1
|
Xu W, Zhang S, Qin H, Yao K. From bench to bedside: cutting-edge applications of base editing and prime editing in precision medicine. J Transl Med 2024; 22:1133. [PMID: 39707395 DOI: 10.1186/s12967-024-05957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024] Open
Abstract
CRISPR-based gene editing technology theoretically allows for precise manipulation of any genetic target within living cells, achieving the desired sequence modifications. This revolutionary advancement has fundamentally transformed the field of biomedicine, offering immense clinical potential for treating and correcting genetic disorders. In the treatment of most genetic diseases, precise genome editing that avoids the generation of mixed editing byproducts is considered the ideal approach. This article reviews the current progress of base editors and prime editors, elaborating on specific examples of their applications in the therapeutic field, and highlights opportunities for improvement. Furthermore, we discuss the specific performance of these technologies in terms of safety and efficacy in clinical applications, and analyze the latest advancements and potential directions that could influence the future development of genome editing technologies. Our goal is to outline the clinical relevance of this rapidly evolving scientific field and preview a roadmap for successful DNA base editing therapies for the treatment of hereditary or idiopathic diseases.
Collapse
Affiliation(s)
- Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shiyao Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
2
|
Jiang C, Li Y, Wang R, Sun X, Zhang Y, Zhang Q. Development and optimization of base editors and its application in crops. Biochem Biophys Res Commun 2024; 739:150942. [PMID: 39547118 DOI: 10.1016/j.bbrc.2024.150942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Genome editing technologies hold significant potential for targeted mutagenesis in crop development, aligning with evolving agricultural needs. Point mutations, or single nucleotide polymorphisms (SNPs), define key agronomic traits in various crop species and play a pivotal role. The implementation of single nucleotide variations through genome editing-based base editing offers substantial promise in expediting crop improvement by inducing advantageous trait variations. Among many genome editing techniques, base editing stands out as an advanced next-generation technology, evolved from the CRISPR/Cas9 system.Base editing, a recent advancement in genome editing, enables precise DNA modification without the risks associated with double-strand breaks. Base editors, designed as precise genome editing tools, enable the direct and irreversible conversion of specific target bases. Base editors consist of catalytically active CRISPR-Cas9 domains, including Cas9 variants, fused with domains like cytidine deaminase, adenine deaminase, or reverse transcriptase. These fusion proteins enable the introduction of specific point mutations in target genomic regions. Currently developed are cytidine base editors (CBEs), mutating C to T; adenine base editors (ABEs), changing A to G; and prime editors (PEs), enabling arbitrary base conversions, precise insertions, and deletions. In this review, the research, development, and progress of various base editing systems, along with their potential applications in crop improvement, were intended to be summarized. The limitations of this technology will also be discussed. Finally, an outlook on the future of base editors will be provided.
Collapse
Affiliation(s)
- Chuandong Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, China
| | - Ran Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiao Sun
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| | - Qiang Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
3
|
Kong X, Li T, Yang H. AAV-mediated gene therapies by miniature gene editing tools. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2540-2553. [PMID: 39388062 DOI: 10.1007/s11427-023-2608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 10/15/2024]
Abstract
The advent of CRISPR-Cas has revolutionized precise gene editing. While pioneering CRISPR nucleases like Cas9 and Cas12 generate targeted DNA double-strand breaks (DSB) for knockout or homology-directed repair, next generation CRISPR technologies enable gene editing without DNA DSB. Base editors directly convert bases, prime editors make diverse alterations, and dead Cas-regulator fusions allow nuanced control of gene expression, avoiding potentially risks like translocations. Meanwhile, the discovery of diminutive Cas12 orthologs and Obligate Mobile Element-Guided Activity (OMEGA) nucleases has overcome cargo limitations of adeno-associated viral vectors, expanding prospects for in vivo therapeutic delivery. Here, we review the ever-evolving landscape of cutting-edge gene editing tools, focusing on miniature Cas12 orthologs and OMEGA effectors amenable to single AAV packaging. We also summarize CRISPR therapies delivered using AAV vectors, discuss challenges such as efficiency and specificity, and look to the future of this transformative field of in vivo gene editing enabled by AAV vectors delivery.
Collapse
Affiliation(s)
- Xiangfeng Kong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Tong Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Hui Yang
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China.
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China.
| |
Collapse
|
4
|
Kim-Yip RP, McNulty R, Joyce B, Mollica A, Chen PJ, Ravisankar P, Law BK, Liu DR, Toettcher JE, Ivakine EA, Posfai E, Adamson B. Efficient prime editing in two-cell mouse embryos using PEmbryo. Nat Biotechnol 2024; 42:1822-1830. [PMID: 38321114 PMCID: PMC11631759 DOI: 10.1038/s41587-023-02106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/14/2023] [Indexed: 02/08/2024]
Abstract
Using transient inhibition of DNA mismatch repair during a permissive stage of development, we demonstrate highly efficient prime editing of mouse embryos with few unwanted, local byproducts (average 58% precise edit frequency, 0.5% on-target error frequency across 13 substitution edits at 8 sites), enabling same-generation phenotyping of founders. Whole-genome sequencing reveals that mismatch repair inhibition increases off-target indels at low-complexity regions in the genome without any obvious phenotype in mice.
Collapse
Affiliation(s)
- Rebecca P Kim-Yip
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ryan McNulty
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Antonio Mollica
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Peter J Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Prime Medicine, Inc., Cambridge, MA, USA
| | - Purnima Ravisankar
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Benjamin K Law
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Evgueni A Ivakine
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Britt Adamson
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
5
|
Yin S, Gao L, Sun X, Zhang M, Gao H, Chen X, Zhang D, Ming X, Yang L, Hu Y, Chen X, Liu M, Zhan X, Guan Y, Wang L, Han L, Zhu P, Li D. Amelioration of metabolic and behavioral defects through base editing in the Pah R408W phenylketonuria mouse model. Mol Ther 2024:S1525-0016(24)00759-7. [PMID: 39600089 DOI: 10.1016/j.ymthe.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/16/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Phenylketonuria (PKU) is a liver metabolic disorder mainly caused by a deficiency of the hepatic phenylalanine hydroxylase (PAH) enzyme activity, often leading to severe brain function impairment in patients if untreated or if treatment is delayed. In this study, we utilized dual-AAV8 vectors to deliver a near PAM-less adenine base editor variant, known as ABE8e-SpRY, to treat the PahR408W PKU mouse model carrying a frequent R408W mutation in the Pah gene. Our findings revealed that a single intravenous injection in adult mice and a single intraperitoneal injection in neonatal mice resulted in 19.1%-34.6% A-to-G editing efficiency at the pathogenic mutation site with minimal bystander edits. Furthermore, the dual-AAV8-treated mice exhibited reduced blood Phe levels to below the therapeutic threshold of 360 μmol L-1 and restored weight and fur color to normal levels. Importantly, the brain function of the mice was restored after the treatment, particularly when administered during the neonatal stage, as levels of monoamine neurotransmitters and metabolites in the brain returned to normal and near-normal levels. Our study demonstrated that ABE8e-SpRY-based base editing could effectively correct the point mutation in the PahR408W PKU mouse model, indicating potential clinical applications for PKU and other genetic diseases.
Collapse
Affiliation(s)
- Shuming Yin
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510100, China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liangcai Gao
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaoyue Sun
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mei Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hongyi Gao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaoqing Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xinyu Ming
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Yang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yaqiang Hu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xi Chen
- BRL Medicine, Inc., Shanghai 200241, China
| | - Meizhen Liu
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xia Zhan
- Department of Pediatric Endocrinology and Genetics Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetics Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510100, China; Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong 510080, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
6
|
Askary A, Chen W, Choi J, Du LY, Elowitz MB, Gagnon JA, Schier AF, Seidel S, Shendure J, Stadler T, Tran M. The lives of cells, recorded. Nat Rev Genet 2024:10.1038/s41576-024-00788-w. [PMID: 39587306 DOI: 10.1038/s41576-024-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/27/2024]
Abstract
A paradigm for biology is emerging in which cells can be genetically programmed to write their histories into their own genomes. These records can subsequently be read, and the cellular histories reconstructed, which for each cell could include a record of its lineage relationships, extrinsic influences, internal states and physical locations, over time. DNA recording has the potential to transform the way that we study developmental and disease processes. Recent advances in genome engineering are driving the development of systems for DNA recording, and meanwhile single-cell and spatial omics technologies increasingly enable the recovery of the recorded information. Combined with advances in computational and phylogenetic inference algorithms, the DNA recording paradigm is beginning to bear fruit. In this Perspective, we explore the rationale and technical basis of DNA recording, what aspects of cellular biology might be recorded and how, and the types of discovery that we anticipate this paradigm will enable.
