1
|
Shi R, Zhu Y, Chen Y, Lin Y, Shi S. Advances in DNA nanotechnology for chronic wound management: Innovative functional nucleic acid nanostructures for overcoming key challenges. J Control Release 2024; 375:155-177. [PMID: 39242033 DOI: 10.1016/j.jconrel.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Chronic wound management is affected by three primary challenges: bacterial infection, oxidative stress and inflammation, and impaired regenerative capacity. Conventional treatment methods typically fail to deliver optimal outcomes, thus highlighting the urgency to develop innovative materials that can address these issues and improve efficacy. Recent advances in DNA nanotechnology have garnered significant interest, particularly in the field of functional nucleic acid (FNA) nanomaterials, owing to their exceptional biocompatibility, programmability, and therapeutic potential. Among them, FNAs with unique nanostructures have garnered considerable attention. First, they inherit the biological properties of FNAs, including biocompatibility, reactive oxygen species (ROS)-scavenging capabilities, and modulation of cellular functions. Second, based on a precise design, these nanostructures exhibit superior physical properties, stability, and cellular uptake. Third, by leveraging the programmability of DNA strands, FNA nanostructures can be customized to accommodate therapeutic nucleic acids, peptides, and small-molecule drugs, thereby enabling a stable and controlled drug delivery system. These unique characteristics enable the use of FNA nanostructures to effectively address the major challenges in chronic wound management. This review focuses on various FNA nanostructures, including tetrahedral framework nucleic acids (tFNAs), DNA hydrogels, DNA origami, and rolling-circle amplification (RCA) DNA assembly. Additionally, a summary of recent advancements in their design and application for chronic wound management as well as insights for future research in this field are provided.
Collapse
Affiliation(s)
- Ruijianghan Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Yujie Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Yang Chen
- Department of Pediatric Surgery, Department of Liver Surgery & Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China.
| |
Collapse
|
2
|
Zhao X, Li J, Fan Q, Dai J, Long Y, Liu R, Zhai J, Pan Q, Li Y. Composite Hedges Nanopores codec system for rapid and portable DNA data readout with high INDEL-Correction. Nat Commun 2024; 15:9395. [PMID: 39477940 PMCID: PMC11525716 DOI: 10.1038/s41467-024-53455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
Reading digital information from highly dense but lightweight DNA medium nowadays relies on time-consuming next-generation sequencing. Nanopore sequencing holds the promise to overcome the efficiency problem, but high indel error rates lead to the requirement of large amount of high quality data for accurate readout. Here we introduce Composite Hedges Nanopores, capable of handling indel rates up to 15.9% and substitution rates up to 7.8%. The overall information density can be doubled from 0.59 to 1.17 by utilizing a degenerated eight-letter alphabet. We demonstrate that sequencing times of 20 and 120 minutes are sufficient for processing representative text and image files, respectively. Moreover, to achieve complete data recovery, it is estimated that text and image data require 4× and 8× physical redundancy of composite strands, respectively. Our codec system excels on both molecular design and equalized dictionary usage, laying a solid foundation approaching to real-time DNA data retrieval and encoding.
Collapse
Affiliation(s)
- Xuyang Zhao
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, China
| | - Junyao Li
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, China
| | - Qingyuan Fan
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, China
| | - Jing Dai
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, China
| | - Yanping Long
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ronghui Liu
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Qing Pan
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China.
| | - Yi Li
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
3
|
Takiguchi S, Takeuchi N, Shenshin V, Gines G, Genot AJ, Nivala J, Rondelez Y, Kawano R. Harnessing DNA computing and nanopore decoding for practical applications: from informatics to microRNA-targeting diagnostics. Chem Soc Rev 2024. [PMID: 39471098 PMCID: PMC11521203 DOI: 10.1039/d3cs00396e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 11/01/2024]
Abstract
DNA computing represents a subfield of molecular computing with the potential to become a significant area of next-generation computation due to the high programmability inherent in the sequence-dependent molecular behaviour of DNA. Recent studies in DNA computing have extended from mathematical informatics to biomedical applications, with a particular focus on diagnostics that exploit the biocompatibility of DNA molecules. The output of DNA computing devices is encoded in nucleic acid molecules, which must then be decoded into human-recognizable signals for practical applications. Nanopore technology, which utilizes an electrical and label-free decoding approach, provides a unique platform to bridge DNA and electronic computing for practical use. In this tutorial review, we summarise the fundamental knowledge, technologies, and methodologies of DNA computing (logic gates, circuits, neural networks, and non-DNA input circuity). We then focus on nanopore-based decoding, and highlight recent advances in medical diagnostics targeting microRNAs as biomarkers. Finally, we conclude with the potential and challenges for the practical implementation of these techniques. We hope that this tutorial will provide a comprehensive insight and enable the general reader to grasp the fundamental principles and diverse applications of DNA computing and nanopore decoding, and will inspire a wide range of scientists to explore and push the boundaries of these technologies.
Collapse
Affiliation(s)
- Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| | - Nanami Takeuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| | - Vasily Shenshin
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Guillaume Gines
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Anthony J Genot
- LIMMS, CNRS-Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Yannick Rondelez
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
4
|
Wen M, Huang Z, Yin Y, Wang Y, Wang M, Huang X, Chen T, Ke G, Chen M, Zhang XB. Dual mature microRNA-responsive logic biosensing platform based on CRISPR/Cas12a and DNA nanocage. Talanta 2024; 283:127078. [PMID: 39467440 DOI: 10.1016/j.talanta.2024.127078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Mature microRNAs play crucial roles in tumorigenesis and progression. However, their potential as cancer biomarkers is limited by the sequence interference of precursor microRNAs and the occurrence of false positive signals mediated by single microRNAs. Herein, we reported a dual mature microRNA-responsive second-order (YES-AND) logic biosensing platform for accurate cancer diagnosis. Specifically, DNA nanocages were conceived as the first stage of "YES" gates, capable of signal transduction through strand displacement reactions, and realizing size-selective discrimination of mature microRNAs and pre-microRNAs. Subsequently, CRISPR/Cas12a system served as the second stage of "AND" gate, wherein dual activators cooperatively triggered trans-cleavage. As a proof-of-concept, this second-order logic biosensing platform was successfully applied to detect non-small cell lung cancer-related mature microRNA in clinical serum, and showed remarkable sensitivity (Lod = 100 pM) and trueness (recovery ≥90 %). Our study represents a significant step forward in the development of intelligent biosensors capable of performing complex computations within pathological networks, and opens up broader possibilities for applications in biological science study and clinic disease diagnosis.
Collapse
Affiliation(s)
- Mei Wen
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, 410082, China
| | - Zhaoxin Huang
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, 410082, China
| | - Yao Yin
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, 410082, China
| | - Yin Wang
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, 410082, China
| | - Menghui Wang
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, 410082, China
| | - Xueyuan Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410083, China
| | - Ting Chen
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, 410082, China
| | - Guoliang Ke
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, 410082, China.
| | - Mei Chen
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, 410082, China.
| | - Xiao-Bing Zhang
- College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
5
|
Liu X, Cui S, Zhang X, Yao Y, Zhang B, Wang B, Zhang Q. Engineering a dual-loop molecular circuit with buffering capability to solve molecular information tasks. NANOSCALE 2024. [PMID: 39422501 DOI: 10.1039/d4nr02930e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Molecular circuits, as an effective strategy for implementing artificial biochemical networks, have been widely constructed to process molecular-level information tasks both in vivo and in vitro. However, the complex and diverse structures of molecular devices, along with inflexible signal output methods, pose significant challenges for molecular circuits to handle complex molecular information tasks. In response to the growing field of molecular circuits, we design an exonuclease-driven fan-out molecular device (FMD) with a programmable cascade approach capable of receiving uniform signal types and transmitting multifunctional signals. Combined with the buffering reaction proposed here, the approach expands the dynamic properties of biochemical networks. Unlike the conventional delay strategy, the buffering process not only withstands transient changes in transmission signals, but also delays the transmission of lossless signals. Furthermore, we construct a dual-loop molecular circuit with adjustable buffering modes, thereby enabling signal amplification, time delay, and a differentiated output. Finally, we develop a method to obtain the colorimetric output of dual pulse signals driven by a dual-loop molecular circuit with buffering and hence precisely classify multiple signals. This work promises programmable and multifunctional molecular circuits in nanomachines, molecular computing, and biomedical applications.
