1
|
Pflughaupt P, Abdullah AA, Masuda K, Sahakyan AB. Towards the genomic sequence code of DNA fragility for machine learning. Nucleic Acids Res 2024:gkae914. [PMID: 39441076 DOI: 10.1093/nar/gkae914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/20/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Genomic DNA breakages and the subsequent insertion and deletion mutations are important contributors to genome instability and linked diseases. Unlike the research in point mutations, the relationship between DNA sequence context and the propensity for strand breaks remains elusive. Here, by analyzing the differences and commonalities across myriads of genomic breakage datasets, we extract the sequence-linked rules and patterns behind DNA fragility. We show the overall deconvolution of the sequence influence into short-, mid- and long-range effects, and the stressor-dependent differences in defining the range and compositional effects on DNA fragility. We summarize and release our feature compendium as a library that can be seamlessly incorporated into genomic machine learning procedures, where DNA fragility is of concern, and train a generalized DNA fragility model on cancer-associated breakages. Structural variants (SVs) tend to stabilize regions in which they emerge, with the effect most pronounced for pathogenic SVs. In contrast, the effects of chromothripsis are seen across regions less prone to breakages. We find that viral integration may bring genome fragility, particularly for cancer-associated viruses. Overall, this work offers novel insights into the genomic sequence basis of DNA fragility and presents a powerful machine learning resource to further enhance our understanding of genome (in)stability and evolution.
Collapse
Affiliation(s)
- Patrick Pflughaupt
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Adib A Abdullah
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Kairi Masuda
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Aleksandr B Sahakyan
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK
| |
Collapse
|
2
|
Lazarchuk P, Nguyen MM, Curca CM, Pavlova MN, Oshima J, Sidorova JM. Werner syndrome RECQ helicase participates in and directs maintenance of the protein complexes of constitutive heterochromatin in proliferating human cells. Aging (Albany NY) 2024; null:206132. [PMID: 39422615 DOI: 10.18632/aging.206132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024]
Abstract
Werner syndrome of premature aging is caused by mutations in the WRN RECQ helicase/exonuclease, which functions in DNA replication, repair, transcription, and telomere maintenance. How the loss of WRN accelerates aging is not understood in full. Here we show that WRN is necessary for optimal constitutive heterochromatin levels in proliferating human fibroblasts. Locally, WRN deficiency derepresses SATII pericentromeric satellite repeats but does not reduce replication fork progression on SATII repeats. Globally, WRN loss reduces a subset of protein-protein interactions responsible for the organization of constitutive heterochromatin in the nucleus, namely, the interactions involving Lamin B1 and Lamin B receptor, LBR. Both the mRNA level and subcellular distribution of LBR are affected by WRN deficiency, and unlike the former, the latter phenotype does not require WRN catalytic activities. The phenotypes of heterochromatin disruption seen in WRN-deficient proliferating fibroblasts are also observed in WRN-proficient fibroblasts undergoing replicative or oncogene-induced senescence. WRN interacts with histone deacetylase 2, HDAC2; WRN/HDAC2 association is mediated by heterochromatin protein alpha, HP1α, and WRN complexes with HP1α and HDAC2 are downregulated in senescing cells. The data suggest that the effect of WRN loss on heterochromatin is separable from senescence program, but mimics at least some of the heterochromatin changes associated with it.
Collapse
Affiliation(s)
- Pavlo Lazarchuk
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Matthew Manh Nguyen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Present address: Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Crina M Curca
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
- Present address: Parse Biosciences, Seattle, WA 98109, USA
| | - Maria N Pavlova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Junko Oshima
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Julia M Sidorova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Engel JL, Zhang X, Wu M, Wang Y, Espejo Valle-Inclán J, Hu Q, Woldehawariat KS, Sanders MA, Smogorzewska A, Chen J, Cortés-Ciriano I, Lo RS, Ly P. The Fanconi anemia pathway induces chromothripsis and ecDNA-driven cancer drug resistance. Cell 2024; 187:6055-6070.e22. [PMID: 39181133 PMCID: PMC11490392 DOI: 10.1016/j.cell.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/30/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Chromothripsis describes the catastrophic shattering of mis-segregated chromosomes trapped within micronuclei. Although micronuclei accumulate DNA double-strand breaks and replication defects throughout interphase, how chromosomes undergo shattering remains unresolved. Using CRISPR-Cas9 screens, we identify a non-canonical role of the Fanconi anemia (FA) pathway as a driver of chromothripsis. Inactivation of the FA pathway suppresses chromosome shattering during mitosis without impacting interphase-associated defects within micronuclei. Mono-ubiquitination of FANCI-FANCD2 by the FA core complex promotes its mitotic engagement with under-replicated micronuclear chromosomes. The structure-selective SLX4-XPF-ERCC1 endonuclease subsequently induces large-scale nucleolytic cleavage of persistent DNA replication intermediates, which stimulates POLD3-dependent mitotic DNA synthesis to prime shattered fragments for reassembly in the ensuing cell cycle. Notably, FA-pathway-induced chromothripsis generates complex genomic rearrangements and extrachromosomal DNA that confer acquired resistance to anti-cancer therapies. Our findings demonstrate how pathological activation of a central DNA repair mechanism paradoxically triggers cancer genome evolution through chromothripsis.
Collapse
Affiliation(s)
- Justin L Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiao Zhang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mingming Wu
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yan Wang
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jose Espejo Valle-Inclán
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Qing Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kidist S Woldehawariat
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mathijs A Sanders
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SD, UK; Department of Hematology, Erasmus MC Cancer Institute, Rotterdam 3015 GD, the Netherlands
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY 10065, USA
| | - Jin Chen
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Roger S Lo
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Xia Y, Li D, Chen T, Pan S, Huang H, Zhang W, Liang Y, Fu Y, Peng Z, Zhang H, Zhang L, Peng S, Shi R, He X, Zhou S, Jiao W, Zhao X, Wu X, Zhou L, Zhou J, Ouyang Q, Tian Y, Jiang X, Zhou Y, Tang S, Shen J, Ohshima K, Tan Z. Microsatellite density landscapes illustrate short tandem repeats aggregation in the complete reference human genome. BMC Genomics 2024; 25:960. [PMID: 39402450 PMCID: PMC11477012 DOI: 10.1186/s12864-024-10843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Microsatellites are increasingly realized to have biological significance in human genome and health in past decades, the assembled complete reference sequence of human genome T2T-CHM13 brought great help for a comprehensive study of short tandem repeats in the human genome. RESULTS Microsatellites density landscapes of all 24 chromosomes were built here for the first complete reference sequence of human genome T2T-CHM13. These landscapes showed that short tandem repeats (STRs) are prone to aggregate characteristically to form a large number of STRs density peaks. We classified 8,823 High Microsatellites Density Peaks (HMDPs), 35,257 Middle Microsatellites Density Peaks (MMDPs) and 199, 649 Low Microsatellites Density Peaks (LMDPs) on the 24 chromosomes; and also classified the motif types of every microsatellites density peak. These STRs density aggregation peaks are mainly composing of a single motif, and AT is the most dominant motif, followed by AATGG and CCATT motifs. And 514 genomic regions were characterized by microsatellite density feature in the full T2T-CHM13 genome. CONCLUSIONS These landscape maps exhibited that microsatellites aggregate in many genomic positions to form a large number of microsatellite density peaks with composing of mainly single motif type in the complete reference genome, indicating that the local microsatellites density varies enormously along the every chromosome of T2T-CHM13.
Collapse
Affiliation(s)
- Yun Xia
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Douyue Li
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Tingyi Chen
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Saichao Pan
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Hanrou Huang
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Wenxiang Zhang
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Yulin Liang
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Yongzhuo Fu
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Zhuli Peng
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Hongxi Zhang
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Liang Zhang
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Shan Peng
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Ruixue Shi
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Xingxin He
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Siqian Zhou
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Weili Jiao
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Xiangyan Zhao
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Xiaolong Wu
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Lan Zhou
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Jingyu Zhou
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Qingjian Ouyang
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - You Tian
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Xiaoping Jiang
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Yi Zhou
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Shiying Tang
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | - Junxiong Shen
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China
| | | | - Zhongyang Tan
- Bioinformatic Center, College of Biology, Hunan University, Lushan Road (S), Yuelu District, Changsha, 410082, China.
| |
Collapse
|
5
|
Li J, Jia Z, Dong L, Cao H, Huang Y, Xu H, Xie Z, Jiang Y, Wang X, Liu J. DNA damage response in breast cancer and its significant role in guiding novel precise therapies. Biomark Res 2024; 12:111. [PMID: 39334297 PMCID: PMC11437670 DOI: 10.1186/s40364-024-00653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
DNA damage response (DDR) deficiency has been one of the emerging targets in treating breast cancer in recent years. On the one hand, DDR coordinates cell cycle and signal transduction, whose dysfunction may lead to cell apoptosis, genomic instability, and tumor development. Conversely, DDR deficiency is an intrinsic feature of tumors that underlies their response to treatments that inflict DNA damage. In this review, we systematically explore various mechanisms of DDR, the rationale and research advances in DDR-targeted drugs in breast cancer, and discuss the challenges in its clinical applications. Notably, poly (ADP-ribose) polymerase (PARP) inhibitors have demonstrated favorable efficacy and safety in breast cancer with high homogenous recombination deficiency (HRD) status in a series of clinical trials. Moreover, several studies on novel DDR-related molecules are actively exploring to target tumors that become resistant to PARP inhibition. Before further clinical application of new regimens or drugs, novel and standardized biomarkers are needed to develop for accurately characterizing the benefit population and predicting efficacy. Despite the promising efficacy of DDR-related treatments, challenges of off-target toxicity and drug resistance need to be addressed. Strategies to overcome drug resistance await further exploration on DDR mechanisms, and combined targeted drugs or immunotherapy will hopefully provide more precise or combined strategies and expand potential responsive populations.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Heng Cao
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yansong Huang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhixuan Xie
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yiwen Jiang
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xiang Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
6
|
Niphakis MJ, Cravatt BF. Ligand discovery by activity-based protein profiling. Cell Chem Biol 2024; 31:1636-1651. [PMID: 39303700 DOI: 10.1016/j.chembiol.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Genomic technologies have led to massive gains in our understanding of human gene function and disease relevance. Chemical biologists are a primary beneficiary of this information, which can guide the prioritization of proteins for chemical probe and drug development. The vast functional and structural diversity of disease-relevant proteins, however, presents challenges for conventional small molecule screening libraries and assay development that in turn raise questions about the broader "druggability" of the human proteome. Here, we posit that activity-based protein profiling (ABPP), by generating global maps of small molecule-protein interactions in native biological systems, is well positioned to address major obstacles in human biology-guided chemical probe and drug discovery. We will support this viewpoint with case studies highlighting a range of small molecule mechanisms illuminated by ABPP that include the disruption and stabilization of biomolecular (protein-protein/nucleic acid) interactions and underscore allostery as a rich source of chemical tools for historically "undruggable" protein classes.