Collapse
Affiliation(s)
- Amjad Askary
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Wei Chen
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Junhong Choi
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucia Y Du
- Biozentrum, University of Basel, Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Michael B Elowitz
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
| | - James A Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Alexander F Schier
- Biozentrum, University of Basel, Basel, Switzerland.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| | - Sophie Seidel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Martin Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
7
|
Cirincione A, Simpson D, Yan W, McNulty R, Ravisankar P, Solley SC, Yan J, Lim F, Farley EK, Singh M, Adamson B. A benchmarked, high-efficiency prime editing platform for multiplexed dropout screening. Nat Methods 2024:10.1038/s41592-024-02502-4. [PMID: 39562753 DOI: 10.1038/s41592-024-02502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/11/2024] [Indexed: 11/21/2024]
Abstract
Prime editing installs precise edits into the genome with minimal unwanted byproducts, but low and variable editing efficiencies have complicated application of the approach to high-throughput functional genomics. Here we assembled a prime editing platform capable of high-efficiency substitution editing suitable for functional interrogation of small genetic variants. We benchmarked this platform for pooled, loss-of-function screening using a library of ~240,000 engineered prime editing guide RNAs (epegRNAs) targeting ~17,000 codons with 1-3 bp substitutions. Comparing the abundance of these epegRNAs across screen samples identified negative selection phenotypes for 7,996 nonsense mutations targeted to 1,149 essential genes and for synonymous mutations that disrupted splice site motifs at 3' exon boundaries. Rigorous evaluation of codon-matched controls demonstrated that these phenotypes were highly specific to the intended edit. Altogether, we established a prime editing approach for multiplexed, functional characterization of genetic variants with simple readouts.
Collapse
Affiliation(s)
- Ann Cirincione
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Danny Simpson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Weihao Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ryan McNulty
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Purnima Ravisankar
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sabrina C Solley
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jun Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Fabian Lim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Emma K Farley
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mona Singh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Britt Adamson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
8
|
Patinios C, Gupta D, Bassett HV, Collins SP, Kamm C, Kibe A, Wang Y, Zhao C, Vollen K, Toussaint C, Polkoff KM, Nguyen T, Calvin I, Migur A, Al’Abri IS, Achmedov T, Del Re A, Saliba AE, Crook N, Stepanova AN, Alonso JM, Beisel CL. Targeted DNA ADP-ribosylation triggers templated repair in bacteria and base mutagenesis in eukaryotes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.17.623984. [PMID: 39605674 PMCID: PMC11601458 DOI: 10.1101/2024.11.17.623984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Base editors create precise genomic edits by directing nucleobase deamination or removal without inducing double-stranded DNA breaks. However, a vast chemical space of other DNA modifications remains to be explored for genome editing. Here, we harness the bacterial anti-phage toxin DarT2 to append ADP-ribosyl moieties to DNA, unlocking distinct editing outcomes in bacteria versus eukaryotes. Fusing an attenuated DarT2 to a Cas9 nickase, we program site-specific ADP-ribosylation of thymines within a target DNA sequence. In tested bacteria, targeting drives efficient homologous recombination in tested bacteria, offering flexible and scar-free genome editing without base replacement nor counterselection. In tested eukaryotes including yeast, plants and human cells, targeting drives substitution of the modified thymine to adenine or a mixture of adenine and cytosine with limited insertions or deletions, offering edits inaccessible to current base editors. Altogether, our approach, called append editing, leverages the addition of a chemical moiety to DNA to expand current modalities for precision gene editing.
Collapse
Affiliation(s)
- Constantinos Patinios
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Darshana Gupta
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Harris V. Bassett
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Scott P. Collins
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Charlotte Kamm
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Anuja Kibe
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Yanyan Wang
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, North Carolina State University, Ralegh, NC 27695, USA
| | - Katie Vollen
- Department of Plant and Microbial Biology, North Carolina State University, Ralegh, NC 27695, USA
| | - Christophe Toussaint
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Kathryn M. Polkoff
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Thuan Nguyen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Irene Calvin
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Angela Migur
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Ibrahim S. Al’Abri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Tatjana Achmedov
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Alessandro Del Re
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, 97072 Würzburg, Germany
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Anna N. Stepanova
- Department of Plant and Microbial Biology, North Carolina State University, Ralegh, NC 27695, USA
| | - Jose M. Alonso
- Department of Plant and Microbial Biology, North Carolina State University, Ralegh, NC 27695, USA
| | - Chase L. Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97072 Würzburg, Germany
- Medical Faculty, University of Würzburg, 97072 Würzburg, Germany
| |
Collapse
|
9
|
Lauerer AM, Caravia XM, Maier LS, Chemello F, Lebek S. Gene editing in common cardiovascular diseases. Pharmacol Ther 2024; 263:108720. [PMID: 39284367 DOI: 10.1016/j.pharmthera.2024.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024]
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide, highlighting the high socioeconomic impact. Current treatment strategies like compound-based drugs or surgeries are often limited. On the one hand, systemic administration of substances is frequently associated with adverse side effects; on the other hand, they typically provide only short-time effects requiring daily intake. Thus, new therapeutic approaches and concepts are urgently needed. The advent of CRISPR-Cas9 genome editing offers great promise for the correction of disease-causing hereditary mutations. As such mutations are often very rare, gene editing strategies to correct them are not broadly applicable to many patients. Notably, there is recent evidence that gene editing technology can also be deployed to disrupt common pathogenic signaling cascades in a targeted, specific, and efficient manner, which offers a more generalizable approach. However, several challenges remain to be addressed ranging from the optimization of the editing strategy itself to a suitable delivery strategy up to potential immune responses to the editing components. This review article discusses important CRISPR-Cas9-based gene editing approaches with their advantages and drawbacks and outlines opportunities in their application for treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Anna-Maria Lauerer
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Xurde M Caravia
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lars S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Francesco Chemello
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simon Lebek
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
10
|
Zhong Z, Hu X, Zhang R, Liu X, Chen W, Zhang S, Sun J, Zhong TP. Improving precision base editing of the zebrafish genome by Rad51DBD-incorporated single-base editors. J Genet Genomics 2024:S1673-8527(24)00280-7. [PMID: 39428086 DOI: 10.1016/j.jgg.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Single-base editors, including cytosine base editors (CBEs) and adenine base editors (ABEs), facilitate accurate C⋅G to T⋅A and A⋅T to G⋅C, respectively, holding promise for the precise modeling and treatment of human hereditary disorders. Efficient base editing and expanded base conversion range have been achieved in human cells through base editors fusing with Rad51 DNA binding domain (Rad51DBD) such as hyA3A-BE4max. Here, we show that hyA3A-BE4max catalyzes C-to-T substitution in the zebrafish genome and extends editing positions (C12-C16) proximal to the protospacer adjacent motif. We develop the codon-optimized counterpart zhyA3A-CBE5, which exhibits substantially high C-to-T conversion with 1.59- to 3.50-fold improvement compared to the original hyA3A-BE4max. With these tools, disease-relevant hereditary mutations can be more efficaciously generated in zebrafish. We introduce human genetic mutation rpl11Q42∗ and abcc6aR1463C by zhyA3A-CBE5 in zebrafish, mirroring Diamond-Blackfan anemia and Pseudoxanthoma Elasticum, respectively. Our study expands the base editing platform targeting the zebrafish genomic landscape and the application of single-base editors for disease modeling and gene function study.
Collapse
Affiliation(s)
- Zhilin Zhong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xueli Hu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Renjie Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xu Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenqi Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shubin Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jianjian Sun
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong 510100, China.
| | - Tao P Zhong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
11
|
Ye L, Zhao D, Li J, Wang Y, Li B, Yang Y, Hou X, Wang H, Wei Z, Liu X, Li Y, Li S, Liu Y, Zhang X, Bi C. Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells. Nat Biotechnol 2024; 42:1538-1547. [PMID: 38168994 DOI: 10.1038/s41587-023-02050-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/27/2023] [Indexed: 01/05/2024]
Abstract
Base editors show promise for treating human genetic diseases, but most current systems use deaminases, which cause off-target effects and are limited in editing type. In this study, we constructed deaminase-free base editors for cytosine (DAF-CBE) and thymine (DAF-TBE), which contain only a cytosine-DNA or a thymine-DNA glycosylase (CDG/TDG) variant, respectively, tethered to a Cas9 nickase. Multiple rounds of mutagenesis by directed evolution in Escherichia coli generated two variants with enhanced base-converting activity-CDG-nCas9 and TDG-nCas9-with efficiencies of up to 58.7% for C-to-A and 54.3% for T-to-A. DAF-BEs achieve C-to-G/T-to-G editing in mammalian cells with minimal Cas9-dependent and Cas9-independent off-target effects as well as minimal RNA off-target effects. Additional engineering resulted in DAF-CBE2/DAF-TBE2, which exhibit altered editing windows from the 5' end to the middle of the protospacer and increased C-to-G/T-to-G editing efficiency of 3.5-fold and 1.2-fold, respectively. Compared to prime editing or CGBEs, DAF-BEs expand conversion types of base editors with similar efficiencies, smaller sizes and lower off-target effects.
Collapse
Affiliation(s)
- Lijun Ye
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ju Li
- College of Life Science, Tianjin Normal University, Tianjin, China
| | - Yiran Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- College of Life Science, Tianjin Normal University, Tianjin, China
| | - Bo Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yuanzhao Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xueting Hou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Huibin Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhandong Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xiaoqi Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yaqiu Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Siwei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Yajing Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
- University of Chinese Academy of Sciences, Beijing, China.
- National Technology Innovation Center of Synthetic Biology, Tianjin, China.
| |
Collapse
|
12
|
Sun P, Han X, Milne RJ, Li G. Trans-crop applications of atypical R genes for multipathogen resistance. TRENDS IN PLANT SCIENCE 2024; 29:1103-1112. [PMID: 38811244 DOI: 10.1016/j.tplants.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
Genetic resistance to plant diseases is essential for global food security. Significant progress has been achieved for plant disease-resistance (R) genes comprising nucleotide-binding domain, leucine-rich repeat-containing receptors (NLRs), and membrane-localized receptor-like kinases or proteins (RLKs/RLPs), which we refer to as typical R genes. However, there is a knowledge gap in how non-receptor-type or atypical R genes contribute to plant immunity. Here, we summarize resources and technologies facilitating the study of atypical R genes, examine diverse atypical R proteins for broad-spectrum resistance, and outline potential approaches for trans-crop applications of atypical R genes. Studies of atypical R genes are important for a holistic understanding of plant immunity and the development of novel strategies in disease control and crop improvement.
