1
|
Wu W, Yu D, Luo Y, Guan X, Zhang S, Ma G, Zhou X, Li C, Wang S. Introduction of polymeric ionic liquids containing quaternary ammonium groups to construct high-temperature proton exchange membranes with high proton conductivity and stability. J Colloid Interface Sci 2024; 675:689-699. [PMID: 38996699 DOI: 10.1016/j.jcis.2024.06.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024]
Abstract
A series of membrane materials suitable for high-temperature proton exchange membranes (HT-PEM) were successfully prepared by introducing polymeric ionic liquids (PILs) containing quaternary ammonium groups into ether-bonded polybenzimidazole (OPBI). The structure of the cross-linked membrane has a strong interaction with phosphoric acid (PA), which enhances proton transport and PA retention. To ensure better overall performance of the cross-linked membrane, the optimal PIL content is 30 wt% (OPBI-PIL-30 %). The PA uptake of OPBI-PIL-30 % membrane was 323.24 %, and the proton conductivity at 180 ℃ was 113.94 mS cm-1, which was much higher than that of OPBI membrane. It is noteworthy that the PA retention of OPBI-PIL-30 % membrane could reach 71.38 % after 240 h of testing under the harsh environment of 80 ℃/40 % RH. The membrane showed better acid retention capacity of 86.89 % at 160 ℃ under anhydrous environment. The OPBI-PIL-20 % membrane achieved the maximum power density of 436.19 mW cm-2, attributed to its favorable mechanical characteristics and proton conductivity. By these excellent properties, it is shown that OPBI-PIL-X membranes containing quaternary ammonium groups have the potential to be applied in high temperature proton exchange membrane fuel cells (HT-PEMFCs).
Collapse
Affiliation(s)
- Wanzhen Wu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Di Yu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Yu Luo
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Xianfeng Guan
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Shuyu Zhang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Guangpeng Ma
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Xinpu Zhou
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Cuicui Li
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Shuang Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China; Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, People's Republic of China.
| |
Collapse
|
2
|
Li Z, Mao X, Feng D, Li M, Xu X, Luo Y, Zhuang L, Lin R, Zhu T, Liang F, Huang Z, Liu D, Yan Z, Du A, Shao Z, Zhu Z. Prediction of perovskite oxygen vacancies for oxygen electrocatalysis at different temperatures. Nat Commun 2024; 15:9318. [PMID: 39472575 PMCID: PMC11522418 DOI: 10.1038/s41467-024-53578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Efficient catalysts are imperative to accelerate the slow oxygen reaction kinetics for the development of emerging electrochemical energy systems ranging from room-temperature alkaline water electrolysis to high-temperature ceramic fuel cells. In this work, we reveal the role of cationic inductive interactions in predetermining the oxygen vacancy concentrations of 235 cobalt-based and 200 iron-based perovskite catalysts at different temperatures, and this trend can be well predicted from machine learning techniques based on the cationic lattice environment, requiring no heavy computational and experimental inputs. Our results further show that the catalytic activity of the perovskites is strongly correlated with their oxygen vacancy concentration and operating temperatures. We then provide a machine learning-guided route for developing oxygen electrocatalysts suitable for operation at different temperatures with time efficiency and good prediction accuracy.
Collapse
Affiliation(s)
- Zhiheng Li
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
- School of Chemical Engineering, China University of Petroleum, Qingdao, China
| | - Xin Mao
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Australia
| | - Desheng Feng
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
| | - Mengran Li
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Australia.
| | - Xiaoyong Xu
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia.
- School of Chemical Engineering, The University of Adelaide, Adelaide, Australia.
| | - Yadan Luo
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia.
| | - Linzhou Zhuang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, China
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
| | - Tianjiu Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
| | - Fengli Liang
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
| | - Zi Huang
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Dong Liu
- School of Chemical Engineering, China University of Petroleum, Qingdao, China
| | - Zifeng Yan
- School of Chemical Engineering, China University of Petroleum, Qingdao, China
| | - Aijun Du
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology, Brisbane, Australia
| | - Zongping Shao
- WASM: Minerals, Energy and Chemical Engineering, Curtin University, Perth, Australia.
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
3
|
Song Y, Yi Y, Ran R, Zhou W, Wang W. Recent Advances in Barium Cobaltite-Based Perovskite Oxides as Cathodes for Intermediate-Temperature Solid Oxide Fuel Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406627. [PMID: 39363828 DOI: 10.1002/smll.202406627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Indexed: 10/05/2024]
Abstract
Solid oxide fuel cells (SOFCs) are considered as advanced energy conversion technologies due to the high efficiency, fuel flexibility, and all-solid structure. Nevertheless, their widespread applications are strongly hindered by the high operational temperatures, limited material selection choices, inferior long-term stability, and relatively high costs. Therefore, reducing operational temperatures of SOFCs to intermediate-temperature (IT, 500-800 °C) range can remarkably promote the practical applications by enabling the use of low-cost materials and enhancing the cell stability. Nevertheless, the conventional cathodes for high-temperature SOFCs display inferior electrocatalytic activity for oxygen reduction reaction (ORR) at reduced temperatures. Barium cobaltite (BaCoO3-δ)-based perovskite oxides are regarded as promising cathodes for IT-SOFCs because of the high free lattice volume and large oxygen vacancy content. However, BaCoO3-δ-based perovskite oxides suffer from poor structural stability, inferior thermal compatibility, and insufficient ionic conductivity. Herein, an in-time review about the recent advances in BaCoO3-δ-based cathodes for IT-SOFCs is presented by emphasizing the material design strategies including functional/selectively doping, deficiency control, and (nano)composite construction to enhance the ORR activity/durability and thermal compatibility. Finally, the currently existed challenges and future research trends are presented. This review will provide valuable insights for the development of BaCoO3-δ-based electrocatalysts for various energy conversion/storage technologies.
Collapse
Affiliation(s)
- Yufei Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yongning Yi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, P. R. China
| | - Ran Ran
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, P. R. China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, P. R. China
| | - Wei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, P. R. China
| |
Collapse
|
4
|
Choi Y, Han S, Park BI, Xu Z, Huang Q, Bae S, Kim JS, Kim SO, Meng Y, Kim SI, Moon JY, Roh I, Park JW, Bae SH. Perovskite nanocomposites: synthesis, properties, and applications from renewable energy to optoelectronics. NANO CONVERGENCE 2024; 11:36. [PMID: 39249580 PMCID: PMC11383915 DOI: 10.1186/s40580-024-00440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024]
Abstract
The oxide and halide perovskite materials with a ABX3 structure exhibit a number of excellent properties, including a high dielectric constant, electrochemical properties, a wide band gap, and a large absorption coefficient. These properties have led to a range of applications, including renewable energy and optoelectronics, where high-performance catalysts are needed. However, it is difficult for a single structure of perovskite alone to simultaneously fulfill the diverse needs of multiple applications, such as high performance and good stability at the same time. Consequently, perovskite nanocomposites have been developed to address the current limitations and enhance their functionality by combining perovskite with two or more materials to create complementary materials. This review paper categorizes perovskite nanocomposites according to their structural composition and outlines their synthesis methodologies, as well as their applications in various fields. These include fuel cells, electrochemical water splitting, CO2 mitigation, supercapacitors, and optoelectronic devices. Additionally, the review presents a summary of their research status, practical challenges, and future prospects in the fields of renewable energy and electronics.
Collapse
Affiliation(s)
- Yunseok Choi
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sangmoon Han
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Bo-In Park
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhihao Xu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
- The Institution of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Qingge Huang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sanggeun Bae
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
- The Institution of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Justin S Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
- The Institution of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Sun Ok Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuan Meng
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Seung-Il Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Energy Systems Research and Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
| | - Ji-Yun Moon
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Ilpyo Roh
- R&D CENTER, M.O.P Co., Ltd, Seoul, 07281, South Korea
| | - Ji-Won Park
- R&D Center of JB Lab Corporation, Gwanak-Gu, Seoul, 08788, Republic of Korea.
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- The Institution of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
| |
Collapse
|
5
|
Tahir A, Belotti A, Song Y, Wang Y, Maradesa A, Li J, Tian Y, Ciucci F. Ultrafast Sintered Composite Cathode Incorporating a Negative Thermal Expansion Material for High-Performance Protonic Ceramic Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44645-44654. [PMID: 39149936 DOI: 10.1021/acsami.4c03312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Protonic ceramic fuel cells (PCFCs) offer a promising, clean, and efficient energy conversion solution. However, thermal mismatch between cathodes and electrolytes remains a critical obstacle, leading to interfacial damage such as cracking and delamination. Incorporating negative thermal expansion (NTE) materials into the cathode can mitigate this issue. The challenge lies in integrating NTE materials without compromising electrochemical performance or causing unwanted reactions during sintering. This study introduces a novel BaFe0.9Zr0.1O3-δ (BFZ)-NdMnO3-δ composite cathode fabricated using an ultrafast high-temperature sintering (UHS) process. This approach mitigates thermal expansion while boosting the cathode's catalytic activity compared to a single-phase BFZ cathode. The resulting fuel cell achieves a high peak power density of ∼550 mW cm-2 at 600 °C and demonstrates excellent stability during a 100 h test at 550 °C. These findings highlight the potential of UHS for developing high-performance, thermally compatible cathode materials that advance the field of PCFCs.
Collapse
Affiliation(s)
- Abdullah Tahir
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Alessio Belotti
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Yufei Song
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Yuhao Wang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Adeleke Maradesa
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Jingwei Li
- Chair of Electrode Design for Electrochemical Energy Systems, University of Bayreuth, Bayreuth 95448, Germany
| | - Yunfeng Tian
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Francesco Ciucci
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Chair of Electrode Design for Electrochemical Energy Systems, University of Bayreuth, Bayreuth 95448, Germany
| |
Collapse
|
6
|
Gao Q, Jiao Y, Sprenger JAP, Finze M, Sanson A, Sun Q, Liang E, Chen J. Critical Role of Nonrigid Unit and Spiral Acoustical Modes in Designing Colossal Negative Thermal Expansion. J Am Chem Soc 2024; 146:21710-21720. [PMID: 39054782 DOI: 10.1021/jacs.4c05808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Exploring the relationship between thermal expansion and structural complexity is a challenging topic in the study of modern materials where volume stability is required. This work reports a new family of negative thermal expansion (NTE) materials, AM(CN)4 with A = Li and Na and M = B, Al, Ga, and In. Here, the compounds of LiB(CN)4 and NaB(CN)4 were only synthesized; others were purely computationally studied. A critical role of nonrigid vibrational modes and spiral acoustical modes has been identified in NaB(CN)4. This understanding has been exploited to design the colossal NTE materials of NaM(CN)4 (M = Al, Ga, In). A joint study involving synchrotron X-ray diffraction, Raman spectroscopy, and first-principles calculations has been conducted to investigate the thermal expansion mechanism. It has been found that the A atoms can either increase the symmetry of the crystal structure, inducing stronger NTE, or lower the crystal symmetry, thus resulting in positive thermal expansion. Conversely, the M-site atoms do not affect the crystal structure. However, as the radius of the M atoms increases, the ionic nature of the C-M bonds strengthens and the CN vibrations become more flexible, thereby enhancing the NTE behavior. This study provides new insights to aid in the discovery and design of novel NTE materials and the control of thermal expansion.
