1
|
Huang C, Wang L, Zhuo C, Chen W, Fan H, Hong Y, Zhang Y, Zhou D, Lin W, Zhang L, Zhao J, Chen S, Yu C, Ye Y. ID3 enhances PD-L1 expression by restructuring MYC to promote colorectal cancer immune evasion. Proc Natl Acad Sci U S A 2025; 122:e2423490122. [PMID: 40208940 DOI: 10.1073/pnas.2423490122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/12/2025] [Indexed: 04/12/2025] Open
Abstract
The inhibitor of DNA binding protein ID3 has been associated with the progression of colorectal cancer (CRC). Despite its significance, its specific role in the immune evasion strategies utilized by CRC remains unclear. RNA-seq analysis revealed that ID3 was positively associated with the PD-L1 immune checkpoint. We further demonstrated that tumor cell-expressed ID3 enhanced PD-L1 expression, suppressed the infiltration and activation of CD8+ T cells, and facilitated the immune evasion of CRC cells. Additionally, we found that knockdown of ID3 significantly enhanced the effectiveness of PD-L1 antibody blockade treatment in combating CRC, reduced the upregulation of PD-L1 induced by the antibody, and altered the immune microenvironment within CRC. Mechanistically, ID3 interacted with the transcription factor MYC and reconstructed the four-dimensional structure of MYC, thereby enhancing its binding affinity to the PD-L1 promoter and augmenting PD-L1 transcriptional activity. By integrating analysis of ChIP-seq, RNA-seq, and ImmPort gene sets, we found that ID3's DNA-assisted binding function was widespread and could either enhance or suppress gene transcription, not only affecting tumor immune escape through immune checkpoints but also regulating various cytokines and immune cells involved in tumor immunity. In conclusion, our study uncovers a mechanism by which ID3 promotes immune evasion in CRC and implicates that targeting ID3 may improve the efficacy of anti-PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Chuanzhong Huang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou 350014, People's Republic of China
| | - Ling Wang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Changhua Zhuo
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Wenxin Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Hongmei Fan
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Yilin Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Yu Zhang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
| | - Dongmei Zhou
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Wansong Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Lingyu Zhang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Jingjing Zhao
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
| | - Shuping Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Yunbin Ye
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou 350014, People's Republic of China
| |
Collapse
|
2
|
Qin S, Hu Y, Luo H, Chu W, Deng R, Ma J. Metal ions and nanomaterials for targeted bone cancer immunotherapy. Front Immunol 2025; 16:1513834. [PMID: 40165969 PMCID: PMC11955472 DOI: 10.3389/fimmu.2025.1513834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Bone cancer remains a significant challenge in oncology, with limited success in current therapeutic approaches, particularly immunotherapy. Emerging research highlights the potential of integrating metal ions and nanomaterials for targeted immunotherapy in bone cancer. Metal ions, including calcium, magnesium, and zinc, play a significant role in modulating immune responses within the tumor microenvironment, affecting essential pathways necessary for immune activation. Meanwhile, nanomaterials, particularly metallic nanoparticles, offer precise drug delivery and immune system modulation, improving the efficacy of immunotherapeutic agents. This review explores the synergistic effects of metal ion-nanomaterial conjugates, discussing their role in enhancing immune cell activation, particularly T-cells and macrophages, and their potential for controlled drug release. We highlight preclinical advancements in bone cancer treatment using metal ion-responsive nanoparticles, and address current challenges such as biocompatibility and toxicity. Finally, we discuss the future prospects of these technologies in personalized and precision medicine, aiming to revolutionize bone cancer immunotherapy.