Collapse
Affiliation(s)
- Peng Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyu Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ricky J Milne
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia.
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Chai AC, Siegwart DJ, Wang RC. Nucleic Acid Therapy for the Skin. J Invest Dermatol 2024:S0022-202X(24)02062-1. [PMID: 39269387 DOI: 10.1016/j.jid.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 09/15/2024]
Abstract
Advances in sequencing technologies have facilitated the identification of the genes and mechanisms for many inherited skin diseases. Although targeted nucleic acid therapeutics for diseases in other organs have begun to be deployed in patients, the goal of precise therapeutics for skin diseases has not yet been realized. First, we review the current and emerging nucleic acid-based gene-editing and delivery modalities. Next, current and emerging viral and nanoparticle vehicles for the delivery of gene therapies are reviewed. Finally, specific skin diseases that could benefit optimally from nucleic acid therapies are highlighted. By adopting the latest technologies and addressing specific barriers related to skin biology, nucleic acid therapeutics have the potential to revolutionize treatments for patients with skin disease.
Collapse
Affiliation(s)
- Andreas C Chai
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Medical Scientist Training Program, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Harmon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Daniel J Siegwart
- Department of Biomedical Engineering, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Richard C Wang
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA; Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
14
|
Fan X, Lei Y, Wang L, Wu X, Li D. Advancing CRISPR base editing technology through innovative strategies and ideas. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2699-5. [PMID: 39231901 DOI: 10.1007/s11427-024-2699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
The innovation of CRISPR/Cas gene editing technology has developed rapidly in recent years. It is widely used in the fields of disease animal model construction, biological breeding, disease diagnosis and screening, gene therapy, cell localization, cell lineage tracking, synthetic biology, information storage, etc. However, developing idealized editors in various fields is still a goal for future development. This article focuses on the development and innovation of non-DSB editors BE and PE in the platform-based CRISPR system. It first explains the application of ideas for improvement such as "substitution", "combination", "adaptation", and "adjustment" in BE and PE development and then catalogues the ingenious inversions and leaps of thought reflected in the innovations made to CRISPR technology. It will then elaborate on the efforts currently being made to develop small editors to solve the problem of AAV overload and summarize the current application status of editors for in vivo gene modification using AAV as a delivery system. Finally, it summarizes the inspiration brought by CRISPR/Cas innovation and assesses future prospects for development of an idealized editor.
Collapse
Affiliation(s)
- Xiongwei Fan
- The Center for Heart Development, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yang Lei
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Liren Wang
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Xiushan Wu
- The Center for Heart Development, College of Life Science, Hunan Normal University, Changsha, 410081, China.
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, 510100, China.
| | - Dali Li
- Shanghai Frontiers Science Research Base of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
15
|
Li B, Sun C, Li J, Gao C. Targeted genome-modification tools and their advanced applications in crop breeding. Nat Rev Genet 2024; 25:603-622. [PMID: 38658741 DOI: 10.1038/s41576-024-00720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/26/2024]
Abstract
Crop improvement by genome editing involves the targeted alteration of genes to improve plant traits, such as stress tolerance, disease resistance or nutritional content. Techniques for the targeted modification of genomes have evolved from generating random mutations to precise base substitutions, followed by insertions, substitutions and deletions of small DNA fragments, and are finally starting to achieve precision manipulation of large DNA segments. Recent developments in base editing, prime editing and other CRISPR-associated systems have laid a solid technological foundation to enable plant basic research and precise molecular breeding. In this Review, we systematically outline the technological principles underlying precise and targeted genome-modification methods. We also review methods for the delivery of genome-editing reagents in plants and outline emerging crop-breeding strategies based on targeted genome modification. Finally, we consider potential future developments in precise genome-editing technologies, delivery methods and crop-breeding approaches, as well as regulatory policies for genome-editing products.
Collapse
Affiliation(s)
- Boshu Li
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Sun
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayang Li
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Li XD, Liu LM, Xi YC, Sun QW, Luo Z, Huang HL, Wang XW, Jiang HB, Chen W. Development of a base editor for convenient and multiplex genome editing in cyanobacteria. Commun Biol 2024; 7:994. [PMID: 39143188 PMCID: PMC11324792 DOI: 10.1038/s42003-024-06696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
Cyanobacteria are important primary producers, contributing to 25% of the global carbon fixation through photosynthesis. They serve as model organisms to study the photosynthesis, and are important cell factories for synthetic biology. To enable efficient genetic dissection and metabolic engineering in cyanobacteria, effective and accurate genetic manipulation tools are required. However, genetic manipulation in cyanobacteria by the conventional homologous recombination-based method and the recently developed CRISPR-Cas gene editing system require complicated cloning steps, especially during multi-site editing and single base mutation. This restricts the extensive research on cyanobacteria and reduces its application potential. In this study, a highly efficient and convenient cytosine base editing system was developed which allows rapid and precise C → T point mutation and gene inactivation in the genomes of Synechocystis and Anabaena. This base editing system also enables efficient multiplex editing and can be easily cured after editing by sucrose counter-selection. This work will expand the knowledge base regarding the engineering of cyanobacteria. The findings of this study will encourage the biotechnological applications of cyanobacteria.
Collapse
Affiliation(s)
- Xing-Da Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ling-Mei Liu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Yi-Cao Xi
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Qiao-Wei Sun
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Zhen Luo
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hai-Long Huang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xin-Wei Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hai-Bo Jiang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, 519080, China.
| | - Weizhong Chen
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
17
|
Wang X, Pan W, Sun C, Yang H, Cheng Z, Yan F, Ma G, Shang Y, Zhang R, Gao C, Liu L, Zhang H. Creating large-scale genetic diversity in Arabidopsis via base editing-mediated deep artificial evolution. Genome Biol 2024; 25:215. [PMID: 39123212 PMCID: PMC11312839 DOI: 10.1186/s13059-024-03358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Base editing is a powerful tool for artificial evolution to create allelic diversity and improve agronomic traits. However, the great evolutionary potential for every sgRNA target has been overlooked. And there is currently no high-throughput method for generating and characterizing as many changes in a single target as possible based on large mutant pools to permit rapid gene directed evolution in plants. RESULTS In this study, we establish an efficient germline-specific evolution system to screen beneficial alleles in Arabidopsis which could be applied for crop improvement. This system is based on a strong egg cell-specific cytosine base editor and the large seed production of Arabidopsis, which enables each T1 plant with unedited wild type alleles to produce thousands of independent T2 mutant lines. It has the ability of creating a wide range of mutant lines, including those containing atypical base substitutions, and as well providing a space- and labor-saving way to store and screen the resulting mutant libraries. Using this system, we efficiently generate herbicide-resistant EPSPS, ALS, and HPPD variants that could be used in crop breeding. CONCLUSIONS Here, we demonstrate the significant potential of base editing-mediated artificial evolution for each sgRNA target and devised an efficient system for conducting deep evolution to harness this potential.
Collapse
Affiliation(s)
- Xiang Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Wenbo Pan
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, China
| | - Chao Sun
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Yang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, China
| | - Zhentao Cheng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, China
| | - Fei Yan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Guojing Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Yun Shang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, China
| | - Rui Zhang
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Lijing Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| | - Huawei Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, China.
| |
Collapse
|
18
|
Zhang C, Xu J, Wu Y, Xu C, Xu P. Base Editors-Mediated Gene Therapy in Hematopoietic Stem Cells for Hematologic Diseases. Stem Cell Rev Rep 2024; 20:1387-1405. [PMID: 38644403 PMCID: PMC11319617 DOI: 10.1007/s12015-024-10715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
Base editors, developed from the CRISPR/Cas system, consist of components such as deaminase and Cas variants. Since their emergence in 2016, the precision, efficiency, and safety of base editors have been gradually optimized. The feasibility of using base editors in gene therapy has been demonstrated in several disease models. Compared with the CRISPR/Cas system, base editors have shown great potential in hematopoietic stem cells (HSCs) and HSC-based gene therapy, because they do not generate double-stranded breaks (DSBs) while achieving the precise realization of single-base substitutions. This precise editing mechanism allows for the permanent correction of genetic defects directly at their source within HSCs, thus promising a lasting therapeutic effect. Recent advances in base editors are expected to significantly increase the number of clinical trials for HSC-based gene therapies. In this review, we summarize the development and recent progress of DNA base editors, discuss their applications in HSC gene therapy, and highlight the prospects and challenges of future clinical stem cell therapies.
Collapse
Affiliation(s)
- Chengpeng Zhang
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow Medical College, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Jinchao Xu
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow Medical College, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Yikang Wu
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow Medical College, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Can Xu
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow Medical College, Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Peng Xu
- Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Soochow Medical College, Soochow University, Suzhou, 215123, Jiangsu Province, China.
| |
Collapse
|
19
|
Yi Z, Zhang X, Wei X, Li J, Ren J, Zhang X, Zhang Y, Tang H, Chang X, Yu Y, Wei W. Programmable DNA pyrimidine base editing via engineered uracil-DNA glycosylase. Nat Commun 2024; 15:6397. [PMID: 39080265 PMCID: PMC11289083 DOI: 10.1038/s41467-024-50012-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
DNA base editing technologies predominantly utilize engineered deaminases, limiting their ability to edit thymine and guanine directly. In this study, we successfully achieve base editing of both cytidine and thymine by leveraging the translesion DNA synthesis pathway through the engineering of uracil-DNA glycosylase (UNG). Employing structure-based rational design, exploration of homologous proteins, and mutation screening, we identify a Deinococcus radiodurans UNG mutant capable of effectively editing thymine. When fused with the nickase Cas9, the engineered DrUNG protein facilitates efficient thymine base editing at endogenous sites, achieving editing efficiencies up to 55% without enrichment and exhibiting minimal cellular toxicity. This thymine base editor (TBE) exhibits high editing specificity and significantly restores IDUA enzyme activity in cells derived from patients with Hurler syndrome. TBEs represent efficient, specific, and low-toxicity approaches to base editing with potential applications in treating relevant diseases.
