1
|
Lawrence AB, Hammond AS, Ward CV. Acetabular orientation, pelvic shape, and the evolution of hominin bipedality. J Hum Evol 2025; 200:103633. [PMID: 39765141 DOI: 10.1016/j.jhevol.2024.103633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 03/09/2025]
Abstract
Hominin pelvic form differs dramatically from that of other primates by having more laterally facing iliac blades, a wider sacrum, and a larger, transversely broad pelvic inlet. The orientation of the acetabulum may also differ, plausibly related to differences in load transmission during upright posture and habitual bipedal locomotion, which may, in turn, affect overall pelvic geometry. We compared acetabular orientation in humans, a phylogenetically broad sample of extant anthropoid primates, and fossil hominins including Australopithecus afarensis (A.L. 288-1, KSD-VP-1/1), Australopithecus africanus (Sts 14), Australopithecus sediba (MH2), and Homo neanderthalensis (Kebara 2). We measured the three-dimensional orientation of the acetabulum on in silico models of individual hipbones aligned to the median plane by registering models to landmark coordinates on articulated pelves. Humans and fossil hominins both possess significantly more ventrally opening acetabula than other extant anthropoids, which exhibit laterally facing acetabula. The orientation of the hominin acetabulum was essentially humanlike by at least 3.6 Ma, well before the appearance of other unique features in the pelvis of Homo that may be associated with long-distance walking or running, thermoregulation, parturition, and larger body size in this genus. These results suggest that the ventral orientation of the acetabulum is a key component in the suite of pelvic characteristics related to habitual bipedality in hominins and should be considered in future analyses of hominin pelvic morphology.
Collapse
Affiliation(s)
- Austin B Lawrence
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA.
| | - Ashley S Hammond
- Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - Carol V Ward
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
2
|
Lüdecke T, Leichliter JN, Stratford D, Sigman DM, Vonhof H, Haug GH, Bamford MK, Martínez-García A. Australopithecus at Sterkfontein did not consume substantial mammalian meat. Science 2025; 387:309-314. [PMID: 39818884 DOI: 10.1126/science.adq7315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025]
Abstract
Incorporation of animal-based foods into early hominin diets has been hypothesized to be a major catalyst of many important evolutionary events, including brain expansion. However, direct evidence of the onset and evolution of animal resource consumption in hominins remains elusive. The nitrogen-15 to nitrogen-14 ratio of collagen provides trophic information about individuals in modern and geologically recent ecosystems (<200,000 years ago), but diagenetic loss of this organic matter precludes studies of greater age. By contrast, nitrogen in tooth enamel is preserved for millions of years. We report enamel-bound organic nitrogen and carbonate carbon isotope measurements of Sterkfontein Member 4 mammalian fauna, including seven Australopithecus specimens. Our results suggest a variable but plant-based diet (largely C3) for these hominins. Therefore, we argue that Australopithecus at Sterkfontein did not engage in regular mammalian meat consumption.