Collapse
Affiliation(s)
- Sen Qin
- Department of Orthopedics, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| | - YaoFeng Hu
- Department of Neurological Care Unit, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| | - HuaSong Luo
- Department of Orthopedics, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| | - Wei Chu
- Department of Orthopedics, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| | - RuCui Deng
- Department of Neurological Care Unit, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| | - JinLiang Ma
- Department of Orthopedics, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| |
Collapse
|
3
|
Huang HY, Zheng XN, Tian L. Vascular-Associated Mononuclear Phagocytes: First-Line Soldiers Ambushing Metastasis. Bioessays 2025; 47:e202400261. [PMID: 39988942 DOI: 10.1002/bies.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 02/25/2025]
Abstract
Mononuclear phagocytes (MPs), which consist of dendritic cells, monocytes, and macrophages, are distributed throughout the body and actively eliminate invading microorganisms and abnormal cells. Depending on the local microenvironment, MPs manifest considerably various lifespans and phenotypes to maintain tissue homeostasis. Vascular-associated mononuclear phagocytes (VaMPs) are the special subsets of MPs that are localized either within the lumen side or on the apical surface of vessels, acting as the critical sentinels to recognize and defend against disseminated tumor cells. In this review, we introduce three major types of VaMPs, patrolling monocytes, Kupffer cells, and perivascular macrophages, and discuss their emerging roles in immunosurveillance during incipient metastasis. We also explore the roles of lineage-determining transcription factors and cell surface receptors that endow VaMPs with potent anti-tumor activity. Finally, we highlight the molecular and cellular mechanisms that drive the phenotypic plasticity of VaMPs and summarize combinatory strategies for targeting VaMPs in overt metastasis.
Collapse
Affiliation(s)
- Han-Ying Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xin-Nan Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Lin Tian
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| |
Collapse
|
4
|
Toghraie FS, Bayat M, Hosseini MS, Ramezani A. Tumor-infiltrating myeloid cells; mechanisms, functional significance, and targeting in cancer therapy. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01051-y. [PMID: 39998754 DOI: 10.1007/s13402-025-01051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor-infiltrating myeloid cells (TIMs), which encompass tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), and tumor-associated dendritic cells (TADCs), are of great importance in tumor microenvironment (TME) and are integral to both pro- and anti-tumor immunity. Nevertheless, the phenotypic heterogeneity and functional plasticity of TIMs have posed challenges in fully understanding their complexity roles within the TME. Emerging evidence suggested that the presence of TIMs is frequently linked to prevention of cancer treatment and improvement of patient outcomes and survival. Given their pivotal function in the TME, TIMs have recently been recognized as critical targets for therapeutic approaches aimed at augmenting immunostimulatory myeloid cell populations while depleting or modifying those that are immunosuppressive. This review will explore the important properties of TIMs related to immunity, angiogenesis, and metastasis. We will also document the latest therapeutic strategies targeting TIMs in preclinical and clinical settings. Our objective is to illustrate the potential of TIMs as immunological targets that may improve the outcomes of existing cancer treatments.
Collapse
Affiliation(s)
- Fatemeh Sadat Toghraie
- Institute of Biotechnology, Faculty of the Environment and Natural Sciences, Brandenburg University of Technology, Cottbus, Germany
| | - Maryam Bayat
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sadat Hosseini
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Zhu J, Liu L, Wu J, Bai L. Rodent models for dry eye syndrome (DES). Cont Lens Anterior Eye 2025:102383. [PMID: 39956692 DOI: 10.1016/j.clae.2025.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
Dry eye syndrome (DES) is a range of ophthalmic conditions characterized by compromised tear film homeostasis, resulting from various pathological factors and primarily manifesting as ocular discomfort and impaired ocular surface integrity. With the rise in screen time due to modern lifestyles, the prevalence of DES is increasing annually, posing a significant global public health challenge. Pathophysiologically, DES involves damage to the lacrimal functional unit (LFU), including the lacrimal glands, meibomian glands, and corneoconjunctival epithelium, highlighting its multifactorial etiology. Current treatments mainly focus on artificial tears for moisture replacement and anti-inflammatory therapies, but both are limited. Consequently, animal models are crucial for understanding the complex pathological mechanisms of DES and identifying potential therapeutic agents. Rodent eyes, with their structural and physiological similarities to human eyes and cost-effectiveness, have become widely used in DES research. This manuscript reviews the current understanding of DES pathogenesis and rodent models, discussing their strengths, weaknesses, and relevant genetic models. The aim is to furnish critical insights and provide a scholarly resource to propel future investigative endeavors into the pathogenesis of and therapy for DES.
