerous structural modulations, the nature of the ring size of hexosides may induce significant differences on both biological and physicochemical properties of the glycoconjugate of interest. On this assumption, we expect that small disaccharides bearing either a furanosyl entity or a pyranosyl residue would give a specific signature, even in the gas phase. On the basis of the scope of mass spectrometry, two analytical techniques to register those signatures were considered, i.e., the ion mobility (IM) and the infrared multiple photon dissociation (IRMPD), in order to build up cross-linked databases. d-Galactose occurs in natural products in both tautomeric forms and presents all possible regioisomers when linked to d-mannose. Consequently, the four reducing Galf-Manp disaccharides as well as the four Galp-Manp counterparts were first synthesized according to a highly convergent approach, and IM-MS and IRMPD-MS data were second collected. Both techniques used afforded signatures, specific to the nature of the connectivity between the two glycosyl entities.
Collapse
Affiliation(s)
- Bénédicte Favreau
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Oznur Yeni
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Simon Ollivier
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Joël Boustie
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Françoise Le Dévéhat
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Jean-Paul Guégan
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Mathieu Fanuel
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Hélène Rogniaux
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Richard Brédy
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Isabelle Compagnon
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - David Ropartz
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Laurent Legentil
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | - Vincent Ferrières
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.,Université de Lyon, CNRS, Université Claude Bernard Lyon 1, CNRS, Institut Lumiére Matiére, F-69622 Lyon, France.,INRAE, UR BIA, F-44316 Nantes, France, and.,INRAE, BIBS Facility, F-44316 Nantes, France.,Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| |
Collapse
|
50
|
Zielińska A, Szalata M, Gorczyński A, Karczewski J, Eder P, Severino P, Cabeda JM, Souto EB, Słomski R. Cancer Nanopharmaceuticals: Physicochemical Characterization and In Vitro/In Vivo Applications. Cancers (Basel) 2021; 13:1896. [PMID: 33920840 PMCID: PMC8071188 DOI: 10.3390/cancers13081896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Physicochemical, pharmacokinetic, and biopharmaceutical characterization tools play a key role in the assessment of nanopharmaceuticals' potential imaging analysis and for site-specific delivery of anti-cancers to neoplastic cells/tissues. If diagnostic tools and therapeutic approaches are combined in one single nanoparticle, a new platform called nanotheragnostics is generated. Several analytical technologies allow us to characterize nanopharmaceuticals and nanoparticles and their properties so that they can be properly used in cancer therapy. This paper describes the role of multifunctional nanoparticles in cancer diagnosis and treatment, describing how nanotheragnostics can be useful in modern chemotherapy, and finally, the challenges associated with the commercialization of nanoparticles for cancer therapy.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (R.S.)
- Department of Pharmaceutical Echnology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Marlena Szalata
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (R.S.)
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Adam Gorczyński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Jacek Karczewski
- Department of Environmental Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Patrícia Severino
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women & Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA;
- Biotechnological Postgraduate Program, Institute of Technology and Research (ITP), Nanomedicine and Nanotechnology Laboratory (LNMed), University of Tiradentes (Unit), Av. Murilo Dantas 300, Aracaju 49010-390, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - José M. Cabeda
- ESS-FP, Escola Superior de Saúde Fernando Pessoa, Rua Delfim Maia 334, 4200-253 Porto, Portugal;
- FP-ENAS-Fernando Pessoa Energy, Environment and Health Research Unit, Universidade Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
| | - Eliana B. Souto
- Department of Pharmaceutical Echnology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB–Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (M.S.); (R.S.)
| |
Collapse
|