Collapse
|
7
|
Mackay HL, Stone HR, Ronson GE, Ellis K, Lanz A, Aghabi Y, Walker AK, Starowicz K, Garvin AJ, Van Eijk P, Koestler SA, Anthony EJ, Piberger AL, Chauhan AS, Conway-Thomas P, Vaitsiankova A, Vijayendran S, Beesley JF, Petermann E, Brown EJ, Densham RM, Reed SH, Dobbs F, Saponaro M, Morris JR. USP50 suppresses alternative RecQ helicase use and deleterious DNA2 activity during replication. Nat Commun 2024; 15:8102. [PMID: 39284827 PMCID: PMC11405836 DOI: 10.1038/s41467-024-52250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 08/30/2024] [Indexed: 09/22/2024] Open
Abstract
Mammalian DNA replication relies on various DNA helicase and nuclease activities to ensure accurate genetic duplication, but how different helicase and nuclease activities are properly directed remains unclear. Here, we identify the ubiquitin-specific protease, USP50, as a chromatin-associated protein required to promote ongoing replication, fork restart, telomere maintenance, cellular survival following hydroxyurea or pyridostatin treatment, and suppression of DNA breaks near GC-rich sequences. We find that USP50 supports proper WRN-FEN1 localisation at or near stalled replication forks. Nascent DNA in cells lacking USP50 shows increased association of the DNA2 nuclease and RECQL4 and RECQL5 helicases and replication defects in cells lacking USP50, or FEN1 are driven by these proteins. Consequently, suppression of DNA2 or RECQL4/5 improves USP50-depleted cell resistance to agents inducing replicative stress and restores telomere stability. These data define an unexpected regulatory protein that promotes the balance of helicase and nuclease use at ongoing and stalled replication forks.
Collapse
Affiliation(s)
- Hannah L Mackay
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Helen R Stone
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- CCTT-C Cancer Research UK, Clinical trials unit, Sir Robert Aitken building, College of Medicine and Health, University of Birmingham, Birmingham, B15 2TT, UK
| | - George E Ronson
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Katherine Ellis
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- School of Chemical, Materials and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Alexander Lanz
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Yara Aghabi
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alexandra K Walker
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Katarzyna Starowicz
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Adthera Bio, Lyndon House, 62 Hagley Road, Birmingham, B16 8PE, UK
| | - Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- SUMO Biology Lab, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Patrick Van Eijk
- Broken String Biosciences Ltd., BioData Innovation Centre, Unit AB3-03, Level 3, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1DR, UK
- Division of Cancer & Genetics School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Stefan A Koestler
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Elizabeth J Anthony
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann Liza Piberger
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Anoop S Chauhan
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Poppy Conway-Thomas
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alina Vaitsiankova
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Sobana Vijayendran
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- University Hospital Birmingham N.H.S. Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Birmingham, B15 2TH, UK
| | - James F Beesley
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Eva Petermann
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Eric J Brown
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 421 Curie Boulevard PA, 19104-6160, USA
| | - Ruth M Densham
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Simon H Reed
- Broken String Biosciences Ltd., BioData Innovation Centre, Unit AB3-03, Level 3, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1DR, UK
- Division of Cancer & Genetics School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Felix Dobbs
- Broken String Biosciences Ltd., BioData Innovation Centre, Unit AB3-03, Level 3, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1DR, UK
- Division of Cancer & Genetics School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Marco Saponaro
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
8
|
Tejwani V, Carroll T, Macartney T, Bandau S, Alabert C, Saredi G, Toth R, Rouse J. PROTAC-mediated conditional degradation of the WRN helicase as a potential strategy for selective killing of cancer cells with microsatellite instability. Sci Rep 2024; 14:20824. [PMID: 39242638 PMCID: PMC11379953 DOI: 10.1038/s41598-024-71160-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024] Open
Abstract
Multiple studies have demonstrated that cancer cells with microsatellite instability (MSI) are intolerant to loss of the Werner syndrome helicase (WRN), whereas microsatellite-stable (MSS) cancer cells are not. Therefore, WRN represents a promising new synthetic lethal target for developing drugs to treat cancers with MSI. Given the uncertainty of how effective inhibitors of WRN activity will prove in clinical trials, and the likelihood of tumours developing resistance to WRN inhibitors, alternative strategies for impeding WRN function are needed. Proteolysis-targeting chimeras (PROTACs) are heterobifunctional small molecules that target specific proteins for degradation. Here, we engineered the WRN locus so that the gene product is fused to a bromodomain (Bd)-tag, enabling conditional WRN degradation with the AGB-1 PROTAC specific for the Bd-tag. Our data revealed that WRN degradation is highly toxic in MSI but not MSS cell lines. In MSI cells, WRN degradation caused G2/M arrest, chromosome breakage and ATM kinase activation. We also describe a multi-colour cell-based platform for facile testing of selective toxicity in MSI versus MSS cell lines. Together, our data show that a degrader approach is a potentially powerful way of targeting WRN in MSI cancers and paves the way for the development of WRN-specific PROTAC compounds.
Collapse
Affiliation(s)
- Vikram Tejwani
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Thomas Carroll
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Susanne Bandau
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, DD1 5EH, UK
| | - Constance Alabert
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, Wellcome Trust Biocentre, University of Dundee, Dundee, DD1 5EH, UK
| | - Giulia Saredi
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
9
|
Xu H, Ye J, Zhang KX, Hu Q, Cui T, Tong C, Wang M, Geng H, Shui KM, Sun Y, Wang J, Hou X, Zhang K, Xie R, Yin Y, Chen N, Chen JY. Chemoproteomic profiling unveils binding and functional diversity of endogenous proteins that interact with endogenous triplex DNA. Nat Chem 2024:10.1038/s41557-024-01609-7. [PMID: 39223307 DOI: 10.1038/s41557-024-01609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Triplex DNA structures, formed when a third DNA strand wraps around the major groove of DNA, are key molecular regulators and genomic threats. However, the regulatory network governing triplex DNA dynamics remains poorly understood. Here we reveal the binding and functional repertoire of proteins that interact with triplex DNA through chemoproteomic profiling in living cells. We develop a chemical probe that exhibits exceptional specificity towards triplex DNA. By employing a co-binding-mediated proximity capture strategy, we enrich triplex DNA interactome for quantitative proteomics analysis. This enables the identification of a comprehensive list of proteins that interact with triplex DNA, characterized by diverse binding properties and regulatory mechanisms in their native chromatin context. As a demonstration, we validate DDX3X as an ATP-independent triplex DNA helicase to unwind substrates with a 5' overhang to prevent DNA damage. Overall, our study provides a valuable resource for exploring the biology and translational potential of triplex DNA.
Collapse
Affiliation(s)
- Hongzhan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Jing Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Kui-Xing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Qingxi Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Tongxiao Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Chong Tong
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengqi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Huichao Geng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Kun-Ming Shui
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Yan Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Jian Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Xiaomeng Hou
- ChomiX Biotech (Nanjing) Co. Ltd., Nanjing, China
| | - Kai Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Ran Xie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Yafei Yin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Chen
- ChomiX Biotech (Nanjing) Co. Ltd., Nanjing, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center, Department of Neurology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing, China.
| |
Collapse
|
10
|
Fan W, Liu H, Stachelek GC, Begum A, Davis CE, Dorado TE, Ernst G, Reinhold WC, Ozbek B, Zheng Q, De Marzo AM, Rajeshkumar NV, Barrow JC, Laiho M. Ribosomal RNA transcription governs splicing through ribosomal protein RPL22. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608201. [PMID: 39211199 PMCID: PMC11361076 DOI: 10.1101/2024.08.15.608201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ribosome biosynthesis is a cancer vulnerability executed by targeting RNA polymerase I (Pol I) transcription. We developed advanced, specific Pol I inhibitors to identify drivers of this sensitivity. By integrating multi-omics features and drug sensitivity data from a large cancer cell panel, we discovered that RPL22 frameshift mutation conferred Pol I inhibitor sensitivity in microsatellite instable cancers. Mechanistically, RPL22 directly interacts with 28S rRNA and mRNA splice junctions, functioning as a splicing regulator. RPL22 deficiency, intensified by 28S rRNA sequestration, promoted the splicing of its paralog RPL22L1 and p53 negative regulator MDM4. Chemical and genetic inhibition of rRNA synthesis broadly remodeled mRNA splicing controlling hundreds of targets. Strikingly, RPL22-dependent alternative splicing was reversed by Pol I inhibition revealing a ribotoxic stress-initiated tumor suppressive pathway. We identify a mechanism that robustly connects rRNA synthesis activity to splicing and reveals their coordination by ribosomal protein RPL22.
Collapse
|
11
|
Pavani R, Tripathi V, Vrtis KB, Zong D, Chari R, Callen E, Pankajam AV, Zhen G, Matos-Rodrigues G, Yang J, Wu S, Reginato G, Wu W, Cejka P, Walter JC, Nussenzweig A. Structure and repair of replication-coupled DNA breaks. Science 2024; 385:eado3867. [PMID: 38900911 DOI: 10.1126/science.ado3867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Using CRISPR-Cas9 nicking enzymes, we examined the interaction between the replication machinery and single-strand breaks, one of the most common forms of endogenous DNA damage. We show that replication fork collapse at leading-strand nicks generates resected single-ended double-strand breaks (seDSBs) that are repaired by homologous recombination (HR). If these seDSBs are not promptly repaired, arrival of adjacent forks creates double-ended DSBs (deDSBs), which could drive genomic scarring in HR-deficient cancers. deDSBs can also be generated directly when the replication fork bypasses lagging-strand nicks. Unlike deDSBs produced independently of replication, end resection at nick-induced seDSBs and deDSBs is BRCA1-independent. Nevertheless, BRCA1 antagonizes 53BP1 suppression of RAD51 filament formation. These results highlight distinctive mechanisms that maintain replication fork stability.
Collapse
Affiliation(s)
- Raphael Pavani
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Veenu Tripathi
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Kyle B Vrtis
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dali Zong
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ajith V Pankajam
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Gang Zhen
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Jiajie Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shuheng Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Giordano Reginato
- Institute for Research in Biomedicine, Universita della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Wei Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Petr Cejka
- Institute for Research in Biomedicine, Universita della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, Switzerland
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard University, Boston, MA, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
12
|
Ye BJ, Li DF, Li XY, Hao JL, Liu DJ, Yu H, Zhang CD. Methylation synthetic lethality: Exploiting selective drug targets for cancer therapy. Cancer Lett 2024; 597:217010. [PMID: 38849016 DOI: 10.1016/j.canlet.2024.217010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
In cancer, synthetic lethality refers to the drug-induced inactivation of one gene and the inhibition of another in cancer cells by a drug, resulting in the death of only cancer cells; however, this effect is not present in normal cells, leading to targeted killing of cancer cells. Recent intensive epigenetic research has revealed that aberrant epigenetic changes are more frequently observed than gene mutations in certain cancers. Recently, numerous studies have reported various methylation synthetic lethal combinations involving DNA damage repair genes, metabolic pathway genes, and paralogs with significant results in cellular models, some of which have already entered clinical trials with promising results. This review systematically introduces the advantages of methylation synthetic lethality and describes the lethal mechanisms of methylation synthetic lethal combinations that have recently demonstrated success in cellular models. Furthermore, we discuss the future opportunities and challenges of methylation synthetic lethality in targeted anticancer therapies.