Collapse
Affiliation(s)
- Tina Lüdecke
- Department of Climate Geochemistry, Max Planck Institute for Chemistry, Mainz, Germany
- Emmy Noether Group for Hominin Meat Consumption, Max Planck Institute for Chemistry, Mainz, Germany
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Jennifer N Leichliter
- Department of Climate Geochemistry, Max Planck Institute for Chemistry, Mainz, Germany
- Emmy Noether Group for Hominin Meat Consumption, Max Planck Institute for Chemistry, Mainz, Germany
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Dominic Stratford
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| | - Daniel M Sigman
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Hubert Vonhof
- Department of Climate Geochemistry, Max Planck Institute for Chemistry, Mainz, Germany
| | - Gerald H Haug
- Department of Climate Geochemistry, Max Planck Institute for Chemistry, Mainz, Germany
- Department of Earth Sciences, ETH Zürich, Zürich, Switzerland
| | - Marion K Bamford
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
3
|
Drummond-Clarke RC, Kivell TL, Sarringhaus L, Stewart FA, Piel AK. Sex differences in positional behavior of chimpanzees (Pan troglodytes schweinfurthii) living in the dry and open habitat of Issa Valley, Tanzania. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25007. [PMID: 39056239 DOI: 10.1002/ajpa.25007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/20/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES Many early fossil hominins are associated with savanna-mosaic paleohabitats, and high sexual dimorphism that may reflect differences in positional behavior between sexes. However, reconstructions of hominin behavior and the selective pressures they faced in an open habitat are limited by a lack of studies of extant apes living in contemporary, analogous habitats. Here, we describe adult chimpanzee positional behavior in the savanna-mosaic habitat of the Issa Valley, Tanzania, to test whether Issa chimpanzees show larger sex-differences in positional behavior than their forest-dwelling counterparts. MATERIALS AND METHODS We quantified and compared adult locomotor and postural behavior across sexes (6 females, 7 males) in the riparian forest (closed) and miombo woodland (open) vegetation types at Issa Valley (13,743 focal observations). We then compared our results to published data of chimpanzee communities living in more forested habitats. RESULTS Issa females and males both spent less time arboreally in open vegetation and showed similar locomotor and postural behavior on the same substrates, notably using a high level of suspensory locomotion when arboreal. Females were, however, more arboreal than males during locomotor behavior, as well as compared with females from other communities. Issa males behaved similarly to males from other communities. CONCLUSION Results suggest that open habitats do not elicit less arboreal behaviors in either sex, and may even select for suspensory locomotion to effectively navigate an open canopy. An open habitat may, however, increase sex differences in positional behavior by driving female arboreality. We suggest this is because of higher energetic demands and predator pressures associated with open vegetation, which are likely exaggerated for reproducing females. These results have implications for the interpretation of how sexual dimorphism may influence reconstructions of hominin positional behavior.
Collapse
Affiliation(s)
| | - Tracy L Kivell
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Fiona A Stewart
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University College London, London, UK
| | - Alex K Piel
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, University College London, London, UK
| |
Collapse
|
4
|
Ward CV, Plavcan JM, Manthi FK. Additional isolated hominin canine tooth from Kanapoi, Kenya. J Hum Evol 2024; 196:103592. [PMID: 39321516 DOI: 10.1016/j.jhevol.2024.103592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Affiliation(s)
- Carol V Ward
- Department of Pathology and Anatomical Sciences, University of Missouri, M263 Medical Sciences Building, Columbia, MO 65212, USA.
| | - J Michael Plavcan
- Department of Anthropology, 330 Old Main, Fayetteville, AR 72701, USA
| | - Fredrick K Manthi
- Department of Earth Sciences, National Museums of Kenya, P.O. Box 40658, Nairobi, Kenya
| |
Collapse
|
5
|
Rowan J, Du A, Lundgren EJ, Faith JT, Beaudrot L, Campisano CJ, Joordens JC, Lazagabaster IA, Locke EM, Smail IE, Reed KE, Kamilar JM. Long-term biotic homogenization in the East African Rift System over the last 6 million years of hominin evolution. Nat Ecol Evol 2024; 8:1751-1759. [PMID: 39009848 DOI: 10.1038/s41559-024-02462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/05/2024] [Indexed: 07/17/2024]
Abstract
Eastern Africa preserves the most complete record of human evolution anywhere in the world but we have little knowledge of how long-term biogeographic dynamics in the region influenced hominin diversity and distributions. Here, we use spatial beta diversity analyses of mammal fossil records from the East African Rift System to reveal long-term biotic homogenization (increasing compositional similarity of faunas) over the last 6 Myr. Late Miocene and Pliocene faunas (~6-3 million years ago (Ma)) were largely composed of endemic species, with the shift towards biotic homogenization after ~3 Ma being driven by the loss of endemic species across functional groups and a growing number of shared grazing species. This major biogeographic transition closely tracks the regional expansion of grass-dominated ecosystems. Although grazers exhibit low beta diversity in open environments of the Early Pleistocene, the high beta diversity of Mio-Pliocene browsers and frugivores occurred in the context of extensive woody vegetation. We identify other key aspects of the Late Cenozoic biogeographic development of eastern Africa, their likely drivers and place the hominin fossil record in this context. Because hominins were undoubtedly influenced by many of the same factors as other eastern African mammals, this provides a new perspective on the links between environmental and human evolutionary histories.