Collapse
Affiliation(s)
- Qilong Gao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
- ZhongYuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Yixin Jiao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Jan A P Sprenger
- Institut für Anorganische Chemie, Institut für Nachhaltige Chemie & Katalyse Mit Bor (ICB), Am Hubland, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| | - Maik Finze
- Institut für Anorganische Chemie, Institut für Nachhaltige Chemie & Katalyse Mit Bor (ICB), Am Hubland, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| | - Andrea Sanson
- Department of Physics and Astronomy & Department of Management and Engineering, University of Padua, Padova I-35131, Italy
| | - Qiang Sun
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Erjun Liang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Hainan University, Haikou 570228, Hainan Province, China
| |
Collapse
|
7
|
Yin Y, Wang Y, Yang N, Bi L. Unveiling the importance of the interface in nanocomposite cathodes for proton-conducting solid oxide fuel cells. EXPLORATION (BEIJING, CHINA) 2024; 4:20230082. [PMID: 39175892 PMCID: PMC11335467 DOI: 10.1002/exp.20230082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/16/2023] [Indexed: 08/24/2024]
Abstract
Designing a high-performance cathode is essential for the development of proton-conducting solid oxide fuel cells (H-SOFCs), and nanocomposite cathodes have proven to be an effective means of achieving this. However, the mechanism behind the nanocomposite cathodes' remarkable performance remains unknown. Doping the Co element into BaZrO3 can result in the development of BaCoO3 and BaZr0.7Co0.3O3 nanocomposites when the doping concentration exceeds 30%, according to the present study. The construction of the BaCoO3/BaZr0.7Co0.3O3 interface is essential for the enhancement of the cathode catalytic activity, as demonstrated by thin-film studies using pulsed laser deposition to simulate the interface of the BCO and BZCO individual particles and first-principles calculations to predict the oxygen reduction reaction steps. Eventually, the H-SOFC with a BaZr0.4Co0.6O3 cathode produces a record-breaking power density of 2253 mW cm-2 at 700°C.
Collapse
Affiliation(s)
- Yanru Yin
- School of Resources Environment and Safety EngineeringUniversity of South ChinaHengyangChina
| | - Yifan Wang
- Electrochemical thin film group, School of Physical Science and TechnologyShanghaiTech UniversityShanghaiP. R. China
| | - Nan Yang
- Electrochemical thin film group, School of Physical Science and TechnologyShanghaiTech UniversityShanghaiP. R. China
| | - Lei Bi
- School of Resources Environment and Safety EngineeringUniversity of South ChinaHengyangChina
- Division of Physical Sciences and EngineeringKing Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
8
|
Liu Z, Xing C, Wu S, Ma M, Tian J. Biphenyl tetracarboxylic acid-based metal-organic frameworks: a case of topology-dependent thermal expansion. MATERIALS HORIZONS 2024; 11:3345-3351. [PMID: 38683199 DOI: 10.1039/d3mh02185h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The large inherent flexibility and highly modular nature of metal-organic frameworks (MOFs) make them ideal candidates for the study of negative thermal expansion (NTE). Among diverse organic ligands, the biphenyl unit, which can unrestrictedly rotate along its C-C single bond, can largely enhance the structural flexibility. Herein, we explored the thermal expansion behaviors of four indium biphenyl tetracarboxylates (BPTCs). Owing to the different dihedral angles of BPTC ligands and coordination mode of In3+, they show distinct topologies: InOF-1 (nti), InOF-2 (unc), InOF-12 (pts) and InOF-13 (nou). Intriguingly, it is found that the thermal expansion is highly dependent on the specific topology. The MOFs featuring mononuclear nodes show normal positive thermal expansion (PTE), and the magnitudes of coefficients follow the trend of InOF-2 < InOF-12 < InOF-13, inversely related to averaged molecular volumes. In contrast, the InOF-1, composed of a 1D chain of corner-shared InO6 octahedrons, shows pronounced NTE. Detailed high-resolution synchrotron powder X-ray diffraction and lattice dynamic analyses shed light on the fact that NTE in the InOF-1 is a synergy effect of the spring-like distortion of the inorganic 1D helical chain and twisting of the BPTC ligands. The present work shows how the topological arrangement of building blocks governs the thermal expansion behaviors.
Collapse
Affiliation(s)
- Zhanning Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Chengyong Xing
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Shaowen Wu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Min Ma
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| |
Collapse
|
9
|
Lou H, Zhang H, Yao C, Chen M, Zhang Z, Xia B, Sun Y, Zhang W, Wang H, Lang X, Cai K. Synergistically engineered in-situ self-assembled heterostructure composite nanofiber cathode with superior oxygen reduction reaction catalysis for solid oxide fuel cells. J Colloid Interface Sci 2024; 666:285-295. [PMID: 38603872 DOI: 10.1016/j.jcis.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
The engineering and exploration of cathode materials to achieve superior oxygen reduction catalytic activity and resistance to CO2 are crucial for enhancing the performance of solid oxide fuel cells (SOFCs). Herein, a novel heterostructure composite nanofiber cathode comprised of PrBa0.5Sr0.5Co2O5+δ and Ce0.8Pr0.2O1.9 (PBSC-CPO-ES) was prepared for the first time through a synergistic approach involving in-situ self-assembly and electrostatic spinning techniques. PBSC-CPO-ES exhibits exceptionally high oxygen reduction catalytic activity and CO2 resistance, which is attributed to its unique nanofiber microstructure and abundant presence of heterointerfaces, significantly accelerating the charge transfer process, surface exchange and bulk diffusion of oxygen. The introduction of CPO not only effectively reduces the thermal expansion of PBSC but also changes the characteristics of oxygen ion transport anisotropy in layered perovskite materials, forming three-dimensional oxygen ion transport pathways. At 750 °C, the single cell employing the PBSC-CPO-ES heterostructure nanofiber attains an impressive peak power density of 1363 mW cm-2. This represents a notable 60.7 % improvement in comparison to the single-phase PBSC powder. Moreover, PBSC-CPO-ES exhibits excellent CO2 tolerance and performance recovery after CO2 exposure. This work provides new perspectives to the design and advancement of future high-performance and high-stability SOFC cathode materials.
Collapse
Affiliation(s)
- Hao Lou
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Haixia Zhang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Chuangang Yao
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China.
| | - Mingcun Chen
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Zhe Zhang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Baixi Xia
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Yuxi Sun
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Wenwen Zhang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Haocong Wang
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Xiaoshi Lang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Kedi Cai
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China.
| |
Collapse
|
10
|
Ma R, Chen L, Liu Z, Lin K, Li Q, Ji W, Xu H, Chen X, Deng J, Xing X. Regulating the thermal expansion of a [FePt(CN) 4] layer by axial coordination and dimensional reduction. Dalton Trans 2024; 53:11556-11562. [PMID: 38919143 DOI: 10.1039/d4dt01205d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Thermal expansion regulation by chemical decoration at a molecular level is of great technological value for materials science. Herein, we show that the spin crossover active compound Fe(pyz)Pt(CN)4 (pyz = pyrazine) shows a rare 2D negative thermal expansion (NTE) in the ab-plane. By introducing axial coordination iodine ions or reducing the framework dimension from 3D to 2D, the NTE behavior can be effectively switched to positive thermal expansion (PTE) or even zero thermal expansion (ZTE). Moreover, it is found that different spin states of Fe2+ also influence the magnitude of NTE. Compared with the low-spin (LS) sate, the high-spin (HS) state tends to enhance the magnitude of NTE. Combined in situ structural and Raman spectral analyses revealed that the NTE mainly originates from the transverse vibration of a bridging cyano group and the tailorable thermal expansion is closely related to the state of the Fe-CN-Pt linkage. The present study shows how the rational regulation of the building unit and framework dimensions can effectively control thermal expansion behaviors. This insight can serve as guidance for designing and synthesizing novel NTE materials.
Collapse
Affiliation(s)
- Rui Ma
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Liang Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Zhanning Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Weihua Ji
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hankun Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
11
|
Yue Y, Mohamed SA, Jiang J. Classifying and Predicting the Thermal Expansion Properties of Metal-Organic Frameworks: A Data-Driven Approach. J Chem Inf Model 2024; 64:4966-4979. [PMID: 38920337 DOI: 10.1021/acs.jcim.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Metal-organic frameworks (MOFs) are versatile materials for a wide variety of potential applications. Tunable thermal expansion properties promote the application of MOFs in thermally sensitive composite materials; however, they are currently available only in a handful of structures. Herein, we report the first data set for thermal expansion properties of 33,131 diverse MOFs generated from molecular simulations and subsequently develop machine learning (ML) models to (1) classify different thermal expansion behaviors and (2) predict volumetric thermal expansion coefficients (αV). The random forest model trained on hybrid descriptors combining geometric, chemical, and topological features exhibits the best performance among different ML models. Based on feature importance analysis, linker chemistry and topological arrangement are revealed to have a dominant impact on thermal expansion. Furthermore, we identify common building blocks in MOFs with exceptional thermal expansion properties. This data-driven study is the first of its kind, not only constructing a useful data set to facilitate future studies on this important topic but also providing design guidelines for advancing new MOFs with desired thermal expansion properties.
Collapse
Affiliation(s)
- Yifei Yue
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576 Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, 119077 Singapore
| | - Saad Aldin Mohamed
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576 Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576 Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, 119077 Singapore
| |
Collapse
|
12
|
Abdalla AM, Azad AT, Madian AB, Omeiza LA, Subramanian Y, Wei B, Taweekun J, Khairat Dawood MM, Azad AK. All-protonic fuel cell designs and developments fuelled by ammonia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46769-46789. [PMID: 38970631 DOI: 10.1007/s11356-024-34090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/19/2024] [Indexed: 07/08/2024]
Abstract
Ammonia is a gas that produces zero carbon emissions when used in energy storage systems. Hence, there is increasing interest for the application of ammonia as fuel in various energy storage devices, specifically solid oxide fuel cells (SOFCs), as it has the potential to be efficient and environmentally friendly. In addition, compared to other fuel cells, SOFCs fed with ammonia offer various benefits such as such as sustainability and safety. This review compares and contrasts the opportunities and challenges of ammonia fuel cell technologies and helps to analyze their working principles. The main goal of this review is to investigate the viability of an "all-protonic" fuel cell using ammonia fuel while also highlighting the key challenges and limitations of implementing such technology.