Collapse
Affiliation(s)
- Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Shuang Cui
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yao Yao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Bang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
6
|
Zhao Y, Li X, Zhou Y, Tian X, Miao Y, Wang J, Huang L, Meng F. Advancements in DNA computing: exploring DNA logic systems and their biomedical applications. J Mater Chem B 2024; 12:10134-10148. [PMID: 39282799 DOI: 10.1039/d4tb00936c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
DNA computing is regarded as one of the most promising candidates for the next generation of molecular computers, utilizing DNA to execute Boolean logic operations. In recent decades, DNA computing has garnered widespread attention due to its powerful programmable and parallel computing capabilities, demonstrating significant potential in intelligent biological analysis. This review summarizes the latest advancements in DNA logic systems and their biomedical applications. Firstly, it introduces recent DNA logic systems based on various materials such as functional DNA sequences, nanomaterials, and three-dimensional DNA nanostructures. The material innovations driving DNA computing have been summarized, highlighting novel molecular reactions and analytical performance metrics like efficiency, sensitivity, and selectivity. Subsequently, it outlines the biomedical applications of DNA computing-based multi-biomarker analysis in cellular imaging, clinical diagnosis, and disease treatment. Additionally, it discusses the existing challenges and future research directions for the development of DNA computing.
Collapse
Affiliation(s)
- Yuewei Zhao
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China.
| | - Xvelian Li
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Yan Zhou
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Xiaoting Tian
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Yayou Miao
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China.
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Lin Huang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China.
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Fanyu Meng
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China.
- Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| |
Collapse
|
7
|
Kong D, Zhang S, Ma X, Yang Y, Dai C, Geng L, Liu Y, Wei D. DNA Logical Computing on a Transistor for Cancer Molecular Diagnosis. Angew Chem Int Ed Engl 2024; 63:e202407039. [PMID: 39034433 DOI: 10.1002/anie.202407039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Given the high degree of variability and complexity of cancer, precise monitoring and logical analysis of different nucleic acid markers are crucial for improving diagnostic precision and patient survival rates. However, existing molecular diagnostic methods normally suffer from high cost, cumbersome procedures, dependence on specialized equipment and the requirement of in-depth expertise in data analysis, failing to analyze multiple cancer-associated nucleic acid markers and provide immediate results in a point-of-care manner. Herein, we demonstrate a transistor-based DNA molecular computing (TDMC) platform that enables simultaneous detection and logical analysis of multiple microRNA (miRNA) markers on a single transistor. TDMC can perform not only basic logical operations such as "AND" and "OR", but also complex cascading computing, opening up new dimensions for multi-index logical analysis. Owing to the high efficiency, sensing and computations of multi-analytes can be operated on a transistor at a concentration as low as 2×10-16 M, reaching the lowest concentration for DNA molecular computing. Thus, TDMC achieves an accuracy of 98.4 % in the diagnosis of hepatocellular carcinoma from 62 serum samples. As a convenient and accurate platform, TDMC holds promise for applications in "one-stop" personalized medicine.
Collapse
Affiliation(s)
- Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Shen Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Xinye Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Yuetong Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Li Geng
- Department of Special Treatment, Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai, 200433, P. R. China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
8
|
Sima Y, Ai L, Wang L, Zhang P, Zhang Q, Wu S, Xie S, Zhao Z, Tan W. A DNA Molecular Logic Circuit for Precise Tumor Identification. NANO LETTERS 2024; 24:12070-12079. [PMID: 39315658 DOI: 10.1021/acs.nanolett.4c02342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Tumor-associated antigens (TAAs) are not exclusively expressed in cancer cells, inevitably causing the "on target, off tumor" effect of molecular recognition tools. To achieve precise recognition of cancer cells, by using protein tyrosine kinase 7 (PTK7) as a model TAA, a DNA molecular logic circuit Aisgc8 was rationally developed by arranging H+-binding i-motif, ATP-binding aptamer, and PTK7-targeting aptamer Sgc8c in a DNA sequence. Aisgc8 output the conformation of Sgc8c to recognize PTK7 on cells in a simulated tumor microenvironment characterized by weak acidity and abundant ATP, but not in a simulated physiological environment. Through in vitro and in vivo results, Aisgc8 demonstrated its ability to precisely recognize cancer cells and, as a result, displayed excellent performance in tumor imaging. Thus, our studies produced a simple and efficient strategy to construct DNA logic circuits, opening new possibilities to develop convenient and intelligent precision diagnostics by using DNA logic circuits.
Collapse
Affiliation(s)
- Yingyu Sima
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Lili Ai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Pengge Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Qiang Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Shanchao Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Sitao Xie
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
9
|
Li G, Chen C, Li Y, Wang B, Wen J, Guo M, Chen M, Zhang XB, Ke G. DNA-Origami-Based Precise Molecule Assembly and Their Biological Applications. NANO LETTERS 2024; 24:11335-11348. [PMID: 39213537 DOI: 10.1021/acs.nanolett.4c03297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Inspired by efficient natural biomolecule assembly with precise control on key parameters such as distance, number, orientation, and pattern, the constructions and applications of artificial precise molecule assembly are highly important in many research areas including chemistry, biology, and medicine. DNA origami, a sophisticated DNA nanotechnology with rational design, can offer a predictable, programmable, and addressable nanoscale scaffold for the precise assembly of various kinds of molecules. Herein, we summarize recent progress, particularly in the last three years, in DNA-origami-based precise molecule assembly and their emerging biological applications. We first introduce DNA origami and the progress on DNA-origami-based precise molecule assembly, including assembly of various kinds of molecules (e.g., nucleic acids, proteins, organic molecules, nanoparticles), and precise control of important parameters (e.g., distance, number, orientation, pattern). Their biological applications in sensing, imaging, therapy, bionics, biophysics, and chemical biology are then summarized, and current challenges and opportunities are finally discussed.
Collapse
Affiliation(s)
- Guize Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Chuangyi Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Yingying Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Bo Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Jialin Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Mingye Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Mei Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
10
|
Chen M, Jiang Y, Zhang Y, Chen X, Xie L, Xie L, Zeng T, Liu Y, Liu H, Wang M, Chen X, Zhang Z, He Y, Qin X, Lu C, Chen Q, Yang H. Visualization of Biomolecular Radiation Damage at the Single-Particle Level Using Lanthanide-Sensitized DNA Origami. NANO LETTERS 2024; 24:11690-11696. [PMID: 39225657 DOI: 10.1021/acs.nanolett.4c03307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Precise monitoring of biomolecular radiation damage is crucial for understanding X-ray-induced cell injury and improving the accuracy of clinical radiotherapy. We present the design and performance of lanthanide-DNA-origami nanodosimeters for directly visualizing radiation damage at the single-particle level. Lanthanide ions (Tb3+ or Eu3+) coordinated with DNA origami nanosensors enhance the sensitivity of X-ray irradiation. Atomic force microscopy (AFM) revealed morphological changes in Eu3+-sensitized DNA origami upon X-ray irradiation, indicating damage caused by ionization-generated electrons and free radicals. We further demonstrated the practical applicability of Eu3+-DNA-origami integrated chips in precisely monitoring radiation-mediated cancer radiotherapy. Quantitative results showed consistent trends with flow cytometry and histological examination under comparable X-ray irradiation doses, providing an affordable and user-friendly visualization tool for preclinical applications. These findings provide new insights into the impact of heavy metals on radiation-induced biomolecular damage and pave the way for future research in developing nanoscale radiation sensors for precise clinical radiography.
