1
|
Huang HY, Chen YZ, Zhao C, Zheng XN, Yu K, Yue JX, Ju HQ, Shi YX, Tian L. Alternations in inflammatory macrophage niche drive phenotypic and functional plasticity of Kupffer cells. Nat Commun 2024; 15:9337. [PMID: 39472435 PMCID: PMC11522483 DOI: 10.1038/s41467-024-53659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Inflammatory signals lead to recruitment of circulating monocytes and induce their differentiation into pro-inflammatory macrophages. Therefore, whether blocking inflammatory monocytes can mitigate disease progression is being actively evaluated. Here, we employ multiple lineage-tracing models and show that monocyte-derived macrophages (mo-mac) are the major population of immunosuppressive, liver metastasis-associated macrophages (LMAM), while the proportion of Kupffer cells (KC) as liver-resident macrophages is diminished in metastatic nodules. Paradoxically, genetic ablation of mo-macs results in only a marginal decrease in LMAMs. Using a proliferation-recording system and a KC-tracing model in a monocyte-deficient background, we find that LMAMs can be replenished either via increased local macrophage proliferation or by promoting KC infiltration. In the latter regard, KCs undergo transient proliferation and exhibit substantial phenotypic and functional alterations through epigenetic reprogramming following the vacating of macrophage niches by monocyte depletion. Our data thus suggest that a simultaneous blockade of monocyte recruitment and macrophage proliferation may effectively target immunosuppressive myelopoiesis and reprogram the microenvironment towards an immunostimulatory state.
Collapse
Affiliation(s)
- Han-Ying Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan-Zhou Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuang Zhao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xin-Nan Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kai Yu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan-Xia Shi
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Lin Tian
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
2
|
Hanahan D, Michielin O, Pittet MJ. Convergent inducers and effectors of T cell paralysis in the tumour microenvironment. Nat Rev Cancer 2024:10.1038/s41568-024-00761-z. [PMID: 39448877 DOI: 10.1038/s41568-024-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Tumorigenesis embodies the formation of a heterotypic tumour microenvironment (TME) that, among its many functions, enables the evasion of T cell-mediated immune responses. Remarkably, most TME cell types, including cancer cells, fibroblasts, myeloid cells, vascular endothelial cells and pericytes, can be stimulated to deploy immunoregulatory programmes. These programmes involve regulatory inducers (signals-in) and functional effectors (signals-out) that impair CD8+ and CD4+ T cell activity through cytokines, growth factors, immune checkpoints and metabolites. Some signals target specific cell types, whereas others, such as transforming growth factor-β (TGFβ) and prostaglandin E2 (PGE2), exert broad, pleiotropic effects; as signals-in, they trigger immunosuppressive programmes in most TME cell types, and as signals-out, they directly inhibit T cells and also modulate other cells to reinforce immunosuppression. This functional diversity and redundancy pose a challenge for therapeutic targeting of the immune-evasive TME. Fundamentally, the commonality of regulatory programmes aimed at abrogating T cell activity, along with paracrine signalling between cells of the TME, suggests that many normal cell types are hard-wired with latent functions that can be triggered to prevent inappropriate immune attack. This intrinsic capability is evidently co-opted throughout the TME, enabling tumours to evade immune destruction.
