1
|
Merdith AS, Gernon TM, Maffre P, Donnadieu Y, Goddéris Y, Longman J, Müller RD, Mills BJW. Phanerozoic icehouse climates as the result of multiple solid-Earth cooling mechanisms. SCIENCE ADVANCES 2025; 11:eadm9798. [PMID: 39951538 PMCID: PMC11827867 DOI: 10.1126/sciadv.adm9798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/09/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025]
Abstract
The Phanerozoic climate has been interrupted by two long "icehouse" intervals, including the current icehouse of the last ~34 million years. While these cool intervals correspond to lower atmospheric CO2, it is unclear why CO2 levels fell, with hypotheses suggesting changes in CO2 degassing rates or modification of silicate weathering through changing continental lithology or paleogeography. Here, we construct an Earth System Model that integrates these proposed cooling mechanisms in detail. The model can reproduce the broad geologic record of ice cap expansion, allowing us to infer the primary drivers of long-term climate change. Our results indicate that recent icehouse climates required a combination of different cooling mechanisms acting simultaneously and were not driven by a single known process, potentially explaining why icehouses have been rarer than greenhouses over Earth history.
Collapse
Affiliation(s)
- Andrew S. Merdith
- School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Earth and Environment, University of Leeds, Leeds LS3 9JT, UK
| | - Thomas M. Gernon
- School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Pierre Maffre
- Aix-Marseille Univ, CNRS, IRD, INRA, Coll. France, CEREGE, Aix-en-Provence, France
- Géosciences-Environnement Toulouse, CNRS-Université Paul Sabatier, Toulouse, France
| | - Yannick Donnadieu
- Aix-Marseille Univ, CNRS, IRD, INRA, Coll. France, CEREGE, Aix-en-Provence, France
| | - Yves Goddéris
- Géosciences-Environnement Toulouse, CNRS-Université Paul Sabatier, Toulouse, France
| | - Jack Longman
- School of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - R. Dietmar Müller
- EarthByte Group, School of Geosciences, University of Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
2
|
Oyanagi R, Okamoto A. Subducted carbon weakens the forearc mantle wedge in a warm subduction zone. Nat Commun 2024; 15:7159. [PMID: 39187495 PMCID: PMC11347577 DOI: 10.1038/s41467-024-51476-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024] Open
Abstract
Subducting oceanic plates carry large amounts of carbon into the Earth's interior. The subducted carbon is mobilized by fluid and encounters ultramafic rocks in the mantle wedge, resulting in changes to the mineral assemblage and mechanical properties of the mantle. Here, we use thermodynamic modeling of interactions between carbon-bearing multi-component fluids and mantle rocks to investigate the down-dip variation in mineral assemblage in the forearc mantle along subduction megathrusts. We found that fluids rich in aqueous carbon are preferentially generated in a warm subduction zone (e.g., Nankai, SW Japan), causing a change in mineral assemblage from serpentine-rich at the mantle wedge corner to talc + carbonate-rich at greater depths. The transition caused by the infiltration of aqueous carbon may influence the depth of the boundary between the seismogenic and aseismic zones, and the down-dip limit of episodic tremor and slip.
Collapse
Affiliation(s)
- Ryosuke Oyanagi
- School of Engineering and Science, Kokushikan University, Tokyo, 154-8515, Japan.
- Research Institute for Marine Geodynamics (IMG), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, 237-0061, Japan.
