1
|
Dong Z, Ye Y, Zhang W, Luo H, Li J, Zhang Q, Zhang X, Guo X, Xu X. MYB represses ζ-globin expression through upregulating ETO2. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39757769 DOI: 10.3724/abbs.2024239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Reactivating the embryonic ζ-globin gene represents a potential therapeutic approach to ameliorate the severe clinical phenotype of α-thalassemia and sickle cell disease. The transcription factor MYB has been extensively proven to be a master regulator of the γ-globin gene, but its role in the regulation of ζ-globin remains incompletely understood. Here, we report a mechanistic study on the derepression of ζ-globin both in vivo and in vitro. We show that MYB depletion in mouse models and human hematopoietic stem cells leads to consistent and remarkable reactivation of ζ-globin. Furthermore, multiomics analysis and functional validation of MYB-knockout and wild-type cell lines reveal that ETO2 functions as a novel repressor of ζ-globin through coordination with NuRD nucleosome remodeling and the deacetylation complex to modulate histone deacetylation of ζ-globin. Additionally, we evaluate the clinical significance of these findings by knocking out ETO2 in primary CD34 + cells from nondeletional hemoglobin H patients, which results in a significant increase in ζ-globin expression. The RNA-seq data reveal that key erythroid genes are more co-regulated by Myb and Eto2 than by Myb and Klf1, highlighting a distinctly enhanced erythroid-specific transcriptional impact within the MYB-ETO2 regulatory axis. Compared with ETO2 knockout alone, codepletion of ETO2 and BCL11A did not significantly activate ζ-globin, suggesting that the MYB-ETO2 pathway primarily silences ζ-globin. Our study reveals a linear MYB-ETO2 signaling pathway crucial for ζ-globin repression and offers new targets for treating α-thalassemia and sickle cell disease.
Collapse
Affiliation(s)
- Zejun Dong
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuhua Ye
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wei Zhang
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hualei Luo
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jialong Li
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qianqian Zhang
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xinhua Zhang
- Department of Hematology, 923rd Hospital of the People's Liberation Army, Nanning 530021, China
| | - Xiang Guo
- Institute of Blood Diseases, Department of Hematology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xiangmin Xu
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
McManus M, Frangoul H, Steinberg MH. CRISPR-based gene therapy for the induction of fetal hemoglobin in sickle cell disease. Expert Rev Hematol 2024; 17:957-966. [PMID: 39535263 DOI: 10.1080/17474086.2024.2429605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/17/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Sickle cell disease is ameliorated and perhaps can be 'cured' if enough fetal hemoglobin is present in most erythrocytes. Hydroxyurea, which increases fetal hemoglobin levels, is widely available and effective, especially in children. Nevertheless, only cell-based gene therapy can achieve a 'curative' fetal hemoglobin threshold. AREAS COVERED We cover the path to modulating fetal hemoglobin gene expression and the use of CRISPR/Cas9 gene editing as a viable clinical modality for treating severe sickle cell disease relying on references obtained from PubMed. Mobilized autologous hematopoietic stem and progenitor cells are engineered with vectors that derepress genes that regulate fetal hemoglobin gene expression. Following myeloablative conditioning, gene-edited cells are reinfused, engrafted, and make large amounts of fetal hemoglobin. Within months, fetal hemoglobin forms more than 40% of the total hemoglobin and hemoglobin levels normalize; symptoms of sickle cell disease disappear. EXPERT OPINION Optimistically, these patients are 'cured,' but long term follow-up is needed. Although approved by regulatory agencies and highly efficacious, because of its technical imperatives and cost, this first gene editing therapeutic will be unavailable to most people with severe sickle cell disease. It is highly likely that improved methods of genomic editing will simplify gene therapy, reduce its costs, and lead to its wider applicability.
