1
|
Rolland C, Wittmann J, Reimer LC, Sardà Carbasse J, Schober I, Dudek CA, Ebeling C, Koblitz J, Bunk B, Overmann J. PhageDive: the comprehensive strain database of prokaryotic viral diversity. Nucleic Acids Res 2025; 53:D819-D825. [PMID: 39373542 PMCID: PMC11701545 DOI: 10.1093/nar/gkae878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024] Open
Abstract
Prokaryotic viruses represent the most diverse and abundant biological entities on Earth. So far, data on bacteriophages are not standardized, not readily available for comparative analyses and cannot be linked to the rapidly growing (meta)genomic data. We developed PhageDive (https://phagedive.dsmz.de), a comprehensive database for prokaryotic viruses gathering all existing data dispersed across multiple sources, like scientific publications, specialized databases or internal files of culture collections. PhageDive allows to link own research data to the existing information through an easy and central access, providing fields for various experimental data (host range, genomic data, etc.) and available metadata (e.g. geographical origin, isolation source). An important feature is the link between experimental data, the culture collection number and the repository of the corresponding physical bioresource. To date, PhageDive covers 1167 phages from three different world-renowned public collections (DSMZ, Félix d'Hérelle Reference Center for Bacterial Viruses and NCTC) and features an advanced search function using all data fields from the sections like taxonomy or morphology by controlled vocabulary and ontologies. PhageDive is fully interoperable with other resources including NCBI, the Viral Host Range database (VHRdb) of Institute Pasteur or the BacDive and MediaDive databases of DSMZ.
Collapse
Affiliation(s)
- Clara Rolland
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany
| | - Lorenz C Reimer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany
| | - Joaquim Sardà Carbasse
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany
| | - Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany
| | - Christian-Alexander Dudek
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany
| | - Christian Ebeling
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany
| | - Julia Koblitz
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, 38124 Braunschweig, Germany
| |
Collapse
|
2
|
Coclet C, Camargo AP, Roux S. MVP: a modular viromics pipeline to identify, filter, cluster, annotate, and bin viruses from metagenomes. mSystems 2024; 9:e0088824. [PMID: 39352141 PMCID: PMC11498083 DOI: 10.1128/msystems.00888-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
While numerous computational frameworks and workflows are available for recovering prokaryote and eukaryote genomes from metagenome data, only a limited number of pipelines are designed specifically for viromics analysis. With many viromics tools developed in the last few years alone, it can be challenging for scientists with limited bioinformatics experience to easily recover, evaluate quality, annotate genes, dereplicate, assign taxonomy, and calculate relative abundance and coverage of viral genomes using state-of-the-art methods and standards. Here, we describe Modular Viromics Pipeline (MVP) v.1.0, a user-friendly pipeline written in Python and providing a simple framework to perform standard viromics analyses. MVP combines multiple tools to enable viral genome identification, characterization of genome quality, filtering, clustering, taxonomic and functional annotation, genome binning, and comprehensive summaries of results that can be used for downstream ecological analyses. Overall, MVP provides a standardized and reproducible pipeline for both extensive and robust characterization of viruses from large-scale sequencing data including metagenomes, metatranscriptomes, viromes, and isolate genomes. As a typical use case, we show how the entire MVP pipeline can be applied to a set of 20 metagenomes from wetland sediments using only 10 modules executed via command lines, leading to the identification of 11,656 viral contigs and 8,145 viral operational taxonomic units (vOTUs) displaying a clear beta-diversity pattern. Further, acting as a dynamic wrapper, MVP is designed to continuously incorporate updates and integrate new tools, ensuring its ongoing relevance in the rapidly evolving field of viromics. MVP is available at https://gitlab.com/ccoclet/mvp and as versioned packages in PyPi and Conda.IMPORTANCEThe significance of our work lies in the development of Modular Viromics Pipeline (MVP), an integrated and user-friendly pipeline tailored exclusively for viromics analyses. MVP stands out due to its modular design, which ensures easy installation, execution, and integration of new tools and databases. By combining state-of-the-art tools such as geNomad and CheckV, MVP provides high-quality viral genome recovery and taxonomy and host assignment, and functional annotation, addressing the limitations of existing pipelines. MVP's ability to handle diverse sample types, including environmental, human microbiome, and plant-associated samples, makes it a versatile tool for the broader microbiome research community. By standardizing the analysis process and providing easily interpretable results, MVP enables researchers to perform comprehensive studies of viral communities, significantly advancing our understanding of viral ecology and its impact on various ecosystems.