| | - Atsushi Okamoto
- Department of Environmental Studies for Advanced Society, Graduate School of Environmental Studies, Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|
3
|
Loewen MA, Sertich JJW, Sampson S, O’Connor JK, Carpenter S, Sisson B, Øhlenschlæger A, Farke AA, Makovicky PJ, Longrich N, Evans DC. Lokiceratops rangiformis gen. et sp. nov. (Ceratopsidae: Centrosaurinae) from the Campanian Judith River Formation of Montana reveals rapid regional radiations and extreme endemism within centrosaurine dinosaurs. PeerJ 2024; 12:e17224. [PMID: 38912046 PMCID: PMC11193970 DOI: 10.7717/peerj.17224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/20/2024] [Indexed: 06/25/2024] Open
Abstract
The Late Cretaceous of western North America supported diverse dinosaur assemblages, though understanding patterns of dinosaur diversity, evolution, and extinction has been historically limited by unequal geographic and temporal sampling. In particular, the existence and extent of faunal endemism along the eastern coastal plain of Laramidia continues to generate debate, and finer scale regional patterns remain elusive. Here, we report a new centrosaurine ceratopsid, Lokiceratops rangiformis, from the lower portion of the McClelland Ferry Member of the Judith River Formation in the Kennedy Coulee region along the Canada-USA border. Dinosaurs from the same small geographic region, and from nearby, stratigraphically equivalent horizons of the lower Oldman Formation in Canada, reveal unprecedented ceratopsid richness, with four sympatric centrosaurine taxa and one chasmosaurine taxon. Phylogenetic results show that Lokiceratops, together with Albertaceratops and Medusaceratops, was part of a clade restricted to a small portion of northern Laramidia approximately 78 million years ago. This group, Albertaceratopsini, was one of multiple centrosaurine clades to undergo geographically restricted radiations, with Nasutuceratopsini restricted to the south and Centrosaurini and Pachyrostra restricted to the north. High regional endemism in centrosaurs is associated with, and may have been driven by, high speciation rates and diversity, with competition between dinosaurs limiting their geographic range. High speciation rates may in turn have been driven in part by sexual selection or latitudinally uneven climatic and floral gradients. The high endemism seen in centrosaurines and other dinosaurs implies that dinosaur diversity is underestimated and contrasts with the large geographic ranges seen in most extant mammalian megafauna.
Collapse
Affiliation(s)
- Mark A. Loewen
- Natural History Museum of Utah, Salt Lake City, UT, United States of America
- Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, United States of America
- Evolutionsmuseet, Knuthenborg, Maribo, Denmark
| | - Joseph J. W. Sertich
- Evolutionsmuseet, Knuthenborg, Maribo, Denmark
- Smithsonian Tropical Research Institute, Panama City, Panamá
- Department of Geosciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Scott Sampson
- California Academy of Sciences, San Francisco, California, United States of America
| | | | - Savhannah Carpenter
- Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, United States of America
| | - Brock Sisson
- Independent Researcher, Pleasant Grove, Utah, United States of America
| | | | - Andrew A. Farke
- Raymond M. Alf Museum of Paleontology, Claremont, California, United States of America
| | - Peter J. Makovicky
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nick Longrich
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - David C. Evans
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
- Department of Ecology and Evolution, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Foley SF, Chen C, Jacob DE. The effects of local variations in conditions on carbon storage and release in the continental mantle. Natl Sci Rev 2024; 11:nwae098. [PMID: 38933600 PMCID: PMC11203914 DOI: 10.1093/nsr/nwae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 06/28/2024] Open
Abstract
Recent advances indicate that the amount of carbon released by gradual degassing from the mantle needs to be revised upwards, whereas the carbon supplied by plumes may have been overestimated in the past. Variations in rock types and oxidation state may be very local and exert strong influences on carbon storage and release mechanisms. Deep subduction may be prevented by diapirism in thick sedimentary packages, whereas carbonates in thinner sequences may be subducted. Carbonates stored in the mantle transition zone will melt when they heat up, recognized by coupled stable isotope systems (e.g. Mg, Zn, Ca). There is no single 'mantle oxygen fugacity', particularly in the thermal boundary layer (TBL) and lowermost lithosphere, where very local mixtures of rock types coexist. Carbonate-rich melts from either subduction or melting of the uppermost asthenosphere trap carbon by redox freezing or as carbonate-rich dykes in this zone. Deeply derived, reduced melts may form further diamond reservoirs, recognized as polycrystalline diamonds associated with websteritic silicate minerals. Carbon is released by either edge-driven convection, which tears sections of the TBL and lower lithosphere down so that they melt by a mixture of heating and oxidation, or by lateral advection of solids beneath rifts. Both mechanisms operate at steps in lithosphere thickness and result in carbonate-rich melts, explaining the spatial association of craton edges and carbonate-rich magmatism. High-pressure experiments on individual rock types, and increasingly on reactions between rocks and melts, are fine-tuning our understanding of processes and turning up unexpected results that are not seen in studies of single rocks. Future research should concentrate on elucidating local variations and integrating these with the interpretation of geophysical signals. Global concepts such as average sediment compositions and a uniform mantle oxidation state are not appropriate for small-scale processes; an increased focus on local variations will help to refine carbon budget models.