Collapse
Affiliation(s)
- Zongyi Yi
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Xiaoxue Zhang
- Changping Laboratory, Beijing, People's Republic of China
| | - Xiaoxu Wei
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Jiayi Li
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Jiwu Ren
- Changping Laboratory, Beijing, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Xue Zhang
- Changping Laboratory, Beijing, People's Republic of China
| | - Yike Zhang
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Huixian Tang
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Xiwen Chang
- Changping Laboratory, Beijing, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China
| | - Ying Yu
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Wensheng Wei
- Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, People's Republic of China.
- Changping Laboratory, Beijing, People's Republic of China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, People's Republic of China.
| |
Collapse
|
20
|
Han L, Hu Y, Mo Q, Yang H, Gu F, Bai F, Sun Y, Ma H. Engineering miniature IscB nickase for robust base editing with broad targeting range. Nat Chem Biol 2024:10.1038/s41589-024-01670-w. [PMID: 38977788 DOI: 10.1038/s41589-024-01670-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
IscB has a similar domain organization to Cas9, but the small size of IscB is better suited for delivery by adeno-associated virus. To improve the low editing efficiency of OgeuIscB (IscB from human gut metagenome) in mammalian cells, we developed high-efficiency miniature base editors by engineering OgeuIscB nickase and its cognate ωRNA, termed IminiBEs. We demonstrated the robust editing efficiency of IminiCBE (67% on average) or IminiABE (52% on average). Fusing non-specific DNA-binding protein Sso7d to IminiBEs increased the editing efficiency of low-efficiency sites by around two- to threefold, and we termed it SIminiBEs. In addition, IminiCBE and SIminiCBE recognize NNRR, NNRY and NNYR target-adjacent motifs, which broaden the canonical NWRRNA target-adjacent motif sites for the wild-type IscB nickase. Overall, IminiBEs and SIminiBEs are efficient miniature base editors for site-specific genomic mutations.
Collapse
Affiliation(s)
- Linxiao Han
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yueer Hu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiqin Mo
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Feng Gu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yadong Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hanhui Ma
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
21
|
Liu Y, Kong J, Liu G, Li Z, Xiao Y. Precise Gene Knock-In Tools with Minimized Risk of DSBs: A Trend for Gene Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401797. [PMID: 38728624 PMCID: PMC11267366 DOI: 10.1002/advs.202401797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Gene knock-in refers to the insertion of exogenous functional genes into a target genome to achieve continuous expression. Currently, most knock-in tools are based on site-directed nucleases, which can induce double-strand breaks (DSBs) at the target, following which the designed donors carrying functional genes can be inserted via the endogenous gene repair pathway. The size of donor genes is limited by the characteristics of gene repair, and the DSBs induce risks like genotoxicity. New generation tools, such as prime editing, transposase, and integrase, can insert larger gene fragments while minimizing or eliminating the risk of DSBs, opening new avenues in the development of animal models and gene therapy. However, the elimination of off-target events and the production of delivery carriers with precise requirements remain challenging, restricting the application of the current knock-in treatments to mainly in vitro settings. Here, a comprehensive review of the knock-in tools that do not/minimally rely on DSBs and use other mechanisms is provided. Moreover, the challenges and recent advances of in vivo knock-in treatments in terms of the therapeutic process is discussed. Collectively, the new generation of DSBs-minimizing and large-fragment knock-in tools has revolutionized the field of gene editing, from basic research to clinical treatment.
Collapse
Affiliation(s)
- Yongfeng Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Mudi Meng Honors CollegeChina Pharmaceutical UniversityNanjing210009China
| | - Jianping Kong
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Gongyu Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Zhaoxing Li
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Yibei Xiao
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| |
Collapse
|
22
|
Wang D, Zhang Y, Zhang J, Zhao J. Advances in base editing: A focus on base transversions. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108515. [PMID: 39454989 DOI: 10.1016/j.mrrev.2024.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/29/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Single nucleotide variants (SNVs) constitute the most frequent variants that cause human genetic diseases. Base editors (BEs) comprise a new generation of CRISPR-based technologies, which are considered to have a promising future for curing genetic diseases caused by SNVs as they enable the direct and irreversible correction of base mutations. Two of the early types of BEs, cytosine base editor (CBE) and adenine base editor (ABE), mediate C-to-T, T-to-C, A-to-G, and G-to-A base transition mutations. Together, these represent half of all the known disease-associated SNVs. However, the remaining transversion (i.e., purine-pyrimidine) mutations cannot be restored by direct deamination and so these require the replacement of the entire base. Recently, a variety of base transversion editors were developed and so these add to the currently available BEs enabling the correction of all types of point mutation. However, compared to the base transition editors (including CBEs and ABEs), base transversion editors are still in the early development stage. In this review, we describe the basics and advances of the various base transversion editors, highlight their limitations, and discuss their potential for treating human diseases.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China.
| | - YiZhan Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Jinning Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - JiaJun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China.
| |
Collapse
|
23
|
Hu Y, Han L, Mo Q, Du Z, Jiang W, Wu X, Zheng J, Xiao X, Sun Y, Ma H. Engineering miniature CRISPR-Cas Un1Cas12f1 for efficient base editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102201. [PMID: 38766526 PMCID: PMC11101732 DOI: 10.1016/j.omtn.2024.102201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
Adeno-associated virus (AAV) is a relatively safe and efficient vector for gene therapy. However, due to its 4.7-kb limit of cargo, SpCas9-mediated base editors cannot be packaged into a single AAV vector, which hinders their clinical application. The development of efficient miniature base editors becomes an urgent need. Un1Cas12f1 is a class II V-F-type CRISPR-Cas protein with only 529 amino acids. Although Un1Cas12f1 has been engineered to be a base editor in mammalian cells, the base-editing efficiency is less than 10%, which limits its therapeutic applications. Here, we developed hypercompact and high-efficiency base editors by engineering Un1Cas12f1, fusing non-specific DNA binding protein Sso7d, and truncating single guide RNA (sgRNA), termed STUminiBEs. We demonstrated robust A-to-G conversion (54% on average) by STUminiABEs or C-to-T conversion (45% on average) by STUminiCBEs. We packaged STUminiCBEs into AAVs and successfully introduced a premature stop codon on the PCSK9 gene in mammalian cells. In sum, STUminiBEs are efficient miniature base editors and could readily be packaged into AAVs for biological research or biomedical applications.
Collapse
Affiliation(s)
- Yueer Hu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Linxiao Han
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiqin Mo
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zengming Du
- Belief BioMed (Shanghai), Inc, Shanghai, China
| | - Wei Jiang
- Belief BioMed (Shanghai), Inc, Shanghai, China
| | - Xia Wu
- School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jing Zheng
- Belief BioMed (Shanghai), Inc, Shanghai, China
| | - Xiao Xiao
- Belief BioMed (Shanghai), Inc, Shanghai, China
| | - Yadong Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hanhui Ma
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
24
|
Tong H, Wang H, Wang X, Liu N, Li G, Wu D, Li Y, Jin M, Li H, Wei Y, Li T, Yuan Y, Shi L, Yao X, Zhou Y, Yang H. Development of deaminase-free T-to-S base editor and C-to-G base editor by engineered human uracil DNA glycosylase. Nat Commun 2024; 15:4897. [PMID: 38851742 PMCID: PMC11162499 DOI: 10.1038/s41467-024-49343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
DNA base editors enable direct editing of adenine (A), cytosine (C), or guanine (G), but there is no base editor for direct thymine (T) editing currently. Here we develop two deaminase-free glycosylase-based base editors for direct T editing (gTBE) and C editing (gCBE) by fusing Cas9 nickase (nCas9) with engineered human uracil DNA glycosylase (UNG) variants. By several rounds of structure-informed rational mutagenesis on UNG in cultured human cells, we obtain gTBE and gCBE with high activity of T-to-S (i.e., T-to-C or T-to-G) and C-to-G conversions, respectively. Furthermore, we conduct parallel comparison of gTBE/gCBE with those recently developed using other protein engineering strategies, and find gTBE/gCBE show the outperformance. Thus, we provide several base editors, gTBEs and gCBEs, with corresponding engineered UNG variants, broadening the targeting scope of base editors.
Collapse
Affiliation(s)
- Huawei Tong
- HuidaGene Therapeutics Co., Ltd., Shanghai, China.
| | | | - Xuchen Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nana Liu
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Guoling Li
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Danni Wu
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Yun Li
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Ming Jin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Hengbin Li
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Yinghui Wei
- International Joint Agriculture Research Center for Animal Bio-Breeding of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- School of Future Technology on Bio-Breeding, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Li
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Yuan Yuan
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Linyu Shi
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Xuan Yao
- HuidaGene Therapeutics Co., Ltd., Shanghai, China
| | - Yingsi Zhou
- HuidaGene Therapeutics Co., Ltd., Shanghai, China.
| | - Hui Yang
- HuidaGene Therapeutics Co., Ltd., Shanghai, China.