Collapse
Affiliation(s)
- Bing-Jie Ye
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Di-Fei Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xin-Yun Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Jia-Lin Hao
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Di-Jie Liu
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Hang Yu
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Chun-Dong Zhang
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
13
|
Picco G, Rao Y, Al Saedi A, Lee Y, Vieira SF, Bhosle S, May K, Herranz-Ors C, Walker SJ, Shenje R, Dincer C, Gibson F, Banerjee R, Hewitson Z, Werner T, Cottom JE, Peng Y, Deng N, Zhang Y, Nartey EN, Nickels L, Landis P, Conticelli D, McCarten K, Bush J, Sharma M, Lightfoot H, House D, Milford E, Grant EK, Glogowski MP, Wagner CD, Bantscheff M, Rutkowska-Klute A, Zappacosta F, Pettinger J, Barthorpe S, Eberl HC, Jones BT, Schneck JL, Murphy DJ, Voest EE, Taygerly JP, DeMartino MP, Coelho MA, Houseley J, Sharma G, Schwartz B, Garnett MJ. Novel WRN Helicase Inhibitors Selectively Target Microsatellite-Unstable Cancer Cells. Cancer Discov 2024; 14:1457-1475. [PMID: 38587317 DOI: 10.1158/2159-8290.cd-24-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Microsatellite-unstable (MSI) cancers require WRN helicase to resolve replication stress due to expanded DNA (TA)n dinucleotide repeats. WRN is a promising synthetic lethal target for MSI tumors, and WRN inhibitors are in development. In this study, we used CRISPR-Cas9 base editing to map WRN residues critical for MSI cells, validating the helicase domain as the primary drug target. Fragment-based screening led to the development of potent and highly selective WRN helicase covalent inhibitors. These compounds selectively suppressed MSI model growth in vitro and in vivo by mimicking WRN loss, inducing DNA double-strand breaks at expanded TA repeats and DNA damage. Assessment of biomarkers in preclinical models linked TA-repeat expansions and mismatch repair alterations to compound activity. Efficacy was confirmed in immunotherapy-resistant organoids and patient-derived xenograft models. The discovery of potent, selective covalent WRN inhibitors provides proof of concept for synthetic lethal targeting of WRN in MSI cancer and tools to dissect WRN biology. Significance: We report the discovery and characterization of potent, selective WRN helicase inhibitors for MSI cancer treatment, with biomarker analysis and evaluation of efficacy in vivo and in immunotherapy-refractory preclinical models. These findings pave the way to translate WRN inhibition into MSI cancer therapies and provide tools to investigate WRN biology. See related commentary by Wainberg, p. 1369.
Collapse
Affiliation(s)
| | | | | | - Yang Lee
- GSK, Upper Providence, Pennsylvania
| | | | | | - Kieron May
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Emile E Voest
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wainberg ZA. WRN Helicase: Is There More to MSI-H than Immunotherapy? Cancer Discov 2024; 14:1369-1371. [PMID: 39091203 DOI: 10.1158/2159-8290.cd-24-0771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
In this issue, Picco and colleagues provide further evidence that WRN inhibitors are synthetically lethal in microsatellite instability-high (MSI-H) cancers and function by blocking the helicase domain of select WRN residues. They demonstrate that WRN inhibitors may be even more effective in a subset of MSI-high tumors with (TA)n repeat expansions, which represents a possible strategy in clinical development. See related article by Picco et al., p. 1457 (1).
Collapse
Affiliation(s)
- Zev A Wainberg
- Division of Hematology/Oncology, Early Phase Clinical Research Program, Jonsson Comprehensive Cancer at UCLA, David Geffen School of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
15
|
Orren DK, Machwe A. Response to Replication Stress and Maintenance of Genome Stability by WRN, the Werner Syndrome Protein. Int J Mol Sci 2024; 25:8300. [PMID: 39125869 PMCID: PMC11311767 DOI: 10.3390/ijms25158300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Werner syndrome (WS) is an autosomal recessive disease caused by loss of function of WRN. WS is a segmental progeroid disease and shows early onset or increased frequency of many characteristics of normal aging. WRN possesses helicase, annealing, strand exchange, and exonuclease activities and acts on a variety of DNA substrates, even complex replication and recombination intermediates. Here, we review the genetics, biochemistry, and probably physiological functions of the WRN protein. Although its precise role is unclear, evidence suggests WRN plays a role in pathways that respond to replication stress and maintain genome stability particularly in telomeric regions.
Collapse
Affiliation(s)
- David K. Orren
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
| | - Amrita Machwe
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA;
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
16
|
Anthony H, Seoighe C. Performance assessment of computational tools to detect microsatellite instability. Brief Bioinform 2024; 25:bbae390. [PMID: 39129364 PMCID: PMC11317526 DOI: 10.1093/bib/bbae390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Microsatellite instability (MSI) is a phenomenon seen in several cancer types, which can be used as a biomarker to help guide immune checkpoint inhibitor treatment. To facilitate this, researchers have developed computational tools to categorize samples as having high microsatellite instability, or as being microsatellite stable using next-generation sequencing data. Most of these tools were published with unclear scope and usage, and they have yet to be independently benchmarked. To address these issues, we assessed the performance of eight leading MSI tools across several unique datasets that encompass a wide variety of sequencing methods. While we were able to replicate the original findings of each tool on whole exome sequencing data, most tools had worse receiver operating characteristic and precision-recall area under the curve values on whole genome sequencing data. We also found that they lacked agreement with one another and with commercial MSI software on gene panel data, and that optimal threshold cut-offs vary by sequencing type. Lastly, we tested tools made specifically for RNA sequencing data and found they were outperformed by tools designed for use with DNA sequencing data. Out of all, two tools (MSIsensor2, MANTIS) performed well across nearly all datasets, but when all datasets were combined, their precision decreased. Our results caution that MSI tools can have much lower performance on datasets other than those on which they were originally evaluated, and in the case of RNA sequencing tools, can even perform poorly on the type of data for which they were created.
Collapse
Affiliation(s)
- Harrison Anthony
- School of Mathematical and Statistical Sciences, University of Galway, Galway H91 TK33, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Galway D02 FX65, Ireland
| | - Cathal Seoighe
- School of Mathematical and Statistical Sciences, University of Galway, Galway H91 TK33, Ireland
- The SFI Centre for Research Training in Genomics Data Science, Galway D02 FX65, Ireland
| |
Collapse
|
17
|
Monnat RJ. James German and the Quest to Understand Human RECQ Helicase Deficiencies. Cells 2024; 13:1077. [PMID: 38994931 PMCID: PMC11240319 DOI: 10.3390/cells13131077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/10/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
James German's work to establish the natural history and cancer risk associated with Bloom syndrome (BS) has had a strong influence on the generation of scientists and clinicians working to understand other RECQ deficiencies and heritable cancer predisposition syndromes. I summarize work by us and others below, inspired by James German's precedents with BS, to understand and compare BS with the other heritable RECQ deficiency syndromes with a focus on Werner syndrome (WS). What we know, unanswered questions and new opportunities are discussed, as are potential ways to treat or modify WS-associated disease mechanisms and pathways.
Collapse
Affiliation(s)
- Raymond J Monnat
- Departments of Laboratory Medicine/Pathology and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Jiang T, Zhang Y, Yu S, Hu B. Discovering potential WRN inhibitors from natural product database through computational methods. J Mol Graph Model 2024; 129:108758. [PMID: 38507856 DOI: 10.1016/j.jmgm.2024.108758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Microsatellite instability (MSI) is a relatively common feature associated with multiple cancers, and Werner syndrome (WRN) ATP-dependent helicase has been recognized as a novel target for treating MSI cancers, such as colorectal cancer. A small-molecule inhibitor targeting WRN would be a promising strategy for treating colorectal cancer with high MSI expression. In this study, we employed a computer-assisted drug discovery strategy to screen over 30,000 natural product molecules. By using a combination of docking, ligand efficiency, Molecular Mechanics/Generalized Born Surface Area (MM/GBSA), and thermodynamic integration (TI) calculations, we identified MOL008980, MOL010740, MOL011832, T4743, TN1166, and TNP-002173 as potential WRN inhibitors. Subsequent molecular dynamics simulation revealed that these screened natural products possessed better binding dynamic characteristics than ATP substrate and were capable of inhibiting the dynamic process of WRN, making them potential strong ATP competitive inhibitors. In conclusion, our computational approach revealed potential WRN inhibitors from a natural product database, providing a theoretical basis for future research.
Collapse
Affiliation(s)
| | | | - Shuihong Yu
- College of Pharmacy, Anqing Medical College, Anqing, China
| | - Bingde Hu
- Navy Anqing Hospital, Anqing, China.
| |
Collapse
|
19
|
Yamamoto H, Watanabe Y, Arai H, Umemoto K, Tateishi K, Sunakawa Y. Microsatellite instability: A 2024 update. Cancer Sci 2024; 115:1738-1748. [PMID: 38528657 PMCID: PMC11145116 DOI: 10.1111/cas.16160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
Deficient mismatch repair (dMMR) results in microsatellite instability (MSI), a pronounced mutator phenotype. High-frequency MSI (MSI-H)/dMMR is gaining increasing interest as a biomarker for advanced cancer patients to determine their eligibility for immune checkpoint inhibitors (ICIs). Various methods based on next-generation sequencing (NGS) have been developed to assess the MSI status. Comprehensive genomic profiling (CGP) testing can precisely ascertain the MSI status as well as genomic alterations in a single NGS test. The MSI status can be also ascertained through the liquid biopsy-based CGP assays. MSI-H has thus been identified in various classes of tumors, resulting in a greater adoption of immunotherapy, which is hypothesized to be effective against malignancies that possess a substantial number of mutations and/or neoantigens. NGS-based studies have also characterized MSI-driven carcinogenesis, including significant rates of fusion kinases in colorectal cancers (CRCs) with MSI-H that are targets for therapeutic kinase inhibitors, particularly in MLH1-methylated CRCs with wild-type KRAS/BRAF. NTRK fusion is linked to the colorectal serrated neoplasia pathway. Recent advances in investigations of MSI-H malignancies have resulted in the development of novel diagnostic or therapeutic techniques, such as a synthetic lethal therapy that targets the Werner gene. DNA sensing in cancer cells is required for antitumor immunity induced by dMMR, opening up novel avenues and biomarkers for immunotherapy. Therefore, clinical relevance exists for analyses of MSI and MSI-H-associated genomic alterations in malignancy. In this article, we provide an update on MSI-driven carcinogenesis, with an emphasis on unique landscapes of diagnostic and immunotherapeutic strategies.
Collapse
Affiliation(s)
- Hiroyuki Yamamoto
- Department of BioinformaticsSt. Marianna University Graduate School of MedicineKawasakiJapan
- Department of GastroenterologySt. Marianna University School of MedicineKawasakiJapan
| | - Yoshiyuki Watanabe
- Department of GastroenterologySt. Marianna University School of MedicineKawasakiJapan
- Department of Internal MedicineKawasaki Rinko General HospitalKawasakiJapan
| | - Hiroyuki Arai
- Department of Clinical OncologySt. Marianna University School of MedicineKawasakiJapan
| | - Kumiko Umemoto
- Department of Clinical OncologySt. Marianna University School of MedicineKawasakiJapan
| | - Keisuke Tateishi
- Department of GastroenterologySt. Marianna University School of MedicineKawasakiJapan
| | - Yu Sunakawa
- Department of Clinical OncologySt. Marianna University School of MedicineKawasakiJapan
| |
Collapse
|
20
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch D, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. NAR Cancer 2024; 6:zcae027. [PMID: 38854437 PMCID: PMC11161834 DOI: 10.1093/narcan/zcae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. We used inverse PCR of non-B microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures integrated at a common ectopic chromosomal site to show that these non-B DNAs generate highly mutagenized eccDNAs by replication-dependent mechanisms. Mutagenesis occurs within the non-B DNAs and extends several kilobases bidirectionally into flanking and nonallelic DNA. Each non-B DNA exhibits a different pattern of mutagenesis, while sister clones containing the same non-B DNA also display distinct patterns of recombination, microhomology-mediated template switching and base substitutions. Mutations include mismatches, short duplications, long nontemplated insertions, large deletions and template switches to sister chromatids and nonallelic chromosomes. Drug-induced replication stress or the depletion of DNA repair factors Rad51, the COPS2 signalosome subunit or POLη change the pattern of template switching and alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA double strand breaks to account for the generation and circularization of mutagenized eccDNAs and the appearance of genomic homologous recombination deficiency (HRD) scars. These results may help to explain the appearance of tumor eccDNAS and their roles in neoantigen production, oncogenesis and resistance to chemotherapy.