Collapse
Affiliation(s)
- Abdalla M Abdalla
- Mechanical Engineering Department, Faculty of Engineering, Suez Canal University, Ismailia, 41522, Egypt.
| | - Atia Tasfiah Azad
- School of Chemistry, University of St Andrews, St Andrews, ST, KY16 9, UK
| | - Adriel B Madian
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, JalanTungku Link, Gadong, BE, 1410, Brunei Darussalam
| | - Lukman Ahmed Omeiza
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, JalanTungku Link, Gadong, BE, 1410, Brunei Darussalam
| | - Yathavan Subramanian
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, JalanTungku Link, Gadong, BE, 1410, Brunei Darussalam
| | - Bo Wei
- School of Physics, Harbin Institute of Technology, 92 West Dazhi Str., Harbin, 150001, China
| | - Juantakan Taweekun
- Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Prince of Songkla University, Hatyai, Songkhla, 90112, Thailand
| | | | - Abul K Azad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, JalanTungku Link, Gadong, BE, 1410, Brunei Darussalam
| |
Collapse
|
13
|
Song K, Wang F, Zhang J, Niu B, Wang CC, Desta HG, Gao X, Tian D, Ling Y, Lin B. Developing abundant rare-earth iron perovskite electrodes for high-performance and low-cost solid oxide fuel cells. iScience 2024; 27:109982. [PMID: 38840837 PMCID: PMC11150971 DOI: 10.1016/j.isci.2024.109982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/10/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024] Open
Abstract
The swift advancement of the solid oxide fuel cell (SOFC) sector necessitates a harmony between electrode performance and commercialization cost. The economic value of elements is frequently linked to their abundance in the Earth's crust. Here, we develop abundant rare-earth iron perovskite electrodes of Ln0.6Sr0.4FeO3-δ (Ln = La, Pr, and Nd) with high abundant rare-earth metals and preferred iron metal for SOFCs. All three symmetric electrode materials display a cubic perovskite phase and excellent chemical compatibility with Gd0.2Ce0.8O2-δ electrolyte. All three electrodes possess exceptional surface oxygen exchange ability. At 800°C, single cells with La0.6Sr0.4FeO3-δ, Pr0.6Sr0.4FeO3-δ, and Nd0.6Sr0.4FeO3-δ symmetric electrodes attained excellent open circuit voltages of 1.108, 1.101, and 1.097 V, respectively, as well as peak powers of 213.52, 281.12, and 254.58 mW cm-2. The results suggest that overall performance of abundant rare-earth iron perovskite electrodes has a favorable impact on the extensive expansion of SOFCs, presenting significant potential for practical applications.
Collapse
Affiliation(s)
- Kai Song
- School of Materials Science and Engineering, Changchun University of Science and Technology, No. 7989 Weixing Road, Changchun 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, No. 16 Huizhandong Road, Huoju Development District, Zhongshan 528437, China
- Anhui Province Key Laboratory of Low-Temperature Co-Fired Materials, Huainan Normal University, Huainan 232038, China
| | - Fang Wang
- School of Materials Science and Engineering, Changchun University of Science and Technology, No. 7989 Weixing Road, Changchun 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, No. 16 Huizhandong Road, Huoju Development District, Zhongshan 528437, China
| | - Jinqiu Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Biao Niu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | | | - Halefom G. Desta
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xing Gao
- Anhui Province Key Laboratory of Low-Temperature Co-Fired Materials, Huainan Normal University, Huainan 232038, China
| | - Dong Tian
- Anhui Province Key Laboratory of Low-Temperature Co-Fired Materials, Huainan Normal University, Huainan 232038, China
| | - Yihan Ling
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Bin Lin
- Anhui Province Key Laboratory of Low-Temperature Co-Fired Materials, Huainan Normal University, Huainan 232038, China
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
14
|
Nam S, Kim J, Kim H, Ahn S, Jeon S, Choi Y, Park BK, Jung W. Revitalizing Oxygen Reduction Reactivity of Composite Oxide Electrodes via Electrochemically Deposited PrO x Nanocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307286. [PMID: 38516842 DOI: 10.1002/adma.202307286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Solid oxide fuel cells that operate at intermediate temperatures require efficient catalysts to enhance the inherently poor electrochemical activity of the composite electrodes. Here, a simple and practical electrochemical deposition method is presented for fabricating a PrOx overlayer on lanthanum strontium manganite-yttria-stabilized zirconia (LSM-YSZ) composite electrodes. The method requires less than four minutes for completion and can be carried out under at ambient temperature and pressure. Crucially, the treatment significantly improves the electrode's performance without requiring heat treatment or other supplementary processes. The PrOx-coated LSM-YSZ electrode exhibits an 89% decrease in polarization resistance at 650 °C (compared to an untreated electrode), maintaining a tenfold reduction after ≈400 h. Transmission line model analysis using impedance spectra confirms how PrOx coating improved the oxygen reduction reaction activity. Further, tests with anode-supported single cells reveal an outstanding peak power density compared to those of other LSM-YSZ-based cathodes (e.g., 418 mW cm-2 at 650 °C). Furthermore, it is demonstrated that multicomponent coating, such as (Pr,Ce)Ox, can also be obtained with this method. Overall, the observations offer a promising route for the development of high-performance solid oxide fuel cells.
Collapse
Affiliation(s)
- Seongwoo Nam
- Department of Materials Science and Engineering, Korea Advanced Insititute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jinwook Kim
- Department of Materials Science and Engineering, Korea Advanced Insititute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyunseung Kim
- Department of Materials Science and Engineering, Korea Advanced Insititute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sejong Ahn
- Department of Materials Science and Engineering, Korea Advanced Insititute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - SungHyun Jeon
- Department of Materials Science and Engineering, Korea Advanced Insititute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoonseok Choi
- Hydrogen Convergence Materials Laboratory, Korea Institute of Energy Research (KIER), Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Beom-Kyeong Park
- School of Materials Science and Engineering, Pusan National University, 2, Busandaehak-ro-63-beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Insititute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
15
|
Li X, Chen S, Yang Q, Yu F, Zhang Y, Su L, Liu J, Li L. In situ construction of A-site high-entropy perovskites with interfacial CeO 2 for a high-performance IT-SOFC air-electrode. Chem Commun (Camb) 2024; 60:5650-5653. [PMID: 38726591 DOI: 10.1039/d4cc00995a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Developing an intermediate-temperature solid oxide fuel cell (IT-SOFC) is one of the most promising ways of achieving carbon neutrality, but its air-electrode is restricted by the conflict between the sluggish catalytic activity and durability. Herein, an A-site high-entropy perovskite composite La0.2Ba0.2Sr0.2Ca0.2Ce0.2-xCoO3-δ-xCeO2 (LBSCCC-CeO2) air-electrode material is fabricated via a one-step self-constructing strategy, which shows excellent oxygen reduction activity and stability due to the high-entropy structure and the synergy effect between LBSCCC and interfacial CeO2. This work provides a new way of fabricating high-performance air-electrodes in IT-SOFCs.
Collapse
Affiliation(s)
- Xuelong Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China.
| | - Shuaihang Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China.
| | - Qian Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China.
| | - Fengyang Yu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China.
| | - Yunhe Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China.
| | - Lina Su
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China.
| | - Jianhua Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China.
| | - Li Li
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P. R. China.
| |
Collapse
|
16
|
Yu N, Bello IT, Chen X, Liu T, Li Z, Song Y, Ni M. Rational Design of Ruddlesden-Popper Perovskite Ferrites as Air Electrode for Highly Active and Durable Reversible Protonic Ceramic Cells. NANO-MICRO LETTERS 2024; 16:177. [PMID: 38647738 PMCID: PMC11035539 DOI: 10.1007/s40820-024-01397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/16/2024] [Indexed: 04/25/2024]
Abstract
Reversible protonic ceramic cells (RePCCs) hold promise for efficient energy storage, but their practicality is hindered by a lack of high-performance air electrode materials. Ruddlesden-Popper perovskite Sr3Fe2O7-δ (SF) exhibits superior proton uptake and rapid ionic conduction, boosting activity. However, excessive proton uptake during RePCC operation degrades SF's crystal structure, impacting durability. This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes, incorporating Sr-deficiency and Nb-substitution to create Sr2.8Fe1.8Nb0.2O7-δ (D-SFN). Nb stabilizes SF's crystal, curbing excessive phase formation, and Sr-deficiency boosts oxygen vacancy concentration, optimizing oxygen transport. The D-SFN electrode demonstrates outstanding activity and durability, achieving a peak power density of 596 mW cm-2 in fuel cell mode and a current density of - 1.19 A cm-2 in electrolysis mode at 1.3 V, 650 °C, with excellent cycling durability. This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage.
Collapse
Affiliation(s)
- Na Yu
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) and Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Idris Temitope Bello
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) and Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Xi Chen
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) and Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Tong Liu
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) and Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, Guangdong, People's Republic of China
| | - Zheng Li
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) and Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Yufei Song
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, People's Republic of China.
| | - Meng Ni
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) and Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China.
