1
|
Jiang Y, Chen K, He J, Sun Y, Zhang X, Yang X, Xie H, Liu J. A self-healing composite solid electrolyte with dynamic three-dimensional inorganic/organic hybrid network for flexible all-solid-state lithium metal batteries. J Colloid Interface Sci 2025; 678:200-209. [PMID: 39293364 DOI: 10.1016/j.jcis.2024.09.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/14/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Composite solid electrolytes (CSEs), which combine the advantages of solid polymer electrolytes and inorganic solid electrolytes, are considered to be promising electrolytes for all-solid-state lithium metal batteries. However, the current CSEs suffer from defects such as poor inorganic/organic interface compatibility, lithium dendrite growth, and easy damage of electrolyte membrane, which hinder the practical application of CSEs. Herein, a CSE (PBHL@LLZTO@DDB) with polyurethane (PBHL) as the polymer matrix and Li6.4La3Zr1.4Ta0.6O12 (LLZTO) modified by silane coupling agent (DDB) as inorganic fillers (LLZTO@DDB) has been prepared. Disulfide bond exchange reactions between PBHL and LLZTO@DDB enable PBHL@LLZTO@DDB to form a dynamic three-dimensional (3D) inorganic/organic hybrid network, which promotes the uniform dispersion of LLZTO in PBHL@LLZTO@DDB, improves the Li+ conductivity (1.24 ± 0.08 × 10-4 S cm-1 at 30 ℃), and broadens the electrochemical stability window (5.16 V vs. Li+/Li). Moreover, a combination of hydrogen bonds and disulfide bonds endows PBHL@LLZTO@DDB with excellent self-healing properties. As such, both all-solid-state symmetric and full cells exhibit excellent cycle performance at ambient temperature. More importantly, the healed PBHL@LLZTO@DDB can almost completely restore its original electrochemical properties, indicating its application potential in flexible electronic products.
Collapse
Affiliation(s)
- Ying Jiang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Kai Chen
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jinping He
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yuxue Sun
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaorong Zhang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaoxing Yang
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Haiming Xie
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Jun Liu
- National & Local United Engineering Laboratory for Power Battery, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
2
|
Cai C, Yao G, Zhang Y, Zhang S, Li F, Tan Z, Dong S. Optically transparent and mechanically tough glass with impact resistance and flame retardancy enabled by covalent/supramolecular interactions. MATERIALS HORIZONS 2024; 11:5732-5739. [PMID: 39252527 DOI: 10.1039/d4mh00750f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Exploring glass materials beyond inorganic components represents a new direction in the development of artificial transparent materials. Inspired by the successes of polymeric and supramolecular glasses, we shifted our attention to the preparation of a transparent glass through the polymerization of low-molecular-weight monomers that are naturally tailored with noncovalent recognition motifs. In this work, an imidazolium unit bearing a vinyl group and a tetrafluoroborate counter anion was selected to construct an artificial glass. Experimental and theoretical investigations revealed that the cross-linking behavior of anions effectively transformed linear polymeric chains into three-dimensional networks. The polymeric-supramolecular glass exhibits a tough tensile strength (61.31 MPa), high Young's modulus (1.17 GPa), and good optical transparency (>90%), which are comparable to those of polymethyl methacrylate. Moreover, the obtained glass maintains excellent mechanical toughness and optical transparency over a wide temperature range (from -150 to 150 °C). The material shows a superior impact resistance (18.34 kJ m-2) and flame retardancy (V0 rating), which are barely achieved by supramolecular materials.
Collapse
Affiliation(s)
- Changyong Cai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, Hunan, P. R. China.
| | - Guohong Yao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Yunfei Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
| | - Zhijian Tan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, Hunan, P. R. China.