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
25
|
Villiger L, Joung J, Koblan L, Weissman J, Abudayyeh OO, Gootenberg JS. CRISPR technologies for genome, epigenome and transcriptome editing. Nat Rev Mol Cell Biol 2024; 25:464-487. [PMID: 38308006 DOI: 10.1038/s41580-023-00697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/04/2024]
Abstract
Our ability to edit genomes lags behind our capacity to sequence them, but the growing understanding of CRISPR biology and its application to genome, epigenome and transcriptome engineering is narrowing this gap. In this Review, we discuss recent developments of various CRISPR-based systems that can transiently or permanently modify the genome and the transcriptome. The discovery of further CRISPR enzymes and systems through functional metagenomics has meaningfully broadened the applicability of CRISPR-based editing. Engineered Cas variants offer diverse capabilities such as base editing, prime editing, gene insertion and gene regulation, thereby providing a panoply of tools for the scientific community. We highlight the strengths and weaknesses of current CRISPR tools, considering their efficiency, precision, specificity, reliance on cellular DNA repair mechanisms and their applications in both fundamental biology and therapeutics. Finally, we discuss ongoing clinical trials that illustrate the potential impact of CRISPR systems on human health.
Collapse
Affiliation(s)
- Lukas Villiger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA
| | - Julia Joung
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonathan Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Omar O Abudayyeh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| | - Jonathan S Gootenberg
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| |
Collapse
|
26
|
Li Y, Li S, Li C, Zhang C, Yan L, Li J, He Y, Guo Y, Xia L. Fusion of a rice endogenous N-methylpurine DNA glycosylase to a plant adenine base transition editor ABE8e enables A-to-K base editing in rice plants. ABIOTECH 2024; 5:127-139. [PMID: 38974865 PMCID: PMC11224198 DOI: 10.1007/s42994-024-00138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/11/2024] [Indexed: 07/09/2024]
Abstract
Engineering of a new type of plant base editor for simultaneous adenine transition and transversion within the editing window will greatly expand the scope and potential of base editing in directed evolution and crop improvement. Here, we isolated a rice endogenous hypoxanthine excision protein, N-methylpurine DNA glycosylase (OsMPG), and engineered two plant A-to-K (K = G or T) base editors, rAKBE01 and rAKBE02, for simultaneous adenine transition and transversion base editing in rice by fusing OsMPG or its mutant mOsMPG to a plant adenine transition base editor, ABE8e. We further coupled either OsMPG or mOsMPG with a transactivation factor VP64 to generate rAKBE03 and rAKBE04, respectively. Testing these four rAKBEs, at five endogenous loci in rice protoplasts, indicated that rAKBE03 and rAKBE04 enabled higher levels of A-to-G base transitions when compared to ABE8e and ABE8e-VP64. Furthermore, whereas rAKBE01 only enabled A-to-C/T editing at one endogenous locus, in comparison with rAKBE02 and rAKBE03, rAKBE04 could significantly improve the A-to-C/T base transversion efficiencies by up to 6.57- and 1.75-fold in the rice protoplasts, respectively. Moreover, although no stable lines with A-to-C transversion were induced by rAKBE01 and rAKBE04, rAKBE04 could enable simultaneous A-to-G and A-to-T transition and transversion base editing, at all the five target loci, with the efficiencies of A-to-G transition and A-to-T transversion editing ranging from 70.97 to 92.31% and 1.67 to 4.84% in rice stable lines, respectively. Together, these rAKBEs enable different portfolios of editing products and, thus, now expands the potential of base editing in diverse application scenario for crop improvement. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00138-8.
Collapse
Affiliation(s)
- Yucai Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, 572024 China
| | - Shaoya Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, 572024 China
| | - Chenfei Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| | - Chen Zhang
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| | - Lei Yan
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| | - Jingying Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, 572024 China
| | - Yubing He
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, 572024 China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Lanqin Xia
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, 572024 China
| |
Collapse
|
27
|
Cooper S, Obolenski S, Waters AJ, Bassett AR, Coelho MA. Analyzing the functional effects of DNA variants with gene editing. CELL REPORTS METHODS 2024; 4:100776. [PMID: 38744287 PMCID: PMC11133854 DOI: 10.1016/j.crmeth.2024.100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/01/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Continual advancements in genomics have led to an ever-widening disparity between the rate of discovery of genetic variants and our current understanding of their functions and potential roles in disease. Systematic methods for phenotyping DNA variants are required to effectively translate genomics data into improved outcomes for patients with genetic diseases. To make the biggest impact, these approaches must be scalable and accurate, faithfully reflect disease biology, and define complex disease mechanisms. We compare current methods to analyze the function of variants in their endogenous DNA context using genome editing strategies, such as saturation genome editing, base editing and prime editing. We discuss how these technologies can be linked to high-content readouts to gain deep mechanistic insights into variant effects. Finally, we highlight key challenges that need to be addressed to bridge the genotype to phenotype gap, and ultimately improve the diagnosis and treatment of genetic diseases.
Collapse
Affiliation(s)
- Sarah Cooper
- Cellular and Gene Editing Research, Wellcome Sanger Institute, Hinxton, UK
| | - Sofia Obolenski
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, UK; Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Andrew J Waters
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Andrew R Bassett
- Cellular and Gene Editing Research, Wellcome Sanger Institute, Hinxton, UK.
| | | |
Collapse
|
28
|
Wang L, Bu S, Xu S, Huang T, Yang F, Tan Q, Deng M, Xie W, Cai B, Chen J. Double base mismatches mediated catalytic hairpin assembly for enzyme-free single-base mutation detection: integrating signal recognition and amplification in one. Mikrochim Acta 2024; 191:334. [PMID: 38758362 DOI: 10.1007/s00604-024-06366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/14/2024] [Indexed: 05/18/2024]
Abstract
Single nucleotide polymorphism (SNP) biosensors are emerging rapidly for their promising applications in human disease prevention diagnosis, treatment, and prognosis. However, it remains a bottleneck in equipping simple and stable biosensors with the traits of high sensitivity, non-enzyme, and low cost. Double base mismatches mediated chain displacement reactions have attracted fascinating advantages of tailorable thermodynamics stability, non-enzyme, and excellent assembly compliance to involvement in SNP identification. As the base mismatch position and amount in DNA sequence can be artificially adjusted, it provides plenty of selectivity and specificity for exploring perfect biosensors. Herein, a biosensor with double base mismatches mediated catalytic hairpin assembly (CHA) is designed via one base mismatch in the toehold domain and the other base mismatch in the stem sequence of hairpin 1 (H1) by triggering CHA reaction to achieve selective amplification of the mutation target (MT) and fluorescence resonance energy transfer (FRET) effect that is composed of Cy3 and Cy5 terminally attached H1 and hairpin 2 (H2). Depending on the rationally designed base mismatch position and toehold length, the fabricated biosensors show superior SNP detection performance, exhibiting a good linearity with high sensitivity of 6.6 fM detection limit and a broad detection abundance of 1%. The proposed biosensor can be used to detect the KRAS mutation gene in real samples and obtain good recoveries between 106 and 116.99%. Remarkably, these extendible designs of base mismatches can be used for more types of SNP detection, providing flexible adjustment based on base mismatch position and toehold length variations, especially for their thermodynamic model for DNA-strand displacement reactions.
Collapse
Affiliation(s)
- Lanyue Wang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Sisi Bu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Shijie Xu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Tuo Huang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Fang Yang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Qianglong Tan
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Minxin Deng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| | - Bobo Cai
- Zhejiang Hospital, Hangzhou, 310013, China.
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| |
Collapse
|
29
|
Deneault E. Recent Therapeutic Gene Editing Applications to Genetic Disorders. Curr Issues Mol Biol 2024; 46:4147-4185. [PMID: 38785523 PMCID: PMC11119904 DOI: 10.3390/cimb46050255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Recent years have witnessed unprecedented progress in therapeutic gene editing, revolutionizing the approach to treating genetic disorders. In this comprehensive review, we discuss the progression of milestones leading to the emergence of the clustered regularly interspaced short palindromic repeats (CRISPR)-based technology as a powerful tool for precise and targeted modifications of the human genome. CRISPR-Cas9 nuclease, base editing, and prime editing have taken center stage, demonstrating remarkable precision and efficacy in targeted ex vivo and in vivo genomic modifications. Enhanced delivery systems, including viral vectors and nanoparticles, have further improved the efficiency and safety of therapeutic gene editing, advancing their clinical translatability. The exploration of CRISPR-Cas systems beyond the commonly used Cas9, such as the development of Cas12 and Cas13 variants, has expanded the repertoire of gene editing tools, enabling more intricate modifications and therapeutic interventions. Outstandingly, prime editing represents a significant leap forward, given its unparalleled versatility and minimization of off-target effects. These innovations have paved the way for therapeutic gene editing in a multitude of previously incurable genetic disorders, ranging from monogenic diseases to complex polygenic conditions. This review highlights the latest innovative studies in the field, emphasizing breakthrough technologies in preclinical and clinical trials, and their applications in the realm of precision medicine. However, challenges such as off-target effects and ethical considerations remain, necessitating continued research to refine safety profiles and ethical frameworks.