Collapse
Affiliation(s)
- Jingyun Zhu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liu Liu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Wu
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lang Bai
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Hanahan D, Michielin O, Pittet MJ. Convergent inducers and effectors of T cell paralysis in the tumour microenvironment. Nat Rev Cancer 2025; 25:41-58. [PMID: 39448877 DOI: 10.1038/s41568-024-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Tumorigenesis embodies the formation of a heterotypic tumour microenvironment (TME) that, among its many functions, enables the evasion of T cell-mediated immune responses. Remarkably, most TME cell types, including cancer cells, fibroblasts, myeloid cells, vascular endothelial cells and pericytes, can be stimulated to deploy immunoregulatory programmes. These programmes involve regulatory inducers (signals-in) and functional effectors (signals-out) that impair CD8+ and CD4+ T cell activity through cytokines, growth factors, immune checkpoints and metabolites. Some signals target specific cell types, whereas others, such as transforming growth factor-β (TGFβ) and prostaglandin E2 (PGE2), exert broad, pleiotropic effects; as signals-in, they trigger immunosuppressive programmes in most TME cell types, and as signals-out, they directly inhibit T cells and also modulate other cells to reinforce immunosuppression. This functional diversity and redundancy pose a challenge for therapeutic targeting of the immune-evasive TME. Fundamentally, the commonality of regulatory programmes aimed at abrogating T cell activity, along with paracrine signalling between cells of the TME, suggests that many normal cell types are hard-wired with latent functions that can be triggered to prevent inappropriate immune attack. This intrinsic capability is evidently co-opted throughout the TME, enabling tumours to evade immune destruction.
Collapse
Affiliation(s)
- Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| | - Olivier Michielin
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
| | - Mikael J Pittet
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva (UNIGE), Geneva, Switzerland
| |
Collapse
|
8
|
He Y, Wang J, Deng Z, Feng H, Du M, Zhang D, Zhang G, Shi T, Chen W. FOLR2 + macrophage depletion from intestinal metaplasia to early gastric cancer: single-cell sequencing insight into gastric cancer progression. J Exp Clin Cancer Res 2024; 43:326. [PMID: 39702278 DOI: 10.1186/s13046-024-03245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The immune landscape associated with different subtypes of intestinal metaplasia (IM) and early gastric cancer (EGC) remains unclear. This study aimed to investigate the immune landscape of complete intestinal metaplasia (CIM), incomplete intestinal metaplasia (IIM), and EGC, as well as the underlying mechanisms of EGC progression. METHODS Gastric biopsy samples were collected from five patients with CIM, six patients with IIM, and four patients with EGC, followed by single-cell RNA sequencing. Multiplex immunohistochemical staining was employed to validate the samples from the aforementioned patients. To elucidate the potential mechanisms involved, in vitro coculture experiments were conducted using FOLR2+/FOLR2- macrophages and CD8+ T cells. Flow cytometry was utilized to investigate the biological functions of FOLR2+ macrophages in the progression of EGC. RESULTS Five subpopulations of macrophages were identified in CIM, IIM and EGC samples. FOLR2+ macrophages possess antitumor immune potential, and the proportion of FOLR2+ macrophage gradually decreased from the CIM stage to the IIM and EGC stages. FOLR2+ macrophages were significantly positively correlated with CD8+ T cells and activated the cytotoxicity of CD8+ T cells via antigen cross-presentation. Additionally, during the progression of EGC, epithelial cells progressively upregulated APP expression, thus inducing necroptosis of FOLR2+ macrophages via the APP‒TNFRSF21 axis. CONCLUSIONS Our work provides an understanding of the potential mechanisms underlying the malignant transformation of IM mediated by FOLR2+ macrophages.
Collapse
Affiliation(s)
- Yuxin He
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Zilin Deng
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Huang Feng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Mingzhan Du
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Deqing Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Guangbo Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 178 East Ganjiang Road, Suzhou, 215000, China.