Collapse
Affiliation(s)
- Meghann McManus
- Sarah Cannon Pediatric Hematology/Oncology & Cellular Therapy @TriStar Centennial, Nashville, TN, USA
| | - Haydar Frangoul
- Sarah Cannon Pediatric Hematology/Oncology & Cellular Therapy @TriStar Centennial, Nashville, TN, USA
| | - Martin H Steinberg
- Department of Medicine, Division of Hematology and Medical Oncology, Center of Excellence for Sickle Cell Disease, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| |
Collapse
|
3
|
Khandros E, Blobel GA. Elevating fetal hemoglobin: recently discovered regulators and mechanisms. Blood 2024; 144:845-852. [PMID: 38728575 DOI: 10.1182/blood.2023022190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT It has been known for over half a century that throughout ontogeny, humans produce different forms of hemoglobin, a tetramer of α- and β-like hemoglobin chains. The switch from fetal to adult hemoglobin occurs around the time of birth when erythropoiesis shifts from the fetal liver to the bone marrow. Naturally, diseases caused by defective adult β-globin genes, such as sickle cell disease and β-thalassemia, manifest themselves as the production of fetal hemoglobin fades. Reversal of this developmental switch has been a major goal to treat these diseases and has been a driving force to understand its underlying molecular biology. Several review articles have illustrated the long and at times arduous paths that led to the discovery of the first transcriptional regulators involved in this process. Here, we survey recent developments spurred by the discovery of CRISPR tools that enabled for the first time high-throughput genetic screens for new molecules that impact the fetal-to-adult hemoglobin switch. Numerous opportunities for therapeutic intervention have thus come to light, offering hope for effective pharmacologic intervention for patients for whom gene therapy is out of reach.
Collapse
Affiliation(s)
- Eugene Khandros
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
4
|
Bao L, Zhu J, Shi T, Jiang Y, Li B, Huang J, Ji X. Increased transcriptional elongation and RNA stability of GPCR ligand binding genes unveiled via RNA polymerase II degradation. Nucleic Acids Res 2024; 52:8165-8183. [PMID: 38842922 DOI: 10.1093/nar/gkae478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/01/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
RNA polymerase II drives mRNA gene expression, yet our understanding of Pol II degradation is limited. Using auxin-inducible degron, we degraded Pol II's RPB1 subunit, resulting in global repression. Surprisingly, certain genes exhibited increased RNA levels post-degradation. These genes are associated with GPCR ligand binding and are characterized by being less paused and comprising polycomb-bound short genes. RPB1 degradation globally increased KDM6B binding, which was insufficient to explain specific gene activation. In contrast, RPB2 degradation repressed nearly all genes, accompanied by decreased H3K9me3 and SUV39H1 occupancy. We observed a specific increase in serine 2 phosphorylated Pol II and RNA stability for RPB1 degradation-upregulated genes. Additionally, α-amanitin or UV treatment resulted in RPB1 degradation and global gene repression, unveiling subsets of upregulated genes. Our findings highlight the activated transcription elongation and increased RNA stability of signaling genes as potential mechanisms for mammalian cells to counter RPB1 degradation during stress.
Collapse
Affiliation(s)
- Lijun Bao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Junyi Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Tingxin Shi
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yongpeng Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Boyuan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing 100871, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Ting PY, Borikar S, Kerrigan JR, Thomsen NM, Aghania E, Hinman AE, Reyes A, Pizzato N, Fodor BD, Wu F, Belew MS, Mao X, Wang J, Chitnis S, Niu W, Hachey A, Cobb JS, Savage NA, Burke A, Paulk J, Dovala D, Lin J, Clifton MC, Ornelas E, Ma X, Ware NF, Sanchez CC, Taraszka J, Terranova R, Knehr J, Altorfer M, Barnes SW, Beckwith REJ, Solomon JM, Dales NA, Patterson AW, Wagner J, Bouwmeester T, Dranoff G, Stevenson SC, Bradner JE. A molecular glue degrader of the WIZ transcription factor for fetal hemoglobin induction. Science 2024; 385:91-99. [PMID: 38963839 DOI: 10.1126/science.adk6129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/05/2024] [Indexed: 07/06/2024]
Abstract