Collapse
Affiliation(s)
- John Rowan
- Department of Archaeology, University of Cambridge, Cambridge, UK.
| | - Andrew Du
- Department of Anthropology and Geography, Colorado State University, Fort Collins, CO, USA
| | - Erick J Lundgren
- Centre for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus, Denmark
| | - J Tyler Faith
- Department of Anthropology, University of Utah, Salt Lake City, UT, USA
- Natural History Museum of Utah, University of Utah, Salt Lake City, UT, USA
- Origins Centre, University of the Witwatersrand, Johannesburg, South Africa
| | - Lydia Beaudrot
- Department of Biosciences, Rice University, Houston, TX, USA
- Program in Ecology and Evolutionary Biology, Rice University, Houston, TX, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Christopher J Campisano
- Institute of Human Origins, Arizona State University, Tempe, AZ, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Josephine C Joordens
- Naturalis Biodiversity Center, Leiden, the Netherlands
- Faculty of Archaeology, Leiden University, Leiden, the Netherlands
- Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Ignacio A Lazagabaster
- CENIEH (National Research Center on Human Evolution), Burgos, Spain
- Department of Evolution, Ecology & Behaviour, University of Liverpool, Liverpool, UK
| | - Ellis M Locke
- Department of Anatomy, Idaho College of Osteopathic Medicine, Idaho, ID, USA
| | - Irene E Smail
- Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA
| | - Kaye E Reed
- Institute of Human Origins, Arizona State University, Tempe, AZ, USA
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Jason M Kamilar
- Department of Anthropology, University of Massachusetts Amherst, Amherst, MA, USA
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
6
|
Lewis JE, Ward CV, Kimbel WH, Kidney CL, Brown FH, Quinn RL, Rowan J, Lazagabaster IA, Sanders WJ, Leakey MG, Leakey LN. A 4.3-million-year-old Australopithecus anamensis mandible from Ileret, East Turkana, Kenya, and its paleoenvironmental context. J Hum Evol 2024; 194:103579. [PMID: 39173445 DOI: 10.1016/j.jhevol.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/24/2024]
Abstract
A hominin mandible, KNM-ER 63000, and associated vertebrate remains were recovered in 2011 from Area 40 in East Turkana, Kenya. Tephrostratigraphic and magnetostratigraphic analyses indicate that these fossils date to ∼4.3 Ma. KNM-ER 63000 consists of articulating but worn and weathered mandibular corpora, with a broken right M2 crown and alveoli preserved at other tooth positions. Despite extensive damage, KNM-ER 63000 preserves diagnostic anatomy permitting attribution to Australopithecus anamensis. It can be distinguished from Australopithecus afarensis by its strongly inclined symphyseal axis with a basally convex, 'cut-away' external surface, a lateral corpus that sweeps inferomedially beneath the canine-premolar row, and alignment of the canine alveolus with the postcanine axis. KNM-ER 63000 is distinguished from Ardipithecus ramidus by its thick mandibular corpus and large M2 crown. The functional trait structure and enamel's stable carbon isotopic composition of the Area 40 large-mammal community suggests an environment comparable to Kanapoi and other ∼4.5-4 Ma eastern African sites that would have offered Au. anamensis access to both C3 and C4 food resources. With an age of ∼4.3 Ma, KNM-ER 63000 is the oldest known specimen of Au. anamensis, predating the Kanapoi and Asa Issie samples by at least ∼100 kyr. This specimen extends the known temporal range of Au. anamensis and places it in temporal overlap with fossils of Ar. ramidus from Gona, Ethiopia. The morphology of KNM-ER 63000 indicates that the reconfigured masticatory system differentiating basal hominins from the earliest australopiths existed in the narrow temporal window, if any, separating the two. The very close temporal juxtaposition of these significant morphological and adaptive differences implies that Ar. ramidus was a relative rather than a direct phyletic ancestor of earliest Australopithecus.