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Zheng H, Yang X, Huang N, Yuan S, Li J, Liu X, Jiang Q, Wu S, Ju Y, Kleeff J, Yin X, Liao Q, Liu Q, Zhao Y. Chimeric antigen receptor macrophages targeting c-MET(CAR-M-c-MET) inhibit pancreatic cancer progression and improve cytotoxic chemotherapeutic efficacy. Mol Cancer 2024; 23:270. [PMID: 39643883 PMCID: PMC11622543 DOI: 10.1186/s12943-024-02184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors. Macrophages are abundant in the tumor microenvironment, making them an attractive target for therapeutic intervention. While current immunotherapies, including immune checkpoint inhibition (ICI) and chimeric antigen receptor T (CAR-T) cells, have shown limited efficacy in pancreatic cancer, a novel approach involving chimeric antigen receptor macrophages (CAR-M) has, although promising, not been explored in pancreatic cancer. In this study, we first investigated the role of CAR-M cells targeting c-MET in pancreatic cancer. METHODS The effectiveness and rationality of c-MET as a target for CAR-M in pancreatic cancer were validated through bioinformatic analyses and immunohistochemical staining of samples from pancreatic cancer patients. We utilized flow cytometry and bioluminescence detection methods to demonstrate the specific binding and phagocytic killing effect of CAR-M on pancreatic cancer cells. Additionally, we observed the process of CAR-M engulfing pancreatic cancer cells using confocal microscopy and a long-term fluorescence live cell imaging system. In an in situ tumor model transplanted into NOD/SCID mice, we administered intraperitoneal injections of CAR-M to confirm its inhibitory function on pancreatic cancer. Furthermore, we validated these findings in human monocyte-derived macrophages (hMDM). RESULTS Bioinformatics and tumor tissue microarray analyses revealed significantly higher expression levels of c-MET in tumor tissues, compared to the paired peritumoral tissues, and higher c-MET expression correlated with worse patient survival. CAR-M cells were engineered using human monocytic THP-1 cell line and hMDM targeting c-MET (CAR-M-c-MET). The CAR-M-c-MET cells demonstrated highly specific binding to pancreatic cancer cells and exhibited more phagocytosis and killing abilities than the pro-inflammatory polarized control macrophages. In addition, CAR-M-c-MET cells synergized with various cytotoxic chemotherapeutic drugs. In a NOD/SCID murine model, intraperitoneally injected CAR-M-c-MET cells rapidly migrated to tumor tissue and substantially inhibited tumor growth, which did not lead to obvious side effects. Cytokine arrays and mRNA sequencing showed that CAR-M-c-MET produced higher levels of immune activators than control macrophages. CONCLUSIONS This study provides compelling evidence for the safety and efficacy of CAR-M therapy in treating pancreatic cancer. The results demonstrate that CAR-M-c-MET significantly suppresses pancreatic cancer progression and enhances the effectiveness of cytotoxic chemotherapy. Remarkably, no discernible side effects occur. Further clinical trials are warranted in human pancreatic cancer patients.
Collapse
Affiliation(s)
- Huaijin Zheng
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Dongcheng District, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Beijing, 100730, China
| | - Xinzhe Yang
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Nan Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Dongcheng District, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Beijing, 100730, China
| | - Shangqin Yuan
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Dongcheng District, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Beijing, 100730, China
| | - Jiayi Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Dongcheng District, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Beijing, 100730, China
| | - Xudong Liu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Dongcheng District, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Beijing, 100730, China
| | - Qing Jiang
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Shanshan Wu
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Yue Ju
- Roc Rock Biotechnology (Shenzhen), Shenzhen, 518118, China
| | - Jorg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Xiushan Yin
- Applied Biology Laboratory, College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China.
- Roc Rock Biotechnology (Shenzhen), Shenzhen, 518118, China.
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Dongcheng District, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Beijing, 100730, China.