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| |
Collapse
|
3
|
Dang C, Shao Y, Ding S, Qi H, Zhai W. Polyfunctional and Multisensory Bio-Ionoelastomers Enabled by Covalent Adaptive Networks With Hierarchically Dynamic Bonding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406967. [PMID: 39248650 DOI: 10.1002/adma.202406967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/08/2024] [Indexed: 09/10/2024]
Abstract
Developing versatile ionoelastomers, the alternatives to hydrogels and ionogels, will boost the advancement of high-performance ionotronic devices. However, meeting the requirements of bio-derivation, high toughness, high stretchability, autonomous self-healing ability, high ionic conductivity, reprocessing, and favorable recyclability in a single ionoelastomer remains a challenging endeavor. Herein, a dynamic covalent and supramolecular design, lipoic acid (LA)-based dynamic covalent ionoelastomer (DCIE), is proposed via melt building covalent adaptive networks with hierarchically dynamic bonding (CAN-HDB), wherein lithium bonds aid in the dissociation of ions and the integration of dynamic disulfide metathesis, lithium bonds, and binary hydrogen bonds enhances the mechanical performances, self-healing capability, reprocessing, and recyclability. Therefore, the trade-off among mechanical versatility, ionic conductivity, self-healing capability, reprocessing, and recyclability is successfully handled. The obtained DCIE demonstrates remarkable stretchability (1011.7%), high toughness (3877 kJ m-3), high ionic conductivity (3.94 × 10-4 S m-1), outstanding self-healing capability, reprocessing for 3D printing, and desirable recyclability. Significantly, the selective ion transport endows the DCIE with multisensory feature capable of generating continuous electrical signals for high-quality sensations towards temperature, humidity, and strain. Coupled with the straightforward methodology, abundant availability of LA and HPC, as well as multifunction, the DCIEs present new concept of advanced ionic conductors for developing soft ionotronics.
Collapse
Affiliation(s)
- Chao Dang
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Yizhe Shao
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
- State Key Laboratory for Strength and Vibration of Mechanical Structure, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuwei Ding
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Haobo Qi
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Wei Zhai
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| |
Collapse
|
4
|
Yao G, Pan Y, Li F, Dong S. Macrocyclic Supramolecular Glass: New Type of Supramolecular Transparent Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405337. [PMID: 39073234 DOI: 10.1002/smll.202405337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Transparent materials are widely used in industries, everyday life, and scientific activities. The development of new, lightweight, and durable artificial transparent materials is a challenge in synthetic chemistry. In this study, a supramolecular approach is conceived to construct transparent glass. Cyclodextrins are selected as the building blocks for the fabrication of supramolecular glass via noncovalent polymerization. The newly formed glass displays several attractive advantages, including good thermal processability, high mechanical strength and dielectric constant, excellent visible light transparency, and good adhesion performance. Importantly, the structural characteristics of long-range disorder and short-range order are observed in cyclodextrin glass. Here a new strategy is presented for the preparation and functionalization of low-molecular-weight transparent materials.
Collapse
Affiliation(s)
- Guohong Yao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yanjuan Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
5
|
Liu Q, Wang X, Wang X. Sub-1 nm Materials Chemistry: Challenges and Prospects. J Am Chem Soc 2024; 146:26587-26602. [PMID: 39312400 DOI: 10.1021/jacs.4c08828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Subnanometer materials (SNMs) refer to nanomaterials with a feature size close to 1 nm, similar to the diameter of a single polymer, DNA strand, and a single cluster/unit cell. The growth and assembly of subnanometer building blocks can be controlled by interactions at atomic levels, representing the limit for the precise manipulation of materials. The size, geometry, and flexibility of 1D SNMs inorganic backbones are similar to the polymer chains, bringing excellent gelability, adhesiveness, and processability different from inorganic nanocrystals. The ultrahigh surface atom ratio of SNMs results in significantly increased surface energy, leading to significant rearrangement of surface atoms. Unconventional phases, immiscible metal alloys, and high entropy materials with few atomic layers can be stabilized, and the spontaneous twisting of SNMs may induce the intrinsic structural chirality. Electron delocalization may also emerge at the subnanoscale, giving rise to the significantly enhanced catalytic activity. In this perspective, we summarized recent progress on SNMs, including their synthesis, polymer-like properties, metastable phases, structural chirality, and catalytic properties, toward energy conversion. As a critical size region in nanoscience, the development of functional SNMs may fuse the boundary of inorganic materials and polymers and conduce to the precise manufacturing of materials at atomic levels.