Collapse
Affiliation(s)
- Rujuta Yashodhan Gadgil
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - S Dean Rider
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Resha Shrestha
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Venicia Alhawach
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - David C Hitch
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
21
|
Li S, Han T. Frequent loss of FAM126A expression in colorectal cancer results in selective FAM126B dependency. iScience 2024; 27:109646. [PMID: 38638566 PMCID: PMC11025007 DOI: 10.1016/j.isci.2024.109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/01/2023] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Most advanced colorectal cancer (CRC) patients cannot benefit from targeted therapy due to lack of actionable targets. By mining data from the DepMap, we identified FAM126B as a specific vulnerability in CRC cell lines exhibiting low FAM126A expression. Employing a combination of genetic perturbation and inducible protein degradation techniques, we demonstrate that FAM126A and FAM126B function in a redundant manner to facilitate the recruitment of PI4KIIIα to the plasma membrane for PI4P synthesis. Examination of data from TCGA and GTEx revealed that over 7% of CRC tumor samples exhibited loss of FAM126A expression, contrasting with uniform FAM126A expression in normal tissues. In both CRC cell lines and tumor samples, promoter hypermethylation correlated with the loss of FAM126A expression, which could be reversed by DNA methylation inhibitors. In conclusion, our study reveals that loss of FAM126A expression results in FAM126B dependency, thus proposing FAM126B as a therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Shuang Li
- PTN Joint Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Ting Han
- PTN Joint Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
22
|
Yuan H, Liu RD, Gao ZY, Zhong LT, Zhou YC, Tan JH, Huang ZS, Li Z, Chen SB. Targeting ATP-binding site of WRN Helicase: Identification of novel inhibitors through pocket analysis and Molecular Dynamics-Enhanced virtual screening. Bioorg Med Chem Lett 2024; 104:129711. [PMID: 38521175 DOI: 10.1016/j.bmcl.2024.129711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
WRN helicase is a critical protein involved in maintaining genomic stability, utilizing ATP hydrolysis to dissolve DNA secondary structures. It has been identified as a promising synthetic lethal target for microsatellite instable (MSI) cancers. However, few WRN helicase inhibitors have been discovered, and their potential binding sites remain unexplored. In this study, we analyzed potential binding sites for WRN inhibitors and focused on the ATP-binding site for screening new inhibitors. Through molecular dynamics-enhanced virtual screening, we identified two compounds, h6 and h15, which effectively inhibited WRN's helicase and ATPase activity in vitro. Importantly, these compounds selectively targeted WRN's ATPase activity, setting them apart from other non-homologous proteins with ATPase activity. In comparison to the homologous protein BLM, h6 exhibits some degree of selectivity towards WRN. We also investigated the binding mode of these compounds to WRN's ATP-binding sites. These findings offer a promising strategy for discovering new WRN inhibitors and present two novel scaffolds, which might be potential for the development of MSI cancer treatment.
Collapse
Affiliation(s)
- Hao Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Run-Duo Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuo-Yu Gao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Li-Ting Zhong
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying-Chen Zhou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhe Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
23
|
Li H, Yu J, Yu G, Cheng S, Wu H, Wei J, You C, Liu K, Wang M, Meng X, Xu G, Luo H, Xu B. Design and synthesis of N-aryl-2-trifluoromethyl-quinazoline-4-amine derivatives as potential Werner-dependent antiproliferative agents. Mol Divers 2024:10.1007/s11030-024-10844-6. [PMID: 38739229 DOI: 10.1007/s11030-024-10844-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/08/2024] [Indexed: 05/14/2024]
Abstract
To discover new Werner (WRN) helicase inhibitors, a series of N-aryl-2-trifluoromethyl-quinazoline-4-amine derivatives were designed and synthesized through a structural optimization strategy, and the anticancer activities of 25 new target compounds against PC3, K562, and HeLa cell lines were evaluated by the MTT assay. Some of these compounds exhibited excellent inhibitory activity against three different cancer cell lines. Compounds 6a, 8i, and 13a showed better antiproliferative activity against K562 cells, with IC50 values of 3871.5, 613.6 and 134.7 nM, respectively, than did paclitaxel (35.6 nM), doxorubicin (2689.0 nM), and NSC 617145 (20.3 nM). To further verify whether the antiproliferative activity of these compounds is dependent on WRN, PC3 cells overexpressing WRN (PC3-WRN) were constructed to further study their antiproliferative potency in vitro, and the inhibition ratio and IC20 values showed that compounds 6a, 8i, and 13a were more sensitive to PC3-WRN than were the control group cells (PC3-NC). The IC20 ratios of compounds 6a, 8i, and 13a to PC3-NC and PC3-WRN were 94.3, 153.4 and 505.5, respectively. According to the docking results, the compounds 6a, 8i, and 13a overlapped well with the binding pocket of 6YHR. Further study demonstrated that among the tested compounds, 13a was the most sensitive to PC3-WRN. In summary, our research identified a series of N-aryl-2-trifluoromethyl-quinazoline-4-amine derivatives as potential WRN-dependent anticancer agents.
Collapse
Affiliation(s)
- Huimin Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Gang Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Hui Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Jiaomei Wei
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Chang You
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Kun Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Menghan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xueling Meng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Guangcan Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China.
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China.
| | - Bixue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
- Natural Products Research Center of Guizhou Province, Guiyang, 550014, China.
| |
Collapse
|
24
|
Ferretti S, Hamon J, de Kanter R, Scheufler C, Andraos-Rey R, Barbe S, Bechter E, Blank J, Bordas V, Dammassa E, Decker A, Di Nanni N, Dourdoigne M, Gavioli E, Hattenberger M, Heuser A, Hemmerlin C, Hinrichs J, Kerr G, Laborde L, Jaco I, Núñez EJ, Martus HJ, Quadt C, Reschke M, Romanet V, Schaeffer F, Schoepfer J, Schrapp M, Strang R, Voshol H, Wartmann M, Welly S, Zécri F, Hofmann F, Möbitz H, Cortés-Cros M. Discovery of WRN inhibitor HRO761 with synthetic lethality in MSI cancers. Nature 2024; 629:443-449. [PMID: 38658754 PMCID: PMC11078746 DOI: 10.1038/s41586-024-07350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
The Werner syndrome RecQ helicase WRN was identified as a synthetic lethal target in cancer cells with microsatellite instability (MSI) by several genetic screens1-6. Despite advances in treatment with immune checkpoint inhibitors7-10, there is an unmet need in the treatment of MSI cancers11-14. Here we report the structural, biochemical, cellular and pharmacological characterization of the clinical-stage WRN helicase inhibitor HRO761, which was identified through an innovative hit-finding and lead-optimization strategy. HRO761 is a potent, selective, allosteric WRN inhibitor that binds at the interface of the D1 and D2 helicase domains, locking WRN in an inactive conformation. Pharmacological inhibition by HRO761 recapitulated the phenotype observed by WRN genetic suppression, leading to DNA damage and inhibition of tumour cell growth selectively in MSI cells in a p53-independent manner. Moreover, HRO761 led to WRN degradation in MSI cells but not in microsatellite-stable cells. Oral treatment with HRO761 resulted in dose-dependent in vivo DNA damage induction and tumour growth inhibition in MSI cell- and patient-derived xenograft models. These findings represent preclinical pharmacological validation of WRN as a therapeutic target in MSI cancers. A clinical trial with HRO761 (NCT05838768) is ongoing to assess the safety, tolerability and preliminary anti-tumour activity in patients with MSI colorectal cancer and other MSI solid tumours.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jutta Blank
- Novartis BioMedical Research, Basel, Switzerland
| | | | | | | | | | | | - Elena Gavioli
- Novartis BioMedical Research, Basel, Switzerland
- Novartis Pharma AG, Basel, Switzerland
| | | | - Alisa Heuser
- Novartis BioMedical Research, Basel, Switzerland
| | | | | | - Grainne Kerr
- Novartis BioMedical Research, Basel, Switzerland
| | | | - Isabel Jaco
- Novartis BioMedical Research, Basel, Switzerland
| | - Eloísa Jiménez Núñez
- Novartis BioMedical Research, Basel, Switzerland
- Pierre Fabre Laboratories, Toulouse, France
| | | | | | | | | | | | | | | | - Ross Strang
- Novartis BioMedical Research, Basel, Switzerland
| | - Hans Voshol
- Novartis BioMedical Research, Basel, Switzerland
| | | | - Sarah Welly
- Novartis BioMedical Research, Basel, Switzerland
| | | | - Francesco Hofmann
- Novartis BioMedical Research, Basel, Switzerland
- Pierre Fabre Laboratories, Toulouse, France
| | | | | |
Collapse
|
25
|
Baltgalvis KA, Lamb KN, Symons KT, Wu CC, Hoffman MA, Snead AN, Song X, Glaza T, Kikuchi S, Green JC, Rogness DC, Lam B, Rodriguez-Aguirre ME, Woody DR, Eissler CL, Rodiles S, Negron SM, Bernard SM, Tran E, Pollock J, Tabatabaei A, Contreras V, Williams HN, Pastuszka MK, Sigler JJ, Pettazzoni P, Rudolph MG, Classen M, Brugger D, Claiborne C, Plancher JM, Cuartas I, Seoane J, Burgess LE, Abraham RT, Weinstein DS, Simon GM, Patricelli MP, Kinsella TM. Chemoproteomic discovery of a covalent allosteric inhibitor of WRN helicase. Nature 2024; 629:435-442. [PMID: 38658751 DOI: 10.1038/s41586-024-07318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024]
Abstract
WRN helicase is a promising target for treatment of cancers with microsatellite instability (MSI) due to its essential role in resolving deleterious non-canonical DNA structures that accumulate in cells with faulty mismatch repair mechanisms1-5. Currently there are no approved drugs directly targeting human DNA or RNA helicases, in part owing to the challenging nature of developing potent and selective compounds to this class of proteins. Here we describe the chemoproteomics-enabled discovery of a clinical-stage, covalent allosteric inhibitor of WRN, VVD-133214. This compound selectively engages a cysteine (C727) located in a region of the helicase domain subject to interdomain movement during DNA unwinding. VVD-133214 binds WRN protein cooperatively with nucleotide and stabilizes compact conformations lacking the dynamic flexibility necessary for proper helicase function, resulting in widespread double-stranded DNA breaks, nuclear swelling and cell death in MSI-high (MSI-H), but not in microsatellite-stable, cells. The compound was well tolerated in mice and led to robust tumour regression in multiple MSI-H colorectal cancer cell lines and patient-derived xenograft models. Our work shows an allosteric approach for inhibition of WRN function that circumvents competition from an endogenous ATP cofactor in cancer cells, and designates VVD-133214 as a promising drug candidate for patients with MSI-H cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Betty Lam
- Vividion Therapeutics, San Diego, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Piergiorgio Pettazzoni
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Markus G Rudolph
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Moritz Classen
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Doris Brugger
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Christopher Claiborne
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Jean-Marc Plancher
- Pharma Research and Early Development pRED F. Hoffmann-La Roche, Ltd, Basel, Switzerland
| | - Isabel Cuartas
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | - Joan Seoane
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, CIBERONC, Barcelona, Spain
| | | | - Robert T Abraham
- Vividion Therapeutics, San Diego, CA, USA
- Odyssey Therapeutics, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
26
|
Pytko KG, Dannenberg RL, Eckert KA, Hedglin M. Replication of [AT/TA] 25 Microsatellite Sequences by Human DNA Polymerase δ Holoenzymes Is Dependent on dNTP and RPA Levels. Biochemistry 2024; 63:969-983. [PMID: 38623046 DOI: 10.1021/acs.biochem.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Fragile sites are unstable genomic regions that are prone to breakage during stressed DNA replication. Several common fragile sites (CFS) contain A+T-rich regions including perfect [AT/TA] microsatellite repeats that may collapse into hairpins when in single-stranded DNA (ssDNA) form and coincide with chromosomal hotspots for breakage and rearrangements. While many factors contribute to CFS instability, evidence exists for replication stalling within [AT/TA] microsatellite repeats. Currently, it is unknown how stress causes replication stalling within [AT/TA] microsatellite repeats. To investigate this, we utilized FRET to characterize the structures of [AT/TA]25 sequences and also reconstituted lagging strand replication to characterize the progression of pol δ holoenzymes through A+T-rich sequences. The results indicate that [AT/TA]25 sequences adopt hairpins that are unwound by the major ssDNA-binding complex, RPA, and the progression of pol δ holoenzymes through A+T-rich sequences saturated with RPA is dependent on the template sequence and dNTP concentration. Importantly, the effects of RPA on the replication of [AT/TA]25 sequences are dependent on dNTP concentration, whereas the effects of RPA on the replication of A+T-rich, nonstructure-forming sequences are independent of dNTP concentration. Collectively, these results reveal complexities in lagging strand replication and provide novel insights into how [AT/TA] microsatellite repeats contribute to genome instability.