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Dongcheng District, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Dongcheng District, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No.1 Shuai Fu Yuan, Beijing, 100730, China.
| |
Collapse
|
10
|
Huang HY, Chen YZ, Zhao C, Zheng XN, Yu K, Yue JX, Ju HQ, Shi YX, Tian L. Alternations in inflammatory macrophage niche drive phenotypic and functional plasticity of Kupffer cells. Nat Commun 2024; 15:9337. [PMID: 39472435 PMCID: PMC11522483 DOI: 10.1038/s41467-024-53659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Inflammatory signals lead to recruitment of circulating monocytes and induce their differentiation into pro-inflammatory macrophages. Therefore, whether blocking inflammatory monocytes can mitigate disease progression is being actively evaluated. Here, we employ multiple lineage-tracing models and show that monocyte-derived macrophages (mo-mac) are the major population of immunosuppressive, liver metastasis-associated macrophages (LMAM), while the proportion of Kupffer cells (KC) as liver-resident macrophages is diminished in metastatic nodules. Paradoxically, genetic ablation of mo-macs results in only a marginal decrease in LMAMs. Using a proliferation-recording system and a KC-tracing model in a monocyte-deficient background, we find that LMAMs can be replenished either via increased local macrophage proliferation or by promoting KC infiltration. In the latter regard, KCs undergo transient proliferation and exhibit substantial phenotypic and functional alterations through epigenetic reprogramming following the vacating of macrophage niches by monocyte depletion. Our data thus suggest that a simultaneous blockade of monocyte recruitment and macrophage proliferation may effectively target immunosuppressive myelopoiesis and reprogram the microenvironment towards an immunostimulatory state.
Collapse
Affiliation(s)
- Han-Ying Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan-Zhou Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Chuang Zhao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xin-Nan Zheng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Kai Yu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Huai-Qiang Ju
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan-Xia Shi
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Lin Tian
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
11
|
Srinivasan S, Armitage J, Nilsson J, Waithman J. Transcriptional rewiring in CD8 + T cells: implications for CAR-T cell therapy against solid tumours. Front Immunol 2024; 15:1412731. [PMID: 39399500 PMCID: PMC11466849 DOI: 10.3389/fimmu.2024.1412731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
T cells engineered to express chimeric-antigen receptors (CAR-T cells) can effectively control relapsed and refractory haematological malignancies in the clinic. However, the successes of CAR-T cell therapy have not been recapitulated in solid tumours due to a range of barriers such as immunosuppression, poor infiltration, and tumour heterogeneity. Numerous strategies are being developed to overcome these barriers, which include improving culture conditions and manufacturing protocols, implementing novel CAR designs, and novel approaches to engineering the T cell phenotype. In this review, we describe the various emerging strategies to improve CAR T cell therapy for solid tumours. We specifically focus on new strategies to modulate cell function and fate that have precipitated from the growing knowledge of transcriptional circuits driving T cell differentiation, with the ultimate goal of driving more productive anti-tumour T cell immunity. Evidence shows that enrichment of particular phenotypic subsets of T cells in the initial cell product correlates to improved therapeutic responses and clinical outcomes. Furthermore, T cell exhaustion and poor persistence are major factors limiting therapeutic efficacy. The latest preclinical work shows that targeting specific master regulators and transcription factors can overcome these key barriers, resulting in superior T cell therapeutic products. This can be achieved by targeting key transcriptional circuits promoting memory-like phenotypes or sustaining key effector functions within the hostile tumour microenvironment. Additional discussion points include emerging considerations for the field such as (i) targeting permutations of transcription factors, (ii) transient expression systems, (iii) tissue specificity, and (iv) expanding this strategy beyond CAR-T cell therapy and cancer.