Sickle cell disease (SCD) is a prevalent, life-threatening condition attributable to a heritable mutation in β-hemoglobin. Therapeutic induction of fetal hemoglobin (HbF) can ameliorate disease complications and has been intently pursued. However, safe and effective small-molecule inducers of HbF remain elusive. We report the discovery of dWIZ-1 and dWIZ-2, molecular glue degraders of the WIZ transcription factor that robustly induce HbF in erythroblasts. Phenotypic screening of a cereblon (CRBN)-biased chemical library revealed WIZ as a previously unknown repressor of HbF. WIZ degradation is mediated by recruitment of WIZ(ZF7) to CRBN by dWIZ-1, as resolved by crystallography of the ternary complex. Pharmacological degradation of WIZ was well tolerated and induced HbF in humanized mice and cynomolgus monkeys. These findings establish WIZ degradation as a globally accessible therapeutic strategy for SCD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fabian Wu
- Novartis Biomedical Research, Basel, Switzerland
| | | | - Xiaohong Mao
- Novartis Biomedical Research, Cambridge, MA, USA
| | - Jian Wang
- Novartis Biomedical Research, Cambridge, MA, USA
| | | | - Wei Niu
- Novartis Biomedical Research, Cambridge, MA, USA
| | | | | | | | - Ashley Burke
- Novartis Biomedical Research, Cambridge, MA, USA
| | | | | | - James Lin
- Novartis Biomedical Research, Emeryville, CA, USA
| | | | | | - Xiaolei Ma
- Novartis Biomedical Research, Emeryville, CA, USA
| | | | | | | | | | - Judith Knehr
- Novartis Biomedical Research, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hart KL, Liu B, Brown D, Campo-Fernandez B, Tam K, Orr K, Hollis RP, Brendel C, Williams DA, Kohn DB. A novel high-titer, bifunctional lentiviral vector for autologous hematopoietic stem cell gene therapy of sickle cell disease. Mol Ther Methods Clin Dev 2024; 32:101254. [PMID: 38745893 PMCID: PMC11091523 DOI: 10.1016/j.omtm.2024.101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
A major limitation of gene therapy for sickle cell disease (SCD) is the availability and access to a potentially curative one-time treatment, due to high treatment costs. We have developed a high-titer bifunctional lentiviral vector (LVV) in a vector backbone that has reduced size, high vector yields, and efficient gene transfer to human CD34+ hematopoietic stem and progenitor cells (HSPCs). This LVV contains locus control region cores expressing an anti-sickling βAS3-globin gene and two microRNA-adapted short hairpin RNA simultaneously targeting BCL11A and ZNF410 transcripts to maximally induce fetal hemoglobin (HbF) expression. This LVV induces high levels of anti-sickling hemoglobins (HbAAS3 + HbF), while concurrently decreasing sickle hemoglobin (HbS). The decrease in HbS and increased anti-sickling hemoglobin impedes deoxygenated HbS polymerization and red blood cell sickling at low vector copy per cell in transduced SCD patient CD34+ cells differentiated into erythrocytes. The dual alterations in red cell hemoglobins ameliorated the SCD phenotype in the SCD Berkeley mouse model in vivo. With high titer and enhanced transduction of HSPC at a low multiplicity of infection, this LVV will increase the number of patient doses of vector from production lots to decrease costs and help improve accessibility to gene therapy for SCD.
Collapse
Affiliation(s)
- Kevyn L. Hart
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Boya Liu
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Devin Brown
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Beatriz Campo-Fernandez
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin Tam
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Katherine Orr
- CSUN-UCLA Stem Cell Scientist Training Program, California State University, Northridge, Northridge, CA 91330, USA
| | - Roger P. Hollis
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christian Brendel
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138, USA
| | - David A. Williams
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138, USA
| | - Donald B. Kohn
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
- The Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Zhang X, Xia F, Zhang X, Blumenthal RM, Cheng X. C2H2 Zinc Finger Transcription Factors Associated with Hemoglobinopathies. J Mol Biol 2024; 436:168343. [PMID: 37924864 PMCID: PMC11185177 DOI: 10.1016/j.jmb.2023.168343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