| |
Collapse
|
17
|
Liu H, Yang Y, Liu J, Huang M, Lao K, Pan Y, Wang X, Hu T, Wen L, Xu S, Li S, Fang X, Lin WF, Zheng N, Tao HB. Constructing Robust 3D Ionomer Networks in the Catalyst Layer to Achieve Stable Water Electrolysis for Green Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16408-16417. [PMID: 38502312 DOI: 10.1021/acsami.4c03318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The widespread application of proton exchange membrane water electrolyzers (PEMWEs) is hampered by insufficient lifetime caused by degradation of the anode catalyst layer (ACL). Here, an important degradation mechanism has been identified, attributed to poor mechanical stability causing the mass transfer channels to be blocked by ionomers under operating conditions. By using liquid-phase atomic force microscopy, we directly observed that the ionomers were randomly distributed (RD) in the ACL, which occupied the mass transfer channels due to swelling, creeping, and migration properties. Interestingly, we found that alternating treatments of the ACL in different water/temperature environments resulted in forming three-dimensional ionomer networks (3D INs) in the ACL, which increased the mechanical strength of microstructures by 3 times. Benefitting from the efficient and stable mass transfer channels, the lifetime was improved by 19 times. A low degradation rate of approximately 3.0 μV/h at 80 °C and a high current density of 2.0 A/cm2 was achieved on a 50 cm2 electrolyzer. These data demonstrated a forecasted lifetime of 80 000 h, approaching the 2026 DOE lifetime target. This work emphasizes the importance of the mechanical stability of the ACL and offers a general strategy for designing and developing a durable PEMWE.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Yang Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Jiawei Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Meiquan Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Kejie Lao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Yaping Pan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Xinhui Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Tian Hu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Linrui Wen
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Shuwen Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Shuirong Li
- College of Energy, Xiamen University, Xiamen 361005, China
| | - Xiaoliang Fang
- College of Energy, Xiamen University, Xiamen 361005, China
| | - Wen-Feng Lin
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, U.K
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Hua Bing Tao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
18
|
Huang D, Wu S, Wang Y, Zhang Z, Chen D. An excellent bismuth-doped perovskite cathode with high activity and CO 2 resistance for solid-oxide fuel cells operating below 700 °C. J Colloid Interface Sci 2024; 659:276-288. [PMID: 38176237 DOI: 10.1016/j.jcis.2023.12.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Lowering the operating temperatures of solid-oxide fuel cells (SOFCs) is critical, although achieving success in this endeavor has proven challenging. Herein, Bi0.15Sr0.85Co0.8Fe0.2O3-δ (BiSCF) is systematically evaluated as a carbon dioxide (CO2)-tolerant and highly active cathode for SOFCs. BiSCF, which features Bi3+ with an ionic radius similar to Ba2+, exhibits activity (e.g., 0.062 Ω cm2 at 700 °C) comparable to that of Ba0.5Sr0.5Co0.8Fe0.2O3-δ and PrBaCo2O5+δ, while demonstrating a considerable advantage over Bi-doped cathodes. Moreover, BiSCF exhibits long-term stability over a period of 500 h, and an anode-supported cell with BiSCF achieves a power density of 912 mW cm-2 at 650 °C. The CO2-poisoned BiSCF exhibits quick reversibility or slight activation after returning to normal conditions. The exceptional CO2 tolerance of BiSCF can be attributed to its reduced basicity and high electronegativity, which effectively restrict surface Sr diffusion and hinder subsequent carbonate formation. These findings highlight the substantial potential of BiSCF for SOFCs operating below 700 °C.
Collapse
Affiliation(s)
- Dehong Huang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Jinan University, Guangzhou 510632, China
| | - Shanglan Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Jinan University, Guangzhou 510632, China
| | - Yi Wang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Jinan University, Guangzhou 510632, China
| | - Zhenbao Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Jinan University, Guangzhou 510632, China
| | - Dengjie Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
19
|
Gao Q, Jiao Y, Sun Q, Sprenger JAP, Finze M, Sanson A, Liang E, Xing X, Chen J. Giant Negative Thermal Expansion in Ultralight NaB(CN) 4. Angew Chem Int Ed Engl 2024; 63:e202401302. [PMID: 38353130 DOI: 10.1002/anie.202401302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Negative thermal expansion (NTE) is crucial for controlling the thermomechanical properties of functional materials, albeit being relatively rare. This study reports a giant NTE (αV ∼-9.2 ⋅ 10-5 K-1 , 100-200 K; αV ∼-3.7 ⋅ 10-5 K-1 , 200-650 K) observed in NaB(CN)4 , showcasing interesting ultralight properties. A comprehensive investigation involving synchrotron X-ray diffraction, Raman spectroscopy, and first-principles calculations has been conducted to explore the thermal expansion mechanism. The findings indicate that the low-frequency phonon modes play a primary role in NTE, and non-rigid vibration modes with most negative Grüneisen parameters are the key contributing factor to the giant NTE observed in NaB(CN)4 . This work presents a new material with giant NTE and ultralight mass density, providing insights for the understanding and design of novel NTE materials.
Collapse
Affiliation(s)
- Qilong Gao
- School of Physics and Microelectronics, Zhengzhou University, 450001, Zhengzhou, China
| | - Yixin Jiao
- School of Physics and Microelectronics, Zhengzhou University, 450001, Zhengzhou, China
| | - Qiang Sun
- School of Physics and Microelectronics, Zhengzhou University, 450001, Zhengzhou, China
| | - Jan A P Sprenger
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie, Institut für nachhaltige Chemie &, Katalyse mit Bor (ICB), 97074, Würzburg, Germany
| | - Maik Finze
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie, Institut für nachhaltige Chemie &, Katalyse mit Bor (ICB), 97074, Würzburg, Germany
| | - Andrea Sanson
- Department of Physics and Astronomy & Department of Management and Engineering, University of Padua, Padova, I-35131, Italy
| | - Erjun Liang
- School of Physics and Microelectronics, Zhengzhou University, 450001, Zhengzhou, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, 100083, Beijing, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, 100083, Beijing, China
| |
Collapse
|
20
|
Sun Y, Jin D, Zhang X, Shao Q, Guan C, Li R, Cheng F, Lin X, Xiao G, Wang J. Controllable Technology for Thermal Expansion Coefficient of Commercial Materials for Solid Oxide Electrolytic Cells. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1216. [PMID: 38473687 DOI: 10.3390/ma17051216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Solid oxide electrolysis cell (SOEC) industrialization has been developing for many years. Commercial materials such as 8 mol% Y2O3-stabilized zirconia (YSZ), Gd0.1Ce0.9O1.95 (GDC), La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF), La0.6Sr0.4CoO3-δ (LSC), etc., have been used for many years, but the problem of mismatched thermal expansion coefficients of various materials between cells has not been fundamentally solved, which affects the lifetime of SOECs and restricts their industry development. Currently, various solutions have been reported, such as element doping, manufacturing defects, and introducing negative thermal expansion coefficient materials. To promote the development of the SOEC industry, a direct treatment method for commercial materials-quenching and doping-is reported to achieve the controllable preparation of the thermal expansion coefficient of commercial materials. The quenching process only involves the micro-treatment of raw materials and does not have any negative impact on preparation processes such as powder slurry and sintering. It is a simple, low-cost, and universal research strategy to achieve the controllable preparation of the thermal expansion coefficient of the commercial material La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) through a quenching process by doping elements and increasing oxygen vacancies in the material. Commercial LSCF materials are heated to 800 °C in a muffle furnace, quickly removed, and cooled and quenched in 3.4 mol/L of prepared Y(NO3)3. The thermal expansion coefficient of the treated material can be reduced to 13.6 × 10-6 K-1, and the blank sample is 14.1 × 10-6 K-1. In the future, it may be possible to use the quenching process to select appropriate doping elements in order to achieve similar thermal expansion coefficients in SOECs.
Collapse
Affiliation(s)
- Ya Sun
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Dun Jin
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xi Zhang
- China State Shipbuilding Corporation Seago System Technology Co., Ltd., Shanghai 200001, China
| | - Qing Shao
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Chengzhi Guan
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Ruizhu Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Fupeng Cheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiao Lin
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Guoping Xiao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jianqiang Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
21
|
Karpiuk TE, Leznoff DB. Anisotropic Thermal Expansion of Structurally Related Lanthanide-Mercury(II) Cyanide Coordination Polymers. Inorg Chem 2024; 63:4039-4052. [PMID: 38145423 DOI: 10.1021/acs.inorgchem.3c03002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Three sets of related lanthanide-mercury(II) cyanide coordination polymers were synthesized by the reaction of LnCl3·xH2O (Ln = Ce, Nd, Eu, Gd, Tb, Dy, Ho, Tm, Yb, and Lu) with Hg(CN)2 and structurally characterized. [Ce(OH2)5][Hg(CN)2Cl]3·2H2O is a 3-D material with sheet-based architecture; its thermal expansion behavior shows uniaxial negative thermal expansion (-18.3(8), 39(2), and 68.3(16) ppm K-1 along the a, b, and c axes, respectively). This anisotropic thermal behavior is postulated to be driven elastically by weak Hg···Cl interactions: large area expansion of the sheets causes negative thermal expansion in the perpendicular direction. Using lanthanides heavier than Ce yielded 2-D sheet-based compounds with the formula [Ln(OH2)x]2[Hg(CN)2]5Cl6·2H2O (Ln = Nd and Eu, x = 7; Ln = Gd, Tb, Dy, Ho, Tm, Yb, and Lu, x = 6). Although there was also evidence for elastic behavior within these materials, both showed uniaxial zero thermal expansion (Ln = Nd: 27.9(17), 22.4(10), and 0.6(12) ppm K-1 along the I, II, and III principal axes, respectively; Ln = Tb: 39.6(12), 1.1(17), and 36.1(7) ppm K-1 along the a, b, and c axes, respectively). Despite their similar structural architecture, this zero thermal expansion was found to occur in different directions─within the plane of the 2-D sheets for [Nd(OH2)7]2[Hg(CN)2]5Cl6·2H2O but in the direction perpendicular to the 2-D sheets for [Tb(OH2)6]2[Hg(CN)2]5Cl6·2H2O. Overall, this system of compounds reveals the delicate relationship between coordination polymer structure and thermal expansion.
Collapse
Affiliation(s)
- Thomas E Karpiuk
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Daniel B Leznoff
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
22
|
Dempsey EK, Cumby J. Mixed anion control of negative thermal expansion in a niobium oxyfluoride. Chem Commun (Camb) 2024; 60:2548-2551. [PMID: 38334751 DOI: 10.1039/d3cc06129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
A significant change in thermal expansion with anion composition has been identified in the niobium oxyfluoride, NbO2-xF1+x from 0 < x < 0.6. Fluorine doping leads to a transition from positive thermal expansion to unusual zero and negative thermal expansion caused by transverse anionic vibrations. This work has consequences for the development of advanced technological materials with tuneable low thermal expansion and is the first example of the use of multiple anions to control thermal expansion.