Collapse
Affiliation(s)
- Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaoya Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
6
|
Yu X, Kong K, Ma X, Yu Y, Shen Y, Sang Y, Wang J, Shen S, Xu X, Liu Z, Tang R. Organic-Inorganic Copolymerization Induced Oriented Crystallization for Robust Lightweight Porous Composite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403443. [PMID: 39319512 DOI: 10.1002/smll.202403443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Indexed: 09/26/2024]
Abstract
Porous composites are important in engineering fields for their lightweight, thermal insulation, and mechanical properties. However, increased porosity commonly decreases the robustness, making a trade-off between mechanics and weight. Optimizing the strength of solid structure is a promising way to co-enhance the robustness and lightweight properties. Here, acrylamide and calcium phosphate ionic oligomers are copolymerized, revealing a pre-interaction of these precursors induced oriented crystallization of inorganic nanostructures during the linear polymerization of acrylamide, leading to the spontaneous formation of a bone-like nanostructure. The resulting solid phase shows enhanced mechanics, surpassing most biological materials. The bone-like nanostructure remains intact despite the introduction of porous structures at higher levels, resulting in a porous composite (P-APC) with high strength (yield strength of 10.5 MPa) and lightweight properties (density below 0.22 g cm-3). Notably, the density-strength property surpasses most reported porous materials. Additionally, P-APC shows ultralow thermal conductivity (45 mW m-1 k-1) due to its porous structure, making its strength and thermal insulation superior to many reported materials. This work provides a robust, lightweight, and thermal insulating composite for practical application. It emphasizes the advantage of prefunctionalization of ionic oligomers for organic-inorganic copolymerization in creating oriented nanostructure with toughened mechanics, offering an alternative strategy to produce robust lightweight materials.
Collapse
Affiliation(s)
- Xin Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Kangren Kong
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiaoming Ma
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yadong Yu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yinlin Shen
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yanhua Sang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jie Wang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sudan Shen
- State Key Laboratory of Chemical Engineering, School of Chemical and Biological Engineering, Zhejiang University College of Chemistry & Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xurong Xu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Zhaoming Liu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
7
|
Peng B, Li Q, Yu B, Zhang J, Yang S, Lu R, Sun X, Li X, Ning Y. Dual Nanofillers Reinforced Polymer-Inorganic Nanocomposite Film with Enhanced Mechanical Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406160. [PMID: 39240001 DOI: 10.1002/smll.202406160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/25/2024] [Indexed: 09/07/2024]
Abstract
Simultaneously improving the strength and toughness of polymer-inorganic nanocomposites is highly desirable but remains technically challenging. Herein, a simple yet effective pathway to prepare polymer-inorganic nanocomposite films that exhibit excellent mechanical properties due to their unique composition and structure is demonstrated. Specifically, a series of poly(methacrylic acid)x-block-poly(benzyl methacrylate)y diblock copolymer nano-objects with differing dimensions and morphologies is prepared by polymerization-induced self-assembly (PISA) mediated by reversible addition-fragmentation chain transfer polymerization (RAFT). Such copolymer nano-objects and ultrasmall calcium phosphate oligomers (CPOs) are used as dual fillers for the preparation of polymer-inorganic composite films using sodium carboxymethyl cellulose (CMC) as a matrix. Impressively, the strength and toughness of such composite films are substantially reinforced as high as up to 202.5 ± 14.8 MPa and 62.3 ± 7.9 MJ m-3, respectively. Owing to the intimate interaction between the polymer-inorganic interphases at multiple scales, their mechanical performances are superior to most conventional polymer films and other nanocomposite films. This study demonstrates the combination of polymeric fillers and inorganic fillers to reinforce the mechanical properties of the resultant composite films, providing new insights into the design rules for the construction of novel hybrid films with excellent mechanical performances.