In humans, specific aberrations in β-globin results in sickle cell disease and β-thalassemia, symptoms of which can be ameliorated by increased expression of fetal globin (HbF). Two recent CRISPR-Cas9 screens, centered on ∼1500 annotated sequence-specific DNA binding proteins and performed in a human erythroid cell line that expresses adult hemoglobin, uncovered four groups of candidate regulators of HbF gene expression. They are (1) members of the nucleosome remodeling and deacetylase (NuRD) complex proteins that are already known for HbF control; (2) seven C2H2 zinc finger (ZF) proteins, including some (ZBTB7A and BCL11A) already known for directly silencing the fetal γ-globin genes in adult human erythroid cells; (3) a few other transcription factors of different structural classes that might indirectly influence HbF gene expression; and (4) DNA methyltransferase 1 (DNMT1) that maintains the DNA methylation marks that attract the MBD2-associated NuRD complex to DNA as well as associated histone H3 lysine 9 methylation. Here we briefly discuss the effects of these regulators, particularly C2H2 ZFs, in inducing HbF expression for treating β-hemoglobin disorders, together with recent advances in developing safe and effective small-molecule therapeutics for the regulation of this well-conserved hemoglobin switch.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Fangfang Xia
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaotian Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Taha MS, Ahmadian MR. Fragile X Messenger Ribonucleoprotein Protein and Its Multifunctionality: From Cytosol to Nucleolus and Back. Biomolecules 2024; 14:399. [PMID: 38672417 PMCID: PMC11047961 DOI: 10.3390/biom14040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene and a consequent lack of FMR protein (FMRP) synthesis are associated with fragile X syndrome, one of the most common inherited intellectual disabilities. FMRP is a multifunctional protein that is involved in many cellular functions in almost all subcellular compartments under both normal and cellular stress conditions in neuronal and non-neuronal cell types. This is achieved through its trafficking signals, nuclear localization signal (NLS), nuclear export signal (NES), and nucleolar localization signal (NoLS), as well as its RNA and protein binding domains, and it is modulated by various post-translational modifications such as phosphorylation, ubiquitination, sumoylation, and methylation. This review summarizes the recent advances in understanding the interaction networks of FMRP with a special focus on FMRP stress-related functions, including stress granule formation, mitochondrion and endoplasmic reticulum plasticity, ribosome biogenesis, cell cycle control, and DNA damage response.
Collapse
Affiliation(s)
- Mohamed S. Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
- Research on Children with Special Needs Department, Institute of Medical Research and Clinical Studies, National Research Centre, Cairo 12622, Egypt
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
9
|
Jiang Y, Ye Y, Zhang X, Yu Y, Huang L, Bao X, Xu X. Identification and characterization of CHD4-associated eRNA as a novel modulator of fetal hemoglobin levels in β-thalassemia. Biochem Biophys Res Commun 2024; 701:149555. [PMID: 38325179 DOI: 10.1016/j.bbrc.2024.149555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Fetal-to-adult hemoglobin switching is controlled by programmed silencing of γ-globin while the re-activation of fetal hemoglobin (HbF) is an effective strategy for ameliorating the clinical severity of β-thalassemia and sickle cell disease. The identification of enhancer RNAs (eRNAs) related to the fetal (α2γ2) to adult hemoglobin (α2β2) switching remains incomplete. In this study, the transcriptomes of GYPA+ cells from six β-thalassemia patients with extreme HbF levels were sequenced to identify differences in patterns of noncoding RNA expression. It is interesting that an enhancer upstream of CHD4, an HbF-related core subunit of the NuRD complex, was differentially transcribed. We found a significantly positive correlation of eRNA-CHD4 enhancer-gene interaction using the public database of FANTOM5. Specifically, the eRNA-CHD4 expression was found to be significantly higher in both CD34+ HSPCs and HUDEP-2 than those in K562 cells which commonly expressed high level of HbF, suggesting a correlation between eRNA and HbF expression. Furthermore, prediction of transcription binding sites of cis-eQTLs and the CHD4 genomic region revealed a putative interaction site between rs73264846 and ZNF410, a known transcription factor regulating HbF expression. Moreover, in-vitro validation showed that the inhibition of eRNA could reduce the expression of HBG expression in HUDEP-2 cells. Taken together, the findings of this study demonstrate that a distal enhancer contributes to stage-specific silencing of γ-globin genes through direct modulation of CHD4 expression and provide insights into the epigenetic mechanisms of NuRD-mediated hemoglobin switching.