Collapse
Affiliation(s)
- Jason E Lewis
- Turkana Basin Institute, Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA; Chronicle Heritage, 319 E Palm Lane, Phoenix, AZ 85004, USA
| | - Carol V Ward
- Department of Pathology & Anatomical Sciences, University of Missouri, Columbia, MO 65212, USA.
| | - William H Kimbel
- Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287-4101, USA
| | - Casey L Kidney
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112-0112, USA
| | - Frank H Brown
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112-0112, USA
| | - Rhonda L Quinn
- School of Earth, Environment & Society, Bowling Green State University, Bowling Green, OH 43403-0085, USA
| | - John Rowan
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Ignacio A Lazagabaster
- National Research Center on Human Evolution (CENIEH), Paseo Sierra de Atapuerca 3, Burgos 09002, Spain; Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 3BX, UK
| | - William J Sanders
- Museum of Paleontology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| | - Meave G Leakey
- Turkana Basin Institute, Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA
| | - Louise N Leakey
- Turkana Basin Institute, Department of Anthropology, Stony Brook University, Stony Brook, NY 11794-4364, USA; Department of Paleontology, National Museums of Kenya, Museum Hill, Nairobi, Kenya
| |
Collapse
|
7
|
Fannin LD, Thayer ZM, Dominy NJ. Commemorating the monkey bars, catalyst of debate at the intersection of human evolutionary biology and public health. Evol Med Public Health 2024; 12:143-155. [PMID: 39282242 PMCID: PMC11400842 DOI: 10.1093/emph/eoae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Play is an essential part of childhood, and growing attention has focused on the potential health benefits of 'risky' or 'thrill-seeking' play. Such play behavior is readily observed on any playground, where it can sometimes lead to injuries--most often from fall impacts--that require medical attention. Monkey bars account for ~7% of childhood arm fractures in the USA, an alarming statistic that raises difficult questions over its costs and benefits. Many authors view monkey bars as a public health hazard, but it is plausible that our childhood impulse toward thrill-seeking play is a result of selective pressures throughout our primate evolutionary history. Indeed, emerging evidence suggests that the developmental benefits of thrill-seeking play extend into adulthood, outweighing the occasional costs of injury. Disparate and consequential, these dueling perspectives have fueled debate among health professionals and policymakers, but with little attention to the work of biological anthropologists. Here we call attention to the hominin fossil record and play behaviors of non-human primates, providing a novel perspective that bolsters arguments for the adaptive significance of thrill-seeking play. The moment for such a review is timely, for it commemorates the centennial anniversaries of two playground icons: the jungle gym and monkey bars.
Collapse
Affiliation(s)
- Luke D Fannin
- Department of Anthropology, Dartmouth College, Hanover, NH, USA
- Graduate Program in Ecology, Evolution, Environment, and Society, Dartmouth College, Hanover, NH, USA
| | - Zaneta M Thayer
- Department of Anthropology, Dartmouth College, Hanover, NH, USA
| | - Nathaniel J Dominy
- Department of Anthropology, Dartmouth College, Hanover, NH, USA
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
8
|
Rowan J, Wood B. Dart and the Taung juvenile: making sense of a century-old record of hominin evolution in Africa. Biol Lett 2024; 20:20240185. [PMID: 39045658 PMCID: PMC11267397 DOI: 10.1098/rsbl.2024.0185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
The announcement in 1925 by Raymond Dart of the discovery of the Taung juvenile's skull in a quarry in sub-Saharan Africa is deservedly a classic publication in the history of palaeoanthropology. Dart's paper-which designated Taung as the type specimen of the early hominin species Australopithecus africanus-provided the first fossil evidence supporting Charles Darwin's 1871 prediction that Africa was where the human lineage originated. The Taung juvenile's combination of ape and human characteristics eventually led to a paradigm shift in our understanding of human evolution. This contribution focuses on the milieu in which Dart's paper appeared (i.e. what was understood in 1925 about human evolution), the fossil evidence as set out by Dart, his interpretation of how a species represented by a fossilized juvenile's skull fitted within prevailing narratives about human evolution and the significance of the fossil being found in an environment inferred to be very different from that occupied by living apes. We also briefly review subsequent fossil finds that have corroborated the argument Dart made for having discovered evidence of a hitherto unknown close relative of humans, and summarize our current understanding of the earliest stages of human evolution and its environmental context.