Collapse
Affiliation(s)
- Shamini Srinivasan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jesse Armitage
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Jonas Nilsson
- Melanoma Discovery Lab, Harry Perkins Institute of Medical Research, Centre of Medical Research, The University of Western Australia, Perth, WA, Australia
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jason Waithman
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
12
|
Zhou Z, Zhang H, Du J, Yang J, Pan W, Zhang Q, Wang H, Tang P, Ba Y, Zhang H. A spatiotemporal comparative analysis on tumor immune microenvironment characteristics between neoadjuvant chemotherapy and preoperative immunotherapy for ESCC. Cell Death Dis 2024; 15:663. [PMID: 39256364 PMCID: PMC11387609 DOI: 10.1038/s41419-024-06986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/12/2024]
Abstract
The average five-year survival rate for esophageal cancer, a common malignant tumor of the digestive system, is barely 20%. The majority of esophageal squamous cell carcinoma (ESCC) patients had already progressed to a locally advanced or even advanced stage at initial diagnosis, making routine surgery ineffective. Chemotherapy and immunotherapy are important neoadjuvant treatments for ESCC, however, it remains unknown how treatment will affect the immunological microenvironment, especially at the spatial level. Here, we presented the TME characters of ESCC from the temporal and spatial dimensions using scRNA-seq and ST, investigated the changes of immune cell clusters in the TME under neoadjuvant chemotherapy and preoperative immunotherapy, and explored the potential mechanisms. It was found that compared with chemotherapy, immunotherapy combined with chemotherapy increased the level of T cell proliferation, partially restored the function of exhausted T cells, induced the expansion of specific exhausted CD8 T cells, increased the production of dendritic cells (DCs), and supported the immune hot microenvironment of the tumor. We also found that CD52 and ID3 have potential as biomarkers of ESCC. Particularly, CD52 may be served as a predictor of the efficacy to screen the advantaged population of different regimens. Through multiple pathways, CAF2 and CAF5's antigen-presenting role affected the other fibroblast clusters, resulting in malignant transformation. We analyzed the immune microenvironment differences between the two regimens to provide a more thorough description of the ESCC microenvironment profile and serve as a foundation for customized neoadjuvant treatment of ESCC.
Collapse
Affiliation(s)
- Zhengyang Zhou
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300202, China
| | - Hongdian Zhang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300202, China
| | - Jian Du
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300202, China
| | - Jiayu Yang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300202, China
| | - Wen Pan
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300202, China
| | - Qiumo Zhang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300202, China
| | - Huiya Wang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300202, China
| | - Peng Tang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300202, China.
| | - Yi Ba
- Department of Medical Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuai Fu Yuan, Dongcheng District, Beijing, 100032, China.
| | - Haiyang Zhang
- Tianjin Institute of Coloproctology, Department of Colorectal Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, 300121, China.
| |
Collapse
|
13
|
Ren J, Liu S, Zhang L. Inhibitor of differentiation 3 confers the robust anti-tumor activity of Kupffer cells. MedComm (Beijing) 2024; 5:e708. [PMID: 39220104 PMCID: PMC11364856 DOI: 10.1002/mco2.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Jiang Ren
- The First Affiliated Hospital, MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid TumorsInstitute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang UniversityNanchangChina
| | - Sijia Liu
- International Biomed‐X Research Center, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Long Zhang
- The First Affiliated Hospital, MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid TumorsInstitute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang UniversityNanchangChina
- International Biomed‐X Research Center, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang UniversityHangzhouChina
| |
Collapse
|
14
|
Kong WS, Li JJ, Deng YQ, Ju HQ, Xu RH. Immunomodulatory molecules in colorectal cancer liver metastasis. Cancer Lett 2024; 598:217113. [PMID: 39009068 DOI: 10.1016/j.canlet.2024.217113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Colorectal cancer (CRC) ranks as the third most common cancer and the second leading cause of cancer-related deaths. According to clinical diagnosis and treatment, liver metastasis occurs in approximately 50 % of CRC patients, indicating a poor prognosis. The unique immune tolerance of the liver fosters an immunosuppressive tumor microenvironment (TME). In the context of tumors, numerous membrane and secreted proteins have been linked to tumor immune evasion as immunomodulatory molecules, but much remains unknown about how these proteins contribute to immune evasion in colorectal cancer liver metastasis (CRLM). This article reviews recently discovered membrane and secreted proteins with roles as both immunostimulatory and immunosuppressive molecules within the TME that influence immune evasion in CRC primary and metastatic lesions, particularly their mechanisms in promoting CRLM. This article also addresses screening strategies for identifying proteins involved in immune evasion in CRLM and provides insights into potential protein targets for treating CRLM.
Collapse
Affiliation(s)
- Wei-Shuai Kong
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China
| | - Jia-Jun Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yu-Qing Deng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China
| | - Huai-Qiang Ju
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China.