Collapse
Affiliation(s)
- Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| | - Olivier Michielin
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
| | - Mikael J Pittet
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva (UNIGE), Geneva, Switzerland
| |
Collapse
|
3
|
Srinivasan S, Armitage J, Nilsson J, Waithman J. Transcriptional rewiring in CD8 + T cells: implications for CAR-T cell therapy against solid tumours. Front Immunol 2024; 15:1412731. [PMID: 39399500 PMCID: PMC11466849 DOI: 10.3389/fimmu.2024.1412731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
T cells engineered to express chimeric-antigen receptors (CAR-T cells) can effectively control relapsed and refractory haematological malignancies in the clinic. However, the successes of CAR-T cell therapy have not been recapitulated in solid tumours due to a range of barriers such as immunosuppression, poor infiltration, and tumour heterogeneity. Numerous strategies are being developed to overcome these barriers, which include improving culture conditions and manufacturing protocols, implementing novel CAR designs, and novel approaches to engineering the T cell phenotype. In this review, we describe the various emerging strategies to improve CAR T cell therapy for solid tumours. We specifically focus on new strategies to modulate cell function and fate that have precipitated from the growing knowledge of transcriptional circuits driving T cell differentiation, with the ultimate goal of driving more productive anti-tumour T cell immunity. Evidence shows that enrichment of particular phenotypic subsets of T cells in the initial cell product correlates to improved therapeutic responses and clinical outcomes. Furthermore, T cell exhaustion and poor persistence are major factors limiting therapeutic efficacy. The latest preclinical work shows that targeting specific master regulators and transcription factors can overcome these key barriers, resulting in superior T cell therapeutic products. This can be achieved by targeting key transcriptional circuits promoting memory-like phenotypes or sustaining key effector functions within the hostile tumour microenvironment. Additional discussion points include emerging considerations for the field such as (i) targeting permutations of transcription factors, (ii) transient expression systems, (iii) tissue specificity, and (iv) expanding this strategy beyond CAR-T cell therapy and cancer.
Collapse
Affiliation(s)
- Shamini Srinivasan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jesse Armitage
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Jonas Nilsson
- Melanoma Discovery Lab, Harry Perkins Institute of Medical Research, Centre of Medical Research, The University of Western Australia, Perth, WA, Australia
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jason Waithman
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
4
|
Zhou Z, Zhang H, Du J, Yang J, Pan W, Zhang Q, Wang H, Tang P, Ba Y, Zhang H. A spatiotemporal comparative analysis on tumor immune microenvironment characteristics between neoadjuvant chemotherapy and preoperative immunotherapy for ESCC. Cell Death Dis 2024; 15:663. [PMID: 39256364 PMCID: PMC11387609 DOI: 10.1038/s41419-024-06986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/12/2024]
Abstract
The average five-year survival rate for esophageal cancer, a common malignant tumor of the digestive system, is barely 20%. The majority of esophageal squamous cell carcinoma (ESCC) patients had already progressed to a locally advanced or even advanced stage at initial diagnosis, making routine surgery ineffective. Chemotherapy and immunotherapy are important neoadjuvant treatments for ESCC, however, it remains unknown how treatment will affect the immunological microenvironment, especially at the spatial level. Here, we presented the TME characters of ESCC from the temporal and spatial dimensions using scRNA-seq and ST, investigated the changes of immune cell clusters in the TME under neoadjuvant chemotherapy and preoperative immunotherapy, and explored the potential mechanisms. It was found that compared with chemotherapy, immunotherapy combined with chemotherapy increased the level of T cell proliferation, partially restored the function of exhausted T cells, induced the expansion of specific exhausted CD8 T cells, increased the production of dendritic cells (DCs), and supported the immune hot microenvironment of the tumor. We also found that CD52 and ID3 have potential as biomarkers of ESCC. Particularly, CD52 may be served as a predictor of the efficacy to screen the advantaged population of different regimens. Through multiple pathways, CAF2 and CAF5's antigen-presenting role affected the other fibroblast clusters, resulting in malignant transformation. We analyzed the immune microenvironment differences between the two regimens to provide a more thorough description of the ESCC microenvironment profile and serve as a foundation for customized neoadjuvant treatment of ESCC.
Collapse
Affiliation(s)
- Zhengyang Zhou
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300202, China
| | - Hongdian Zhang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300202, China
| | - Jian Du
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300202, China
| | - Jiayu Yang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300202, China
| | - Wen Pan
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300202, China
| | - Qiumo Zhang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300202, China
| | - Huiya Wang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300202, China
| | - Peng Tang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300202, China.
| | - Yi Ba
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100032, China.
| | - Haiyang Zhang
- Tianjin Institute of Coloproctology, Department of Colorectal Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, 300121, China.