Collapse
Affiliation(s)
- Stephen F Foley
- School of Natural Sciences, Macquarie University, North Ryde 2109, New South Wales, Australia
- Research School of Earth Sciences, Australian National University, Canberra, AT 2601, Australia
| | - Chunfei Chen
- School of Natural Sciences, Macquarie University, North Ryde 2109, New South Wales, Australia
- State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Dorrit E Jacob
- Research School of Earth Sciences, Australian National University, Canberra, AT 2601, Australia
| |
Collapse
|
5
|
Zhang M, Xu S, Sano Y. Deep carbon recycling viewed from global plate tectonics. Natl Sci Rev 2024; 11:nwae089. [PMID: 38933601 PMCID: PMC11203916 DOI: 10.1093/nsr/nwae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 06/28/2024] Open
Abstract
Plate tectonics plays an essential role in the redistribution of life-essential volatile elements between Earth's interior and surface, whereby our planet has been well tuned to maintain enduring habitability over much of its history. Here we present an overview of deep carbon recycling in the regime of modern plate tectonics, with a special focus on convergent plate margins for assessing global carbon mass balance. The up-to-date flux compilation implies an approximate balance between deep carbon outflux and subduction carbon influx within uncertainty but remarkably limited return of carbon to convecting mantle. If correct, carbon would gradually accumulate in the lithosphere over time by (i) massive subsurface carbon storage occurring primarily in continental lithosphere from convergent margins to continental interior and (ii) persistent surface carbon sinks to seafloors sustained by high-flux deep CO2 emissions to the atmosphere. Further assessment of global carbon mass balance requires updates on fluxes of subduction-driven carbon recycling paths and reduction in uncertainty of deep carbon outflux. From a global plate tectonics point of view, we particularly emphasize that continental reworking is an important mechanism for remobilizing geologically sequestered carbon in continental crust and sub-continental lithospheric mantle. In light of recent advances, future research is suggested to focus on a better understanding of the reservoirs, fluxes, mechanisms, and climatic effects of deep carbon recycling following an integrated methodology of observation, experiment, and numerical modeling, with the aim of decoding the self-regulating Earth system and its habitability from the deep carbon recycling perspective.
Collapse
Affiliation(s)
- Maoliang Zhang
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Sheng Xu
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yuji Sano
- Marine Core Research Institute, Kochi University, Kochi 783-8502, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| |
Collapse
|
6
|
Bogumil M, Mittal T, Lithgow-Bertelloni C. The effects of bathymetry on the long-term carbon cycle and CCD. Proc Natl Acad Sci U S A 2024; 121:e2400232121. [PMID: 38748585 PMCID: PMC11126914 DOI: 10.1073/pnas.2400232121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/03/2024] [Indexed: 05/27/2024] Open
Abstract
The shape of the ocean floor (bathymetry) and the overlaying sediments provide the largest carbon sink throughout Earth's history, supporting ~one to two orders of magnitude more carbon storage than the oceans and atmosphere combined. While accumulation and erosion of these sediments are bathymetry dependent (e.g., due to pressure, temperature, salinity, ion concentration, and available productivity), no systemic study has quantified how global and basin scale bathymetry, controlled by the evolution of tectonics and mantle convection, affects the long-term carbon cycle. We reconstruct bathymetry spanning the last 80 Myr to describe steady-state changes in ocean chemistry within the Earth system model LOSCAR. We find that both bathymetry reconstructions and representative synthetic tests show that ocean alkalinity, calcite saturation state, and the carbonate compensation depth (CCD) are strongly dependent on changes in shallow bathymetry (ocean floor ≤600 m) and on the distribution of the deep marine regions (>1,000 m). Limiting Cenozoic evolution to bathymetry alone leads to predicted CCD variations spanning 500 m, 33 to 50% of the total observed variations in the paleoproxy records. Our results suggest that neglecting bathymetric changes leads to significant misattribution to uncertain carbon cycle parameters (e.g., atmospheric CO2 and water column temperature) and processes (e.g., biological pump efficiency and silicate-carbonate riverine flux). To illustrate this point, we use our updated bathymetry for an Early Paleogene C cycle case study. We obtain carbonate riverine flux estimates that suggest a reversal of the weathering trend with respect to present-day, contrasting with previous studies, but consistent with proxy records and tectonic reconstructions.