Collapse
Affiliation(s)
- Boxiang Peng
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Qin Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Bing Yu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Jiahao Zhang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Sijie Yang
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Ruijie Lu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xia Sun
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Xiaojie Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| | - Yin Ning
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
8
|
He Y, Wu R, Zhao Y, Feng W, Zhao C, Yan H. Recent Advances of Organic-Inorganic Hybrid Fluorescent Hyperbranched Polymer: Synthesis, Performance Regulation Strategies and Applications. Chempluschem 2024:e202400302. [PMID: 39230969 DOI: 10.1002/cplu.202400302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024]
Abstract
The organic-inorganic hybrid fluorescent hyperbranched polymer, including hyperbranched polysiloxane and hyperbranched polyborate, have attracted much attention due to their excellent optical properties and wide range of applications. Hyperbranched polysiloxane and polyborates, prepared by introducing Si or B elements into organic polymer chains at the molecular level through rational molecular design and novel synthesis methods, exhibit outstanding photophysical properties as an indispensable branch of organic-inorganic hybrid fluorescent materials. Herein, this review highlights the recent research progress on hyperbranched polysiloxanes and hyperbranched polyborates, including strategies for regulating their emission wavelengths, quantum yields, and fluorescence lifetimes, potential emission mechanisms, and various applications. Finally, some challenges and promising future directions in the field of organic-inorganic hybrid fluorescent polymers are summarized.
Collapse
Affiliation(s)
- Yanyun He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Rui Wu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yan Zhao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Weixu Feng
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Chenyu Zhao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Hongxia Yan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| |
Collapse
|
9
|
Yuan C, Fan W, Zhou P, Xing R, Cao S, Yan X. High-entropy non-covalent cyclic peptide glass. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01766-3. [PMID: 39187585 DOI: 10.1038/s41565-024-01766-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 07/19/2024] [Indexed: 08/28/2024]
Abstract
Biomolecule-based non-covalent glasses are biocompatible and biodegradable, and offer a sustainable alternative to conventional glass. Cyclic peptides (CPs) can serve as promising glass formers owing to their structural rigidity and resistance to enzymatic degradation. However, their potent crystallization tendency hinders their potential in glass construction. Here we engineered a series of CP glasses with tunable glass transition behaviours by modulating the conformational complexity of CP clusters. By incorporating multicomponent CPs, the formation of high-entropy CP glass is facilitated, which-in turn-inhibits the crystallization of individual CPs. The high-entropy CP glass demonstrates enhanced mechanical properties and enzyme tolerance compared with individual CP glass and a unique biorecycling capability that is unattainable by traditional glasses. These findings provide a promising paradigm for the design and development of stable non-covalent glasses based on naturally derived biomolecules, and advance their application in pharmaceutical formulations and smart functional materials.
Collapse
Affiliation(s)
- Chengqian Yuan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wei Fan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Peng Zhou
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Cao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China.
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Zhang Y, Yi W, Pan J, Liu S, Dong S. An organic/inorganic hybrid soft material for supramolecular adhesion. SOFT MATTER 2024; 20:5670-5674. [PMID: 38978461 DOI: 10.1039/d4sm00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Thioctic acid (TA) has been widely used to construct soft materials via supramolecular copolymerization with organic chemicals. In this study, TA and the inorganic compound MoS2 are used to fabricate poly[TA-MoS2] via dynamic covalent and supramolecular interactions. Poly[TA-MoS2] exhibits good and long-lasting adhesion performance on various artificial surfaces, with an adhesion strength up to 3.72 MPa (15 days). Further, it exhibits tough adhesion effects in an aqueous environment. Moreover, poly[TA-MoS2] displays good thermal processing behavior, thus enabling its molding through 3D printing.
Collapse
Affiliation(s)
- Yunfei Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Wenchang Yi
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Jia Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Song Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
11
|
Xu W, Shen T, Ding Y, Ye H, Wu B, Chen F. Wearable and Recyclable Water-Toleration Sensor Derived from Lipoic Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310072. [PMID: 38470190 DOI: 10.1002/smll.202310072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/02/2024] [Indexed: 03/13/2024]
Abstract
Flexible wearable sensors recently have made significant progress in human motion detection and health monitoring. However, most sensors still face challenges in terms of single detection targets, single application environments, and non-recyclability. Lipoic acid (LA) shows a great application prospect in soft materials due to its unique properties. Herein, ionic conducting elastomers (ICEs) based on polymerizable deep eutectic solvents consisting of LA and choline chloride are prepared. In addition to the good mechanical strength, high transparency, ionic conductivity, and self-healing efficiency, the ICEs exhibit swelling-strengthening behavior and enhanced adhesion strength in underwater environments due to the moisture-induced association of poly(LA) hydrophobic chains, thus making it possible for underwater sensing applications, such as underwater communication. As a strain sensor, it exhibits highly sensitive strain response with repeatability and durability, enabling the monitoring of both large and fine human motions, including joint movements, facial expressions, and pulse waves. Furthermore, due to the enhancement of ion mobility at higher temperatures, it also possesses excellent temperature-sensing performance. Notably, the ICEs can be fully recycled and reused as a new strain/temperature sensor through heating. This study provides a novel strategy for enhancing the mechanical strength of poly(LA) and the fabrication of multifunctional sensors.