Collapse
Affiliation(s)
- Clément Coclet
- DOE Joint Genome
Institute, Lawrence Berkeley National
Laboratory, Berkeley,
California, USA
| | - Antonio Pedro Camargo
- DOE Joint Genome
Institute, Lawrence Berkeley National
Laboratory, Berkeley,
California, USA
| | - Simon Roux
- DOE Joint Genome
Institute, Lawrence Berkeley National
Laboratory, Berkeley,
California, USA
| |
Collapse
|
3
|
Cook R, Telatin A, Hsieh SY, Newberry F, Tariq MA, Baker DJ, Carding SR, Adriaenssens EM. Nanopore and Illumina sequencing reveal different viral populations from human gut samples. Microb Genom 2024; 10:001236. [PMID: 38683195 PMCID: PMC11092197 DOI: 10.1099/mgen.0.001236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/18/2024] [Indexed: 05/01/2024] Open
Abstract
The advent of viral metagenomics, or viromics, has improved our knowledge and understanding of global viral diversity. High-throughput sequencing technologies enable explorations of the ecological roles, contributions to host metabolism, and the influence of viruses in various environments, including the human intestinal microbiome. However, bacterial metagenomic studies frequently have the advantage. The adoption of advanced technologies like long-read sequencing has the potential to be transformative in refining viromics and metagenomics. Here, we examined the effectiveness of long-read and hybrid sequencing by comparing Illumina short-read and Oxford Nanopore Technology (ONT) long-read sequencing technologies and different assembly strategies on recovering viral genomes from human faecal samples. Our findings showed that if a single sequencing technology is to be chosen for virome analysis, Illumina is preferable due to its superior ability to recover fully resolved viral genomes and minimise erroneous genomes. While ONT assemblies were effective in recovering viral diversity, the challenges related to input requirements and the necessity for amplification made it less ideal as a standalone solution. However, using a combined, hybrid approach enabled a more authentic representation of viral diversity to be obtained within samples.
Collapse
Affiliation(s)
- Ryan Cook
- Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | | | | | - Fiona Newberry
- Department of Biosciences, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Mohammad A. Tariq
- Faculty of Health and Life Sciences, University of Northumbria, Newcastle upon Tyne, NE1 8ST, UK
| | | | - Simon R. Carding
- Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | | |
Collapse
|
4
|
Desmecht S, Latka A, Ceyssens PJ, Garcia-Pino A, Gillis A, Lavigne R, Lima-Mendez G, Matthijnssens J, Vázquez R, Venneman J, Wagemans J, Briers Y, Thiry D. Meeting Report of the Second Symposium of the Belgian Society for Viruses of Microbes and Launch of the Phage Valley. Viruses 2024; 16:299. [PMID: 38400074 PMCID: PMC10891784 DOI: 10.3390/v16020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
The second symposium of the Belgian Society for Viruses of Microbes (BSVoM) took place on 8 September 2023 at the University of Liège with 141 participants from 10 countries. The meeting program covered three thematic sessions opened by international keynote speakers: two sessions were devoted to "Fundamental research in phage ecology and biology" and the third one to the "Present and future applications of phages". During this one day symposium, four invited keynote lectures, nine selected talks and eight student pitches were given along with thirty presented posters. The president of the Belgian Society for Viruses of Microbes, Prof. Yves Briers, took advantage of this symposium to launch the Phage Valley concept that will put the spotlight on the exceptionally high density of researchers investigating viruses of microbes as well as the successful triple helix approach between academia, industry and government in Belgium.
Collapse
Affiliation(s)
- Salomé Desmecht
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège (ULiège), 4000 Liège, Belgium;
| | - Agnieszka Latka
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, University of Ghent (UGent), 9000 Gent, Belgium; (A.L.); (R.V.)
- Department of Pathogen Biology and Immunology, Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland
| | | | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculty of Sciences, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium;
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Catholic University of Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium;
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium; (R.L.); (J.W.)
| | - Gipsi Lima-Mendez
- Biology of Microorganisms Research Unit (URBM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium;
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Department of Microbiology, Immunology and Transplantation, Rega Institute, Division of Clinical and Epidemiological Virology, KU Leuven, 3000 Leuven, Belgium;
| | - Roberto Vázquez
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, University of Ghent (UGent), 9000 Gent, Belgium; (A.L.); (R.V.)
| | - Jolien Venneman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium;
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, 3001 Leuven, Belgium; (R.L.); (J.W.)