Collapse
Affiliation(s)
- Minle Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yijuan Jiang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yongjie Zhang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xiaoling Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Lei Xie
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Lili Xie
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Tao Zeng
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yana Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Hao Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Min Wang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xiaofeng Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Zhenzhen Zhang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yu He
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xian Qin
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China
| | - Chunhua Lu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Qiushui Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
11
|
Sabat N, Stämpfli A, Hanlon S, Bisagni S, Sladojevich F, Püntener K, Hollenstein M. Template-dependent DNA ligation for the synthesis of modified oligonucleotides. Nat Commun 2024; 15:8009. [PMID: 39271668 PMCID: PMC11399401 DOI: 10.1038/s41467-024-52141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Chemical modification of DNA is a common strategy to improve the properties of oligonucleotides, particularly for therapeutics and nanotechnology. Existing synthetic methods essentially rely on phosphoramidite chemistry or the polymerization of nucleoside triphosphates but are limited in terms of size, scalability, and sustainability. Herein, we report a robust alternative method for the de novo synthesis of modified oligonucleotides using template-dependent DNA ligation of shortmer fragments. Our approach is based on the fast and scaled accessibility of chemically modified shortmer monophosphates as substrates for the T3 DNA ligase. This method has shown high tolerance to chemical modifications, flexibility, and overall efficiency, thereby granting access to a broad range of modified oligonucleotides of different lengths (20 → 120 nucleotides). We have applied this method to the synthesis of clinically relevant antisense drugs and ultramers containing diverse modifications. Furthermore, the designed chemoenzymatic approach has great potential for diverse applications in therapeutics and biotechnology.
Collapse
Affiliation(s)
- Nazarii Sabat
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Andreas Stämpfli
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland
| | - Steven Hanlon
- Pharmaceutical Division, Synthetic Molecules Technical Development, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland
| | - Serena Bisagni
- Pharmaceutical Division, Synthetic Molecules Technical Development, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland
| | - Filippo Sladojevich
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland
| | - Kurt Püntener
- Pharmaceutical Division, Synthetic Molecules Technical Development, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.
| |
Collapse
|
12
|
Long D, Shi P, Xu X, Ren J, Chen Y, Guo S, Wang X, Cao X, Yang L, Tian Z. Understanding the relationship between sequences and kinetics of DNA strand displacements. Nucleic Acids Res 2024; 52:9407-9416. [PMID: 39077949 PMCID: PMC11381357 DOI: 10.1093/nar/gkae652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/18/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024] Open
Abstract
Precisely modulating the kinetics of toehold-mediated DNA strand displacements (TMSD) is essential for its application in DNA nanotechnology. The sequence in the toehold region significantly influences the kinetics of TMSD. However, due to the large sample space resulting from various arrangements of base sequences and the resulted complex secondary structures, such a correlation is not intuitive. Herein, machine learning was employed to reveal the relationship between the kinetics of TMSD and the toehold sequence as well as the correlated secondary structure of invader strands. Key factors that influence the rate constant of TMSD were identified, such as the number of free hydrogen bonding sites in the invader, the number of free bases in the toehold, and the number of hydrogen bonds in intermediates. Moreover, a predictive model was constructed, which successfully achieved semi-quantitative prediction of rate constants of TMSD even with subtle distinctions in toehold sequence.
Collapse
Affiliation(s)
- Da Long
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Peichen Shi
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Xin Xu
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Jiayi Ren
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yuqing Chen
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Shihui Guo
- School of Informatics, Xiamen University, Xiamen 361005, PR China
| | - Xinchang Wang
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen 361005, PR China
| | - Xiaoyu Cao
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Zhongqun Tian
- State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
13
|
Xie ZX, Wu Y, Zhou J, Lu JY, Huang WT. Multifunctional Antimonene-Silver Nanocomposites for Ultra-Multi-Mode and Multi-Analyte Sensing, Parallel and Batch Logic Computing, Long-Text Information Protection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401510. [PMID: 38745545 DOI: 10.1002/smll.202401510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Indexed: 05/16/2024]
Abstract
To simulate life's emergent functions, mining the multiple sensing capabilities of nanosystems, and digitizing networks of transduction signals and molecular interactions, is an ongoing endeavor. Here, multifunctional antimonene-silver nanocomposites (AM-Ag NCs) are synthesized facilely and fused for molecular sensing and digitization applications (including ultra-multi-mode and multi-analyte sensing, parallel and batch logic computing, long-text information protection). By mixing surfactant, AM, Ag+ and Sodium borohydride (NaBH4) at room temperature for 5 min, the resulting NCs are comprised of Ag nanoparticles scattered within AM nanosheets and protected by the surfactant. Interestingly, AM-Ag NCs exhibit ultra-multi-mode sensing ability for multiplex metal ions (Hg2+, Fe3+, or Al3+), which significantly improved selectivity (≈2 times) and sensitivity (≈400 times) when analyzing the combined channels. Moreover, multiple sensing capabilities of AM-Ag NCs enable diverse batch and parallel molecular logic computations (including advanced cascaded logic circuits). Ultra-multi-mode selective patterns of AM-Ag NCs to 18 kinds of metal ions can be converted into a series of binary strings by setting the thresholds, and realized high-density, long-text information protection for the first time. This study provides new ideas and paradigms for the preparation and multi-purpose application of 2D nanocomposites, but also offers new directions for the fusion of molecular sensing and informatization.
Collapse
Affiliation(s)
- Zhi Xin Xie
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Ying Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jie Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jiao Yang Lu
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), School of Nursing, Changsha Medical University, Changsha, 410219, P. R. China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, P. R. China
| |
Collapse
|
14
|
Liu R, Liu T, Liu W, Luo B, Li Y, Fan X, Zhang X, Cui W, Teng Y. SemiSynBio: A new era for neuromorphic computing. Synth Syst Biotechnol 2024; 9:594-599. [PMID: 38711551 PMCID: PMC11070324 DOI: 10.1016/j.synbio.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Neuromorphic computing has the potential to achieve the requirements of the next-generation artificial intelligence (AI) systems, due to its advantages of adaptive learning and parallel computing. Meanwhile, biocomputing has seen ongoing development with the rise of synthetic biology, becoming the driving force for new generation semiconductor synthetic biology (SemiSynBio) technologies. DNA-based biomolecules could potentially perform the functions of Boolean operators as logic gates and be used to construct artificial neural networks (ANNs), providing the possibility of executing neuromorphic computing at the molecular level. Herein, we briefly outline the principles of neuromorphic computing, describe the advances in DNA computing with a focus on synthetic neuromorphic computing, and summarize the major challenges and prospects for synthetic neuromorphic computing. We believe that constructing such synthetic neuromorphic circuits will be an important step toward realizing neuromorphic computing, which would be of widespread use in biocomputing, DNA storage, information security, and national defense.