Collapse
Affiliation(s)
- Weikun Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Tao Shen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yutong Ding
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Huijian Ye
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Bozhen Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Feng Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
12
|
Yu Q, Fang Z, Luan S, Wang L, Shi H. Biological applications of lipoic acid-based polymers: an old material with new promise. J Mater Chem B 2024; 12:4574-4583. [PMID: 38683108 DOI: 10.1039/d4tb00581c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Lipoic acid (LA) is a versatile antioxidant that has been used in the treatment of various oxidation-reduction diseases over the past 70 years. Owing to its large five-membered ring tension, the dynamic disulfide bond of LA is highly active, enabling the formation of poly(lipoic acid) (PLA) via ring-opening polymerization (ROP). Herein, we first summarize disulfide-mediated ROP polymerization strategies, providing basic routes for designing and preparing PLA-based materials. PLA, as a biologically derived, low toxic, and easily modified material, possesses dynamic disulfide bonds and universal non-covalent carboxyl groups. We also shed light on the biomedical applications of PLA-based materials based on their biological and structural features and further divide recent works into six categories: antibacterial, anti-inflammation, anticancer, adhesive, flexible electronics, and 3D-printed tissue scaffolds. Finally, the challenges and future prospects associated with the biomedical applications of PLA are discussed.
Collapse
Affiliation(s)
- Qing Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhiyue Fang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
13
|
Lv Y, Wang Y, Zhang X. Construction of Mineralization Nanostructures in Polymers for Mechanical Enhancement and Functionalization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309313. [PMID: 38164816 DOI: 10.1002/smll.202309313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Mineralization capable of growing inorganic nanostructures efficiently, orderly, and spontaneously shows great potential for application in the construction of high-performance organic-inorganic composites. As a thermodynamically spontaneous solid-phase crystallization reaction involving dual organic and inorganic components, mineralization allows for the self-assembly of sophisticated and exclusive nanostructures within a polymer matrix. It results in a diversity of functions such as enhanced strength, toughness, electrical conductivity, selective permeability, and biocompatibility. While there are previous reviews discussing the progress of mineralization reactions, many of them overlook the significant benefits of interfacial regulation and functionalization that come from the incorporation of mineralized structures into polymers. Focusing on different means of assembly of mineralized nanostructures in polymer, the work analyzes their design principles and implementation strategies. Then, their different advantages and disadvantages are analyzed by combining nanostructures with organic substrates as well as involving the basis of different functionalizations. It is anticipated to provide insights and guidance for the future development of mineralized polymer composites and their application designs.
Collapse
Affiliation(s)
- Yuesong Lv
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Yuyan Wang
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstr. 10, D-78457, Konstanz, Germany
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
14
|
Kashnik IV, Yang B, Yarovoi SS, Sukhikh TS, Cordier M, Taupier G, Brylev KA, Bouit PA, Molard Y. Luminescent Supramolecular Ionic Frameworks based on Organic Fluorescent Polycations and Polyanionic Phosphorescent Metal Clusters. Chemistry 2024; 30:e202400079. [PMID: 38284133 DOI: 10.1002/chem.202400079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
Emissive ionic supramolecular frameworks are designed by associating tetraphenylethylene-based tetra-cationic units and di-anionic molybdenum or tetra-anionic rhenium octahedral clusters. Obtained structures were characterized by single-crystal X-ray diffraction. The emission properties of the hybrids were investigated as dry powders or in various solvents by one photon and two photon absorption leading to a O2 concentration dependent luminescence color for the Mo based hybrid.