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China.
| |
Collapse
|
15
|
Dosch AR, Martos MP, Singh S, Kodia K, Merchant NB, Nagathihalli NS. The Role of Myeloid Cells on the Development of Hepatic Metastases in Gastrointestinal Cancer. GASTRO HEP ADVANCES 2024; 4:100538. [PMID: 39790246 PMCID: PMC11714404 DOI: 10.1016/j.gastha.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/19/2024] [Indexed: 01/12/2025]
Abstract
The development of hepatic metastases is the leading cause of mortality in gastrointestinal (GI) cancers and substantial research efforts have been focused on elucidating the intricate mechanisms by which tumor cells successfully migrate to, invade, and ultimately colonize the liver parenchyma. Recent evidence has shown that perturbations in myeloid biology occur early in cancer development, characterized by the initial expansion of specific innate immune populations that promote tumor growth and facilitate metastases. This review summarizes the pathophysiology underlying the proliferation of myeloid cells that occurs with incipient neoplasia and explores the role of innate immune-host interactions, specifically granulocytes and neutrophil extracellular traps, in promoting hepatic colonization by tumor cells through the formation of the "premetastatic niche". We further summarize the role of additional myeloid subpopulations such as monocytes and macrophages, dendritic cells, platelets, and eosinophils on promoting disease metastases in GI cancers. Lastly, we describe burgeoning therapeutic approaches aimed at targeting specific myeloid populations to reduce liver metastases and highlight the inherent challenges that exist in studying the efficacy of these treatments in preclinical models. As the inception and outgrowth of liver metastases are primary drivers of prognosis in GI malignancies; further research into the complex mechanisms involved in this critical process is urgently needed.
Collapse
Affiliation(s)
- Austin R. Dosch
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Mary P. Martos
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Samara Singh
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Karishma Kodia
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Nipun B. Merchant
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Nagaraj S. Nagathihalli
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| |
Collapse
|
16
|
Oda M, Yamamoto H, Kawakami T. Maintenance of homeostasis by TLR4 ligands. Front Immunol 2024; 15:1286270. [PMID: 38715610 PMCID: PMC11074394 DOI: 10.3389/fimmu.2024.1286270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/11/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy is renowned for its capacity to elicit anti-infective and anti-cancer effects by harnessing immune responses to microbial components and bolstering innate healing mechanisms through a cascade of immunological reactions. Specifically, mammalian Toll-like receptors (TLRs) have been identified as key receptors responsible for detecting microbial components. The discovery of these mammalian Toll-like receptors has clarified antigen recognition by the innate immune system. It has furnished a molecular foundation for comprehending the interplay between innate immunity and its anti-tumor or anti-infective capabilities. Moreover, accumulating evidence highlights the crucial role of TLRs in maintaining tissue homeostasis. It has also become evident that TLR-expressing macrophages play a central role in immunity by participating in the clearance of foreign substances, tissue repair, and the establishment of new tissue. This macrophage network, centered on macrophages, significantly contributes to innate healing. This review will primarily delve into innate immunity, specifically focusing on substances targeting TLR4.
Collapse
Affiliation(s)
- Masataka Oda
- Control of Innate Immunity, Technology Research Association, Takamatsu, Kagawa, Japan
| | - Hirofumi Yamamoto
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Takashige Kawakami
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| |
Collapse
|
17
|
Crunkhorn S. Making macrophages with anti-tumour activity. Nat Rev Drug Discov 2024; 23:253. [PMID: 38448670 DOI: 10.1038/d41573-024-00045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
|
18
|
Goubet AG, Pittet MJ. Unveiling the antitumor function of ID3 in liver macrophages. Nat Immunol 2024; 25:394-395. [PMID: 38429457 DOI: 10.1038/s41590-024-01761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Affiliation(s)
- Anne-Gaëlle Goubet
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- AGORA Cancer Research Center, Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Mikaël J Pittet
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.
- AGORA Cancer Research Center, Swiss Cancer Center Leman, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland.
| |
Collapse
|