Collapse
Affiliation(s)
- John Rowan
- Department of Archaeology, University of Cambridge, CambridgeCB2 3DZ, UK
| | - Bernard Wood
- CASHP, Department of Anthropology, George Washington University, Washington, DC20052, USA
| |
Collapse
|
9
|
Martin JM, Leece AB, Baker SE, Herries AIR, Strait DS. A lineage perspective on hominin taxonomy and evolution. Evol Anthropol 2024; 33:e22018. [PMID: 38217397 DOI: 10.1002/evan.22018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/15/2024]
Abstract
An uncritical reliance on the phylogenetic species concept has led paleoanthropologists to become increasingly typological in their delimitation of new species in the hominin fossil record. As a practical matter, this approach identifies species as diagnosably distinct groups of fossils that share a unique suite of morphological characters but, ontologically, a species is a metapopulation lineage segment that extends from initial divergence to eventual extinction or subsequent speciation. Working from first principles of species concept theory, it is clear that a reliance on morphological diagnosabilty will systematically overestimate species diversity in the fossil record; because morphology can evolve within a lineage segment, it follows that early and late populations of the same species can be diagnosably distinct from each other. We suggest that a combination of morphology and chronology provides a more robust test of the single-species null hypothesis than morphology alone.
Collapse
Affiliation(s)
- Jesse M Martin
- Palaeoanthropology Lab, Department of Archaeology and History, La Trobe University, Bundoora, Victoria, Australia
| | - A B Leece
- Palaeoanthropology Lab, Department of Archaeology and History, La Trobe University, Bundoora, Victoria, Australia
- Geoarchaeology and Archaeometry Research Group, Southern Cross Geoscience, Southern Cross University, Lismore, New South Wales, Australia
| | - Stephanie E Baker
- Palaeo-Research Institute, University of Johannesburg, Gauteng, South Africa
| | - Andy I R Herries
- Palaeoanthropology Lab, Department of Archaeology and History, La Trobe University, Bundoora, Victoria, Australia
- Palaeo-Research Institute, University of Johannesburg, Gauteng, South Africa
| | - David S Strait
- Palaeo-Research Institute, University of Johannesburg, Gauteng, South Africa
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA
- DFG Center for Advanced Studies "Words, Bones, Genes, Tools", University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
O'Neill MC, Nagano A, Umberger BR. A three-dimensional musculoskeletal model of the pelvis and lower limb of Australopithecus afarensis. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24845. [PMID: 37671481 DOI: 10.1002/ajpa.24845] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 07/08/2023] [Accepted: 08/17/2023] [Indexed: 09/07/2023]
Abstract
OBJECTIVES Musculoskeletal modeling is a powerful approach for studying the biomechanics and energetics of locomotion. Australopithecus (A.) afarensis is among the best represented fossil hominins and provides critical information about the evolution of musculoskeletal design and locomotion in the hominin lineage. Here, we develop and evaluate a three-dimensional (3-D) musculoskeletal model of the pelvis and lower limb of A. afarensis for predicting muscle-tendon moment arms and moment-generating capacities across lower limb joint positions encompassing a range of locomotor behaviors. MATERIALS AND METHODS A 3-D musculoskeletal model of an adult A. afarensis pelvis and lower limb was developed based primarily on the A.L. 288-1 partial skeleton. The model includes geometric representations of bones, joints and 35 muscle-tendon units represented using 43 Hill-type muscle models. Two muscle parameter datasets were created from human and chimpanzee sources. 3-D muscle-tendon moment arms and isometric joint moments were predicted over a wide range of joint positions. RESULTS Predicted muscle-tendon moment arms generally agreed with skeletal metrics, and corresponded with human and chimpanzee models. Human and chimpanzee-based muscle parameterizations were similar, with some differences in maximum isometric force-producing capabilities. The model is amenable to size scaling from A.L. 288-1 to the larger KSD-VP-1/1, which subsumes a wide range of size variation in A. afarensis. DISCUSSION This model represents an important tool for studying the integrated function of the neuromusculoskeletal systems in A. afarensis. It is similar to current human and chimpanzee models in musculoskeletal detail, and will permit direct, comparative 3-D simulation studies.