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Faculty of Bioscience Engineering, University of Ghent (UGent), 9000 Gent, Belgium; (A.L.); (R.V.)
| | - Damien Thiry
- Veterinary Bacteriology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liège (ULiège), 4000 Liège, Belgium;
| |
Collapse
|
5
|
Ramos-Barbero MD, Aldeguer-Riquelme B, Viver T, Villamor J, Carrillo-Bautista M, López-Pascual C, Konstantinidis KT, Martínez-García M, Santos F, Rossello-Mora R, Antón J. Experimental evolution at ecological scales allows linking of viral genotypes to specific host strains. THE ISME JOURNAL 2024; 18:wrae208. [PMID: 39579348 PMCID: PMC11631230 DOI: 10.1093/ismejo/wrae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/03/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Viruses shape microbial community structure and activity through the control of population diversity and cell abundances. Identifying and monitoring the dynamics of specific virus-host pairs in nature is hampered by the limitations of culture-independent approaches such as metagenomics, which do not always provide strain-level resolution, and culture-based analyses, which eliminate the ecological background and in-situ interactions. Here, we have explored the interaction of a specific "autochthonous" host strain and its viruses within a natural community. Bacterium Salinibacter ruber strain M8 was spiked into its environment of isolation, a crystallizer pond from a coastal saltern, and the viral and cellular communities were monitored for one month using culture, metagenomics, and microscopy. Metagenome sequencing indicated that the M8 abundance decreased sharply after being added to the pond, likely due to forces other than viral predation. However, the presence of M8 selected for two species of a new viral genus, Phoenicisalinivirus, for which 120 strains were isolated. During this experiment, an assemblage of closely related viral genomic variants was replaced by a single population with the ability to infect M8, a scenario which was compatible with the selection of a genomic variant from the rare biosphere. Further analysis implicated a viral genomic region putatively coding for a tail fiber protein to be responsible for M8 specificity. Our results indicate that low abundance viral genotypes provide a viral seed bank that allows for a highly specialized virus-host response within a complex ecological background.
Collapse
Affiliation(s)
- María Dolores Ramos-Barbero
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Diagonal 643. Annex. Floor 0, Barcelona E-08028, Spain
| | - Borja Aldeguer-Riquelme
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332, GA, United States
| | - Tomeu Viver
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Esporles 07190, Spain
| | - Judith Villamor
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | - Miryam Carrillo-Bautista
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | - Cristina López-Pascual
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | | | - Manuel Martínez-García
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | - Fernando Santos
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
| | - Ramon Rossello-Mora
- Marine Microbiology Group, Department of Animal and Microbial Biodiversity, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Esporles 07190, Spain
| | - Josefa Antón
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante 03690, Spain
- Multidisciplinary Institute of Environmental Studies Ramon Margalef, Alicante 03690, Spain
| |
Collapse
|
6
|
Litov AG, Belova OA, Kholodilov IS, Kalyanova AS, Gadzhikurbanov MN, Rogova AA, Gmyl LV, Karganova GG. Viromes of Tabanids from Russia. Viruses 2023; 15:2368. [PMID: 38140608 PMCID: PMC10748123 DOI: 10.3390/v15122368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Advances in sequencing technologies and bioinformatics have greatly enhanced our knowledge of virus biodiversity. Currently, the viromes of hematophagous invertebrates, such as mosquitoes and ixodid ticks, are being actively studied. Tabanidae (Diptera) are a widespread family, with members mostly known for their persistent hematophagous behavior. They transmit viral, bacterial, and other pathogens, both biologically and mechanically. However, tabanid viromes remain severely understudied. In this study, we used high-throughput sequencing to describe the viromes of several species in the Hybomitra, Tabanus, Chrysops, and Haematopota genera, which were collected in two distant parts of Russia: the Primorye Territory and Ryazan Region. We assembled fourteen full coding genomes of novel viruses, four partial coding genomes, as well as several fragmented viral sequences, which presumably belong to another twelve new viruses. All the discovered viruses were tested for their ability to replicate in mammalian porcine embryo kidney (PEK), tick HAE/CTVM8, and mosquito C6/36 cell lines. In total, 16 viruses were detected in at least one cell culture after three passages (for PEK and C6/36) or 3 weeks of persistence in HAE/CTVM8. However, in the majority of cases, qPCR showed a decline in virus load over time.