Collapse
Affiliation(s)
- Kara G Pytko
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Rachel L Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| | - Kristin A Eckert
- Department of Pathology and Laboratory Medicine, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033, United States
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
27
|
Heuser A, Abdul Rahman W, Bechter E, Blank J, Buhr S, Erdmann D, Fontana P, Mermet-Meillon F, Meyerhofer M, Strang R, Schrapp M, Zimmermann C, Cortes-Cros M, Möbitz H, Hamon J. Challenges for the Discovery of Non-Covalent WRN Helicase Inhibitors. ChemMedChem 2024; 19:e202300613. [PMID: 38334957 DOI: 10.1002/cmdc.202300613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
The Werner Syndrome RecQ helicase (WRN) is a synthetic lethal target of interest for the treatment of cancers with microsatellite instability (MSI). Different hit finding approaches were initially tested. The identification of WRN inhibitors proved challenging due to a high propensity for artefacts via protein interference, i. e., hits inhibiting WRN enzymatic activities through multiple, unspecific mechanisms. Previously published WRN Helicase inhibitors (ML216, NSC19630 or NSC617145) were characterized in an extensive set of biochemical and biophysical assays and could be ruled out as specific WRN helicase probes. More innovative screening strategies need to be developed for successful drug discovery of non-covalent WRN helicase inhibitors.
Collapse
Affiliation(s)
- Alisa Heuser
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | | | - Elisabeth Bechter
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Jutta Blank
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Sylvia Buhr
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Dirk Erdmann
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Patrizia Fontana
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | | | - Marco Meyerhofer
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Ross Strang
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Maxime Schrapp
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | | | - Marta Cortes-Cros
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Henrik Möbitz
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| | - Jacques Hamon
- Novartis Biomedical Research, Novartis Campus, CH-4056, Basel, Switzerland
| |
Collapse
|
28
|
Ding XH, Xiao Y, Chen F, Liu CL, Fu T, Shao ZM, Jiang YZ. The HLA-I landscape confers prognosis and antitumor immunity in breast cancer. Brief Bioinform 2024; 25:bbae151. [PMID: 38602320 PMCID: PMC11007120 DOI: 10.1093/bib/bbae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/12/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Breast cancer is a highly heterogeneous disease with varied subtypes, prognoses and therapeutic responsiveness. Human leukocyte antigen class I (HLA-I) shapes the immunity and thereby influences the outcome of breast cancer. However, the implications of HLA-I variations in breast cancer remain poorly understood. In this study, we established a multiomics cohort of 1156 Chinese breast cancer patients for HLA-I investigation. We calculated four important HLA-I indicators in each individual, including HLA-I expression level, somatic HLA-I loss of heterozygosity (LOH), HLA-I evolutionary divergence (HED) and peptide-binding promiscuity (Pr). Then, we evaluated their distribution and prognostic significance in breast cancer subtypes. We found that the four breast cancer subtypes had distinct features of HLA-I indicators. Increased expression of HLA-I and LOH were enriched in triple-negative breast cancer (TNBC), while Pr was relatively higher in hot tumors within TNBCs. In particular, a higher Pr indicated a better prognosis in TNBCs by regulating the infiltration of immune cells and the expression of immune molecules. Using the matched genomic and transcriptomic data, we found that mismatch repair deficiency-related mutational signature and pathways were enriched in low-Pr TNBCs, suggesting that targeting mismatch repair deficiency for synthetic lethality might be promising therapy for these patients. In conclusion, we presented an overview of HLA-I indicators in breast cancer and provided hints for precision treatment for low-Pr TNBCs.
Collapse
Affiliation(s)
- Xiao-Hong Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Fudan University, Shanghai, 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P.R. China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Fudan University, Shanghai, 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P.R. China
| | - Fenfang Chen
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Fudan University, Shanghai, 200032, P.R. China
| | - Cheng-Lin Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Fudan University, Shanghai, 200032, P.R. China
| | - Tong Fu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Fudan University, Shanghai, 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P.R. China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Fudan University, Shanghai, 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P.R. China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Fudan University, Shanghai, 200032, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P.R. China
| |
Collapse
|
29
|
Sanchez A, Ortega P, Sakhtemani R, Manjunath L, Oh S, Bournique E, Becker A, Kim K, Durfee C, Temiz NA, Chen XS, Harris RS, Lawrence MS, Buisson R. Mesoscale DNA features impact APOBEC3A and APOBEC3B deaminase activity and shape tumor mutational landscapes. Nat Commun 2024; 15:2370. [PMID: 38499542 PMCID: PMC10948877 DOI: 10.1038/s41467-024-45909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/09/2024] [Indexed: 03/20/2024] Open
Abstract
Antiviral DNA cytosine deaminases APOBEC3A and APOBEC3B are major sources of mutations in cancer by catalyzing cytosine-to-uracil deamination. APOBEC3A preferentially targets single-stranded DNAs, with a noted affinity for DNA regions that adopt stem-loop secondary structures. However, the detailed substrate preferences of APOBEC3A and APOBEC3B have not been fully established, and the specific influence of the DNA sequence on APOBEC3A and APOBEC3B deaminase activity remains to be investigated. Here, we find that APOBEC3B also selectively targets DNA stem-loop structures, and they are distinct from those subjected to deamination by APOBEC3A. We develop Oligo-seq, an in vitro sequencing-based method to identify specific sequence contexts promoting APOBEC3A and APOBEC3B activity. Through this approach, we demonstrate that APOBEC3A and APOBEC3B deaminase activity is strongly regulated by specific sequences surrounding the targeted cytosine. Moreover, we identify the structural features of APOBEC3B and APOBEC3A responsible for their substrate preferences. Importantly, we determine that APOBEC3B-induced mutations in hairpin-forming sequences within tumor genomes differ from the DNA stem-loop sequences mutated by APOBEC3A. Together, our study provides evidence that APOBEC3A and APOBEC3B can generate distinct mutation landscapes in cancer genomes, driven by their unique substrate selectivity.
Collapse
Affiliation(s)
- Ambrocio Sanchez
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Pedro Ortega
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Ramin Sakhtemani
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lavanya Manjunath
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Sunwoo Oh
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Elodie Bournique
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Alexandrea Becker
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Kyumin Kim
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nuri Alpay Temiz
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rémi Buisson
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA.
- Center for Epigenetics and Metabolism, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
30
|
Yang H, Kang M, Jang S, Baek SY, Kim J, Kim GU, Kim D, Ha J, Kim JS, Jung C, Kim NJ, Cho SY, Shin WH, Lee J, Ko J, Lee A, Keum G, Lee S, Kang T. Discovery of thiophen-2-ylmethylene bis-dimedone derivatives as novel WRN inhibitors for treating cancers with microsatellite instability. Bioorg Med Chem 2024; 100:117588. [PMID: 38295487 DOI: 10.1016/j.bmc.2024.117588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Microsatellite instability (MSI) is a hypermutable condition caused by DNA mismatch repair system defects, contributing to the development of various cancer types. Recent research has identified Werner syndrome ATP-dependent helicase (WRN) as a promising synthetic lethal target for MSI cancers. Herein, we report the first discovery of thiophen-2-ylmethylene bis-dimedone derivatives as novel WRN inhibitors for MSI cancer therapy. Initial computational analysis and biological evaluation identified a new scaffold for a WRN inhibitor. Subsequent SAR study led to the discovery of a highly potent WRN inhibitor. Furthermore, we demonstrated that the optimal compound induced DNA damage and apoptotic cell death in MSI cancer cells by inhibiting WRN. This study provides a new pharmacophore for WRN inhibitors, emphasizing their therapeutic potential for MSI cancers.
Collapse
Affiliation(s)
- Hwasun Yang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Miso Kang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seonyeong Jang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Soo Yeon Baek
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jiwon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Gyeong Un Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Dongwoo Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Junsu Ha
- Arontier Co., Ltd., Seoul 06735, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Cheulhee Jung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Nam-Jung Kim
- Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung-Yup Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Woong-Hee Shin
- Arontier Co., Ltd., Seoul 06735, Republic of Korea; Department of Medicine, Korea University College of Medicine, Seoul 02708, Republic of Korea
| | - Juyong Lee
- Arontier Co., Ltd., Seoul 06735, Republic of Korea; Research Institute of Pharmaceutical Science, Seoul National University, Seoul 08826, Republic of Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Junsu Ko
- Arontier Co., Ltd., Seoul 06735, Republic of Korea
| | - Ansoo Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Gyochang Keum
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Sanghee Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department for HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea.
| | - Taek Kang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
31
|
Gadgil RY, Rider SD, Shrestha R, Alhawach V, Hitch DC, Leffak M. Microsatellite break-induced replication generates highly mutagenized extrachromosomal circular DNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575055. [PMID: 38260482 PMCID: PMC10802558 DOI: 10.1101/2024.01.12.575055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Extrachromosomal circular DNAs (eccDNAs) are produced from all regions of the eucaryotic genome. In tumors, highly transcribed eccDNAs have been implicated in oncogenesis, neoantigen production and resistance to chemotherapy. Here we show that unstable microsatellites capable of forming hairpin, triplex, quadruplex and AT-rich structures generate eccDNAs when integrated at a common ectopic site in human cells. These non-B DNA prone microsatellites form eccDNAs by replication-dependent mechanisms. The microsatellite-based eccDNAs are highly mutagenized and display template switches to sister chromatids and to nonallelic chromosomal sites. High frequency mutagenesis occurs within the eccDNA microsatellites and extends bidirectionally for several kilobases into flanking DNA and nonallelic DNA. Mutations include mismatches, short duplications, longer nontemplated insertions and large deletions. Template switching leads to recurrent deletions and recombination domains within the eccDNAs. Template switching events are microhomology-mediated, but do not occur at all potential sites of complementarity. Each microsatellite exhibits a distinct pattern of recombination, microhomology choice and base substitution signature. Depletion of Rad51, the COPS2 signalosome subunit or POLη alter the eccDNA mutagenic profiles. We propose an asynchronous capture model based on break-induced replication from microsatellite-induced DNA breaks for the generation and circularization of mutagenized eccDNAs and genomic homologous recombination deficiency (HRD) scars.