Collapse
Affiliation(s)
- Matthew C O'Neill
- Department of Anatomy, Midwestern University, Glendale, Arizona, USA
| | - Akinori Nagano
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Brian R Umberger
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Hamilton MI, Copeland SR, Nelson SV. A reanalysis of strontium isotope ratios as indicators of dispersal in South African hominins. J Hum Evol 2024; 187:103480. [PMID: 38159536 DOI: 10.1016/j.jhevol.2023.103480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Dispersal patterns in primates have major implications for behavior and sociality but are difficult to reconstruct for fossil species. This study applies novel strontium isotope methodologies that have reliably predicted philopatry and dispersal patterns in chimpanzees and other modern primates to previously published strontium isotope ratios (87Sr/86Sr) of two South African hominins, Australopithecus africanus and Australopithecus robustus. In this study, the difference or 'offset' was calculated between the 87Sr/86Sr of each fossil tooth compared to local bioavailable 87Sr/86Sr as defined by cluster analysis of modern plant isotope ratios. Large teeth (presumably belonging to males) have low offsets from local 87Sr/86Sr proxies, while small teeth (presumably from females) have greater offsets from local 87Sr/86Sr proxies. This supports previous conclusions of male philopatry and female dispersal in both A. africanus and A. robustus. Furthermore, A. robustus shows more extreme differences between presumed males and females compared to A. africanus. This is analogous to differences seen in modern olive baboons compared to chimpanzees and suggests that A. africanus may have had a larger home range than A. robustus. Neither hominin species has 87Sr/86Sr consistent with riparian habitat preferences despite the demonstrated presence of riparian habitats in South Africa at the time.
Collapse
Affiliation(s)
- Marian I Hamilton
- University of New Mexico, Department of Anthropology, MSC01-1040 1, Albuquerque, NM, 87131, USA; University of Northern Colorado, Department of Anthropology, Candelaria Hall 2200, Campus Box 90, Greeley, CO, 80639, USA.
| | - Sandi R Copeland
- Environmental Stewardship Group, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA
| | - Sherry V Nelson
- University of New Mexico, Department of Anthropology, MSC01-1040 1, Albuquerque, NM, 87131, USA
| |
Collapse
|
12
|
Crompton RH, Sellers W, Davids K, McClymont J. Biomechanics and the origins of human bipedal walking: The last 50 years. J Biomech 2023; 157:111701. [PMID: 37451208 DOI: 10.1016/j.jbiomech.2023.111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Motion analysis, as applied to evolutionary biomechanics, has experienced its own evolution over the last 50 years. Here we review how an ever-increasing fossil record, together with continuing advancements in biomechanics techniques, have shaped our understanding of the origin of upright bipedal walking. The original, and long-established hypothesis held by Lamarck (1809), Darwin (1859) and Keith (1934), amongst others, maintained that bipedality originated in an arboreal context. However, the first field studies of gorilla and chimpanzees from the 1960's, highlighted their so-called 'knucklewalking' quadrupedalism, leading scientists to assume, semi-automatically, that knucklewalking must have been the precursor to bipedality. It would not be until the discovery of skeletons of early human relatives Australopithecus afarensis and Australopithecus prometheus, and the inclusion of methods of analysis from computer science, biomechanics, sports science and medicine, that the knucklewalking hypothesis would be most robustly challenged. Their short, but human-like lower limbs and human-like hand indicated that knucklewalking was not part of our ancestral locomotor repertoire. Rather, most current research in evolutionary biomechanics agrees it was a combination of climbing and bipedalism, both in an arboreal context, which facilitated upright, terrestrial, bipedal walking over short distances.
Collapse
Affiliation(s)
- Robin Huw Crompton
- Musculoskeletal and Ageing Science, The University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK.
| | - William Sellers
- Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Keith Davids
- Sport and Physical Activity Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Juliet McClymont
- Musculoskeletal and Ageing Science, The University of Liverpool, William Henry Duncan Building, West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|