Collapse
Affiliation(s)
- Eliza K Dempsey
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
- Centre for Science at Extreme Conditions (CSEC), University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - James Cumby
- School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
- Centre for Science at Extreme Conditions (CSEC), University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| |
Collapse
|
23
|
Liu F, Deng H, Wang Z, Hussain AM, Dale N, Furuya Y, Miura Y, Fukuyama Y, Ding H, Liu B, Duan C. Synergistic Effects of In-Situ Exsolved Ni-Ru Bimetallic Catalyst on High-Performance and Durable Direct-Methane Solid Oxide Fuel Cells. J Am Chem Soc 2024; 146:4704-4715. [PMID: 38277126 DOI: 10.1021/jacs.3c12121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Direct-methane solid oxide fuel cells (CH4-SOFCs) have gained significant attention as methane, the primary component of natural gas (NG), is cheap and widely available and the natural gas infrastructures are relatively mature. However, at intermediate temperatures (e.g., 600-650 °C), current CH4-SOFCs suffer from low performance and poor durability under a low steam-to-carbon ratio (S/C ratio), which is ascribed to the Ni-based anode that is of low catalytic activity and prone to coking. Herein, with the guidance of density functional theory (DFT) studies, a highly active and coking tolerant steam methane reforming (SMR) catalyst, Sm-doped CeO2-supported Ni-Ru (SCNR), was developed. The synergy between Ni and Ru lowers the activation energy of the first C-H bond activation and promotes CHx decomposition. Additionally, Sm doping increases the oxygen vacancy concentration in CeO2, facilitating H2O adsorption and dissociation. The SCNR can therefore simultaneously activate both CH4 and H2O molecules while oxidizing the CH* and improving coking tolerance. We then applied SCNR as the CH4-SOFC anode catalytic reforming layer. A peak power density of 733 mW cm-2 was achieved at 650 °C, representing a 55% improvement compared to that of pristine CH4-SOFCs (473 mW cm-2). Moreover, long-term durability testing, with >2000 h continuous operation, was performed under almost dry methane (5% H2O). These results highlight that CH4-SOFCs with a SCNR catalytic layer can convert NG to electricity with high efficiency and resilience.
Collapse
Affiliation(s)
- Fan Liu
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Hao Deng
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Zixian Wang
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | | | - Nilesh Dale
- Nissan Technical Centre North America (NTCNA), Farmington Hills, Michigan 48331, United States
| | - Yoshihisa Furuya
- Nissan Technical Centre North America (NTCNA), Farmington Hills, Michigan 48331, United States
| | - Yohei Miura
- Nissan Research Center, Nissan Motor Company Limited, Yokosuka, Kanagawa 2378523, Japan
| | - Yosuke Fukuyama
- Nissan Research Center, Nissan Motor Company Limited, Yokosuka, Kanagawa 2378523, Japan
| | - Hanping Ding
- Department of Aerospace & Mechanical Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Bin Liu
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Chuancheng Duan
- Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
24
|
Zhang L, Jiang Y, Zhu K, Shi N, Chen Z, Peng R, Xia C. Fe-Doped SDC Solid Solution as an Electrolyte for Low-to-Intermediate-Temperature Solid Oxide Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4648-4660. [PMID: 38241136 DOI: 10.1021/acsami.3c15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Ceria-based oxides, such as samaria-doped ceria (SDC), are potential electrolytes for low-to-intermediate-temperature solid oxide fuel cells (SOFCs). The sinterability of these materials can be improved by adding iron as the sintering aid. This work reveals that Fe is soluble in SDC, forming an Fe-doped SDC solid solution. It is found that the solubility is affected by the sintering temperature. Fe doping has obvious effects on electrolyte properties, including sintering characteristics, thermal expansion behaviors, and electrical conductivities in both air and hydrogen atmospheres. The conductivity obviously increases while the activation energy decreases by doping Fe. Compared with that of the bare SDC electrolyte, the performance of the single cell with the Fe-doped SDC is enhanced; for example, the peak power density is increased by 52.8% to 0.726 W cm-2 at 600 °C when humidified hydrogen is used as the fuel and ambient air is used as the oxidant. The single cell showed stable operation at 600 °C under a constant current density of 0.3 A cm-2 for 150 h. Therefore, the Fe-doped SDC solid solution shows promise as a potential electrolyte for low-to-intermediate-temperature SOFCs.
Collapse
Affiliation(s)
- Lijie Zhang
- CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, Anhui, China
| | - Yunan Jiang
- CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, Anhui, China
- Energy Materials Center, Anhui Estone Materials Technology Co. Ltd, 2-A-1, No. 106, Chuangxin Avenue, Hefei 230088, Anhui, P. R. China
| | - Kang Zhu
- CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, Anhui, China
| | - Nai Shi
- INAMORI Frontier Research Center, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Zhengguo Chen
- CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, Anhui, China
| | - Ranran Peng
- CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, Anhui, China
| | - Changrong Xia
- CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, Anhui, China
- Energy Materials Center, Anhui Estone Materials Technology Co. Ltd, 2-A-1, No. 106, Chuangxin Avenue, Hefei 230088, Anhui, P. R. China
| |
Collapse
|
25
|
Abstract
Although they are emerging technologies for achieving high-efficiency and green and eco-friendly energy conversion, ceramic electrochemical cells (CECs), i.e. solid oxide electrolysis cells (SOECs) and fuel cells (SOFCs), are still fundamentally limited by their inferior catalytic activities at low temperature, poor thermo-mechanical stability, high material cost, etc. The materials used in electrolytes and electrodes, which are the most important components in CECs, are highly associated with the cell performances. Therefore, rational design of electrolytes and electrodes with excellent catalytic activities and high stabilities at relatively low cost is a meaningful and valuable approach for the development of CECs. Nanotechnology is a powerful tool for improving the material performances in CECs owing to the favourable effects induced by the nanocrystallization of electrolytes and electrodes. Herein, a relatively comprehensive review on the nanotechnologies implemented in CECs is conducted. The working principles of CECs and the corresponding challenges were first presented, followed by the comprehensive insights into the working mechanisms of nanocrystalline materials in CECs. Then, systematic summarization and analyses of the commonly used nano-engineering strategies in the fabrication of CEC materials, including physical and chemical methods, were provided. In addition, the frontiers in the research of advanced electrolyte and electrode materials were discussed with a special emphasis on the modified electrochemical properties derived from nanotechnologies. Finally, the bottlenecks and the promising breakthroughs in nanotechnologies were highlighted in the direction of providing useful references for rational design of nanomaterials for CECs.
Collapse
Affiliation(s)
- Jiafeng Cao
- School of Microelectronics and Data Science, Anhui University of Technology, Maanshan 243032, Anhui, China.
| | - Yuexia Ji
- School of Microelectronics and Data Science, Anhui University of Technology, Maanshan 243032, Anhui, China.
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
26
|
Liu Z, Song Y, Xiong X, Zhang Y, Cui J, Zhu J, Li L, Zhou J, Zhou C, Hu Z, Kim G, Ciucci F, Shao Z, Wang JQ, Zhang L. Sintering-induced cation displacement in protonic ceramics and way for its suppression. Nat Commun 2023; 14:7984. [PMID: 38042884 PMCID: PMC10693594 DOI: 10.1038/s41467-023-43725-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Protonic ceramic fuel cells with high efficiency and low emissions exhibit high potential as next-generation sustainable energy systems. However, the practical proton conductivity of protonic ceramic electrolytes is still not satisfied due to poor membrane sintering. Here, we show that the dynamic displacement of Y3+ adversely affects the high-temperature membrane sintering of the benchmark protonic electrolyte BaZr0.1Ce0.7Y0.1Yb0.1O3-δ, reducing its conductivity and stability. By introducing a molten salt approach, pre-doping of Y3+ into A-site is realized at reduced synthesis temperature, thus suppressing its further displacement during high-temperature sintering, consequently enhancing the membrane densification and improving the conductivity and stability. The anode-supported single cell exhibits a power density of 663 mW cm-2 at 600 °C and long-term stability for over 2000 h with negligible performance degradation. This study sheds light on protonic membrane sintering while offering an alternative strategy for protonic ceramic fuel cells development.
Collapse
Affiliation(s)
- Ze Liu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yufei Song
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiaolu Xiong
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yuxuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jingzeng Cui
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqiu Zhu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Li
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Jing Zhou
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Chuan Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Dresden, 01187, Germany
| | - Guntae Kim
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Francesco Ciucci
- Chair of Electrode Design for Electrochemical Energy Storage Systems, University of Bayreuth, Weiherstraße 26, Bayreuth, 95448, Germany
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA6845, WA, Australia.
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
27
|
McGuinness KP, Oliynyk AO, Lee S, Molero-Sanchez B, Addo PK. Machine-learning prediction of thermal expansion coefficient for perovskite oxides with experimental validation. Phys Chem Chem Phys 2023; 25:32123-32131. [PMID: 37986610 DOI: 10.1039/d3cp04017h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Perovskite oxides have been of high-interest and relatively well studied over the last 20 years due to their various applications, specifically for solid oxide fuel cells (SOFCs) and solid oxide electrolysis cells (SOECs). One of the key properties for a perovskite to perform well as a component in SOFCs, SOECs, and other high-temperature applications is its thermal expansion coefficient (TEC). The use of machine learning (ML) to predict material properties has greatly increased over the years and has proven to be a very useful tool for materials screening. The process of synthesizing and testing perovskite oxides is laborious and costly, and the use of physics-based models is often highly computationally expensive. Due to the amount of elements able to be accommodated in the ABO3 structure and the ability for crystallographic mixing in both the A and B-sites, there are a massive amount of possible ABO3 perovskites. In this paper, a ML model for the prediction of the TECs of AA'BB'O3 perovskites is produced and applied to millions of potential compositions resulting in reliable TEC predictions for 150 451 of the compositions.
Collapse
Affiliation(s)
| | - Anton O Oliynyk
- Department of Chemistry, Hunter College, City University of New York, New York, NY, 10065, USA
| | - Sangjoon Lee
- Department of Applied Physics and Applied Mathematics, Columbia University, New York 10027, New York, USA
| | | | - Paul Kwesi Addo
- SeeO2 Energy Inc., 3655 36 St NW, Calgary, AB T2L 1Y8, Canada.
| |
Collapse
|
28
|
Xu K, Zhang H, Deng W, Liu Y, Ding Y, Zhou Y, Liu M, Chen Y. Self-hydrating of a ceria-based catalyst enables efficient operation of solid oxide fuel cells on liquid fuels. Sci Bull (Beijing) 2023; 68:2574-2582. [PMID: 37730510 DOI: 10.1016/j.scib.2023.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/01/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023]
Abstract
The commercialization of solid oxide fuel cells (SOFCs) that run on liquid hydrocarbon fuels is hindered by the poor coking tolerance of the state-of-the-art anode. Among the strategies developed, modulating the reforming reaction site's local steam/carbon ratios to enhance the coking tolerance is efficient but challenging. Here we report our rational design of a ceria-based catalyst (with a nominal composition of Ce0.95Ru0.05O2-δ, CR5O) that demonstrates remarkable tolerance to coking while maintaining excellent activity for direct utilization of liquid fuels in SOFCs. Under operating conditions, the catalyst is transformed to a partially reduced oxide frame covered with Ru nanoparticles (Ru/Ce0.95Ru0.05-xO2-δ, Ru/CR5-xO), as confirmed by experimental analyses. The Ru/CR5-xO demonstrates excellent self-hydration capability to remove the coke. When applied to the Ni-yttria-stabilized zirconia (Ni-YSZ) anode of an SOFC with liquid fuels, the catalyst enables excellent performance, achieving a peak power density of 1.010 W cm-2 without coking for ∼200 h operation (on methanol) at 750 °C. Furthermore, density functional theory calculations reveal that the high activity and coking tolerance of the Ru/CR5-xO catalyst-coated Ni-YSZ anode is attributed to the reduced energy barrier for the rate-limiting step and the formation of a COH intermediate for rapid carbon removal.