Collapse
Affiliation(s)
- Matthew Bogumil
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA90095-1567
| | - Tushar Mittal
- Department of Geosciences, The Pennsylvania State University, University Park, PA16802
| | | |
Collapse
|
7
|
Clark PU, Shakun JD, Rosenthal Y, Köhler P, Bartlein PJ. Global and regional temperature change over the past 4.5 million years. Science 2024; 383:884-890. [PMID: 38386742 DOI: 10.1126/science.adi1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
Much of our understanding of Cenozoic climate is based on the record of δ18O measured in benthic foraminifera. However, this measurement reflects a combined signal of global temperature and sea level, thus preventing a clear understanding of the interactions and feedbacks of the climate system in causing global temperature change. Our new reconstruction of temperature change over the past 4.5 million years includes two phases of long-term cooling, with the second phase of accelerated cooling during the Middle Pleistocene Transition (1.5 to 0.9 million years ago) being accompanied by a transition from dominant 41,000-year low-amplitude periodicity to dominant 100,000-year high-amplitude periodicity. Changes in the rates of long-term cooling and variability are consistent with changes in the carbon cycle driven initially by geologic processes, followed by additional changes in the Southern Ocean carbon cycle.
Collapse
Affiliation(s)
- Peter U Clark
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
- School of Geography and Environmental Sciences, University of Ulster, Coleraine BT52 1SA, Northern Ireland, UK
| | - Jeremy D Shakun
- Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA 02467, USA
| | - Yair Rosenthal
- Department of Marine and Coastal Science, Rutgers The State University, New Brunswick, NJ 08901, USA
- Department of Earth and Planetary Sciences, Rutgers The State University, New Brunswick, NJ 08901, USA
| | - Peter Köhler
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany
| | | |
Collapse
|
8
|
Isson T, Rauzi S. Oxygen isotope ensemble reveals Earth's seawater, temperature, and carbon cycle history. Science 2024; 383:666-670. [PMID: 38330122 DOI: 10.1126/science.adg1366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/05/2024] [Indexed: 02/10/2024]
Abstract
Earth's persistent habitability since the Archean remains poorly understood. Using an oxygen isotope ensemble approach-comprising shale, iron oxide, carbonate, silica, and phosphate records-we reconcile a multibillion-year history of seawater δ18O, temperature, and marine and terrestrial clay abundance. Our results reveal a rise in seawater δ18O and a temperate Proterozoic climate distinct to interpretations of a hot early Earth, indicating a strongly buffered climate system. Precambrian sediments are enriched in marine authigenic clay, with prominent reductions occurring in concert with Paleozoic and Cenozoic cooling, the expansion of siliceous life, and the radiation of land plants. These findings support the notion that shifts in the locus and extent of clay formation contributed to seawater 18O enrichment, clement early Earth conditions, major climate transitions, and climate stability through the reverse weathering feedback.