Collapse
Affiliation(s)
- Ilya V Kashnik
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev ave., 630090, Novosibirsk, Russian Federation
- Université de Rennes, CNRS, ISCR -, UMR 6226, ScanMAT -, UAR 2025, F-35000, Rennes, France
| | - Binying Yang
- Université de Rennes, CNRS, ISCR -, UMR 6226, ScanMAT -, UAR 2025, F-35000, Rennes, France
| | - Spartak S Yarovoi
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev ave., 630090, Novosibirsk, Russian Federation
| | - Taisiya S Sukhikh
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev ave., 630090, Novosibirsk, Russian Federation
| | - Marie Cordier
- Université de Rennes, CNRS, ISCR -, UMR 6226, ScanMAT -, UAR 2025, F-35000, Rennes, France
| | - Grégory Taupier
- Université de Rennes, CNRS, ISCR -, UMR 6226, ScanMAT -, UAR 2025, F-35000, Rennes, France
| | - Konstantin A Brylev
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev ave., 630090, Novosibirsk, Russian Federation
| | - Pierre-Antoine Bouit
- Université de Rennes, CNRS, ISCR -, UMR 6226, ScanMAT -, UAR 2025, F-35000, Rennes, France
| | - Yann Molard
- Université de Rennes, CNRS, ISCR -, UMR 6226, ScanMAT -, UAR 2025, F-35000, Rennes, France
| |
Collapse
|
15
|
Shao Y, Du G, Luo B, Liu T, Zhao J, Zhang S, Wang J, Chi M, Cai C, Liu Y, Meng X, Liu Z, Wang S, Nie S. A Tough Monolithic-Integrated Triboelectric Bioplastic Enabled by Dynamic Covalent Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311993. [PMID: 38183330 DOI: 10.1002/adma.202311993] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/30/2023] [Indexed: 01/08/2024]
Abstract
Electronic waste is a growing threat to the global environment and human health, raising particular concerns. Triboelectric devices synthesized from sustainable and degradable materials are a promising electronic alternative, but the mechanical mismatch at the interface between the polymer substrate and the electrodes remains unresolved in practical applications. This study uses the sulfhydryl silanization reaction and the chemical selectivity and site specificity of the thiol-disulfide exchange reaction in dynamic covalent chemistry to prepare a tough monolithic-integrated triboelectric bioplastic. The stress is dissipated by covalent bond adaptation to the interface interaction, which makes the polymer dielectric layer to the conductive layer have a good interface adhesion effect (220.55 kPa). The interfacial interlocking of the polymer substrate with the conductive layer gives the triboelectric bioplastic excellent tensile strength (87.4 MPa) and fracture toughness (33.3 MJ m-3). Even when subjected to a tension force of 10 000 times its weight, it still maintains a stable triboelectric output with no visible cracks. This study provides new insights into the design of reliable and environmentally friendly self-powered devices, which is significant for the development of flexible wearable electronics.
Collapse
Affiliation(s)
- Yuzheng Shao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Guoli Du
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Bin Luo
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Tao Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Jiamin Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Song Zhang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Jinlong Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Mingchao Chi
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Yanhua Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Xiangjiang Meng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Zhaomeng Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
16
|
Zhang Y, Cai C, Xu K, Yang X, Yu L, Gao L, Dong S. A supramolecular approach for converting renewable biomass into functional materials. MATERIALS HORIZONS 2024; 11:1315-1324. [PMID: 38170848 DOI: 10.1039/d3mh01692g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The rational transformation and utilization of biomass have attracted increasing attention because of its high importance in sustainable development and green economy. In this study, we used a supramolecular approach to convert biomass into functional materials. Six biomass raw materials with distinct chemical structures and physical properties were copolymerized with thioctic acid (TA) to afford poly[TA-biomass]s. The solvent-free copolymerization leads to the convenient and quantitative fabrication of biomass-based versatile materials. The non-covalent bonding and reversible solid-liquid transitions in poly[TA-biomass]s endow them with diversified features, including thermal processability, 3D printing, wet and dry adhesion, recyclability, impact resistance, and antimicrobial activity. Benefiting from their good biocompatibility and nontoxicity, these biomass-based materials are promising candidates for biological applications.