Collapse
Affiliation(s)
- Kang Xu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hua Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Wanqing Deng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ying Liu
- Research Institute of Renewable Energy and Advanced Materials, Zijin Mining Group Co., Ltd., Xiamen 361101, China
| | - Yong Ding
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta GA 30309, USA
| | - Yucun Zhou
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta GA 30309, USA
| | - Meilin Liu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta GA 30309, USA
| | - Yu Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
29
|
Xue LM, Li SB, An SL, Li N, Ma HP, Li MX. Fe-based double perovskite with Zn doping for enhanced electrochemical performance as intermediate-temperature solid oxide fuel cell cathode material. RSC Adv 2023; 13:30606-30614. [PMID: 37859775 PMCID: PMC10582619 DOI: 10.1039/d3ra04991d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
This study aims to investigate the implications of transition-metal Zn doping at the B-site on the crystal structure, average thermal expansion coefficient (TEC), electrocatalytic activity, and electrochemical performance of LaBaFe2O5+δ by preparing LaBaFe2-xZnxO5+δ (x = 0, 0.05, 0.1, 0.15, 0.2, LBFZx). The X-ray diffraction (XRD) results show that Zn2+ doping does not change the crystal structure, the unit cell volume increases, and the lattice expands. The X-ray photoelectron spectroscopy (XPS) and mineral titration results show that the oxygen vacancy concentration and Fe4+ content gradually increase with the increase in doping amount. TEC decreases with the increase in Zn2+ doping amount, and the TEC of LBFZ0.2 is 11.4 × 10-6 K-1 at 30-750 °C. The conductivity has the best value of 103 S cm-1 at the doping amount of x = 0.1. The scanning electron microscopy (SEM) images demonstrate that the electrolyte CGO(Gd0.1Ce0.9O1.95) becomes denser after high-temperature calcination, and the cathode material is well attached to the electrolyte. The electrochemical impedance analysis shows that Zn2+ doping at the B-site can reduce the (Rp) polarization resistance, and the Rp value of the symmetric cell with LaBaFe1.8Zn0.2O5+δ as cathode at 800 °C is 0.014 Ω cm2. The peak power density (PPD) value of the anode-supported single cell is 453 mW cm-2, which shows excellent electrochemical performance.
Collapse
Affiliation(s)
- Liang-Mei Xue
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology Baotou 014010 China
| | - Song-Bo Li
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology Baotou 014010 China
| | - Sheng-Li An
- School of Material and Metallurgy, Inner Mongolia University of Science & Technology Baotou 014010 China
| | - Ning Li
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology Baotou 014010 China
| | - Hui-Pu Ma
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology Baotou 014010 China
| | - Meng-Xin Li
- School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology Baotou 014010 China
| |
Collapse
|
30
|
He F, Hou M, Du Z, Zhu F, Cao X, Ding Y, Zhou Y, Liu M, Chen Y. Self-Construction of Efficient Interfaces Ensures High-Performance Direct Ammonia Protonic Ceramic Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304957. [PMID: 37640369 DOI: 10.1002/adma.202304957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Direct ammonia protonic ceramic fuel cells (PCFCs) are highly efficient energy conversion devices since ammonia as a carbon-neutral hydrogen-rich carrier shows great potential for storage and long-distance transportation when compared with hydrogen fuel. However, traditional Ni-based anodes readily suffer from severe structural destruction and dramatic deactivation after long-time exposure to ammonia. Here a Sr2 Fe1.35 Mo0.45 Cu0.2 O6-δ (SFMC) anode catalytic layer (ACL) painted onto a Ni-BaZr0.1 Ce0.7 Y0.1 Yb0.1 O3- δ (BZCYYb) anode with enhanced catalytic activity and durability toward the direct utilization of ammonia is reported. A tubular Ni-BZCYYb anode-supported cells with the SFMC ACL show excellent peak power densities of 1.77 W cm-2 in wet H2 (3% H2 O) and 1.02 W cm-2 in NH3 at 650 °C. A relatively stable operation of the cells is obtained at 650 °C for 200 h in ammonia fuel. Such achieved improvements in the activity and durability are attributed to the self-constructed interfaces with the phases of NiCu or/and NiFe for efficient NH3 decomposition, resulting in a strong NH3 adsorption strength of the SFMC, as confirmed by NH3 thermal conversion and NH3 -temperature programmed desorption. This research offers a valuable strategy of applying an internal catalytic layer for highly active and durable ammonia PCFCs.
Collapse
Affiliation(s)
- Fan He
- School of Environment and Energy, South China University of Technology, 382 East Road, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Mingyang Hou
- School of Environment and Energy, South China University of Technology, 382 East Road, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Zhiwei Du
- School of Environment and Energy, South China University of Technology, 382 East Road, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Feng Zhu
- School of Environment and Energy, South China University of Technology, 382 East Road, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Xiaozhuo Cao
- School of Environment and Energy, South China University of Technology, 382 East Road, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Yong Ding
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - Yucun Zhou
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - Meilin Liu
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - Yu Chen
- School of Environment and Energy, South China University of Technology, 382 East Road, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| |
Collapse
|
31
|
Xu M, Li Q, Song Y, Xu Y, Sanson A, Shi N, Wang N, Sun Q, Wang C, Chen X, Qiao Y, Long F, Liu H, Zhang Q, Venier A, Ren Y, d'Acapito F, Olivi L, De Souza DO, Xing X, Chen J. Giant uniaxial negative thermal expansion in FeZr 2 alloy over a wide temperature range. Nat Commun 2023; 14:4439. [PMID: 37488108 PMCID: PMC10366141 DOI: 10.1038/s41467-023-40074-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Negative thermal expansion (NTE) alloys possess great practical merit as thermal offsets for positive thermal expansion due to its metallic properties. However, achieving a large NTE with a wide temperature range remains a great challenge. Herein, a metallic framework-like material FeZr2 is found to exhibit a giant uniaxial (1D) NTE with a wide temperature range (93-1078 K, [Formula: see text]). Such uniaxial NTE is the strongest in all metal-based NTE materials. The direct experimental evidence and DFT calculations reveal that the origin of giant NTE is the couple with phonons, flexible framework-like structure, and soft bonds. Interestingly, the present metallic FeZr2 excites giant 1D NTE mainly driven by high-frequency optical branches. It is unlike the NTE in traditional framework materials, which are generally dominated by low energy acoustic branches. In the present study, a giant uniaxial NTE alloy is reported, and the complex mechanism has been revealed. It is of great significance for understanding the nature of thermal expansion and guiding the regulation of thermal expansion.
Collapse
Affiliation(s)
- Meng Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qiang Li
- Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuzhu Song
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuanji Xu
- Institute for Applied Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Andrea Sanson
- Department of Physics and Astronomy, University of Padua, Padova, I-35131, Italy
- Department of Management and Engineering, University of Padua, Padova, I-35131, Italy
| | - Naike Shi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Na Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qiang Sun
- International Laboratory for Quantum Functional Materials of Henan, School of Physics and Engineering, Zheng-zhou University, Zhengzhou, 450001, China
| | - Changtian Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xin Chen
- Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yongqiang Qiao
- International Laboratory for Quantum Functional Materials of Henan, School of Physics and Engineering, Zheng-zhou University, Zhengzhou, 450001, China
| | - Feixiang Long
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qiang Zhang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Alessandro Venier
- Department of Physics and Astronomy, University of Padua, Padova, I-35131, Italy
| | - Yang Ren
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong, Hong Kong, 518057, China
| | - Francesco d'Acapito
- CNR-IOM-OGG c/o European Synchrotron Radiation Facility (ESRF) 71 Av. des Martyrs, 38000, Grenoble, France
| | - Luca Olivi
- ELETTRA Synchrotron Trieste, s.s. 14 km 163,500 in Area Science Park, 34149, Basovizza - Trieste, Italy
| | - Danilo Oliveira De Souza
- ELETTRA Synchrotron Trieste, s.s. 14 km 163,500 in Area Science Park, 34149, Basovizza - Trieste, Italy
| | - Xianran Xing
- Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
- Hainan University, Haikou, 570228, Hainan Province, China.
| |
Collapse
|
32
|
Koocher NZ, Rondinelli JM. Effect of Octahedral Connectivity on the Negative Thermal Expansion of SrZrS 3. Inorg Chem 2023. [PMID: 37410695 DOI: 10.1021/acs.inorgchem.3c01232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Sulfide perovskites (ABX3) are under increasing investigation for use in photovoltaic, optoelectronic, dielectric, and thermoelectric devices due to their favorable band gaps, dynamical properties, environmental stability, and structural diversity. A key material parameter to optimize in such devices is the constituent materials' coefficient of thermal expansion (CTE) in order to minimize thermomechanical stress during fabrication and operation. This can be done by avoiding materials that have large CTE mismatch or by compensating positive thermal expansion by including materials with negative thermal expansion (NTE). Here, we evaluate the CTE of (edge-connected) α- and (corner-connected) β-SrZrS3 with density functional theory and the self-consistent quasiharmonic approximation. We find that both materials exhibit positive thermal expansion at 0 GPa and host pressure-induced negative thermal expansion. The β phase has a smaller CTE (37 × 10-6 K-1) at room temperature and ambient pressure and also has a larger NTE response under pressure due to its more flexible corner-connected framework structure. We use our findings to suggest that corner-shared motifs should be prioritized over edge- or face-shared octahedral networks to maximize NTE arising from vibrational (phononic) mechanisms.
Collapse
Affiliation(s)
- Nathan Z Koocher
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
33
|
He J, Xu X, Li M, Zhou S, Zhou W. Recent advances in perovskite oxides for non-enzymatic electrochemical sensors: A review. Anal Chim Acta 2023; 1251:341007. [PMID: 36925293 DOI: 10.1016/j.aca.2023.341007] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Non-enzymatic electrochemical sensors with significant advantages of high sensitivity, long-term stability, and excellent reproducibility, are one promising technology to solve many challenges, such as the detection of toxic substances and viruses. Among various materials, perovskite oxides have become a promising candidate for use in non-enzymatic electrochemical sensors because of their low cost, flexible structure, and high intrinsic catalytic activity. A comprehensive overview of the recent advances in perovskite oxides for non-enzymatic electrochemical sensors is provided, which includes the synthesis methods of nanostructured perovskites and the electrocatalytic mechanisms of perovskite catalysts. The better sensing performance of perovskite oxides is mainly due to the lattice O vacancies and superoxide oxygen ions (O22-/O-), which are generated by the transfer of lattice oxygen to adsorbed -OH and have performed excellent properties suitable for electrooxidation of analytes. However, the limited electron transfer kinetics, stability, and selectivity of perovskite oxides alone make perovskite oxides far from ready for scientific development. Therefore, composites of perovskite oxides with other materials like graphitic carbon, metals, metal compounds, conducting organics, and biomolecules are summarized. Furthermore, a brief section describing the future challenges and the corresponding recommendation is presented in this review.