Collapse
Affiliation(s)
- Eric Deneault
- Regulatory Research Division, Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
30
|
Johnson GA, Gould SI, Sánchez-Rivera FJ. Deconstructing cancer with precision genome editing. Biochem Soc Trans 2024; 52:803-819. [PMID: 38629716 PMCID: PMC11088927 DOI: 10.1042/bst20230984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Recent advances in genome editing technologies are allowing investigators to engineer and study cancer-associated mutations in their endogenous genetic contexts with high precision and efficiency. Of these, base editing and prime editing are quickly becoming gold-standards in the field due to their versatility and scalability. Here, we review the merits and limitations of these precision genome editing technologies, their application to modern cancer research, and speculate how these could be integrated to address future directions in the field.
Collapse
Affiliation(s)
- Grace A. Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
| | - Samuel I. Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
| | - Francisco J. Sánchez-Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge 02142, MA, U.S.A
| |
Collapse
|
31
|
He Y, Zhou X, Chang C, Chen G, Liu W, Li G, Fan X, Sun M, Miao C, Huang Q, Ma Y, Yuan F, Chang X. Protein language models-assisted optimization of a uracil-N-glycosylase variant enables programmable T-to-G and T-to-C base editing. Mol Cell 2024; 84:1257-1270.e6. [PMID: 38377993 DOI: 10.1016/j.molcel.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Current base editors (BEs) use DNA deaminases, including cytidine deaminase in cytidine BE (CBE) or adenine deaminase in adenine BE (ABE), to facilitate transition nucleotide substitutions. Combining CBE or ABE with glycosylase enzymes can induce limited transversion mutations. Nonetheless, a critical demand remains for BEs capable of generating alternative mutation types, such as T>G corrections. In this study, we leveraged pre-trained protein language models to optimize a uracil-N-glycosylase (UNG) variant with altered specificity for thymines (eTDG). Notably, after two rounds of testing fewer than 50 top-ranking variants, more than 50% exhibited over 1.5-fold enhancement in enzymatic activities. When eTDG was fused with nCas9, it induced programmable T-to-S (G/C) substitutions and corrected db/db diabetic mutation in mice (up to 55%). Our findings not only establish orthogonal strategies for developing novel BEs but also demonstrate the capacities of protein language models for optimizing enzymes without extensive task-specific training data.
Collapse
Affiliation(s)
- Yan He
- Fudan University, 220 Handan Road, Shanghai 200433, China; School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Xibin Zhou
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310014, China
| | - Chong Chang
- School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Ge Chen
- School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Weikuan Liu
- Fudan University, 220 Handan Road, Shanghai 200433, China; School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Geng Li
- School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Xiaoqi Fan
- School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Mingsun Sun
- School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Chensi Miao
- School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Qianyue Huang
- School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Yunqing Ma
- School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China
| | - Fajie Yuan
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310014, China.
| | - Xing Chang
- School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310014, China; Research Center for Industries of the Future (RCIF), Westlake University, Hangzhou, Zhejiang 310014, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310014, China; Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
32
|
Kim HS, Kweon J, Kim Y. Recent advances in CRISPR-based functional genomics for the study of disease-associated genetic variants. Exp Mol Med 2024; 56:861-869. [PMID: 38556550 PMCID: PMC11058232 DOI: 10.1038/s12276-024-01212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 04/02/2024] Open
Abstract
Advances in sequencing technology have greatly increased our ability to gather genomic data, yet understanding the impact of genetic mutations, particularly variants of uncertain significance (VUSs), remains a challenge in precision medicine. The CRISPR‒Cas system has emerged as a pivotal tool for genome engineering, enabling the precise incorporation of specific genetic variations, including VUSs, into DNA to facilitate their functional characterization. Additionally, the integration of CRISPR‒Cas technology with sequencing tools allows the high-throughput evaluation of mutations, transforming uncertain genetic data into actionable insights. This allows researchers to comprehensively study the functional consequences of point mutations, paving the way for enhanced understanding and increasing application to precision medicine. This review summarizes the current genome editing tools utilizing CRISPR‒Cas systems and their combination with sequencing tools for functional genomics, with a focus on point mutations.
Collapse
Affiliation(s)
- Heon Seok Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seongdong-gu, Seoul, Republic of Korea
| | - Jiyeon Kweon
- Department of Cell and Genetic Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yongsub Kim
- Department of Cell and Genetic Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Stem Cell Immunomodulation Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
33
|
Cirincione A, Simpson D, Ravisankar P, Solley SC, Yan J, Singh M, Adamson B. A benchmarked, high-efficiency prime editing platform for multiplexed dropout screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.585978. [PMID: 38585933 PMCID: PMC10996517 DOI: 10.1101/2024.03.25.585978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Prime editing installs precise edits into the genome with minimal unwanted byproducts, but low and variable editing efficiencies have complicated application of the approach to high-throughput functional genomics. Leveraging several recent advances, we assembled a prime editing platform capable of high-efficiency substitution editing across a set of engineered prime editing guide RNAs (epegRNAs) and corresponding target sequences (80% median intended editing). Then, using a custom library of 240,000 epegRNAs targeting >17,000 codons with 175 different substitution types, we benchmarked our platform for functional interrogation of small substitution variants (1-3 nucleotides) targeted to essential genes. Resulting data identified negative growth phenotypes for nonsense mutations targeted to ~8,000 codons, and comparing those phenotypes to results from controls demonstrated high specificity. We also observed phenotypes for synonymous mutations that disrupted splice site motifs at 3' exon boundaries. Altogether, we establish and benchmark a high-throughput prime editing approach for functional characterization of genetic variants with simple readouts from multiplexed experiments.
Collapse
Affiliation(s)
- Ann Cirincione
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Danny Simpson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Purnima Ravisankar
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Present address: Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Sabrina C Solley
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jun Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Mona Singh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - Britt Adamson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
34
|
Pacesa M, Pelea O, Jinek M. Past, present, and future of CRISPR genome editing technologies. Cell 2024; 187:1076-1100. [PMID: 38428389 DOI: 10.1016/j.cell.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 03/03/2024]
Abstract
Genome editing has been a transformative force in the life sciences and human medicine, offering unprecedented opportunities to dissect complex biological processes and treat the underlying causes of many genetic diseases. CRISPR-based technologies, with their remarkable efficiency and easy programmability, stand at the forefront of this revolution. In this Review, we discuss the current state of CRISPR gene editing technologies in both research and therapy, highlighting limitations that constrain them and the technological innovations that have been developed in recent years to address them. Additionally, we examine and summarize the current landscape of gene editing applications in the context of human health and therapeutics. Finally, we outline potential future developments that could shape gene editing technologies and their applications in the coming years.
Collapse
Affiliation(s)
- Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Station 19, CH-1015 Lausanne, Switzerland
| | - Oana Pelea
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
35
|
Baudrier L, Benamozig O, Langley J, Chopra S, Kalashnikova T, Benaoudia S, Singh G, Mahoney DJ, Wright NAM, Billon P. One-pot DTECT enables rapid and efficient capture of genetic signatures for precision genome editing and clinical diagnostics. CELL REPORTS METHODS 2024; 4:100698. [PMID: 38301655 PMCID: PMC10921016 DOI: 10.1016/j.crmeth.2024.100698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/05/2023] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
The detection of genomic sequences and their alterations is crucial for basic research and clinical diagnostics. However, current methodologies are costly and time-consuming and require outsourcing sample preparation, processing, and analysis to genomic companies. Here, we establish One-pot DTECT, a platform that expedites the detection of genetic signatures, only requiring a short incubation of a PCR product in an optimized one-pot mixture. One-pot DTECT enables qualitative, quantitative, and visual detection of biologically relevant variants, such as cancer mutations, and nucleotide changes introduced by prime editing and base editing into cancer cells and human primary T cells. Notably, One-pot DTECT achieves quantification accuracy for targeted genetic signatures comparable with Sanger and next-generation sequencing. Furthermore, its effectiveness as a diagnostic platform is demonstrated by successfully detecting sickle cell variants in blood and saliva samples. Altogether, One-pot DTECT offers an efficient, versatile, adaptable, and cost-effective alternative to traditional methods for detecting genomic signatures.
Collapse
Affiliation(s)
- Lou Baudrier
- The University of Calgary, Cumming School of Medicine, Department of Biochemistry and Molecular Biology, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Robson DNA Science Centre, Calgary, AB, Canada; Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
| | - Orléna Benamozig
- The University of Calgary, Cumming School of Medicine, Department of Biochemistry and Molecular Biology, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Robson DNA Science Centre, Calgary, AB, Canada; Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
| | - Jethro Langley
- The University of Calgary, Cumming School of Medicine, Department of Biochemistry and Molecular Biology, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Robson DNA Science Centre, Calgary, AB, Canada; Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
| | - Sanchit Chopra
- The University of Calgary, Cumming School of Medicine, Department of Biochemistry and Molecular Biology, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Robson DNA Science Centre, Calgary, AB, Canada; Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
| | - Tatiana Kalashnikova
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada; The University of Calgary, Cumming School of Medicine, Department of Pediatrics, 28 Oki Drive NW, Calgary, AB T3B 6A8, Canada
| | - Sacha Benaoudia
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Gurpreet Singh
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada; The University of Calgary, Cumming School of Medicine, Department of Pediatrics, 28 Oki Drive NW, Calgary, AB T3B 6A8, Canada
| | - Douglas J Mahoney
- The University of Calgary, Cumming School of Medicine, Department of Biochemistry and Molecular Biology, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Arnie Charbonneau Cancer Institute, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Snyder Institute for Chronic Disease, Calgary, AB, Canada; Department of Microbiology, Immunology and Infectious Disease, Calgary, AB, Canada
| | - Nicola A M Wright
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada; The University of Calgary, Cumming School of Medicine, Department of Pediatrics, 28 Oki Drive NW, Calgary, AB T3B 6A8, Canada
| | - Pierre Billon
- The University of Calgary, Cumming School of Medicine, Department of Biochemistry and Molecular Biology, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; Robson DNA Science Centre, Calgary, AB, Canada; Arnie Charbonneau Cancer Institute, Calgary, AB, Canada.
| |
Collapse
|
36
|
Liang SQ, Xue W. All types of base conversions allowed by base editors. SCIENCE CHINA. LIFE SCIENCES 2024; 67:431-433. [PMID: 37930476 DOI: 10.1007/s11427-023-2435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/19/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Shun-Qing Liang
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, 01655, USA.
| | - Wen Xue
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, 01655, USA.