Collapse
|
32
|
Mackay HL, Stone HR, Ellis K, Ronson GE, Walker AK, Starowicz K, Garvin AJ, van Eijk P, Vaitsiankova A, Vijayendran S, Beesley JF, Petermann E, Brown EJ, Densham RM, Reed SH, Dobbs F, Saponaro M, Morris JR. USP50 suppresses alternative RecQ helicase use and deleterious DNA2 activity during replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574674. [PMID: 38260523 PMCID: PMC10802463 DOI: 10.1101/2024.01.10.574674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Mammalian DNA replication employs several RecQ DNA helicases to orchestrate the faithful duplication of genetic information. Helicase function is often coupled to the activity of specific nucleases, but how helicase and nuclease activities are co-directed is unclear. Here we identify the inactive ubiquitin-specific protease, USP50, as a ubiquitin-binding and chromatin-associated protein required for ongoing replication, fork restart, telomere maintenance and cellular survival during replicative stress. USP50 supports WRN:FEN1 at stalled replication forks, suppresses MUS81-dependent fork collapse and restricts double-strand DNA breaks at GC-rich sequences. Surprisingly we find that cells depleted for USP50 and recovering from a replication block exhibit increased DNA2 and RECQL4 foci and that the defects in ongoing replication, poor fork restart and increased fork collapse seen in these cells are mediated by DNA2, RECQL4 and RECQL5. These data define a novel ubiquitin-dependent pathway that promotes the balance of helicase: nuclease use at ongoing and stalled replication forks.
Collapse
|
33
|
Ramsey JR, Shelton PM, Heiss TK, Olinares PDB, Vostal LE, Soileau H, Grasso M, Casebeer SW, Adaniya S, Miller M, Sun S, Huggins DJ, Myers RW, Chait BT, Vinogradova EV, Kapoor TM. Using a Function-First "Scout Fragment"-Based Approach to Develop Allosteric Covalent Inhibitors of Conformationally Dynamic Helicase Mechanoenzymes. J Am Chem Soc 2024; 146:62-67. [PMID: 38134034 PMCID: PMC10958666 DOI: 10.1021/jacs.3c10581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Helicases, classified into six superfamilies, are mechanoenzymes that utilize energy derived from ATP hydrolysis to remodel DNA and RNA substrates. These enzymes have key roles in diverse cellular processes, such as translation, ribosome assembly, and genome maintenance. Helicases with essential functions in certain cancer cells have been identified, and helicases expressed by many viruses are required for their pathogenicity. Therefore, helicases are important targets for chemical probes and therapeutics. However, it has been very challenging to develop chemical inhibitors for helicases, enzymes with high conformational dynamics. We envisioned that electrophilic "scout fragments", which have been used in chemical proteomic studies, could be leveraged to develop covalent inhibitors of helicases. We adopted a function-first approach, combining enzymatic assays with enantiomeric probe pairs and mass spectrometry, to develop a covalent inhibitor that selectively targets an allosteric site in SARS-CoV-2 nsp13, a superfamily-1 helicase. Further, we demonstrate that scout fragments inhibit the activity of two human superfamily-2 helicases, BLM and WRN, involved in genome maintenance. Together, our findings suggest an approach to discover covalent inhibitor starting points and druggable allosteric sites in conformationally dynamic mechanoenzymes.
Collapse
Affiliation(s)
- Jared R. Ramsey
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, United States
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Patrick M.M Shelton
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Tyler K. Heiss
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Paul Dominic B. Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, United States
| | - Lauren E. Vostal
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, United States
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Heather Soileau
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, United States
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Michael Grasso
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Sara W. Casebeer
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Stephanie Adaniya
- Laboratory of Chemical Immunology and Proteomics, The Rockefeller University, New York, NY 10065, United States
| | - Michael Miller
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, United States
| | - Shan Sun
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, United States
| | - David J. Huggins
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, United States
| | - Robert W. Myers
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, United States
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, United States
| | - Ekaterina V. Vinogradova
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, United States
- Laboratory of Chemical Immunology and Proteomics, The Rockefeller University, New York, NY 10065, United States
| | - Tarun M. Kapoor
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, United States
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| |
Collapse
|
34
|
Liang Y, Yuan Q, Zheng Q, Mei Z, Song Y, Yan H, Yang J, Wu S, Yuan J, Wu W. DNA Damage Atlas: an atlas of DNA damage and repair. Nucleic Acids Res 2024; 52:D1218-D1226. [PMID: 37831087 PMCID: PMC10767978 DOI: 10.1093/nar/gkad845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
DNA damage and its improper repair are the major source of genomic alterations responsible for many human diseases, particularly cancer. To aid researchers in understanding the underlying mechanisms of genome instability, a number of genome-wide profiling approaches have been developed to monitor DNA damage and repair events. The rapid accumulation of published datasets underscores the critical necessity of a comprehensive database to curate sequencing data on DNA damage and repair intermediates. Here, we present DNA Damage Atlas (DDA, http://www.bioinformaticspa.com/DDA/), the first large-scale repository of DNA damage and repair information. Currently, DDA comprises 6,030 samples from 262 datasets by 59 technologies, covering 16 species, 10 types of damage and 135 treatments. Data collected in DDA was processed through a standardized workflow, including quality checks, hotspots identification and a series of feature characterization for the hotspots. Notably, DDA encompasses analyses of highly repetitive regions, ribosomal DNA and telomere. DDA offers a user-friendly interface that facilitates browsing, searching, genome browser visualization, hotspots comparison and data downloading, enabling convenient and thorough exploration for datasets of interest. In summary, DDA will stand as a valuable resource for research in genome instability and its association with diseases.
Collapse
Affiliation(s)
- Yu Liang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qingqing Yuan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Qijie Zheng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Zilv Mei
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Yawei Song
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Huan Yan
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Jiajie Yang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Shuheng Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Jiao Yuan
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Wei Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| |
Collapse
|
35
|
Muyas F, Rodriguez MJG, Cascão R, Afonso A, Sauer CM, Faria CC, Cortés-Ciriano I, Flores I. The ALT pathway generates telomere fusions that can be detected in the blood of cancer patients. Nat Commun 2024; 15:82. [PMID: 38167290 PMCID: PMC10762111 DOI: 10.1038/s41467-023-44287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Telomere fusions (TFs) can trigger the accumulation of oncogenic alterations leading to malignant transformation and drug resistance. Despite their relevance in tumour evolution, our understanding of the patterns and consequences of TFs in human cancers remains limited. Here, we characterize the rates and spectrum of somatic TFs across >30 cancer types using whole-genome sequencing data. TFs are pervasive in human tumours with rates varying markedly across and within cancer types. In addition to end-to-end fusions, we find patterns of TFs that we mechanistically link to the activity of the alternative lengthening of telomeres (ALT) pathway. We show that TFs can be detected in the blood of cancer patients, which enables cancer detection with high specificity and sensitivity even for early-stage tumours and cancers of high unmet clinical need. Overall, we report a genomic footprint that enables characterization of the telomere maintenance mechanism of tumours and liquid biopsy analysis.
Collapse
Affiliation(s)
- Francesc Muyas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | | | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Angela Afonso
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Carolin M Sauer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Claudia C Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisboa, Portugal
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK.
| | - Ignacio Flores
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, 28029, Spain.
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|
36
|
Irony-Tur Sinai M, Kerem B. Insights into common fragile site instability: DNA replication challenges at DNA repeat sequences. Emerg Top Life Sci 2023; 7:277-287. [PMID: 37876349 PMCID: PMC10754330 DOI: 10.1042/etls20230023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023]
Abstract
Common fragile sites (CFS) are specific genomic regions prone to chromosomal instability under conditions of DNA replication stress. CFSs manifest as breaks, gaps, and constrictions on metaphase chromosomes under mild replication stress. These replication-sensitive CFS regions are preferentially unstable during cancer development, as reflected by their association with copy number variants (CNVs) frequently arise in most tumor types. Over the years, it became clear that a combination of different characteristics underlies the enhanced sensitivity of CFSs to replication stress. As of today, there is a strong evidence that the core fragility regions along CFSs overlap with actively transcribed large genes with delayed replication timing upon replication stress. Recently, the mechanistic basis for CFS instability was further extended to regions which span topologically associated domain (TAD) boundaries, generating a fragility signature composed of replication, transcription and genome organization. The presence of difficult-to-replicate AT-rich repeats was one of the early features suggested to characterize a subgroup of CFSs. These long stretches of AT-dinucleotide have the potential to fold into stable secondary structures which may impede replication fork progression, leaving the region under-replicated. Here, we focus on the molecular mechanisms underlying repeat instability at CFSs and on the proteins involved in the resolution of secondary structure impediments arising along repetitive sequence elements which are essential for the maintenance of genome stability.
Collapse
Affiliation(s)
- Michal Irony-Tur Sinai
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
37
|
Nickoloff JA, Jaiswal AS, Sharma N, Williamson EA, Tran MT, Arris D, Yang M, Hromas R. Cellular Responses to Widespread DNA Replication Stress. Int J Mol Sci 2023; 24:16903. [PMID: 38069223 PMCID: PMC10707325 DOI: 10.3390/ijms242316903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Replicative DNA polymerases are blocked by nearly all types of DNA damage. The resulting DNA replication stress threatens genome stability. DNA replication stress is also caused by depletion of nucleotide pools, DNA polymerase inhibitors, and DNA sequences or structures that are difficult to replicate. Replication stress triggers complex cellular responses that include cell cycle arrest, replication fork collapse to one-ended DNA double-strand breaks, induction of DNA repair, and programmed cell death after excessive damage. Replication stress caused by specific structures (e.g., G-rich sequences that form G-quadruplexes) is localized but occurs during the S phase of every cell division. This review focuses on cellular responses to widespread stress such as that caused by random DNA damage, DNA polymerase inhibition/nucleotide pool depletion, and R-loops. Another form of global replication stress is seen in cancer cells and is termed oncogenic stress, reflecting dysregulated replication origin firing and/or replication fork progression. Replication stress responses are often dysregulated in cancer cells, and this too contributes to ongoing genome instability that can drive cancer progression. Nucleases play critical roles in replication stress responses, including MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, FEN1, and TATDN2. Several of these nucleases cleave branched DNA structures at stressed replication forks to promote repair and restart of these forks. We recently defined roles for EEPD1 in restarting stressed replication forks after oxidative DNA damage, and for TATDN2 in mitigating replication stress caused by R-loop accumulation in BRCA1-defective cells. We also discuss how insights into biological responses to genome-wide replication stress can inform novel cancer treatment strategies that exploit synthetic lethal relationships among replication stress response factors.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Aruna S. Jaiswal
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Elizabeth A. Williamson
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Manh T. Tran
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Dominic Arris
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Ming Yang
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Robert Hromas
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| |
Collapse
|
38
|
Pytko KG, Dannenberg RL, Eckert KA, Hedglin M. Replication of [AT/TA] 25 microsatellite sequences by human DNA polymerase δ holoenzymes is dependent on dNTP and RPA levels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566133. [PMID: 37986888 PMCID: PMC10659299 DOI: 10.1101/2023.11.07.566133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Difficult-to-Replicate Sequences (DiToRS) are natural impediments in the human genome that inhibit DNA replication under endogenous replication. Some of the most widely-studied DiToRS are A+T-rich, high "flexibility regions," including long stretches of perfect [AT/TA] microsatellite repeats that have the potential to collapse into hairpin structures when in single-stranded DNA (ssDNA) form and are sites of recurrent structural variation and double-stranded DNA (dsDNA) breaks. Currently, it is unclear how these flexibility regions impact DNA replication, greatly limiting our fundamental understanding of human genome stability. To investigate replication through flexibility regions, we utilized FRET to characterize the effects of the major ssDNA-binding complex, RPA, on the structure of perfect [AT/TA]25 microsatellite repeats and also re-constituted human lagging strand replication to quantitatively characterize initial encounters of pol δ holoenzymes with A+T-rich DNA template sequences. The results indicate that [AT/TA]25 sequences adopt hairpin structures that are unwound by RPA and pol δ holoenzymes support dNTP incorporation through the [AT/TA]25 sequences as well as an A+T-rich, non-structure forming sequence. Furthermore, the extent of dNTP incorporation is dependent on the sequence of the DNA template and the concentration of dNTPs. Importantly, the effects of RPA on the replication of [AT/TA]25 sequences are dependent on the concentration of dNTPs, whereas the effects of RPA on the replication of an A+T-rich, non-structure forming sequence are independent of dNTP concentration. Collectively, these results reveal complexities in lagging strand replication and provide novel insights into how flexibility regions contribute to genome instability.