Collapse
Affiliation(s)
- Ruicun Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Tuoyu Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Wuge Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Boyu Luo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yuchen Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xinyue Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xianchao Zhang
- Institute of Information Network and Artificial Intelligence, Jiaxing University, Jiaxing, 314001, China
| | - Wei Cui
- South China University of Technology, Guangzhou, 510641, China
| | - Yue Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, 100071, China
| |
Collapse
|
15
|
Yeboah IO, Young RT, Mosioma M, Sensale S. A mean-field theory for characterizing the closing rates of DNA origami hinges. J Chem Phys 2024; 161:074901. [PMID: 39145564 DOI: 10.1063/5.0222446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
The evolution of dynamic DNA nanostructures has propelled DNA nanotechnology into a robust and versatile field, offering groundbreaking applications in nanoscale communication, drug delivery, and molecular computing. Yet, the full potential of this technology awaits further enhancement through optimization of kinetic properties governing conformational changes. In this work, we introduce a mean-field theory to characterize the kinetic behavior of a dynamic DNA origami hinge where each arm bears complementary single-stranded DNA overhangs of different lengths, which can latch the hinge at a closed conformation. This device is currently being investigated for multiple applications, being of particular interest the development of DNA-based rapid diagnostic tests for coronavirus. Drawing from classical statistical mechanics theories, we derive analytical expressions for the mean binding time of these overhangs within a constant hinge. This analysis is then extended to flexible hinges, where the angle diffuses within a predetermined energy landscape. We validate our model by comparing it with experimental measurements of the closing rates of DNA nanocalipers with different energy landscapes and overhang lengths, demonstrating excellent agreement and suggesting fast angular relaxation relative to binding. These findings offer insights that can guide the optimization of devices for specific state lifetimes. Moreover, the framework introduced here lays the groundwork for further advancements in modeling the kinetics of dynamic DNA nanostructures.
Collapse
Affiliation(s)
- Isaac O Yeboah
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Robert T Young
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Mark Mosioma
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Sebastian Sensale
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, USA
- Department of Physics, Indiana University Indianapolis, Indianapolis, Indiana 46202, USA
| |
Collapse
|
16
|
Zhang Y, Liu X, Hou S, Wu R, Yang J, Zhang C. Enzyme-Programmed Self-Assembly of Nanoparticles. Chembiochem 2024; 25:e202400384. [PMID: 38819745 DOI: 10.1002/cbic.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Nanoparticles are a hot topic in the field of nanomaterial research due to their excellent physical and chemical properties. In recent years, DNA-directed nanoparticle self-assembly technology has been widely applied to the development of numerous complex nanoparticle superstructures. Due to the inherent stability and surface electric repulsion of nanoparticles, it is difficult to make nanoparticle superstructures respond to molecular signals in the external environment. In fact, enzyme-programmed molecular systems are developed to allow diverse functions, including logical operations, signal amplification, and dynamic assembly control. Therefore, combining enzyme-controlled DNA systems may endow nanoparticle assembly systems with more flexibility in program design, allowing them to respond to a variety of external signals. In this review, we summarize the basic principles of enzyme-controlled DNA/nanoparticle self-assembly and introduce its applications in heavy metal detection, gene expression, proteins inside living cells, cancer cell therapy, and drug delivery. With the continuous development of new nanoparticle materials and the increasing functionality of enzyme DNA circuits, enzyme-directed DNA/nanoparticle self-assembled probe technology is expected to see significant future development.
Collapse
Affiliation(s)
- Yongpeng Zhang
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Xuan Liu
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Siqi Hou
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Ranfeng Wu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing, 102206, China
| | - Cheng Zhang
- School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871, China
| |
Collapse
|
17
|
Lin N, Ouyang Y, Qin Y, Karmi O, Sohn YS, Liu S, Nechushtai R, Zhang Y, Willner I, Zhou Z. Spatially Localized Entropy-Driven Evolution of Nucleic Acid-Based Constitutional Dynamic Networks for Intracellular Imaging and Spatiotemporal Programmable Gene Therapy. J Am Chem Soc 2024; 146:20685-20699. [PMID: 39012486 PMCID: PMC11295181 DOI: 10.1021/jacs.4c03651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
The primer-guided entropy-driven high-throughput evolution of the DNA-based constitutional dynamic network, CDN, is introduced. The entropy gain associated with the process provides a catalytic principle for the amplified emergence of the CDN. The concept is applied to develop a programmable, spatially localized DNA circuit for effective in vitro and in vivo theranostic, gene-regulated treatment of cancer cells. The localized circuit consists of a DNA tetrahedron core modified at its corners with four tethers that include encoded base sequences exhibiting the capacity to emerge and assemble into a [2 × 2] CDN. Two of the tethers are caged by a pair of siRNA subunits, blocking the circuit into a mute, dynamically inactive configuration. In the presence of miRNA-21 as primer, the siRNA subunits are displaced, resulting in amplified release of the siRNAs silencing the HIF-1α mRNA and fast dynamic reconfiguration of the tethers into a CDN. The resulting CDN is, however, engineered to be dynamically reconfigured by miRNA-155 into an equilibrated mixture enriched with a DNAzyme component, catalyzing the cleavage of EGR-1 mRNA. The DNA tetrahedron nanostructure stimulates enhanced permeation into cancer cells. The miRNA-triggered entropy-driven reconfiguration of the spatially localized circuit leads to the programmable, cooperative bis-gene-silencing of HIF-1α and EGR-1 mRNAs, resulting in the effective and selective apoptosis of breast cancer cells and effective inhibition of tumors in tumor bearing mice.
Collapse
Affiliation(s)
- Nina Lin
- School
of Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| | - Yu Ouyang
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yunlong Qin
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ola Karmi
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Yang Sung Sohn
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Songqin Liu
- School
of Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| | - Rachel Nechushtai
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Yuanjian Zhang
- School
of Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhixin Zhou
- School
of Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| |
Collapse
|
18
|
Liu Y, Wang R, Chen Q, Chang Y, Chen Q, Fukumoto K, Wang B, Yu J, Luo C, Ma J, Chen X, Murayama Y, Umeda K, Kodera N, Harada Y, Sekine SI, Li J, Tadakuma H. Organ-Specific Gene Expression Control Using DNA Origami-Based Nanodevices. NANO LETTERS 2024; 24:8410-8417. [PMID: 38920331 PMCID: PMC11249008 DOI: 10.1021/acs.nanolett.4c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Nanodevices that function in specific organs or cells are one of the ultimate goals of synthetic biology. The recent progress in DNA nanotechnology such as DNA origami has allowed us to construct nanodevices to deliver a payload (e.g., drug) to the tumor. However, delivery to specific organs remains difficult due to the fragility of the DNA nanostructure and the low targeting capability of the DNA nanostructure. Here, we constructed tough DNA origami that allowed us to encapsulate the DNA origami into lipid-based nanoparticles (LNPs) under harsh conditions (low pH), harnessing organ-specific delivery of the gene of interest (GOI). We found that DNA origami-encapsulated LNPs can increase the functionality of payload GOIs (mRNA and siRNA) inside mouse organs through the contribution from different LNP structures revealed by cryogenic electron microscope (Cryo-EM). These data should be the basis for future organ-specific gene expression control using DNA origami nanodevices.
Collapse
Affiliation(s)
- Yuxiang Liu
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Ruixuan Wang
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Qimingxing Chen
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Yan Chang
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Qi Chen
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Kodai Fukumoto
- Institute
for Protein Research, Osaka University, Osaka 565-0871, Japan
- RIKEN
Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Bingxun Wang
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Jianchen Yu
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Changfeng Luo
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Jiayuan Ma
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
| | - Xiaoxia Chen
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
- Zhejiang
Provincial Key Laboratory of Pancreatic Disease Hangzhou, Zhejiang University School of Medicine First Affiliated
Hospital, Zhejiang 310009, People’s Republic
of China
| | - Yuko Murayama
- RIKEN
Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Kenichi Umeda
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Noriyuki Kodera
- Nano
Life Science Institute (WPI-NanoLSI), Kanazawa
University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshie Harada
- Institute
for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Shun-ichi Sekine
- RIKEN
Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Jianfeng Li
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
- Gene Editing
Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, People’s
Republic of China
| | - Hisashi Tadakuma
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210 People’s
Republic of China
- Gene Editing
Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, People’s
Republic of China
| |
Collapse
|
19
|
Baltussen MG, de Jong TJ, Duez Q, Robinson WE, Huck WTS. Chemical reservoir computation in a self-organizing reaction network. Nature 2024; 631:549-555. [PMID: 38926572 PMCID: PMC11254755 DOI: 10.1038/s41586-024-07567-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/14/2024] [Indexed: 06/28/2024]
Abstract
Chemical reaction networks, such as those found in metabolism and signalling pathways, enable cells to process information from their environment1,2. Current approaches to molecular information processing and computation typically pursue digital computation models and require extensive molecular-level engineering3. Despite considerable advances, these approaches have not reached the level of information processing capabilities seen in living systems. Here we report on the discovery and implementation of a chemical reservoir computer based on the formose reaction4. We demonstrate how this complex, self-organizing chemical reaction network can perform several nonlinear classification tasks in parallel, predict the dynamics of other complex systems and achieve time-series forecasting. This in chemico information processing system provides proof of principle for the emergent computational capabilities of complex chemical reaction networks, paving the way for a new class of biomimetic information processing systems.