- Department of Molecular, Cell and Cancer Biology, UMass Chan Medical School, Worcester, 01655, USA.
- Department of Molecular Medicine, UMass Chan Medical School, Worcester, 01655, USA.
- Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, 01655, USA.
| |
Collapse
|
37
|
Li X, Xie J, Dong C, Zheng Z, Shen R, Cao X, Chen X, Wang M, Zhu JK, Tian Y. Efficient and heritable A-to-K base editing in rice and tomato. HORTICULTURE RESEARCH 2024; 11:uhad250. [PMID: 38269296 PMCID: PMC10807703 DOI: 10.1093/hr/uhad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/15/2023] [Indexed: 01/26/2024]
Abstract
Cytosine and adenosine base editors (CBE and ABE) have been widely used in plants, greatly accelerating gene function research and crop breeding. Current base editors can achieve efficient A-to-G and C-to-T/G/A editing. However, efficient and heritable A-to-Y (A-to-T/C) editing remains to be developed in plants. In this study, a series of A-to-K base editor (AKBE) systems were constructed for monocot and dicot plants. Furthermore, nSpCas9 was replaced with the PAM-less Cas9 variant (nSpRY) to expand the target range of the AKBEs. Analysis of 228 T0 rice plants and 121 T0 tomato plants edited using AKBEs at 18 endogenous loci revealed that, in addition to highly efficient A-to-G substitution (41.0% on average), the plant AKBEs can achieve A-to-T conversion with efficiencies of up to 25.9 and 10.5% in rice and tomato, respectively. Moreover, the rice-optimized AKBE generates A-to-C conversion in rice, with an average efficiency of 1.8%, revealing the significant value of plant-optimized AKBE in creating genetic diversity. Although most of the A-to-T and A-to-C edits were chimeric, desired editing types could be transmitted to the T1 offspring, similar to the edits generated by the traditional ABE8e. Besides, using AKBEs to target tyrosine (Y, TAT) or cysteine (C, TGT) achieved the introduction of an early stop codon (TAG/TAA/TGA) of target genes, demonstrating its potential use in gene disruption.
Collapse
Affiliation(s)
- Xinbo Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan 572024, China
| | - Jiyong Xie
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Dong
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan 572024, China
| | - Zai Zheng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan 572024, China
| | - Rundong Shen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan 572024, China
| | - Xuesong Cao
- Institute of Advanced Biotechnology, and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaoyan Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Mugui Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Jian-Kang Zhu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Institute of Advanced Biotechnology, and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yifu Tian
- Ministry of Agriculture and Rural Affairs Key Laboratory of Gene Editing Technologies (Hainan), Institute of Crop Sciences and National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan 572024, China
| |
Collapse
|
38
|
Kim JS, Chen J. Base editing of organellar DNA with programmable deaminases. Nat Rev Mol Cell Biol 2024; 25:34-45. [PMID: 37794167 DOI: 10.1038/s41580-023-00663-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 10/06/2023]
Abstract
Mitochondria and chloroplasts are organelles that include their own genomes, which encode key genes for ATP production and carbon dioxide fixation, respectively. Mutations in mitochondrial DNA can cause diverse genetic disorders and are also linked to ageing and age-related diseases, including cancer. Targeted editing of organellar DNA should be useful for studying organellar genes and developing novel therapeutics, but it has been hindered by lack of efficient tools in living cells. Recently, CRISPR-free, protein-only base editors, such as double-stranded DNA deaminase toxin A-derived cytosine base editors (DdCBEs) and adenine base editors (ABEs), have been developed, which enable targeted organellar DNA editing in human cell lines, animals and plants. In this Review, we present programmable deaminases developed for base editing of organellar DNA in vitro and discuss mitochondrial DNA editing in animals, and plastid genome (plastome) editing in plants. We also discuss precision and efficiency limitations of these tools and propose improvements for therapeutic, agricultural and environmental applications.
Collapse
Affiliation(s)
- Jin-Soo Kim
- NUS Synthetic Biology for Clinical & Technological Innovation (SynCTI) and Department of Biochemistry, National University of Singapore, Singapore, Singapore.
- Edgene, Seoul, South Korea.
| | - Jia Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
39
|
Fu Y, He X, Gao XD, Li F, Ge S, Yang Z, Fan X. Prime editing: current advances and therapeutic opportunities in human diseases. Sci Bull (Beijing) 2023; 68:3278-3291. [PMID: 37973465 DOI: 10.1016/j.scib.2023.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/06/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023]
Abstract
Gene editing ushers in a new era of disease treatment since many genetic diseases are caused by base-pair mutations in genomic DNA. With the rapid development of genome editing technology, novel editing tools such as base editing and prime editing (PE) have attracted public attention, heralding a great leap forward in this field. PE, in particular, is characterized by no need for double-strand breaks (DSBs) or homology sequence templates with variable application scenarios, including point mutations as well as insertions or deletions. With higher editing efficiency and fewer byproducts than traditional editing tools, PE holds great promise as a therapeutic strategy for human diseases. Subsequently, a growing demand for the standard construction of PE system has spawned numerous easy-to-access internet resources and tools for personalized prime editing guide RNA (pegRNA) design and off-target site prediction. In this review, we mainly introduce the innovation and evolutionary strategy of PE systems and the auxiliary tools for PE design and analysis. Additionally, its application and future potential in the clinical field have been summarized and envisaged.
Collapse
Affiliation(s)
- Yidian Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xiaoyu He
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xin D Gao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge MA 02141, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge MA 02138, USA
| | - Fang Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Zhi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China.
| |
Collapse
|
40
|
Lin Y, Guan X, Su J, Chen S, Fu X, Xu X, Deng X, Chang J, Qin A, Shen A, Zhang L. Cell Membrane-Camouflaged Nanoparticles Mediated Nucleic Acids Delivery. Int J Nanomedicine 2023; 18:8001-8021. [PMID: 38164266 PMCID: PMC10758188 DOI: 10.2147/ijn.s433737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024] Open
Abstract
Nucleic acids have emerged as promising therapeutic agents for many diseases because of their potential in modulating gene expression. However, the delivery of nucleic acids remains a significant challenge in gene therapy. Although viral vectors have shown high transfection efficiency, concerns regarding teratogenicity or carcinogenicity have been raised. Non-viral vehicles, including cationic polymers, liposomes, and inorganic materials possess advantages in terms of safety, ease of preparation, and low cost. Nevertheless, they also face limitations related to immunogenicity, quick clearance in vivo, and lack of targeting specificity. On the other hand, bioinspired strategies have shown increasing potential in the field of drug delivery, yet there is a lack of comprehensive reviews summarizing the rapid development of bioinspired nanoparticles based on the cell membrane camouflage to construct the nucleic acids vehicles. Herein, we enumerated the current difficulties in nucleic acid delivery with various non-viral vehicles and provided an overview of bioinspired strategies for nucleic acid delivery.
Collapse
Affiliation(s)
- Yinshan Lin
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Xiaoling Guan
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Jianfen Su
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Sheng Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Xihua Fu
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
| | - Xiaowei Xu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Xiaohua Deng
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Jishuo Chang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Aiping Qin
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Ao Shen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Lingmin Zhang
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| |
Collapse
|
41
|
Affiliation(s)
- Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Jia Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| |
Collapse
|
42
|
Yoon DE, Kim NR, Park SJ, Jeong TY, Eun B, Cho Y, Lim SY, Lee H, Seong JK, Kim K. Precise base editing without unintended indels in human cells and mouse primary myoblasts. Exp Mol Med 2023; 55:2586-2595. [PMID: 38036737 PMCID: PMC10766602 DOI: 10.1038/s12276-023-01128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/09/2023] [Accepted: 09/21/2023] [Indexed: 12/02/2023] Open
Abstract
Base editors are powerful tools for making precise single-nucleotide changes in the genome. However, they can lead to unintended insertions and deletions at the target sites, which is a significant limitation for clinical applications. In this study, we aimed to eliminate unwanted indels at the target sites caused by various evolved base editors. Accordingly, we applied dead Cas9 instead of nickase Cas9 in the base editors to induce accurate substitutions without indels. Additionally, we tested the use of chromatin-modulating peptides in the base editors to improve nucleotide conversion efficiency. We found that using both dead Cas9 and chromatin-modulating peptides in base editing improved the nucleotide substitution efficiency without unintended indel mutations at the desired target sites in human cell lines and mouse primary myoblasts. Furthermore, the proposed scheme had fewer off-target effects than conventional base editors at the DNA level. These results indicate that the suggested approach is promising for the development of more accurate and safer base editing techniques for use in clinical applications.