Collapse
Affiliation(s)
- Yida Jiang
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Key Chip Laboratory, Guangzhou, Guangdong, China
| | - Yuhua Ye
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Key Chip Laboratory, Guangzhou, Guangdong, China
| | - Xinhua Zhang
- Department of Hematology, 923rd Hospital of the People's Liberation Army, Nanning, Guangxi, China
| | - Yanping Yu
- Department of Pediatric, 923rd Hospital of the People's Liberation Army, Nanning, Guangxi, China
| | - Liping Huang
- Department of Pediatric, 923rd Hospital of the People's Liberation Army, Nanning, Guangxi, China
| | - Xiuqin Bao
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Xiangmin Xu
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Key Chip Laboratory, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
de Mello FN, Tahira AC, Berzoti-Coelho MG, Verjovski-Almeida S. The CUT&RUN greenlist: genomic regions of consistent noise are effective normalizing factors for quantitative epigenome mapping. Brief Bioinform 2024; 25:bbad538. [PMID: 38279652 PMCID: PMC10818165 DOI: 10.1093/bib/bbad538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/28/2024] Open
Abstract
Cleavage Under Targets and Release Using Nuclease (CUT&RUN) is a recent development for epigenome mapping, but its unique methodology can hamper proper quantitative analyses. As traditional normalization approaches have been shown to be inaccurate, we sought to determine endogenous normalization factors based on the human genome regions of constant nonspecific signal. This constancy was determined by applying Shannon's information entropy, and the set of normalizer regions, which we named the 'Greenlist', was extensively validated using publicly available datasets. We demonstrate here that the greenlist normalization outperforms the current top standards, and remains consistent across different experimental setups, cell lines and antibodies; the approach can even be applied to different species or to CUT&Tag. Requiring no additional experimental steps and no added cost, this approach can be universally applied to CUT&RUN experiments to greatly minimize the interference of technical variation over the biological epigenome changes of interest.
Collapse
Affiliation(s)
- Fabio N de Mello
- Cell Cycle Laboratory, Instituto Butantan, São Paulo, Brazil
- Interunit Bioinformatics Graduate Program, Universidade de São Paulo, São Paulo, Brazil
| | - Ana C Tahira
- Cell Cycle Laboratory, Instituto Butantan, São Paulo, Brazil
| | - Maria Gabriela Berzoti-Coelho
- Cell Cycle Laboratory, Instituto Butantan, São Paulo, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Sergio Verjovski-Almeida
- Cell Cycle Laboratory, Instituto Butantan, São Paulo, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Zheng G, Orkin SH. Transcriptional Repressor BCL11A in Erythroid Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:199-215. [PMID: 39017845 DOI: 10.1007/978-3-031-62731-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BCL11A, a zinc finger repressor, is a stage-specific transcription factor that controls the switch from fetal (HbF, α2γ2) to adult (HbA, α2β2) hemoglobin in erythroid cells. While BCL11A was known as a factor critical for B-lymphoid cell development, its relationship to erythroid cells and HbF arose through genome-wide association studies (GWAS). Subsequent work validated its role as a silencer of γ-globin gene expression in cultured cells and mice. Erythroid-specific loss of BCL11A rescues the phenotype of engineered sickle cell disease (SCD) mice, thereby suggesting that downregulation of BCL11A expression might be beneficial in patients with SCD and β-thalassemia. Common genetic variation in GWAS resides in an erythroid-specific enhancer within the BCL11A gene that is required for its own expression. CRISPR/Cas9 gene editing of the enhancer revealed a GATA-binding site that confers a large portion of its regulatory function. Disruption of the GATA site leads to robust HbF reactivation. Advancement of a guide RNA targeting the GATA-binding site in clinical trials has recently led to approval of first-in-man use of ex vivo CRISPR editing of hematopoietic stem/progenitor cells (HSPCs) as therapy of SCD and β-thalassemia. Future challenges include expanding access and infrastructure for delivery of genetic therapy to eligible patients, reducing potential toxicity and costs, exploring prospects for in vivo targeting of hematopoietic stem cells (HSCs), and developing small molecule drugs that impair function of BCL11A protein as an alternative option.