Collapse
Affiliation(s)
- Mathieu G Baltussen
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Thijs J de Jong
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Quentin Duez
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - William E Robinson
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
20
|
Qin Y, Huang F, Tang Q, Li J, Zhang H, Luo K, Zhou J, Wang H, Wang L, Li L, Xiao X. Inhibition of kinetic random-distribution in DNA Seesaw gates and biosensors for complete leakage prevention. Biosens Bioelectron 2024; 255:116203. [PMID: 38531225 DOI: 10.1016/j.bios.2024.116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/17/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
DNA nanomaterials have a wide application prospect in biomedical field, among which DNA computers and biosensors based on Seesaw-based DNA circuit is considered to have the most development potential. However, the serious leakage of Seesaw-based DNA circuit prevented its further development and application. Moreover, the existing methods to suppress leakage can't achieve the ideal effect. Interestingly, we found a new source of leakage in Seesaw-based DNA circuit, which we think is the main reason why the previous methods to suppress leakage are not satisfactory. Therefore, based on this discovery, we use DNA triplex to design a new method to suppress the leakage of Seesaw-based DNA circuit. Its ingenious design makes it possible to perfectly suppress the leakage of all sources in Seesaw-based DNA circuit and ensure the normal output of the circuit. Based on this technology, we have constructed basic Seesaw module, AND gate, OR gate, secondary complex circuits and DNA detector. Experimental results show that we can increase the working range of the secondary Seesaw-based DNA circuit by five folds and keep its normal output signal above 90%, and we can improve the LOD of the Seesaw-based DNA detector to 1/11 of the traditional one(1.8pM). More importantly, we successfully developed a detector with adjustable detection range, which can theoretically achieve accurate detection in any concentration range. We believe the established triplex blocking strategy will greatly facilitate the most powerful Seesaw based DNA computers and biosensors, and further promote its application in biological systems.
Collapse
Affiliation(s)
- Yang Qin
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China; Institute of Reproductive Health, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Pancreatic Surgery, Union Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feiyang Huang
- Institute of Reproductive Health, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Tang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiangtian Li
- Institute of Reproductive Health, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Heao Zhang
- Institute of Reproductive Health, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kuangdi Luo
- Institute of Reproductive Health, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiahui Zhou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hongxun Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Limei Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Longjie Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China; Institute of Reproductive Health, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
21
|
Song L, Zuo X, Li M. Concept and Development of Algebraic Topological Framework Nucleic Acids. Chempluschem 2024; 89:e202300760. [PMID: 38529703 DOI: 10.1002/cplu.202300760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Nucleic acids are considered as promising materials for developing exquisite nanostructures from one to three dimensions. The advances of DNA nanotechnology facilitate ingenious design of DNA nanostructures with diverse shapes and sizes. Especially, the algebraic topological framework nucleic acids (ATFNAs) are functional DNA nanostructures that engineer guest molecules (e. g., nucleic acids, proteins, small molecules, and nanoparticles) stoichiometrically and spatially. The intrinsic precise properties and tailorable functionalities of ATFNAs hold great promise for biological applications, such as cell recognition and immunotherapy. This Perspective highlights the concept and development of precisely assembled ATFNAs, and outlines the new frontiers and opportunities for exploiting the structural advantages of ATFNAs for biological applications.
Collapse
Affiliation(s)
- Lu Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Min Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| |
Collapse
|
22
|
Wang K, Huang Q, Elshaer MR, Knorr B, Chaikin P, Zhu G. Tri-state logic computation by activating DNA origami chains. NANOSCALE 2024; 16:11991-11998. [PMID: 38727616 DOI: 10.1039/d3nr06010a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The invention of DNA nanotechnology has enabled molecular computation as a promising substitute for traditional semiconductors which are limited to two-dimensional architectures and by heating problems resulting from densification. Current studies of logic gates achieved using DNA molecules are predominately focused on two-state operations (AND, OR, etc.); however, realizing tri-state logic (high impedance Z) in DNA computation is understudied. Here we actively fold DNA origami chain-like hinged rods to induce conformational changes that return tri-state logic signals. We use rigid six helix-bundle (6HB) DNA origami to self-assemble a linear trimer chain as a circuit platform with functional single-stranded (ss) DNA near each semi-flexible hinge. The presence or absence of ssDNA enable and input strands allows hybridization to take place at the hinges, activating one fold (0) or two folds (1) from the straight linear geometry (defined as High-Z) of the trimer chain. We design two different tri-state logic gate platforms, buffer and inverter, with corresponding enable/input ssDNA to unambiguously return tri-state signals, characterized by Atomic Force Microscopy (AFM) and/or agarose gel electrophoresis (GEL). Our work on tri-state logic significantly enhances DNA computation beyond the current two-state Boolean logic with both research and industrial applications, including cellular treatments and living matter utilizing the biocompatibility of DNA molecules.
Collapse
Affiliation(s)
- Kun Wang
- Department of Physics, New York University, New York, NY 10003, USA.
| | - Qiuyan Huang
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Mohammed Ragab Elshaer
- Department of Chemistry, Biochemistry, and Physics, Fairleigh Dickinson University, Madison, NJ 07940, USA
| | - Brian Knorr
- Department of Chemistry, Biochemistry, and Physics, Fairleigh Dickinson University, Madison, NJ 07940, USA
| | - Paul Chaikin
- Department of Physics, New York University, New York, NY 10003, USA.
| | - Guolong Zhu
- Department of Physics, New York University, New York, NY 10003, USA.
- Department of Chemistry, New York University, New York, NY 10003, USA
- Department of Chemistry, Biochemistry, and Physics, Fairleigh Dickinson University, Madison, NJ 07940, USA
| |
Collapse
|
23
|
Lv S, Yao Q, Yi J, Si J, Gao Y, Su S, Zhu C. Leveraging Concentration Imbalance-Driven DNA Circuit as an Operational Amplifier to Enhance the Sensitivity of Hepatitis B Virus DNA Detection with Hybridization-Responsive DNA-Templated Silver Nanoclusters. JACS AU 2024; 4:2323-2334. [PMID: 38938798 PMCID: PMC11200247 DOI: 10.1021/jacsau.4c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024]
Abstract
Hepatitis B virus (HBV) infection remains a major global health concern, necessitating the development of sensitive and reliable diagnostic methods. In this study, we propose a novel approach to enhance the sensitivity of HBV DNA detection by leveraging a concentration imbalance-driven DNA circuit (CIDDC) as an operational amplifier, coupled with a hybridization-responsive DNA-templated silver nanocluster (DNA-AgNCs) nanoprobe named Q·C6-AgNCs. The CIDDC system effectively converts and amplifies the input HBV DNA into an enriched generic single-stranded DNA output, which subsequently triggers the fluorescence of the DNA-AgNCs reporter upon hybridization, generating a measurable signal for detection. By incorporating the DNA circuit, we not only achieved enhanced sensitivity with a lower detection limit of 0.11 nM but also demonstrated high specificity with single-base mismatch discriminability for HBV DNA detection. Additionally, this mix-and-detect assay format is simple, user-friendly, and isothermal. This innovative strategy holds promise for advancing molecular diagnostics and facilitating the effective management of HBV-related diseases.