Collapse
Affiliation(s)
- Yunfei Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Changyong Cai
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Ke Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China.
| | - Xiao Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China.
| | - Leixiao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China.
| | - Lingyan Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China.
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
17
|
Liu JH, Huang C, Wu H, Long Y, Tang X, Li H, Shen J, Zhou B, Zhang Y, Xu Z, Fan J, Zeng XC, Lu J, Li YY. From salt water to bioceramics: Mimic nature through pressure-controlled hydration and crystallization. SCIENCE ADVANCES 2024; 10:eadk5047. [PMID: 38416835 PMCID: PMC10901369 DOI: 10.1126/sciadv.adk5047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
Modern synthetic technology generally invokes high temperatures to control the hydration level of ceramics, but even the state-of-the-art technology can still only control the overall hydration content. Magically, natural organisms can produce bioceramics with tailorable hydration profiles and crystallization traits solely from amorphous precursors under physiological conditions. To mimic the biomineralization tactic, here, we report pressure-controlled hydration and crystallization in fabricated ceramics, solely from the amorphous precursors of purely inorganic gels (PIGs) synthesized from biocompatible aqueous solutions with most common ions in organisms (Ca2+, Mg2+, CO32-, and PO43-). Transparent ceramic tablets are directly produced by compressing the PIGs under mild pressure, while the pressure regulates the hydration characteristics and the subsequent crystallization behaviors of the synthesized ceramics. Among the various hydration species, the moderately bound and ordered water appears to be a key in regulating the crystallization rate. This nature-inspired study offers deeper insights into the magic behind biomineralization.
Collapse
Affiliation(s)
- Jia-Hua Liu
- CityU-Shenzhen Futian Research Institute, Shenzhen 518045, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Changxiong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Haikun Wu
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
| | - Yunchen Long
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Xinxue Tang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Hongkun Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Junda Shen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Binbin Zhou
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yibo Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhengtao Xu
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138637, Singapore
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Jian Lu
- CityU-Shenzhen Futian Research Institute, Shenzhen 518045, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute and Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, China
| | - Yang Yang Li
- CityU-Shenzhen Futian Research Institute, Shenzhen 518045, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute and Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, China
| |
Collapse
|
18
|
Jia Q, Zhao Y. Bioinspired Organic Porous Coupling Agent for Enhancement of Nanoparticle Dispersion and Interfacial Strength. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6403-6413. [PMID: 38261353 DOI: 10.1021/acsami.3c17111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Composite materials have significantly advanced with the integration of inorganic nanoparticles as fillers in polymers. Achieving fine dispersion of these nanoparticles within the composites, however, remains a challenge. This study presents a novel solution inspired by the natural structure of Xanthium. We have developed a polymer of intrinsic microporosity (PIM)-based porous coupling agent, named PCA. PCA's rigid backbone structure enhances interfacial interactions through a unique intermolecular interlocking mechanism. This approach notably improves the dispersion of SiO2 nanoparticles in various organic solvents and low-polarity polymers. Significantly, PCA-modified SiO2 nanoparticles embedded in polyisoprene rubber showed enhanced mechanical properties. The Young's modulus increases to 30.7 MPa, compared to 5.4 MPa in hexadecyltrimethoxysilane-modified nanoparticles. Further analysis shows that PCA-modified composites not only become stiffer but also gain strength and ductility. This research demonstrates a novel biomimetic strategy for enhancing interfacial interactions in composites, potentially leading to stronger, more versatile composite materials.