Collapse
Affiliation(s)
- Da Eun Yoon
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Na-Rae Kim
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Soo-Ji Park
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Tae Yeong Jeong
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Bokkee Eun
- Core Laboratory for Convergent Translational Research, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Yongcheol Cho
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Soo-Yeon Lim
- Korea Mouse Phenotyping Center, Seoul National University, 08826, Seoul, Republic of Korea
| | - Hyunji Lee
- Department of Medicine, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, 28116, Cheongju, Republic of Korea
| | - Je Kyoung Seong
- Korea Mouse Phenotyping Center, Seoul National University, 08826, Seoul, Republic of Korea
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea
- Interdisciplinary Program for Bioinformatics, Program for Cancer Biology, BIO-MAX/N-Bio Institute, Seoul National University, 08826, Seoul, Republic of Korea
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| |
Collapse
|
43
|
Wu X, Ren B, Liu L, Qiu S, Li X, Li P, Yan F, Lin H, Zhou X, Zhang D, Zhou H. Adenine base editor incorporating the N-methylpurine DNA glycosylase MPGv3 enables efficient A-to-K base editing in rice. PLANT COMMUNICATIONS 2023; 4:100668. [PMID: 37528583 PMCID: PMC10721470 DOI: 10.1016/j.xplc.2023.100668] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
Affiliation(s)
- Xuemei Wu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin 541399, China
| | - Bin Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin 541399, China
| | - Lang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin 541399, China; Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Shengqun Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin 541399, China
| | - Xin'ge Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin 541399, China; State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Peijing Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin 541399, China; School of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Fang Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China.
| | - Huanbin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture and Rural Affairs, Guilin 541399, China; Hainan Yazhou Bay Seed Lab/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| |
Collapse
|
44
|
Li Y, Li S, Li C, Zhang C, Yan L, Li J, He Y, Guo Y, Lin Y, Zhang Y, Xia L. Engineering a plant A-to-K base editor with improved performance by fusion with a transactivation module. PLANT COMMUNICATIONS 2023; 4:100667. [PMID: 37528582 PMCID: PMC10721455 DOI: 10.1016/j.xplc.2023.100667] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Affiliation(s)
- Yucai Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, Hainan Province 572024, China; State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaoya Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, Hainan Province 572024, China
| | - Chenfei Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Chen Zhang
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Lei Yan
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jingying Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, Hainan Province 572024, China
| | - Yubing He
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, Hainan Province 572024, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yong Lin
- Beijing Dabeinong Technology Group Co., Ltd., Beijing 10080, China
| | - Yangjun Zhang
- Beijing Dabeinong Technology Group Co., Ltd., Beijing 10080, China
| | - Lanqin Xia
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, Hainan Province 572024, China.
| |
Collapse
|
45
|
Hong S, Kim S, Kim K, Lee H. Clinical Approaches for Mitochondrial Diseases. Cells 2023; 12:2494. [PMID: 37887337 PMCID: PMC10605124 DOI: 10.3390/cells12202494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Mitochondria are subcontractors dedicated to energy production within cells. In human mitochondria, almost all mitochondrial proteins originate from the nucleus, except for 13 subunit proteins that make up the crucial system required to perform 'oxidative phosphorylation (OX PHOS)', which are expressed by the mitochondria's self-contained DNA. Mitochondrial DNA (mtDNA) also encodes 2 rRNA and 22 tRNA species. Mitochondrial DNA replicates almost autonomously, independent of the nucleus, and its heredity follows a non-Mendelian pattern, exclusively passing from mother to children. Numerous studies have identified mtDNA mutation-related genetic diseases. The consequences of various types of mtDNA mutations, including insertions, deletions, and single base-pair mutations, are studied to reveal their relationship to mitochondrial diseases. Most mitochondrial diseases exhibit fatal symptoms, leading to ongoing therapeutic research with diverse approaches such as stimulating the defective OXPHOS system, mitochondrial replacement, and allotropic expression of defective enzymes. This review provides detailed information on two topics: (1) mitochondrial diseases caused by mtDNA mutations, and (2) the mechanisms of current treatments for mitochondrial diseases and clinical trials.
Collapse
Affiliation(s)
- Seongho Hong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul 08826, Republic of Korea;
- Department of Medicine, Korea University College of Medicine, Seoul 02708, Republic of Korea
| | - Sanghun Kim
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea;
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyunji Lee
- Department of Medicine, Korea University College of Medicine, Seoul 02708, Republic of Korea
| |
Collapse
|
46
|
Shelake RM, Jadhav AM, Bhosale PB, Kim JY. Unlocking secrets of nature's chemists: Potential of CRISPR/Cas-based tools in plant metabolic engineering for customized nutraceutical and medicinal profiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108070. [PMID: 37816270 DOI: 10.1016/j.plaphy.2023.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals. Recent technological advances have significantly contributed to discovering metabolic pathways and related genes involved in the biosynthesis of specific PSM in different food crops and medicinal plants. Consequently, there is a growing demand for plant materials rich in nutrients and bioactive compounds, marketed as "superfoods". To meet the industrial demand for superfoods and therapeutic PSMs, modern methods such as system biology, omics, synthetic biology, and genome editing (GE) play a crucial role in identifying the molecular players, limiting steps, and regulatory circuitry involved in PSM production. Among these methods, clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR/Cas) is the most widely used system for plant GE due to its simple design, flexibility, precision, and multiplexing capabilities. Utilizing the CRISPR-based toolbox for metabolic engineering (ME) offers an ideal solution for developing plants with tailored preventive (nutraceuticals) and curative (therapeutic) metabolic profiles in an ecofriendly way. This review discusses recent advances in understanding the multifactorial regulation of metabolic pathways, the application of CRISPR-based tools for plant ME, and the potential research areas for enhancing plant metabolic profiles.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Amol Maruti Jadhav
- Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea; Nulla Bio Inc, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
47
|
Wang Y, Wang Y, Chen Y, Yan Q, Lin A. Research progress in mitochondrial gene editing technology. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:460-472. [PMID: 37643980 PMCID: PMC10495247 DOI: 10.3724/zdxbyxb-2023-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Mitochondrial DNA (mtDNA) mutations result in a variety of genetic diseases. As an emerging therapeutic method, mtDNA editing technology recognizes targets more based on the protein and less on the nucleic acid. Although the protein recognition type mtDNA editing technology represented by zinc finger nuclease technology, transcription activator like effector nuclease technology and base editing technology has made some progress, the disadvantages of complex recognition sequence design hinder further popularization. Gene editing based on nucleic acid recognition by the CRISPR system shows superiority due to the simple structure, easy design and modification. However, the lack of effective means to deliver nucleic acids into mitochondria limits application in the field of mtDNA editing. With the advances in the study of endogenous and exogenous import pathways and the deepening understanding of DNA repair mechanisms, growing evidence shows the feasibility of nucleic acid delivery and the broad application prospects of nucleic acid recognition type mtDNA editing technology. Based on the classification of recognition elements, this article summarizes the current principles and development of mitochondrial gene editing technology, and discusses its application prospects.
Collapse
Affiliation(s)
- Yichen Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Ying Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Yu Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Qingfeng Yan
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Center for RNA Medicine, International Institutes of Medicine, Zhejiang University, Jinhua 322000, Zhejiang Province, China.
| |
Collapse
|
48
|
Zhang Z, Bao X, Lin CP. Progress and Prospects of Gene Editing in Pluripotent Stem Cells. Biomedicines 2023; 11:2168. [PMID: 37626665 PMCID: PMC10452926 DOI: 10.3390/biomedicines11082168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Applying programmable nucleases in gene editing has greatly shaped current research in basic biology and clinical translation. Gene editing in human pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), is highly relevant to clinical cell therapy and thus should be examined with particular caution. First, since all mutations in PSCs will be carried to all their progenies, off-target edits of editors will be amplified. Second, due to the hypersensitivity of PSCs to DNA damage, double-strand breaks (DSBs) made by gene editing could lead to low editing efficiency and the enrichment of cell populations with defective genomic safeguards. In this regard, DSB-independent gene editing tools, such as base editors and prime editors, are favored due to their nature to avoid these consequences. With more understanding of the microbial world, new systems, such as Cas-related nucleases, transposons, and recombinases, are also expanding the toolbox for gene editing. In this review, we discuss current applications of programmable nucleases in PSCs for gene editing, the efforts researchers have made to optimize these systems, as well as new tools that can be potentially employed for differentiation modeling and therapeutic applications.
Collapse
Affiliation(s)
| | | | - Chao-Po Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; (Z.Z.); (X.B.)
| |
Collapse
|
49
|
Vaitsiankova A, Thakar T, Ciccia A. Base-editing screens illuminate variant effects in human hematopoiesis. CELL REPORTS METHODS 2023; 3:100541. [PMID: 37533644 PMCID: PMC10391558 DOI: 10.1016/j.crmeth.2023.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
In a recent issue of Cell, Martin-Rufino et al. develop a strategy for performing high-throughput base-editing CRISPR screens coupled with single-cell readouts in the context of human hematopoiesis. Through a series of proof-of-principle experiments, the authors demonstrate the potential of base-editing screens for the study and treatment of hematological disorders.
Collapse
Affiliation(s)
- Alina Vaitsiankova
- Department of Genetics and Development, Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tanay Thakar
- Department of Genetics and Development, Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alberto Ciccia
- Department of Genetics and Development, Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
50
|
Gu F. Advances in Split Vector Approaches for Adeno-Associated Virus Gene Therapy. Hum Gene Ther 2023; 34:592-593. [PMID: 37462950 DOI: 10.1089/hum.2023.29245.fgu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Affiliation(s)
- Feng Gu
- School of Medicine, Hunan Normal University, The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Changsha, China
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, China
| |
Collapse
|