Collapse
Affiliation(s)
- Juan He
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia.
| | - Meisheng Li
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China.
| | - Shouyong Zhou
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, No.111 West Changjiang Road, Huaian, 223300, Jiangsu Province, PR China.
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, PR China.
| |
Collapse
|
34
|
Wang S, Cao Z, Zhang X, Yu H, Yao L. An Engineering Method for Resonant Microcantilever Using Double-Channel Excitation and Signal Acquisition Based on LabVIEW. MICROMACHINES 2023; 14:823. [PMID: 37421056 DOI: 10.3390/mi14040823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 07/09/2023]
Abstract
Resonant microcantilevers have the advantages of ultra-high heating rates, analysis speed, ultra-low power consumption, temperature programming, and trace sample analysis when applied in TGA. However, the current single-channel testing system for resonant microcantilevers can only detect one sample at a time, and need two program heating tests to obtain the thermogravimetric curve of a sample. In many cases, it is desirable to obtain the thermogravimetric curve of a sample with a single-program heating test and to simultaneously detect multiple microcantilevers for testing multiple samples. To address this issue, this paper proposes a dual-channel testing method, where a microcantilever is used as a control group and another microcantilever is used as an experimental group, to obtain the thermal weight curve of the sample in a single program temperature ramp test. With the help of the LabVIEW's convenient parallel running method, the functionality of simultaneously detecting two microcantilevers is achieved. Experimental validation showed that this dual-channel testing system can obtain the thermogravimetric curve of a sample with a single program heating test and detect two types of samples simultaneously.
Collapse
Affiliation(s)
- Shanlai Wang
- School of Microelectronics, Shanghai University, Shanghai 200444, China
| | - Zhi Cao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaoyang Zhang
- School of Microelectronics, Shanghai University, Shanghai 200444, China
| | - Haitao Yu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Lei Yao
- School of Microelectronics, Shanghai University, Shanghai 200444, China
| |
Collapse
|
35
|
He F, Zhou Y, Hu T, Xu Y, Hou M, Zhu F, Liu D, Zhang H, Xu K, Liu M, Chen Y. An Efficient High-Entropy Perovskite-Type Air Electrode for Reversible Oxygen Reduction and Water Splitting in Protonic Ceramic Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209469. [PMID: 36722205 DOI: 10.1002/adma.202209469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Reversible protonic ceramic electrochemical cells (R-PCECs) are emerging as ideal devices for highly efficient energy conversion (generating electricity) and storage (producing H2 ) at intermediate temperatures (400-700 °C). However, their commercialization is largely hindered by the development of highly efficient air electrodes for oxygen reduction and water-splitting reactions. Here, the findings in the design of a highly active and durable air electrode are reported: high-entropy Pr0.2 Ba0.2 Sr0.2 La0.2 Ca0.2 CoO3- δ (HE-PBSLCC), which exhibits impressive activity and stability for oxygen reduction and water-splitting reactions, as confirmed by electrochemical characterizations and structural analysis. When used as an air electrode of R-PCEC, the HE-PBSLCC achieves encouraging performances in dual modes of fuel cells (FCs) and electrolysis cells (ECs) at 650 °C, demonstrating a maximum power density of 1.51 W cm-2 in FC mode, and a current density of -2.68 A cm-2 at 1.3 V in EC mode. Furthermore, the cells display good operational durabilities in FC and EC modes for over 270 and 500 h, respectively, and promising cycling durability for 70 h with reasonable Faradaic efficiencies. This study offers an effective strategy for the design of active and durable air electrodes for efficient oxygen reduction and water splitting.
Collapse
Affiliation(s)
- Fan He
- School of Environment and Energy, South China University of Technology, 382 East Road, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Yucun Zhou
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - Tong Hu
- School of Environment and Energy, South China University of Technology, 382 East Road, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Yangsen Xu
- School of Environment and Energy, South China University of Technology, 382 East Road, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Mingyang Hou
- School of Environment and Energy, South China University of Technology, 382 East Road, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Feng Zhu
- School of Environment and Energy, South China University of Technology, 382 East Road, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Dongliang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Hua Zhang
- School of Environment and Energy, South China University of Technology, 382 East Road, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Kang Xu
- School of Environment and Energy, South China University of Technology, 382 East Road, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Meilin Liu
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - Yu Chen
- School of Environment and Energy, South China University of Technology, 382 East Road, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| |
Collapse
|
36
|
Wang Y, Wu C, Zhao S, Guo Z, Han M, Zhao T, Zu B, Du Q, Ni M, Jiao K. Boosting the performance and durability of heterogeneous electrodes for solid oxide electrochemical cells utilizing a data-driven powder-to-power framework. Sci Bull (Beijing) 2023; 68:516-527. [PMID: 36841731 DOI: 10.1016/j.scib.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023]
Abstract
Solid oxide electrochemical cells (SOCs) hold potential as a critical component in the future landscape of renewable energy storage and conversion systems. However, the commercialization of SOCs still requires further breakthroughs in new material development and engineering designs to achieve high performance and durability. In this study, a data-driven powder-to-power framework has been presented, fully digitizing the morphology evolution of heterogeneous electrodes from fabrication to long-term operation. This framework enables accurate performance prediction over the full life cycle. The intrinsic correlation between microstructural parameters and electrode durability is elucidated through parameter analysis. Rational control of the ion-conducting phase volume fraction can effectively suppress Ni coarsening and mitigate the excessive ohmic loss caused by Ni migration. The initial and degraded electrode performances are attributed to the interplay of multiple parameters. A practical optimization strategy to enhance the initial performance and durability of the electrode is proposed through the construction of the surrogate model and the application of the optimization algorithm. The optimal electrode parameters are determined to accommodate various maximum operation time requirements. By implementing the data-driven powder-to-power framework, it is possible to reduce the degradation rate of Ni-based electrodes from 2.132% to 0.703% kh-1 with a required maximum operation time of over 50,000 h.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China; Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), Hong Kong Polytechnic University, Hong Kong, China; National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin 300350, China
| | - Chengru Wu
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China; Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), Hong Kong Polytechnic University, Hong Kong, China
| | - Siyuan Zhao
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), Hong Kong Polytechnic University, Hong Kong, China
| | - Zengjia Guo
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), Hong Kong Polytechnic University, Hong Kong, China
| | - Minfang Han
- Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Tianshou Zhao
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bingfeng Zu
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Qing Du
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China; National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin 300350, China.
| | - Meng Ni
- Department of Building and Real Estate, Research Institute for Sustainable Urban Development (RISUD) & Research Institute for Smart Energy (RISE), Hong Kong Polytechnic University, Hong Kong, China.
| | - Kui Jiao
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China; National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
37
|
Hu S, Li J, Zeng Y, Pu J, Chi B. A mini review of the recent progress of electrode materials for low-temperature solid oxide fuel cells. Phys Chem Chem Phys 2023; 25:5926-5941. [PMID: 36786529 DOI: 10.1039/d2cp05133h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lowering the operating temperature (450-650 °C) of solid oxide fuel cells (SOFCs) faces the intrinsic challenge of sluggish electrode reaction kinetics in the low temperature (LT) range. To accelerate the electrode reaction rate, many efforts have been put into the optimization of electrode composition and morphology. In this review, we have summarized recent developments of LT-SOFC electrodes, including anode and cathode materials. For anode performance improvement, the internal structure design, fine anode structure, reforming layer addition, and in situ exsolution techniques are introduced and their related functionalities are also explained, respectively. While for the cathode, we focus on the perovskite-type materials because of their superior catalytic performance and relatively good stability. The optimization of perovskite composition, including A site alkali or alkali-earth metal doping and B site variable-valence transition metal doping, is discussed in detail based on their effects on oxygen reduction reaction (ORR). Besides, nanostructure assembly and 3D morphology design are also recent hotspots for cathode research. Finally, we also propose several research directions in this field, hoping to provide guidelines for future research.
Collapse
Affiliation(s)
- Shiming Hu
- Center for Fuel Cell Innovation, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jin Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, MOE Key Laboratory for the Green Preparation and Application of Functional Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yu Zeng
- Center for Fuel Cell Innovation, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jian Pu
- Center for Fuel Cell Innovation, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Bo Chi
- Center for Fuel Cell Innovation, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
38
|
Seo HG, Staerz A, Kim DS, LeBeau JM, Tuller HL. Tuning Surface Acidity of Mixed Conducting Electrodes: Recovery of Si-Induced Degradation of Oxygen Exchange Rate and Area Specific Resistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208182. [PMID: 36461730 DOI: 10.1002/adma.202208182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Indexed: 06/17/2023]
Abstract
Metal oxides are an important class of functional materials, and for many applications, ranging from solid oxide fuel/electrolysis cells, oxygen permeation membranes, and oxygen storage materials to gas sensors (semiconducting and electrolytic) and catalysts, the interaction between the surface and oxygen in the gas phase is central. Ubiquitous Si-impurities are known to impede this interaction, commonly attributed to the formation of glassy blocking layers on the surface. Here, the surface oxygen exchange coefficient (kchem ) is examined for Pr0.1 Ce0.9 O2-δ (PCO), a model mixed ionic electronic conductor, via electrical conductivity relaxation measurements, and the area-specific resistance (ASR) by electrochemical impedance spectroscopy. It is demonstrated that even low silica levels, introduced by infiltration, depress kchem by a factor 4000, while the ASR increases 40-fold and we attribute this to its acidity relative to that of PCO. The ability to fully regenerate the poisoned surface by the subsequent addition of basic Ca- or Li-species is further shown. This ability to not only recover Si-poisoned surfaces by tuning the relative surface acidity of an oxide surface, but subsequently outperform the pre-poisoned response, promises to extend the operating life of materials and devices for which the catalytic oxygen/solid interface reaction is central.