Collapse
Affiliation(s)
- Suo Lv
- State
Key Laboratory of Organic Electronics and Information Displays and
Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials
(IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qunyan Yao
- Department
of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department
of Gastroenterology and Hepatology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen 361015, China
- Shanghai
Geriatric Medical Center, Shanghai 201104, China
| | - Jiasheng Yi
- State
Key Laboratory of Organic Electronics and Information Displays and
Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials
(IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jingyi Si
- Department
of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yifan Gao
- Department
of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shao Su
- State
Key Laboratory of Organic Electronics and Information Displays and
Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials
(IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Changfeng Zhu
- Department
of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai
Institute of Liver Diseases, Shanghai 200032, China
| |
Collapse
|
24
|
Cui S, Liu X, Zhang X, Shi P, Zheng Y, Wang B, Zhang Q. Engineering Modular DNA Reaction Networks for Signal Processing. Chemistry 2024; 30:e202400740. [PMID: 38623910 DOI: 10.1002/chem.202400740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Diversified molecular information-processing methods have significant implications for nanoscale manipulation and control, monitoring and disease diagnosis of organisms, and direct intervention in biological activities. However, as an effective approach for implementing multifunctional molecular information processing, DNA reaction networks (DRNs) with numerous functionally specialized molecular structures have challenged them on scale design, leading to increased network complexity, further causing problems such as signal leakage, attenuation, and cross-talk in network reactions. Our study developed a strategy for performing various signal-processing tasks through engineering modular DRNs. This strategy is based on a universal core unit with signal selection capability, and a time-adjustable signal self-resetting module is achieved by combing the core unit and self-resetting unit, which improves the time controllability of modular DRNs. In addition, multi-input and -output signal cross-catalytic and continuously adjustable signal delay modules were realized by combining core and threshold units, providing a flexible, precise method for modular DRNs to process the signal. The strategy simplifies the design of DRNs, helps generate design ideas for large-scale integrated DRNs with multiple functions, and provides prospects in biocomputing, gene regulation, and biosensing.
Collapse
Affiliation(s)
- Shuang Cui
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Peijun Shi
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yanfen Zheng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Bin Wang
- School of Software Engineering, Dalian University, Dalian, 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
25
|
Fu R, Hou J, Wang Z, Xianyu Y. DNA Molecular Computation Using the CRISPR-Mediated Reaction and Surface Growth of Gold Nanoparticles. ACS NANO 2024; 18:14754-14763. [PMID: 38781600 DOI: 10.1021/acsnano.4c04265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
DNA has emerged as a promising tool to build logic gates for biocomputing. However, prevailing methodologies predominantly rely on hybridization reactions or structural alterations to construct DNA logic gates, which are limited in simplicity and diversity. Herein, we developed simple and smart DNA-based logic gates for biocomputing through the DNA-mediated growth of gold nanomaterials without precise structure design and probe modification. Capitalizing on their excellent plasmonic properties, the surface growth of gold nanomaterials enables distinct wavelength shifts and unique shapes, which are modulated by the composition, length, and concentration of the DNA sequences. Combined with a CRISPR-mediated reaction, we constructed DNA circuits to achieve complicated biocomputing to modulate the surface growth of gold nanomaterials. By implementing logic functions controlled by input-mediated growth of gold nanomaterials, we established YES/NOT, AND/NAND, OR/NOR, XOR, and INHIBIT gates and further constructed cascade logic circuits, parity checker for natural numbers, and gray code encoder, which are promising for DNA biocomputing.
Collapse
Affiliation(s)
- Ruijie Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou 310016, People's Republic of China
| | - Jinjie Hou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou 310016, People's Republic of China
| | - Zexiang Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou 310016, People's Republic of China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Hangzhou 310016, People's Republic of China
| |
Collapse
|
26
|
Yang L, Tang Q, Zhang M, Tian Y, Chen X, Xu R, Ma Q, Guo P, Zhang C, Han D. A spatially localized DNA linear classifier for cancer diagnosis. Nat Commun 2024; 15:4583. [PMID: 38811607 PMCID: PMC11136972 DOI: 10.1038/s41467-024-48869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Molecular computing is an emerging paradigm that plays an essential role in data storage, bio-computation, and clinical diagnosis with the future trends of more efficient computing scheme, higher modularity with scaled-up circuity and stronger tolerance of corrupted inputs in a complex environment. Towards these goals, we construct a spatially localized, DNA integrated circuits-based classifier (DNA IC-CLA) that can perform neuromorphic architecture-based computation at a molecular level for medical diagnosis. The DNA-based classifier employs a two-dimensional DNA origami as the framework and localized processing modules as the in-frame computing core to execute arithmetic operations (e.g. multiplication, addition, subtraction) for efficient linear classification of complex patterns of miRNA inputs. We demonstrate that the DNA IC-CLA enables accurate cancer diagnosis in a faster (about 3 h) and more effective manner in synthetic and clinical samples compared to those of the traditional freely diffusible DNA circuits. We believe that this all-in-one DNA-based classifier can exhibit more applications in biocomputing in cells and medical diagnostics.
Collapse
Affiliation(s)
- Linlin Yang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, 264003, Yantai, China
| | - Qian Tang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Mingzhi Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Yuan Tian
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Xiaoxing Chen
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Rui Xu
- Intellinosis Biotech Co.Ltd., 201112, Shanghai, China
| | - Qian Ma
- Intellinosis Biotech Co.Ltd., 201112, Shanghai, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
| | - Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
- Intellinosis Biotech Co.Ltd., 201112, Shanghai, China.
| | - Da Han
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| |
Collapse
|
27
|
Aqib RM, Umer A, Li J, Liu J, Ding B. Light Responsive DNA Nanomaterials and Their Biomedical Applications. Chem Asian J 2024; 19:e202400226. [PMID: 38514391 DOI: 10.1002/asia.202400226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
DNA nanomaterials have been widely employed for various biomedical applications. With rapid development of chemical modification of nucleic acid, serials of stimuli-responsive elements are included in the multifunctional DNA nanomaterials. In this review, we summarize the recent advances in light responsive DNA nanomaterials based on photocleavage/photodecage, photoisomerization, and photocrosslinking for efficient bioimaging (including imaging of small molecule, microRNA, and protein) and drug delivery (including delivery of small molecule, nucleic acid, and gene editing system). We also discuss the remaining challenges and future perspectives of the light responsive DNA nanomaterials in biomedical applications.
Collapse
Affiliation(s)
- Raja Muhammad Aqib
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Arsalan Umer
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jialin Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
28
|
Aqib RM, Wang Y, Liu J, Ding B. Efficient one-pot assembly of higher-order DNA nanostructures by chemically conjugated branched DNA. Chem Commun (Camb) 2024; 60:4715-4718. [PMID: 38596907 DOI: 10.1039/d4cc01097c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Chemically conjugated branched DNA was successfully synthesized by a copper-free click reaction to construct sophisticated and higher-order polyhedral DNA nanostructures with pre-defined units in one pot, which can be used as an efficient nanoplatform to precisely organize multiple gold nanoparticles in predesigned patterns.