Collapse
Affiliation(s)
- Kara G. Pytko
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Rachel L. Dannenberg
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| | - Kristin A. Eckert
- Department of Pathology and Laboratory Medicine, The Jake Gittlen Laboratories for Cancer Research, Hershey, PA 17033
| | - Mark Hedglin
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
39
|
Matos-Rodrigues G, Hisey JA, Nussenzweig A, Mirkin SM. Detection of alternative DNA structures and its implications for human disease. Mol Cell 2023; 83:3622-3641. [PMID: 37863029 DOI: 10.1016/j.molcel.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 10/22/2023]
Abstract
Around 3% of the genome consists of simple DNA repeats that are prone to forming alternative (non-B) DNA structures, such as hairpins, cruciforms, triplexes (H-DNA), four-stranded guanine quadruplexes (G4-DNA), and others, as well as composite RNA:DNA structures (e.g., R-loops, G-loops, and H-loops). These DNA structures are dynamic and favored by the unwinding of duplex DNA. For many years, the association of alternative DNA structures with genome function was limited by the lack of methods to detect them in vivo. Here, we review the recent advancements in the field and present state-of-the-art technologies and methods to study alternative DNA structures. We discuss the limitations of these methods as well as how they are beginning to provide insights into causal relationships between alternative DNA structures, genome function and stability, and human disease.
Collapse
Affiliation(s)
| | - Julia A Hisey
- Department of Biology, Tufts University, Medford, MA, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD, USA.
| | | |
Collapse
|
40
|
Bhamidipati D, Subbiah V. Tumor-agnostic drug development in dMMR/MSI-H solid tumors. Trends Cancer 2023; 9:828-839. [PMID: 37517955 DOI: 10.1016/j.trecan.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
Mismatch repair deficiency (dMMR) or microsatellite instability-high (MSI-H) represents a distinct phenotype among solid tumors characterized by frequent frameshift mutations resulting in the generation of neoantigens that are highly immunogenic. Seminal studies identified that dMMR/MSI-H tumors are exquisitely sensitive to immune checkpoint inhibitors, which has dramatically improved outcomes for patients harboring dMMR/MSI-H tumors. Nevertheless, many patients develop resistance to single-agent immune checkpoint blockade, prompting the need for improved therapeutic options for this patient population. In this review, we highlight key studies examining the efficacy of PD1 inhibitors in the metastatic and neoadjuvant setting for patients with dMMR/MSI-H tumors, describe resistance mechanisms to immune checkpoint blockade, and discuss novel treatment approaches that are currently under investigation for dMMR/MSI-H tumors.
Collapse
Affiliation(s)
- Deepak Bhamidipati
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Sarah Cannon Research Institute, Nashville, TN, USA.
| |
Collapse
|
41
|
Wang M, Ran X, Leung W, Kawale A, Saxena S, Ouyang J, Patel PS, Dong Y, Yin T, Shu J, Manguso RT, Lan L, Wang XF, Lawrence MS, Zou L. ATR inhibition induces synthetic lethality in mismatch repair-deficient cells and augments immunotherapy. Genes Dev 2023; 37:929-943. [PMID: 37932012 PMCID: PMC10691477 DOI: 10.1101/gad.351084.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
The mismatch repair (MMR) deficiency of cancer cells drives mutagenesis and offers a useful biomarker for immunotherapy. However, many MMR-deficient (MMR-d) tumors do not respond to immunotherapy, highlighting the need for alternative approaches to target MMR-d cancer cells. Here, we show that inhibition of the ATR kinase preferentially kills MMR-d cancer cells. Mechanistically, ATR inhibitor (ATRi) imposes synthetic lethality on MMR-d cells by inducing DNA damage in a replication- and MUS81 nuclease-dependent manner. The DNA damage induced by ATRi is colocalized with both MSH2 and PCNA, suggesting that it arises from DNA structures recognized by MMR proteins during replication. In syngeneic mouse models, ATRi effectively reduces the growth of MMR-d tumors. Interestingly, the antitumor effects of ATRi are partially due to CD8+ T cells. In MMR-d cells, ATRi stimulates the accumulation of nascent DNA fragments in the cytoplasm, activating the cGAS-mediated interferon response. The combination of ATRi and anti-PD-1 antibody reduces the growth of MMR-d tumors more efficiently than ATRi or anti-PD-1 alone, showing the ability of ATRi to augment the immunotherapy of MMR-d tumors. Thus, ATRi selectively targets MMR-d tumor cells by inducing synthetic lethality and enhancing antitumor immunity, providing a promising strategy to complement and augment MMR deficiency-guided immunotherapy.
Collapse
Affiliation(s)
- Mingchao Wang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Xiaojuan Ran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27708, USA
| | - Wendy Leung
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Ajinkya Kawale
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Sneha Saxena
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27708, USA
| | - Parasvi S Patel
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Yuting Dong
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Tao Yin
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27708, USA
| | - Jian Shu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Robert T Manguso
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27708, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA;
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27708, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
42
|
Zong D, Koussa NC, Cornwell JA, Pankajam AV, Kruhlak MJ, Wong N, Chari R, Cappell SD, Nussenzweig A. Comprehensive mapping of cell fates in microsatellite unstable cancer cells supports dual targeting of WRN and ATR. Genes Dev 2023; 37:913-928. [PMID: 37932011 PMCID: PMC10691471 DOI: 10.1101/gad.351085.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
Addiction to the WRN helicase is a unique vulnerability of human cancers with high levels of microsatellite instability (MSI-H). However, while prolonged loss of WRN ultimately leads to cell death, little is known about how MSI-H cancers initially respond to acute loss of WRN-knowledge that would be helpful for informing clinical development of WRN targeting therapy, predicting possible resistance mechanisms, and identifying useful biomarkers of successful WRN inhibition. Here, we report the construction of an inducible ligand-mediated degradation system in which the stability of endogenous WRN protein can be rapidly and specifically tuned, enabling us to track the complete sequence of cellular events elicited by acute loss of WRN function. We found that WRN degradation leads to immediate accrual of DNA damage in a replication-dependent manner that curiously did not robustly engage checkpoint mechanisms to halt DNA synthesis. As a result, WRN-degraded MSI-H cancer cells accumulate DNA damage across multiple replicative cycles and undergo successive rounds of increasingly aberrant mitoses, ultimately triggering cell death. Of potential therapeutic importance, we found no evidence of any generalized mechanism by which MSI-H cancers could adapt to near-complete loss of WRN. However, under conditions of partial WRN degradation, addition of low-dose ATR inhibitor significantly increased their combined efficacy to levels approaching full inactivation of WRN. Overall, our results provide the first comprehensive view of molecular events linking upstream inhibition of WRN to subsequent cell death and suggest that dual targeting of WRN and ATR might be a useful strategy for treating MSI-H cancers.
Collapse
Affiliation(s)
- Dali Zong
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Natasha C Koussa
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James A Cornwell
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ajith V Pankajam
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael J Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Steven D Cappell
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
43
|
Ramsey JR, Shelton PMM, Heiss TK, Olinares PDB, Vostal LE, Soileau H, Grasso M, Warrington S, Adaniya S, Miller M, Sun S, Huggins DJ, Myers RW, Chait BT, Vinogradova EV, Kapoor TM. Using a function-first 'scout fragment'-based approach to develop allosteric covalent inhibitors of conformationally dynamic helicase mechanoenzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559391. [PMID: 37808863 PMCID: PMC10557574 DOI: 10.1101/2023.09.25.559391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Helicases, classified into six superfamilies, are mechanoenzymes that utilize energy derived from ATP hydrolysis to remodel DNA and RNA substrates. These enzymes have key roles in diverse cellular processes, such as genome replication and maintenance, ribosome assembly and translation. Helicases with essential functions only in certain cancer cells have been identified and helicases expressed by certain viruses are required for their pathogenicity. As a result, helicases are important targets for chemical probes and therapeutics. However, it has been very challenging to develop selective chemical inhibitors for helicases, enzymes with highly dynamic conformations. We envisioned that electrophilic 'scout fragments', which have been used for chemical proteomic based profiling, could be leveraged to develop covalent inhibitors of helicases. We adopted a function-first approach, combining enzymatic assays with enantiomeric probe pairs and mass spectrometry, to develop a covalent inhibitor that selectively targets an allosteric site in SARS-CoV-2 nsp13, a superfamily-1 helicase. Further, we demonstrate that scout fragments inhibit the activity of two human superfamily-2 helicases, BLM and WRN, involved in genome maintenance. Together, our findings suggest a covalent inhibitor discovery approach to target helicases and potentially other conformationally dynamic mechanoenzymes.
Collapse
|
44
|
Li Q, Qian W, Zhang Y, Hu L, Chen S, Xia Y. A new wave of innovations within the DNA damage response. Signal Transduct Target Ther 2023; 8:338. [PMID: 37679326 PMCID: PMC10485079 DOI: 10.1038/s41392-023-01548-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 09/09/2023] Open
Abstract
Genome instability has been identified as one of the enabling hallmarks in cancer. DNA damage response (DDR) network is responsible for maintenance of genome integrity in cells. As cancer cells frequently carry DDR gene deficiencies or suffer from replicative stress, targeting DDR processes could induce excessive DNA damages (or unrepaired DNA) that eventually lead to cell death. Poly (ADP-ribose) polymerase (PARP) inhibitors have brought impressive benefit to patients with breast cancer gene (BRCA) mutation or homologous recombination deficiency (HRD), which proves the concept of synthetic lethality in cancer treatment. Moreover, the other two scenarios of DDR inhibitor application, replication stress and combination with chemo- or radio- therapy, are under active clinical exploration. In this review, we revisited the progress of DDR targeting therapy beyond the launched first-generation PARP inhibitors. Next generation PARP1 selective inhibitors, which could maintain the efficacy while mitigating side effects, may diversify the application scenarios of PARP inhibitor in clinic. Albeit with unavoidable on-mechanism toxicities, several small molecules targeting DNA damage checkpoints (gatekeepers) have shown great promise in preliminary clinical results, which may warrant further evaluations. In addition, inhibitors for other DNA repair pathways (caretakers) are also under active preclinical or clinical development. With these progresses and efforts, we envision that a new wave of innovations within DDR has come of age.