Collapse
Affiliation(s)
- Terry Isson
- Te Aka Mātuatua, University of Waikato (Tauranga), Bay of Plenty, Tauranga, New Zealand
| | - Sofia Rauzi
- Te Aka Mātuatua, University of Waikato (Tauranga), Bay of Plenty, Tauranga, New Zealand
| |
Collapse
|
9
|
Huang B, Liu M, Kusky TM, Johnson TE, Wilde SA, Fu D, Deng H, Qian Q. Changes in orogenic style and surface environment recorded in Paleoproterozoic foreland successions. Nat Commun 2023; 14:7997. [PMID: 38042882 PMCID: PMC10693560 DOI: 10.1038/s41467-023-43893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023] Open
Abstract
The Earth's interior and surficial systems underwent dramatic changes during the Paleoproterozoic, but the interaction between them remains poorly understood. Rocks deposited in orogenic foreland basins retain a record of the near surface to deep crustal processes that operate during subduction to collision and provide information on the interaction between plate tectonics and surface responses through time. Here, we document the depositional-to-deformational life cycle of a Paleoproterozoic foreland succession from the North China Craton. The succession was deposited in a foreland basin following ca. 2.50-2.47 Ga Altaid-style arc-microcontinent collision, and then converted to a fold-and-thrust belt at ca. 2.0-1.8 Ga due to Himalayan-style continent-continent collision. These two periods correspond to the assembly of supercratons in the late Archean and of the Paleoproterozoic supercontinent Columbia, respectively, which suggests that similar basins may have been common at the periphery of other cratons. The multiple stages of orogenesis and accompanying tectonic denudation and silicate weathering, as recorded by orogenic foreland basins, likely contributed to substantial changes in the hydrosphere, atmosphere, and biosphere known to have occurred during the Paleoproterozoic.
Collapse
Affiliation(s)
- Bo Huang
- Badong National Observation and Research Station of Geohazards, State Key Laboratory of Geological Processes and Mineral Resources, Center for Global Tectonics, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China.
| | - Man Liu
- Badong National Observation and Research Station of Geohazards, State Key Laboratory of Geological Processes and Mineral Resources, Center for Global Tectonics, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Timothy M Kusky
- Badong National Observation and Research Station of Geohazards, State Key Laboratory of Geological Processes and Mineral Resources, Center for Global Tectonics, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Tim E Johnson
- Badong National Observation and Research Station of Geohazards, State Key Laboratory of Geological Processes and Mineral Resources, Center for Global Tectonics, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
- School of Earth and Planetary Sciences, the Institute for Geoscience Research, Timescales of Mineral Systems Group, Curtin University, Perth, WA, 6102, Australia
| | - Simon A Wilde
- School of Earth and Planetary Sciences, the Institute for Geoscience Research, Timescales of Mineral Systems Group, Curtin University, Perth, WA, 6102, Australia
| | - Dong Fu
- Badong National Observation and Research Station of Geohazards, State Key Laboratory of Geological Processes and Mineral Resources, Center for Global Tectonics, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Hao Deng
- Badong National Observation and Research Station of Geohazards, State Key Laboratory of Geological Processes and Mineral Resources, Center for Global Tectonics, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Qunye Qian
- Badong National Observation and Research Station of Geohazards, State Key Laboratory of Geological Processes and Mineral Resources, Center for Global Tectonics, School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
10
|
Salles T, Husson L, Lorcery M, Hadler Boggiani B. Landscape dynamics and the Phanerozoic diversification of the biosphere. Nature 2023; 624:115-121. [PMID: 38030724 PMCID: PMC10700141 DOI: 10.1038/s41586-023-06777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
The long-term diversification of the biosphere responds to changes in the physical environment. Yet, over the continents, the nearly monotonic expansion of life started later in the early part of the Phanerozoic eon1 than the expansion in the marine realm, where instead the number of genera waxed and waned over time2. A comprehensive evaluation of the changes in the geodynamic and climatic forcing fails to provide a unified theory for the long-term pattern of evolution of life on Earth. Here we couple climate and plate tectonics models to numerically reconstruct the evolution of the Earth's landscape over the entire Phanerozoic eon, which we then compare to palaeo-diversity datasets from marine animal and land plant genera. Our results indicate that biodiversity is strongly reliant on landscape dynamics, which at all times determine the carrying capacity of both the continental domain and the oceanic domain. In the oceans, diversity closely adjusted to the riverine sedimentary flux that provides nutrients for primary production. On land, plant expansion was hampered by poor edaphic conditions until widespread endorheic basins resurfaced continents with a sedimentary cover that facilitated the development of soil-dependent rooted flora, and the increasing variety of the landscape additionally promoted their development.