Collapse
Affiliation(s)
- Han Gil Seo
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Anna Staerz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Dennis S Kim
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - James M LeBeau
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Harry L Tuller
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
39
|
Reduced thermal expansion by surface-mounted nanoparticles in a pillared-layered metal-organic framework. Commun Chem 2022; 5:177. [PMID: 36697751 PMCID: PMC9814677 DOI: 10.1038/s42004-022-00793-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Control of thermal expansion (TE) is important to improve material longevity in applications with repeated temperature changes or fluctuations. The TE behavior of metal-organic frameworks (MOFs) is increasingly well understood, while the impact of surface-mounted nanoparticles (NPs) on the TE properties of MOFs remains unexplored despite large promises of NP@MOF composites in catalysis and adsorbate diffusion control. Here we study the influence of surface-mounted platinum nanoparticles on the TE properties of Pt@MOF (Pt@Zn2(DP-bdc)2dabco; DP-bdc2-=2,5-dipropoxy-1,4-benzenedicarboxylate, dabco=1,4-diazabicyclo[2.2.2]octane). We show that TE is largely retained at low platinum loadings, while high loading results in significantly reduced TE at higher temperatures compared to the pure MOF. These findings support the chemical intuition that surface-mounted particles restrict deformation of the MOF support and suggest that composite materials exhibit superior TE properties thereby excluding thermal stress as limiting factor for their potential application in temperature swing processes or catalysis.
Collapse
|
40
|
Rao M, Li M, Chen Z, Xiong K, Huang H, Yang W, Ling Y, Chen C, Zhang Z, Lin B. Direct carbon dioxide-methane solid oxide fuel cells integrated for high-efficiency power generation with La0.75Sr0.25Cr0.5Fe0.4Ni0.1O3–δ-based dry reforming catalyst. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
41
|
Han L, Zhang J, Zou M, Tong JJ. Toward Superb Perovskite Oxide Electrocatalysts: Engineering of Coupled Nanocomposites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204784. [PMID: 36300911 DOI: 10.1002/smll.202204784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/06/2022] [Indexed: 06/16/2023]
Abstract
A significant issue that bedeviled the commercialization of renewable energy technologies, ranging from low-temperature water electrolyzers to high-temperature solid oxide cells, is the lack of high-performance catalysts. Among various candidates that could tackle such a challenge, perovskite oxides are rising-star materials because of their unique structural and compositional flexibility. However, single-phase perovskite oxides are challenging to satisfy all the requirements of electrocatalysts concurrently for practical applications, such as high catalytic activity, excellent stability, good ionic and electronic conductivities, and superior chemical/thermo-mechanical robustness. Impressively, perovskite oxides with coupled nanocomposites are emerging as a novel form offering multifunctionality due to their intrinsic features, including infinite interfaces with solid interaction, tunable compositions, flexible configurations, and maximum synergistic effects between assorted components. Considering this new configuration has attracted great attention owing to its promising performances in various energy-related applications, this review timely summarizes the leading-edge development of perovskite oxide-based coupled nanocomposites. Their state-of-art synthetic strategies are surveyed and highlighted, their unique structural advantages are highlighted and illustrated through the typical oxygen reduction reaction and oxygen evolution reactions in both high and low-temperature applications. Opinions on the current critical scientific issues and opportunities in this burgeoning research field are all provided.
Collapse
Affiliation(s)
- Liang Han
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Jiawei Zhang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Minda Zou
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Jianhua Joshua Tong
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
42
|
Xi X, Huang L, Chen L, Liu W, Liu X, Luo JL, Fu XZ. Enhanced Reaction Kinetics of BCFZY-GDC-PrOx Composite Cathode for Low-Temperature Solid Oxide Fuel Cells. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Atomic Layer Deposition for Electrochemical Energy: from Design to Industrialization. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Preparation and characterization of highly active and stable NdBaCo0.8Fe0.8Ni0.4O5+δ oxygen electrode for solid oxide fuel cells. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Wang G, Chen C, Beshiwork BA, Xu B, Dong Y, Lin B. Fast proton and water transport in ceramic membrane-based magic-angle graphene. WATER RESEARCH 2022; 225:119076. [PMID: 36155004 DOI: 10.1016/j.watres.2022.119076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Ceramic membranes for energy conversion and storage devices are essential for becoming carbon neutral due to low cost and high stability, but limited by slow proton and water transport. Meanwhile magic-angle graphene with unconventional superconductivity ushers in a new era, properties research of which are in infant stage, urgently longing for specific applications. Herein, we investigate the ionic-conductivity and water-transport properties of ceramic membrane-based magic-angle graphene by choosing proton and water as a proof-of-concept for the first time, discover the twist-angle tuned proton conduction and water transport in ceramic membrane-based magic-angle graphene, demonstrate the faster proton and water transport in magic-angle graphene than that in graphene, and construct an efficient device of protonic ceramic membrane fuel cell based upon the new fast proton-conducting materials of magic-angle graphene. The proton conduction and water transport in magic-angle graphene can be easily tuned by the twist angle, explained by the corresponding potential energy surface. The smaller the twist angle is, and the faster the proton transport is. The protonic migration energy barrier in magic-angle graphene is lower by about 50% than that in graphene. Additionally, the water transport properties in magic-angle graphene can be improved by tuning twist angles. The electrode with magic-angle graphene can provide higher performance of protonic ceramic membrane fuel cells. The present work opens the specific application of ceramic membrane-based magic-angle graphene as new proton-conducting and water-transport materials in energy and environment.
Collapse
Affiliation(s)
- Guoqing Wang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chen Chen
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bayu Admasu Beshiwork
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bo Xu
- Department of Physics, Laboratory of Computational Materials Physics, Jiangxi Normal University, Nanchang 330022, China
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Bin Lin
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
46
|
Clarifying the zeolitic imidazolate framework effect on superior electrochemical properties of hydrogen storage alloys. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Peng S, Lei S, Wen S, Xue J, Wang H. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Fleming R, Gonçalves S, Davarpanah A, Radulov I, Pfeuffer L, Beckmann B, Skokov K, Ren Y, Li T, Evans J, Amaral J, Almeida R, Lopes A, Oliveira G, Araújo JP, Apolinário A, Belo JH. Tailoring Negative Thermal Expansion via Tunable Induced Strain in La-Fe-Si-Based Multifunctional Material. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43498-43507. [PMID: 36099579 PMCID: PMC9773235 DOI: 10.1021/acsami.2c11586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Zero thermal expansion (ZTE) composites are typically designed by combining positive thermal expansion (PTE) with negative thermal expansion (NTE) materials acting as compensators and have many diverse applications, including in high-precision instrumentation and biomedical devices. La(Fe1-x,Six)13-based compounds display several remarkable properties, such as giant magnetocaloric effect and very large NTE at room temperature. Both are linked via strong magnetovolume coupling, which leads to sharp magnetic and volume changes occurring simultaneously across first-order phase transitions; the abrupt nature of these changes makes them unsuitable as thermal expansion compensators. To make these materials more useful practically, the mechanisms controlling the temperature over which this transition occurs and the magnitude of contraction need to be controlled. In this work, ball-milling was used to decrease particles and crystallite sizes and increase the strain in LaFe11.9Mn0.27Si1.29Hx alloys. Such size and strain tuning effectively broadened the temperature over which this transition occurs. The material's NTE operational temperature window was expanded, and its peak was suppressed by up to 85%. This work demonstrates that induced strain is the key mechanism controlling these materials' phase transitions. This allows the optimization of their thermal expansion toward room-temperature ZTE applications.
Collapse
Affiliation(s)
- Rafael
Oliveira Fleming
- Institute
of Physics of Advanced Materials, Nanotechnology and Nanophotonics
(IFIMUP), Departamento de Física
e Astronomia da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Sofia Gonçalves
- Institute
of Physics of Advanced Materials, Nanotechnology and Nanophotonics
(IFIMUP), Departamento de Física
e Astronomia da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Amin Davarpanah
- Institute
of Material Science, Technical University
of Darmstadt, 64287 Darmstadt, Germany
- Department
of Physics and CICECO, University of Aveiro, Universitary Campus of Santiago, 3810-193 Aveiro, Portugal
| | - Iliya Radulov
- Institute
of Material Science, Technical University
of Darmstadt, 64287 Darmstadt, Germany
| | - Lukas Pfeuffer
- Institute
of Material Science, Technical University
of Darmstadt, 64287 Darmstadt, Germany
| | - Benedikt Beckmann
- Institute
of Material Science, Technical University
of Darmstadt, 64287 Darmstadt, Germany
| | - Konstantin Skokov
- Institute
of Material Science, Technical University
of Darmstadt, 64287 Darmstadt, Germany
| | - Yang Ren
- Department
of Physics, City University of Hong Kong, Kowloon 999077 Hong Kong, China
| | - Tianyi Li
- X-ray
Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - John Evans
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United
Kingdom
| | - João Amaral
- Department
of Physics and CICECO, University of Aveiro, Universitary Campus of Santiago, 3810-193 Aveiro, Portugal
| | - Rafael Almeida
- Institute
of Physics of Advanced Materials, Nanotechnology and Nanophotonics
(IFIMUP), Departamento de Física
e Astronomia da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Armandina Lopes
- Institute
of Physics of Advanced Materials, Nanotechnology and Nanophotonics
(IFIMUP), Departamento de Física
e Astronomia da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Gonçalo Oliveira
- Institute
of Physics of Advanced Materials, Nanotechnology and Nanophotonics
(IFIMUP), Departamento de Física
e Astronomia da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - João Pedro Araújo
- Institute
of Physics of Advanced Materials, Nanotechnology and Nanophotonics
(IFIMUP), Departamento de Física
e Astronomia da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Arlete Apolinário
- Institute
of Physics of Advanced Materials, Nanotechnology and Nanophotonics
(IFIMUP), Departamento de Física
e Astronomia da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - João Horta Belo
- Institute
of Physics of Advanced Materials, Nanotechnology and Nanophotonics
(IFIMUP), Departamento de Física
e Astronomia da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
49
|
Catalytic Materials by 3D Printing: A Mini Review. Catalysts 2022. [DOI: 10.3390/catal12101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Catalytic processes are the dominant driving force in the chemical industry, proper design and fabrication of three-dimensional (3D) catalysts monoliths helps to keep the active species from scattering in the reaction flow, improve high mass loading, expose abundant active catalytic sites and even realize turbulent gas flow, greatly improving the catalytic performance. Three-dimensional printing technology, also known as additive manufacturing, provides free design and accurate fabrication of complex 3D structures in an efficient and economic way. This disruptive technology brings light to optimizing and promoting the development of existing catalysts. In this mini review, we firstly introduce various printing techniques which are applicable for fabricating catalysts. Then, the recent developments in 3D printing catalysts are scrutinized. Finally, challenges and possible research directions in this field are proposed, with the expectation of providing guidance for the promotion of 3D printed catalysts.
Collapse
|
50
|
La0.5Ba0.5CuxFe1−xO3−δ as cathode for high-performance proton-conducting solid oxide fuel cell. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|