Collapse
Affiliation(s)
- Ge Zheng
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Harvard Medical School and HHMI, Boston, MA, USA
| | - Stuart H Orkin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
- Harvard Medical School and HHMI, Boston, MA, USA.
| |
Collapse
|
12
|
Zeng S, Lei S, Qu C, Wang Y, Teng S, Huang P. CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia. Hum Genet 2023; 142:1677-1703. [PMID: 37878144 DOI: 10.1007/s00439-023-02610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Beta-thalassemia (β-thalassemia) is an autosomal recessive disorder caused by point mutations, insertions, and deletions in the HBB gene cluster, resulting in the underproduction of β-globin chains. The most severe type may demonstrate complications including massive hepatosplenomegaly, bone deformities, and severe growth retardation in children. Treatments for β-thalassemia include blood transfusion, splenectomy, and allogeneic hematopoietic stem cell transplantation (HSCT). However, long-term blood transfusions require regular iron removal therapy. For allogeneic HSCT, human lymphocyte antigen (HLA)-matched donors are rarely available, and acute graft-versus-host disease (GVHD) may occur after the transplantation. Thus, these conventional treatments are facing significant challenges. In recent years, with the advent and advancement of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) gene editing technology, precise genome editing has achieved encouraging successes in basic and clinical studies for treating various genetic disorders, including β-thalassemia. Target gene-edited autogeneic HSCT helps patients avoid graft rejection and GVHD, making it a promising curative therapy for transfusion-dependent β-thalassemia (TDT). In this review, we introduce the development and mechanisms of CRISPR/Cas9. Recent advances on feasible strategies of CRISPR/Cas9 targeting three globin genes (HBB, HBG, and HBA) and targeting cell selections for β-thalassemia therapy are highlighted. Current CRISPR-based clinical trials in the treatment of β-thalassemia are summarized, which are focused on γ-globin reactivation and fetal hemoglobin reproduction in hematopoietic stem cells. Lastly, the applications of other promising CRISPR-based technologies, such as base editing and prime editing, in treating β-thalassemia and the limitations of the CRISPR/Cas system in therapeutic applications are discussed.
Collapse
Affiliation(s)
- Shujun Zeng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuangyin Lei
- The Second Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Chao Qu
- The First Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yue Wang
- The Second Norman Bethune Clinical College of Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuzhi Teng
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China.
| | - Ping Huang
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
13
|
Yang J, Horton JR, Liu B, Corces VG, Blumenthal RM, Zhang X, Cheng X. Structures of CTCF-DNA complexes including all 11 zinc fingers. Nucleic Acids Res 2023; 51:8447-8462. [PMID: 37439339 PMCID: PMC10484683 DOI: 10.1093/nar/gkad594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Abstract
The CCCTC-binding factor (CTCF) binds tens of thousands of enhancers and promoters on mammalian chromosomes by means of its 11 tandem zinc finger (ZF) DNA-binding domain. In addition to the 12-15-bp CORE sequence, some of the CTCF binding sites contain 5' upstream and/or 3' downstream motifs. Here, we describe two structures for overlapping portions of human CTCF, respectively, including ZF1-ZF7 and ZF3-ZF11 in complex with DNA that incorporates the CORE sequence together with either 3' downstream or 5' upstream motifs. Like conventional tandem ZF array proteins, ZF1-ZF7 follow the right-handed twist of the DNA, with each finger occupying and recognizing one triplet of three base pairs in the DNA major groove. ZF8 plays a unique role, acting as a spacer across the DNA minor groove and positioning ZF9-ZF11 to make cross-strand contacts with DNA. We ascribe the difference between the two subgroups of ZF1-ZF7 and ZF8-ZF11 to residues at the two positions -6 and -5 within each finger, with small residues for ZF1-ZF7 and bulkier and polar/charged residues for ZF8-ZF11. ZF8 is also uniquely rich in basic amino acids, which allows salt bridges to DNA phosphates in the minor groove. Highly specific arginine-guanine and glutamine-adenine interactions, used to recognize G:C or A:T base pairs at conventional base-interacting positions of ZFs, also apply to the cross-strand interactions adopted by ZF9-ZF11. The differences between ZF1-ZF7 and ZF8-ZF11 can be rationalized structurally and may contribute to recognition of high-affinity CTCF binding sites.