Collapse
Affiliation(s)
- Tristan Salles
- School of Geosciences, The University of Sydney, Sydney, New South Wales, Australia.
| | - Laurent Husson
- CNRS, ISTerre, Université Grenoble-Alpes, Grenoble, France.
| | - Manon Lorcery
- School of Geosciences, The University of Sydney, Sydney, New South Wales, Australia
- CNRS, ISTerre, Université Grenoble-Alpes, Grenoble, France
| | | |
Collapse
|
11
|
Shen H, Zhao L, Guo Z, Yuan H, Yang J, Wang X, Guo Z, Deng C, Wu F. Dynamic link between Neo-Tethyan subduction and atmospheric CO 2 changes: insights from seismic tomography reconstruction. Sci Bull (Beijing) 2023; 68:637-644. [PMID: 36907675 DOI: 10.1016/j.scib.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
Volcanic arc degassing contributes significantly to atmospheric CO2 levels and therefore has a pivotal impact on paleoclimate changes. The Neo-Tethyan decarbonation subduction is thought to have played a major role in Cenozoic climate changes, although there are still no quantifiable restrictions. Here we build past subduction scenarios using an improved seismic tomography reconstruction method and calculate the subducted slab flux in the India-Eurasia collision region. We find remarkable synchronicity between calculated slab flux and paleoclimate parameters in the Cenozoic, indicating a causal link between these processes. The closure of the Neo-Tethyan intra-oceanic subduction resulted in more carbon-rich sediments subducting along the Eurasia margin, as well as continental arc volcanoes, which further triggered global warming up to the Early Eocene Climatic Optimum. The abrupt termination of the Neo-Tethyan subduction due to the India-Eurasia collision could be the primary tectonic cause of the ∼50-40 Ma CO2 drop. The gradual decrease in atmospheric CO2 concentration after 40 Ma may be attributed to enhance continental weathering due to the growth of the Tibetan Plateau. Our results contribute to a better understanding of the dynamic implications of Neo-Tethyan Ocean evolution and may provide new constraints for future carbon cycle models.
Collapse
Affiliation(s)
- Hao Shen
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Zhao
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhengtang Guo
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huaiyu Yuan
- Australian Research Council Centre of Excellence for Core to Crust Fluid Systems, Department of Earth and Environmental Sciences, Macquarie University, New South Wales 2109, Australia
| | - Jianfeng Yang
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xinxin Wang
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zhengfu Guo
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Chenglong Deng
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Fuyuan Wu
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
12
|
Shao W, Lu B, Cao J, Zhang J, Cao H, Zhang F, Zhang C. The Use of Redox Mediators in Electrocatalysis and Electrosynthesis. Chem Asian J 2023; 18:e202201093. [PMID: 36577711 DOI: 10.1002/asia.202201093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/04/2022] [Indexed: 12/30/2022]
Abstract
Electrocatalysis and electrosynthesis, which convert the electrical energy and store them in the chemical forms, have been considered as promising technologies to utilize green renewable energy sources. Most of the studies focused on developing novel active molecules or advanced electrodes to improve the performance. However, the direct acquisition and electron transferring will be limited by the intrinsic characters of the electrodes. The introduce of redox mediators, which are served as the intermediate electron carriers or reservoirs without changing the final products, provide a unique approach to accelerate the electrochemical performance of these energy conversions. This review provides an overview of the recent development of electrocatalysis and electrosynthesis by using redox mediators, and provides a comprehensive discussion toward focusing on the principles and construction of these systems.
Collapse
Affiliation(s)
- Weide Shao
- School of Materials Science and Engineering, Jilin University, Changchun, 130025, P. R. China
| | - Biao Lu
- School of Materials Science and Engineering, Jilin University, Changchun, 130025, P. R. China
| | - Jinpeng Cao
- School of Materials Science and Engineering, Jilin University, Changchun, 130025, P. R. China
| | - Jianing Zhang
- School of Materials Science and Engineering, Jilin University, Changchun, 130025, P. R. China
| | - Hairu Cao
- School of Materials Science and Engineering, Jilin University, Changchun, 130025, P. R. China
| | - Feifei Zhang
- School of Materials Science and Engineering, Jilin University, Changchun, 130025, P. R. China
| | - Chunling Zhang
- School of Materials Science and Engineering, Jilin University, Changchun, 130025, P. R. China
| |
Collapse
|