| |
Collapse
|
5
|
Ren J, Liu S, Zhang L. Inhibitor of differentiation 3 confers the robust anti-tumor activity of Kupffer cells. MedComm (Beijing) 2024; 5:e708. [PMID: 39220104 PMCID: PMC11364856 DOI: 10.1002/mco2.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Jiang Ren
- The First Affiliated Hospital, MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid TumorsInstitute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Sijia Liu
- International Biomed‐X Research Center, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Long Zhang
- The First Affiliated Hospital, MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid TumorsInstitute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang UniversityNanchangChina
- International Biomed‐X Research Center, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang UniversityHangzhouChina
| |
Collapse
|
6
|
Kong WS, Li JJ, Deng YQ, Ju HQ, Xu RH. Immunomodulatory molecules in colorectal cancer liver metastasis. Cancer Lett 2024; 598:217113. [PMID: 39009068 DOI: 10.1016/j.canlet.2024.217113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Colorectal cancer (CRC) ranks as the third most common cancer and the second leading cause of cancer-related deaths. According to clinical diagnosis and treatment, liver metastasis occurs in approximately 50 % of CRC patients, indicating a poor prognosis. The unique immune tolerance of the liver fosters an immunosuppressive tumor microenvironment (TME). In the context of tumors, numerous membrane and secreted proteins have been linked to tumor immune evasion as immunomodulatory molecules, but much remains unknown about how these proteins contribute to immune evasion in colorectal cancer liver metastasis (CRLM). This article reviews recently discovered membrane and secreted proteins with roles as both immunostimulatory and immunosuppressive molecules within the TME that influence immune evasion in CRC primary and metastatic lesions, particularly their mechanisms in promoting CRLM. This article also addresses screening strategies for identifying proteins involved in immune evasion in CRLM and provides insights into potential protein targets for treating CRLM.
Collapse
Affiliation(s)
- Wei-Shuai Kong
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China
| | - Jia-Jun Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yu-Qing Deng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China
| | - Huai-Qiang Ju
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China.
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Oda M, Yamamoto H, Kawakami T. Maintenance of homeostasis by TLR4 ligands. Front Immunol 2024; 15:1286270. [PMID: 38715610 PMCID: PMC11074394 DOI: 10.3389/fimmu.2024.1286270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/11/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy is renowned for its capacity to elicit anti-infective and anti-cancer effects by harnessing immune responses to microbial components and bolstering innate healing mechanisms through a cascade of immunological reactions. Specifically, mammalian Toll-like receptors (TLRs) have been identified as key receptors responsible for detecting microbial components. The discovery of these mammalian Toll-like receptors has clarified antigen recognition by the innate immune system. It has furnished a molecular foundation for comprehending the interplay between innate immunity and its anti-tumor or anti-infective capabilities. Moreover, accumulating evidence highlights the crucial role of TLRs in maintaining tissue homeostasis. It has also become evident that TLR-expressing macrophages play a central role in immunity by participating in the clearance of foreign substances, tissue repair, and the establishment of new tissue. This macrophage network, centered on macrophages, significantly contributes to innate healing. This review will primarily delve into innate immunity, specifically focusing on substances targeting TLR4.
Collapse
Affiliation(s)
- Masataka Oda
- Control of Innate Immunity, Technology Research Association, Takamatsu, Kagawa, Japan
| | - Hirofumi Yamamoto
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Takashige Kawakami
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| |
Collapse
|
8
|
Crunkhorn S. Making macrophages with anti-tumour activity. Nat Rev Drug Discov 2024; 23:253. [PMID: 38448670 DOI: 10.1038/d41573-024-00045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
|
9
|
Goubet AG, Pittet MJ. Unveiling the antitumor function of ID3 in liver macrophages. Nat Immunol 2024; 25:394-395. [PMID: 38429457 DOI: 10.1038/s41590-024-01761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Affiliation(s)
- Anne-Gaëlle Goubet
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- AGORA Cancer Research Center, Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Mikaël J Pittet
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.
- AGORA Cancer Research Center, Swiss Cancer Center Leman, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland.
| |
Collapse
|