Collapse
Affiliation(s)
- Alexander G. Litov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia; (A.G.L.); (O.A.B.); (I.S.K.); (M.N.G.); (A.A.R.); (L.V.G.)
| | - Oxana A. Belova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia; (A.G.L.); (O.A.B.); (I.S.K.); (M.N.G.); (A.A.R.); (L.V.G.)
| | - Ivan S. Kholodilov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia; (A.G.L.); (O.A.B.); (I.S.K.); (M.N.G.); (A.A.R.); (L.V.G.)
| | - Anna S. Kalyanova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia; (A.G.L.); (O.A.B.); (I.S.K.); (M.N.G.); (A.A.R.); (L.V.G.)
| | - Magomed N. Gadzhikurbanov
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia; (A.G.L.); (O.A.B.); (I.S.K.); (M.N.G.); (A.A.R.); (L.V.G.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia A. Rogova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia; (A.G.L.); (O.A.B.); (I.S.K.); (M.N.G.); (A.A.R.); (L.V.G.)
| | - Larissa V. Gmyl
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia; (A.G.L.); (O.A.B.); (I.S.K.); (M.N.G.); (A.A.R.); (L.V.G.)
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, FSASI Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of RAS, 108819 Moscow, Russia; (A.G.L.); (O.A.B.); (I.S.K.); (M.N.G.); (A.A.R.); (L.V.G.)
- Institute for Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia
| |
Collapse
|
7
|
Richard JC, Blevins E, Dunn CD, Leis EM, Goldberg TL. Viruses of Freshwater Mussels during Mass Mortality Events in Oregon and Washington, USA. Viruses 2023; 15:1719. [PMID: 37632061 PMCID: PMC10458741 DOI: 10.3390/v15081719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Freshwater mussels (Unionida) are globally imperiled, in part due to largely unexplained mass mortality events (MMEs). While recent studies have begun to investigate the possibility that mussel MMEs in the Eastern USA may be caused by infectious diseases, mussels in the Western USA have received relatively little attention in this regard. We conducted a two-year epidemiologic investigation of the role of viruses in ongoing MMEs of the Western pearlshell (Margaritifera falcata) and the Western ridged mussel (Gonidea angulata) in the Chehalis River and Columbia River watersheds in the Western USA. We characterized viromes of mussel hemolymph from 5 locations in 2018 and 2020 using metagenomic methods and identified 557 viruses based on assembled contiguous sequences, most of which are novel. We also characterized the distribution and diversity of a previously identified mussel Gammarhabdovirus related to pathogenic finfish viruses. Overall, we found few consistent associations between viruses and mussel health status. Variation in mussel viromes was most strongly driven by location, with little influence from date, species, or health status, though these variables together only explained ~1/3 of variation in virome composition. Our results demonstrate that Western freshwater mussels host remarkably diverse viromes, but no single virus or combination of viruses appears to be associated with morbidity or mortality during MMEs. Our findings have implications for the conservation of imperiled freshwater mussels, including efforts to enhance natural populations through captive propagation.
Collapse
Affiliation(s)
- Jordan C. Richard
- Department of Pathobiological Sciences and Freshwater & Marine Sciences Program, University of Wisconsin-Madison, Madison, WI 53706, USA;
- Southwestern Virginia Field Office, U.S. Fish and Wildlife Service, Abingdon, VA 24210, USA
| | - Emilie Blevins
- Xerces Society for Invertebrate Conservation, Portland, OR 97232, USA;
| | - Christopher D. Dunn
- Department of Pathobiological Sciences and Freshwater & Marine Sciences Program, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Eric M. Leis
- La Crosse Fish Health Center, Midwest Fisheries Center, U.S. Fish and Wildlife Service, Onalaska, WI 54650, USA;
| | - Tony L. Goldberg
- Department of Pathobiological Sciences and Freshwater & Marine Sciences Program, University of Wisconsin-Madison, Madison, WI 53706, USA;
| |
Collapse
|