Collapse
Affiliation(s)
- Qi Jia
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
19
|
Du T, Shen B, Dai J, Zhang M, Chen X, Yu P, Liu Y. Controlled and Regioselective Ring-Opening Polymerization for Poly(disulfide)s by Anion-Binding Catalysis. J Am Chem Soc 2023; 145:27788-27799. [PMID: 37987648 DOI: 10.1021/jacs.3c10708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Poly(disulfide)s are an emerging class of sulfur-containing polymers with applications in medicine, energy, and functional materials. However, the constituent dynamic covalent S-S bond is highly reactive in the presence of the sulfide (RS-) anion, imposing a persistent challenge to control the polymerization. Here, we report an anion-binding approach to arrest the high reactivity of the RS- chain end to control the synthesis of linear poly(disulfide)s, realizing a rapid, living ring-opening polymerization of 1,2-dithiolanes with narrow dispersity and high regioselectivity (Mw/Mn ∼ 1.1, Ps ∼ 0.85). Mechanistic studies support the formation of a thiourea-base-sulfide ternary complex as the catalytically active species during the chain propagation. Theoretical analyses reveal a synergistic catalytic model where the catalyst preorganizes the protonated base and anionic chain end to establish spatial confinement over the bound monomer, effecting the observed regioselectivity. The catalytic system is amenable to monomers with various functional groups, and semicrystalline polymers are also obtained from lipoic acid derivatives by enhancing the regioselectivity.
Collapse
Affiliation(s)
- Tianyi Du
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Boming Shen
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jieyu Dai
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Miaomiao Zhang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xingjian Chen
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Xu L, Zhao J, Huang L, Yu J, Si Y, Ding B. Bi 2O 3/Gd 2O 3 Meta-Aerogel with Leaf-Inspired Nanotrap Array Enables Efficient X-Ray Absorption. ACS NANO 2023. [PMID: 38014842 DOI: 10.1021/acsnano.3c09063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The increasing utilization of X-rays has generated a growing need for efficient shielding materials. However, the existing Pb-based materials suffer from a narrow X-ray absorbing range, high weight, and rigidity. Inspired by the natural leaf, which can efficiently absorb light through chlorophyll and carotenoids in confined cells, we engineer ultralight and superelastic nanofibrous Bi2O3/Gd2O3 meta-aerogels (BGAs) with X-ray nanotrap arrays by manipulating the 3D confined assembly of 1D Bi2O3 and Gd2O3 nanofibers. The BGAs can synergistically absorb X-ray photons from complementary energy ranges into the nanotraps and induce cyclic collisions with Bi2O3 and Gd2O3 nanofibers, maximizing the effective X-ray attenuation. The meta-aerogel exhibits the integrated performance of efficient X-ray shielding efficiency (60-83%, 16-90 keV), ultralow density (10 mg cm-3), and superelasticity. The production of these meta-aerogels presents an avenue for the development of next-generation X-ray protective materials and the resolution of X-ray imaging systems.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Junqi Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Liqian Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
21
|
Zhong J, Huang W, Zhou H. Multifunctionality in Nature: Structure-Function Relationships in Biological Materials. Biomimetics (Basel) 2023; 8:284. [PMID: 37504172 PMCID: PMC10807375 DOI: 10.3390/biomimetics8030284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/29/2023] Open
Abstract
Modern material design aims to achieve multifunctionality through integrating structures in a diverse range, resulting in simple materials with embedded functions. Biological materials and organisms are typical examples of this concept, where complex functionalities are achieved through a limited material base. This review highlights the multiscale structural and functional integration of representative natural organisms and materials, as well as biomimetic examples. The impact, wear, and crush resistance properties exhibited by mantis shrimp and ironclad beetle during predation or resistance offer valuable inspiration for the development of structural materials in the aerospace field. Investigating cyanobacteria that thrive in extreme environments can contribute to developing living materials that can serve in places like Mars. The exploration of shape memory and the self-repairing properties of spider silk and mussels, as well as the investigation of sensing-actuating and sensing-camouflage mechanisms in Banksias, chameleons, and moths, holds significant potential for the optimization of soft robot designs. Furthermore, a deeper understanding of mussel and gecko adhesion mechanisms can have a profound impact on medical fields, including tissue engineering and drug delivery. In conclusion, the integration of structure and function is crucial for driving innovations and breakthroughs in modern engineering materials and their applications. The gaps between current biomimetic designs and natural organisms are also discussed.
Collapse
Affiliation(s)
| | - Wei Huang
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (J.Z.); (H.Z.)
| | | |
Collapse
|