Collapse
Affiliation(s)
- Qi Li
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Wenyuan Qian
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yang Zhang
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Lihong Hu
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Shuhui Chen
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China
| | - Yuanfeng Xia
- Domestic Discovery Service Unit, WuXi AppTec, 200131, Shanghai, China.
| |
Collapse
|
45
|
Guan J, Li GM. DNA mismatch repair in cancer immunotherapy. NAR Cancer 2023; 5:zcad031. [PMID: 37325548 PMCID: PMC10262306 DOI: 10.1093/narcan/zcad031] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
Tumors defective in DNA mismatch repair (dMMR) exhibit microsatellite instability (MSI). Currently, patients with dMMR tumors are benefitted from anti-PD-1/PDL1-based immune checkpoint inhibitor (ICI) therapy. Over the past several years, great progress has been made in understanding the mechanisms by which dMMR tumors respond to ICI, including the identification of mutator phenotype-generated neoantigens, cytosolic DNA-mediated activation of the cGAS-STING pathway, type-I interferon signaling and high tumor-infiltration of lymphocytes in dMMR tumors. Although ICI therapy shows great clinical benefits, ∼50% of dMMR tumors are eventually not responsive. Here we review the discovery, development and molecular basis of dMMR-mediated immunotherapy, as well as tumor resistant problems and potential therapeutic interventions to overcome the resistance.
Collapse
Affiliation(s)
- Junhong Guan
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
46
|
Zong D, Koussa NC, Cornwell JA, Pankajam AV, Kruhlak MJ, Wong N, Chari R, Cappell SD, Nussenzweig A. Comprehensive mapping of cell fates in microsatellite unstable cancer cells support dual targe6ng of WRN and ATR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550976. [PMID: 37662356 PMCID: PMC10473727 DOI: 10.1101/2023.07.28.550976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Addiction to the WRN helicase is a unique vulnerability of human cancers with high levels of microsatellite instability (MSI-H). However, while prolonged loss of WRN ultimately leads to cell death, little is known about how MSI-H cancers initially respond to acute loss of WRN, knowledge that would be helpful for informing clinical development of WRN-targeting therapy, predicting possible resistance mechanisms, and identifying useful biomarkers of successful WRN inhibition. Here, we report the construction of an inducible ligand-mediated degradation system wherein the stability of endogenous WRN protein can be rapidly and specifically tuned, enabling us to track the complete sequence of cellular events elicited by acute loss of WRN function. We find that WRN degradation leads to immediate accrual of DNA damage in a replication-dependent manner that curiously did not robustly engage checkpoint mechanisms to halt DNA synthesis. As a result, WRN-degraded MSI-H cancer cells accumulate DNA damage across multiple replicative cycles and undergo successive rounds of increasingly aberrant mitoses, ultimately triggering cell death. Of potential therapeutic importance, we find no evidence of any generalized mechanism by which MSI-H cancers could adapt to near-complete loss of WRN. However, under conditions of partial WRN degradation, addition of low dose ATR inhibitor significantly increased their combined efficacy to levels approaching full inactivation of WRN. Overall, our results provided the first comprehensive view of molecular events linking upstream inhibition of WRN to subsequent cell death and suggested a potential therapeutical rationale for dual targeting of WRN and ATR.
Collapse
Affiliation(s)
- Dali Zong
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Natasha C. Koussa
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James A. Cornwell
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ajith V. Pankajam
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael J. Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nancy Wong
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Lab for Cancer Research, Frederick, MD, USA
| | - Steven D. Cappell
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
47
|
Ye T, Lin A, Qiu Z, Hu S, Zhou C, Liu Z, Cheng Q, Zhang J, Luo P. Microsatellite instability states serve as predictive biomarkers for tumors chemotherapy sensitivity. iScience 2023; 26:107045. [PMID: 37448561 PMCID: PMC10336167 DOI: 10.1016/j.isci.2023.107045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/17/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
There is an urgent need for markers to predict the efficacy of different chemotherapy drugs. Herein, we examined whether microsatellite instability (MSI) status can predict tumor multidrug sensitivity and explored the underlying mechanisms. We downloaded data from several public databases. Drug sensitivity was compared between the high microsatellite instability (MSI-H) and microsatellite-stable/low microsatellite instability (MSS/MSI-L) groups. In addition, we performed pathway enrichment analysis and cellular chemosensitivity assays to explore the mechanisms by which MSI status may affect drug sensitivity and assessed the differences between drug-treated and control cell lines. We found that multiple MSI-H tumors were more sensitive to a variety of chemotherapy drugs than MSS/MSI-L tumors, and especially for CRC, chemosensitivity is enhanced through the downregulation of DDR pathways such as NHEJ. Additional DNA damage caused by chemotherapeutic drugs results in further downregulation of DDR pathways and enhances drug sensitivity, forming a cycle of increasing drug sensitivity.
Collapse
Affiliation(s)
- Taojun Ye
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengang Qiu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shulu Hu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Chaozheng Zhou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Quan Cheng
- Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
48
|
Parker MJ, Lee H, Yao S, Irwin S, Hwang S, Belanger K, de Mare SW, Surgenor R, Yan L, Gee P, Morla S, Puyang X, Hsiao P, Zeng H, Zhu P, Korpal M, Dransfield P, Bolduc DM, Larsen NA. Identification of 2-Sulfonyl/Sulfonamide Pyrimidines as Covalent Inhibitors of WRN Using a Multiplexed High-Throughput Screening Assay. Biochemistry 2023; 62:2147-2160. [PMID: 37403936 PMCID: PMC10358344 DOI: 10.1021/acs.biochem.2c00599] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/03/2023] [Indexed: 07/06/2023]
Abstract
Werner syndrome protein (WRN) is a multifunctional enzyme with helicase, ATPase, and exonuclease activities that are necessary for numerous DNA-related transactions in the human cell. Recent studies identified WRN as a synthetic lethal target in cancers characterized by genomic microsatellite instability resulting from defects in DNA mismatch repair pathways. WRN's helicase activity is essential for the viability of these high microsatellite instability (MSI-H) cancers and thus presents a therapeutic opportunity. To this end, we developed a multiplexed high-throughput screening assay that monitors exonuclease, ATPase, and helicase activities of full-length WRN. This screening campaign led to the discovery of 2-sulfonyl/sulfonamide pyrimidine derivatives as novel covalent inhibitors of WRN helicase activity. The compounds are specific for WRN versus other human RecQ family members and show competitive behavior with ATP. Examination of these novel chemical probes established the sulfonamide NH group as a key driver of compound potency. One of the leading compounds, H3B-960, showed consistent activities in a range of assays (IC50 = 22 nM, KD = 40 nM, KI = 32 nM), and the most potent compound identified, H3B-968, has inhibitory activity IC50 ∼ 10 nM. These kinetic properties trend toward other known covalent druglike molecules. Our work provides a new avenue for screening WRN for inhibitors that may be adaptable to different therapeutic modalities such as targeted protein degradation, as well as a proof of concept for the inhibition of WRN helicase activity by covalent molecules.
Collapse
Affiliation(s)
- Mackenzie J. Parker
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Hyelee Lee
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Shihua Yao
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Sean Irwin
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Sunil Hwang
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Kylie Belanger
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Sofia Woo de Mare
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Richard Surgenor
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Lu Yan
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Patricia Gee
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Shravan Morla
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Xiaoling Puyang
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Peng Hsiao
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Hao Zeng
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Ping Zhu
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Manav Korpal
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Paul Dransfield
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - David M. Bolduc
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| | - Nicholas A. Larsen
- H3 Biomedicine, Inc., 300 Technology Square, Suite 5, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
49
|
Sakurada-Aono M, Sakamoto T, Kobayashi M, Takiuchi Y, Iwai F, Tada K, Sasanuma H, Hirabayashi S, Murakawa Y, Shirakawa K, Sakamoto C, Shindo K, Yasunaga JI, Matsuoka M, Pommier Y, Takeda S, Takaori-Kondo A. HTLV-1 bZIP factor impairs DNA mismatch repair system. Biochem Biophys Res Commun 2023; 657:43-49. [PMID: 36972660 PMCID: PMC10115849 DOI: 10.1016/j.bbrc.2023.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Adult T-cell leukemia (ATL) is a peripheral T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1). Microsatellite instability (MSI) has been observed in ATL cells. Although MSI results from impaired mismatch repair (MMR) pathway, no null mutations in the genes encoding MMR factors are detectable in ATL cells. Thus, it is unclear whether or not impairment of MMR causes the MSI in ATL cells. HTLV-1 bZIP factor (HBZ) protein interacts with numerous host transcription factors and significantly contributes to disease pathogenesis and progression. Here we investigated the effect of HBZ on MMR in normal cells. The ectopic expression of HBZ in MMR-proficient cells induced MSI, and also suppressed the expression of several MMR factors. We then hypothesized that the HBZ compromises MMR by interfering with a transcription factor, nuclear respiratory factor 1 (NRF-1), and identified the consensus NRF-1 binding site at the promoter of the gene encoding MutS homologue 2 (MSH2), an essential MMR factor. The luciferase reporter assay revealed that NRF-1 overexpression enhanced MSH2 promoter activity, while co-expression of HBZ reversed this enhancement. These results supported the idea that HBZ suppresses the transcription of MSH2 by inhibiting NRF-1. Our data demonstrate that HBZ causes impaired MMR, and may imply a novel oncogenesis driven by HTLV-1.
Collapse
Affiliation(s)
- Maki Sakurada-Aono
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takashi Sakamoto
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Masayuki Kobayashi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoko Takiuchi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Fumie Iwai
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kohei Tada
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Shigeki Hirabayashi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; IFOM ETS-the AIRC Institute of Molecular Oncology, 20139, Milan, MI, Italy
| | - Kotaro Shirakawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Chihiro Sakamoto
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Keisuke Shindo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Jun-Ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Shenzhen University School of Medicine, 1066, Xueyuan BLV, Shenzhen, Guangdong, China
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
50
|
Wang JE, Zhou YC, Wu BH, Chen XC, Zhai J, Tan JH, Huang ZS, Chen SB. A rapid and highly sensitive immunosorbent assay to monitor helicases unwinding diverse nucleic acid structures. Analyst 2023; 148:2343-2351. [PMID: 37185609 DOI: 10.1039/d2an01989b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Helicases are crucial enzymes in DNA and RNA metabolism and function by unwinding particular nucleic acid structures. However, most convenient and high-throughput helicase assays are limited to the typical duplex DNA. Herein, we developed an immunosorbent assay to monitor the Werner syndrome (WRN) helicase unwinding a wide range of DNA structures, such as a replication fork, a bubble, Holliday junction, G-quadruplex and hairpin. This assay could sensitively detect the unwinding of DNA structures with detection limits around 0.1 nM, and accurately monitor the substrate-specificity of WRN with a comparatively less time-consuming and high throughput process. Remarkably, we have established that this new assay was compatible in evaluating helicase inhibitors and revealed that the inhibitory effect was substrate-dependent, suggesting that diverse substrate structures other than duplex structures should be considered in discovering new inhibitors. Our study provided a foundational example for using this new assay as a powerful tool to study helicase functions and discover potent inhibitors.
Collapse
Affiliation(s)
- Jia-En Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ying-Chen Zhou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Bi-Han Wu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xiu-Cai Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Junqiu Zhai
- Guangzhou University of Chinese Medicine, Guangzhou, Guangzhou 510330, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|