Collapse
Affiliation(s)
- Raja Muhammad Aqib
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Luescher AM, Gimpel AL, Stark WJ, Heckel R, Grass RN. Chemical unclonable functions based on operable random DNA pools. Nat Commun 2024; 15:2955. [PMID: 38580696 PMCID: PMC10997750 DOI: 10.1038/s41467-024-47187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
Physical unclonable functions (PUFs) based on unique tokens generated by random manufacturing processes have been proposed as an alternative to mathematical one-way algorithms. However, these tokens are not distributable, which is a disadvantage for decentralized applications. Finding unclonable, yet distributable functions would help bridge this gap and expand the applications of object-bound cryptography. Here we show that large random DNA pools with a segmented structure of alternating constant and randomly generated portions are able to calculate distinct outputs from millions of inputs in a specific and reproducible manner, in analogy to physical unclonable functions. Our experimental data with pools comprising up to >1010 unique sequences and encompassing >750 comparisons of resulting outputs demonstrate that the proposed chemical unclonable function (CUF) system is robust, distributable, and scalable. Based on this proof of concept, CUF-based anti-counterfeiting systems, non-fungible objects and decentralized multi-user authentication are conceivable.
Collapse
Affiliation(s)
- Anne M Luescher
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland
| | - Andreas L Gimpel
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland
| | - Wendelin J Stark
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland
| | - Reinhard Heckel
- Department of Computer Engineering, Technical University of Munich, Arcisstrasse 21, 80333, Munich, Germany
| | - Robert N Grass
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5, 8093, Zürich, Switzerland.
| |
Collapse
|
30
|
Liu X, Zhang X, Cui S, Xu S, Liu R, Wang B, Wei X, Zhang Q. A signal transmission strategy driven by gap-regulated exonuclease hydrolysis for hierarchical molecular networks. Commun Biol 2024; 7:335. [PMID: 38493265 PMCID: PMC10944543 DOI: 10.1038/s42003-024-06036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Exonucleases serve as efficient tools for signal processing and play an important role in biochemical reactions. Here, we identify the mechanism of cooperative exonuclease hydrolysis, offering a method to regulate the cooperative hydrolysis driven by exonucleases through the modulation of the number of bases in gap region. A signal transmission strategy capable of producing amplified orthogonal DNA signal is proposed to resolve the polarity of signals and byproducts, which provides a solution to overcome the signal attenuation. The gap-regulated mechanism combined with DNA strand displacement (DSD) reduces the unpredictable secondary structures, allowing for the coexistence of similar structures in hierarchical molecular networks. For the application of the strategy, a molecular computing model is constructed to solve the maximum weight clique problems (MWCP). This work enhances for our knowledge of these important enzymes and promises application prospects in molecular computing, signal detection, and nanomachines.
Collapse
Affiliation(s)
- Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Shuang Cui
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Shujuan Xu
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China
| | - Rongming Liu
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian, 116622, Liaoning, China
| | - Xiaopeng Wei
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, Liaoning, China.
| |
Collapse
|
31
|
Yang S, Bögels BWA, Wang F, Xu C, Dou H, Mann S, Fan C, de Greef TFA. DNA as a universal chemical substrate for computing and data storage. Nat Rev Chem 2024; 8:179-194. [PMID: 38337008 DOI: 10.1038/s41570-024-00576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
DNA computing and DNA data storage are emerging fields that are unlocking new possibilities in information technology and diagnostics. These approaches use DNA molecules as a computing substrate or a storage medium, offering nanoscale compactness and operation in unconventional media (including aqueous solutions, water-in-oil microemulsions and self-assembled membranized compartments) for applications beyond traditional silicon-based computing systems. To build a functional DNA computer that can process and store molecular information necessitates the continued development of strategies for computing and data storage, as well as bridging the gap between these fields. In this Review, we explore how DNA can be leveraged in the context of DNA computing with a focus on neural networks and compartmentalized DNA circuits. We also discuss emerging approaches to the storage of data in DNA and associated topics such as the writing, reading, retrieval and post-synthesis editing of DNA-encoded data. Finally, we provide insights into how DNA computing can be integrated with DNA data storage and explore the use of DNA for near-memory computing for future information technology and health analysis applications.
Collapse
Affiliation(s)
- Shuo Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Bas W A Bögels
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Can Xu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, China.
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, UK.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Tom F A de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands.
| |
Collapse
|
32
|
Wang Y, Wang H, Li Y, Yang C, Tang Y, Lu X, Fan J, Tang W, Shang Y, Yan H, Liu J, Ding B. Chemically Conjugated Branched Staples for Super-DNA Origami. J Am Chem Soc 2024; 146:4178-4186. [PMID: 38301245 DOI: 10.1021/jacs.3c13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
DNA origami, comprising a long folded DNA scaffold and hundreds of linear DNA staple strands, has been developed to construct various sophisticated structures, smart devices, and drug delivery systems. However, the size and diversity of DNA origami are usually constrained by the length of DNA scaffolds themselves. Herein, we report a new paradigm of scaling up DNA origami assembly by introducing a novel branched staple concept. Owing to their covalent characteristics, the chemically conjugated branched DNA staples we describe here can be directly added to a typical DNA origami assembly system to obtain super-DNA origami with a predefined number of origami tiles in one pot. Compared with the traditional two-step coassembly system (yields <10%), a much greater yield (>80%) was achieved using this one-pot strategy. The diverse superhybrid DNA origami with the combination of different origami tiles can be also efficiently obtained by the hybrid branched staples. Furthermore, the branched staples can be successfully employed as the effective molecular glues to stabilize micrometer-scale, super-DNA origami arrays (e.g., 10 × 10 array of square origami) in high yields, paving the way to bridge the nanoscale precision of DNA origami with the micrometer-scale device engineering. This rationally developed assembly strategy for super-DNA origami based on chemically conjugated branched staples presents a new avenue for the development of multifunctional DNA origami-based materials.
Collapse
Affiliation(s)
- Yuang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Hong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yan Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Changping Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yue Tang
- Arizona State University, Tempe, Arizona 85281, United States
| | - Xuehe Lu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jing Fan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Wantao Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hao Yan
- Arizona State University, Tempe, Arizona 85281, United States
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Zhang Y, Chen Y, Liu X, Ling Q, Wu R, Yang J, Zhang C. Programmable Primer Switching for Regulating Enzymatic DNA Circuits. ACS NANO 2024; 18:5089-5100. [PMID: 38286819 DOI: 10.1021/acsnano.3c12000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Developing DNA strand displacement reactions (SDRs) offers crucial technical support for regulating artificial nucleic acid circuits and networks. More recently, enzymatic SDR-based DNA circuits have gained significant attention because of their modular design, high orthogonality signaling, and extremely fast reaction rates. Typical enzymatic SDRs are regulated by relatively long primers (20-30 nucleotides) that hybridize to form stable double-stranded structures, facilitating enzyme-initiated events. Implementing more flexible primer-based enzymatic SDR regulations remains challenging due to the lack of convenient and simple primer control mechanism, which consequently limits the development of enzymatic DNA circuits. In this study, we propose an approach, termed primer switching regulation, that implements programmable and flexible regulations of enzymatic circuits by introducing switchable wires into the enzymatic circuits. We applied this method to generate diverse enzymatic DNA circuits, including cascading, fan-in/fan-out, dual-rail, feed-forward, and feedback functions. Through this method, complex circuit functions can be implemented by just introducing additional switching wires without reconstructing the basic circuit frameworks. The method is experimentally demonstrated to provide flexible and programmable regulations to control enzymatic DNA circuits and has future applications in DNA computing, biosensing, and DNA storage.
Collapse
Affiliation(s)
- Yongpeng Zhang
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Yiming Chen
- School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
| | - Xuan Liu
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Qian Ling
- School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
| | - Ranfeng Wu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Cheng Zhang
- School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
| |
Collapse
|
34
|
Sun C, Li M, Wang F. Programming and monitoring surface-confined DNA computing. Bioorg Chem 2024; 143:107080. [PMID: 38183684 DOI: 10.1016/j.bioorg.2023.107080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
DNA-based molecular computing has evolved to encompass a diverse range of functions, demonstrating substantial promise for both highly parallel computing and various biomedical applications. Recent advances in DNA computing systems based on surface reactions have demonstrated improved levels of specificity and computational speed compared to their solution-based counterparts that depend on three-dimensional molecular collisions. Herein, computational biomolecular interactions confined by various surfaces such as DNA origamis, nanoparticles, lipid membranes and chips are systematically reviewed, along with their manipulation methodologies. Monitoring techniques and applications for these surface-based computing systems are also described. The advantages and challenges of surface-confined DNA computing are discussed.
Collapse
Affiliation(s)
- Chenyun Sun
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
35
|
Hu M, Li X, Wu JN, Yang M, Wu T. DNAzyme-Based Dissipative DNA Strand Displacement for Constructing Temporal Logic Gates. ACS NANO 2024; 18:2184-2194. [PMID: 38193385 DOI: 10.1021/acsnano.3c09506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Toehold-mediated DNA strand displacement is the foundation of dynamic DNA nanotechnology, encompassing a wide range of tools with diverse functions, dynamics, and thermodynamic properties. However, a majority of these tools are limited to unidirectional reactions driven by thermodynamics. In response to the growing field of dissipative DNA nanotechnology, we present an approach: DNAzyme-based dissipative DNA strand displacement (D-DSD), which combines the principles of dynamic DNA nanotechnology and dissipative DNA nanotechnology. D-DSD introduces circular and dissipative characteristics, distinguishing it from the unidirectional reactions observed in conventional strand displacement. We investigated the reaction mechanism of D-DSD and devised temporal control elements. By substituting temporal components, we designed two distinct temporal AND gates using fewer than 10 strands, eliminating the need for complex network designs. In contrast to previous temporal logic gates, our temporal storage is not through dynamics control or cross-inhibition but through autoregressive storage, a more modular and scalable approach to memory storage. D-DSD preserves the fundamental structure of toehold-mediated strand displacement, while offering enhanced simplicity and versatility.
Collapse
Affiliation(s)
- Minghao Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiaolong Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jia-Ni Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Mengyao Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
36
|
Choe C, Andreasson JOL, Melaine F, Kladwang W, Wu MJ, Portela F, Wellington-Oguri R, Nicol JJ, Wayment-Steele HK, Gotrik M, Participants E, Khatri P, Greenleaf WJ, Das R. Compact RNA sensors for increasingly complex functions of multiple inputs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.572289. [PMID: 38260323 PMCID: PMC10802310 DOI: 10.1101/2024.01.04.572289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Designing single molecules that compute general functions of input molecular partners represents a major unsolved challenge in molecular design. Here, we demonstrate that high-throughput, iterative experimental testing of diverse RNA designs crowdsourced from Eterna yields sensors of increasingly complex functions of input oligonucleotide concentrations. After designing single-input RNA sensors with activation ratios beyond our detection limits, we created logic gates, including challenging XOR and XNOR gates, and sensors that respond to the ratio of two inputs. Finally, we describe the OpenTB challenge, which elicited 85-nucleotide sensors that compute a score for diagnosing active tuberculosis, based on the ratio of products of three gene segments. Building on OpenTB design strategies, we created an algorithm Nucleologic that produces similarly compact sensors for the three-gene score based on RNA and DNA. These results open new avenues for diverse applications of compact, single molecule sensors previously limited by design complexity.
Collapse
Affiliation(s)
- Christian Choe
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Johan O. L. Andreasson
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Current address: Airity Technologies, Redwood City, CA, USA
| | - Feriel Melaine
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Wipapat Kladwang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Current address: Inceptive, Palo Alto, CA, USA
| | - Michelle J. Wu
- Program in Biomedical Informatics, Stanford University School of Medicine, Stanford, CA, USA
- Current address: Verily Life Sciences, South San Francisco, CA, USA
| | - Fernando Portela
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Eterna Massive Open Laboratory
| | - Roger Wellington-Oguri
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Eterna Massive Open Laboratory
| | - John J. Nicol
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Eterna Massive Open Laboratory
| | | | - Michael Gotrik
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Current address: Protillion Biosciences, Burlingame, CA, USA
| | | | - Purvesh Khatri
- Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, CA, USA
- Stanford Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - William J. Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Program in Biomedical Informatics, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
37
|
Lu JY, Guo Z, Huang WT, Bao M, He B, Li G, Lei J, Li Y. Peptide-graphene logic sensing system for dual-mode detection of exosomes, molecular information processing and protection. Talanta 2024; 267:125261. [PMID: 37801930 DOI: 10.1016/j.talanta.2023.125261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
Peptides with highly sequence-dependent recognition, assembly, and encoding abilities can perform functions similar to DNA or even better, such as biosensing, molecular information processing, coding, or storage. However, the combination of versatile peptides and 2D materials are rarely used for multipurpose integrated applications, including biosensing, information processing and security. Herein, peptide-graphene sensing system was comprehensively used for dual-signal sensing of tumor-derived exosomes (TDEs), logic computing, and information protection. The system used fluorescent-labeled CD63-binding peptide CP05 and graphene oxide (GO) to selectively detect CD63 and TDEs by fluorescence and resonance light scattering. From three levels such as matter, energy, and information analysis, the matter and energy changes in GO-CP05 peptide sensing system were transformed into valuable information, which achieve the dual-mode quantitative detection of TDEs and its marker CD63, and the actual serum analysis. This matter-energy interaction network was also informationized, and utilized for parallel and batch logic computing, two kinds of molecular crypto-steganography (based on peptide sequence and Boolean logic relationships), which facilitates development of intelligent sensing and advanced information technology. This work not only provides a new method for sensitive detection of important disease markers, but also provides ideas for integrating molecular sensing and informatization to open molecular digitization.
Collapse
Affiliation(s)
- Jiao Yang Lu
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China; Wuzhou Medical College, Wuzhou, 543100, PR China
| | - Zhen Guo
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Meihua Bao
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China
| | - Binsheng He
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China
| | - Guangyi Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China
| | - Jieni Lei
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China
| | - Yaqian Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "the 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Clinical Medicine), Changsha Medical University, Changsha, 410219, PR China.
| |
Collapse
|
38
|
Ding M, Xiao X, Yang Y, Yao Z, Dong Z, Gao Q, Tian B. AND-Logic Cascade Rolling Circle Amplification for Optomagnetic Detection of Dual Target SARS-CoV-2 Sequences. Anal Chem 2024; 96:455-462. [PMID: 38123506 DOI: 10.1021/acs.analchem.3c04533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
DNA logic operations are accurate and specific molecular strategies that are appreciated in target multiplexing and intelligent diagnostics. However, most of the reported DNA logic operation-based assays lack amplifiers prior to logic operation, resulting in detection limits at the subpicomolar to nanomolar level. Herein, a homogeneous and isothermal AND-logic cascade amplification strategy is demonstrated for optomagnetic biosensing of two different DNA inputs corresponding to a variant of concern sequence (containing spike L452R) and a highly conserved sequence from SARS-CoV-2. With an "amplifiers-before-operator" configuration, two input sequences are recognized by different padlock probes for amplification reactions, which generate amplicons used, respectively, as primers and templates for secondary amplification, achieving the AND-logic operation. Cascade amplification products can hybridize with detection probes grafted onto magnetic nanoparticles (MNPs), leading to hydrodynamic size increases and/or aggregation of MNPs. Real-time optomagnetic MNP analysis offers a detection limit of 8.6 fM with a dynamic detection range spanning more than 3 orders of magnitude. The accuracy, stability, and specificity of the system are validated by testing samples containing serum, salmon sperm, a single-nucleotide variant, and biases of the inputs. Clinical samples are tested with both quantitative reverse transcription-PCR and our approach, showing highly consistent measurement results.
Collapse
Affiliation(s)
- Mingming Ding
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Xiaozhou Xiao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yulin Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Ziyang Yao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Zhuxin Dong
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
- Furong Laboratory, Changsha 410008, China
| | - Qian Gao
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bo Tian
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China
- Furong Laboratory, Changsha 410008, China
| |
Collapse
|