Collapse
Affiliation(s)
- Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
14
|
Lenz J, Brehm A. Conserved mechanisms of NuRD function in hematopoetic gene expression. Enzymes 2023; 53:7-32. [PMID: 37748838 DOI: 10.1016/bs.enz.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The Nucleosome Remodeling and Deacetylating Complex (NuRD) is ubiquitously expressed in all metazoans. It combines nucleosome remodeling and histone deacetylating activities to generate inaccessible chromatin structures and to repress gene transcription. NuRD is involved in the generation and maintenance of a wide variety of lineage-specific gene expression programs during differentiation and in differentiated cells. A close cooperation with a large number of lineage-specific transcription factors is key to allow NuRD to function in many distinct differentiation contexts. The molecular nature of this interplay between transcription factors and NuRD is complex and not well understood. This review uses hematopoiesis as a paradigm to highlight recent advances in our understanding of how transcription factors and NuRD cooperate at the molecular level during differentiation. A comparison of vertebrate and invertebrate systems serves to identify the conserved and fundamental concepts guiding functional interactions between transcription factors and NuRD. We also discuss how the transcription factor-NuRD axis constitutes a potential therapeutic target for the treatment of hemoglobinopathies.
Collapse
Affiliation(s)
- Jonathan Lenz
- Institute for Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University Marburg, Marburg, Germany
| | - Alexander Brehm
- Institute for Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
15
|
Shang S, Li X, Azzo A, Truong T, Dozmorov M, Lyons C, Manna A, Williams D, Ginder G. MBD2a-NuRD binds to the methylated γ-globin gene promoter and uniquely forms a complex required for silencing of HbF expression. Proc Natl Acad Sci U S A 2023; 120:e2302254120. [PMID: 37307480 PMCID: PMC10288633 DOI: 10.1073/pnas.2302254120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023] Open
Abstract
During human development, there is a switch in the erythroid compartment at birth that results in silencing of expression of fetal hemoglobin (HbF). Reversal of this silencing has been shown to be effective in overcoming the pathophysiologic defect in sickle cell anemia. Among the many transcription factors and epigenetic effectors that are known to mediate HbF silencing, two of the most potent are BCL11A and MBD2-NuRD. In this report, we present direct evidence that MBD2-NuRD occupies the γ-globin gene promoter in adult erythroid cells and positions a nucleosome there that results in a closed chromatin conformation that prevents binding of the transcriptional activator, NF-Y. We show that the specific isoform, MBD2a, is required for the formation and stable occupancy of this repressor complex that includes BCL11A, MBD2a-NuRD, and the arginine methyltransferase, PRMT5. The methyl cytosine binding preference and the arginine-rich (GR) domain of MBD2a are required for high affinity binding to methylated γ-globin gene proximal promoter DNA sequences. Mutation of the methyl cytosine-binding domain (MBD) of MBD2 results in a variable but consistent loss of γ-globin gene silencing, in support of the importance of promoter methylation. The GR domain of MBD2a is also required for recruitment of PRMT5, which in turn results in placement of the repressive chromatin mark H3K8me2s at the promoter. These findings support a unified model that integrates the respective roles of BCL11A, MBD2a-NuRD, PRMT5, and DNA methylation in HbF silencing.
Collapse
Affiliation(s)
- Shengzhe Shang
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA23060
| | - Xia Li
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA23060
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA23060
| | - Alexander Azzo
- Center for Clinical and Translational Research, PhD Program in Cancer and Molecular Medicine, Virginia Commonwealth University, Richmond, VA23060
- MD-PhD Program, Virginia Commonwealth University, Richmond, VA23060
| | - Tin Truong
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA23060
| | - Mikhail Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA23060
| | - Charles Lyons
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA23060
| | - Asit K. Manna
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC27599
| | - David C. Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC27599
| | - Gordon D. Ginder
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA23060
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA23060
- Department of Internal Medicine, Division of Hematology-Oncology, Virginia Commonwealth University, Richmond, VA23060
| |
Collapse
|
16
|
Qin K, Lan X, Huang P, Saari MS, Khandros E, Keller CA, Giardine B, Abdulmalik O, Shi J, Hardison RC, Blobel GA. Molecular basis of polycomb group protein-mediated fetal hemoglobin repression. Blood 2023; 141:2756-2770. [PMID: 36893455 PMCID: PMC10273169 DOI: 10.1182/blood.2022019578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
The switch from fetal hemoglobin (HbF) to adult hemoglobin (HbA) is a paradigm for developmental gene expression control with relevance to sickle cell disease and β-thalassemia. Polycomb repressive complex (PRC) proteins regulate this switch, and an inhibitor of PRC2 has entered a clinical trial for HbF activation. Yet, how PRC complexes function in this process, their target genes, and relevant subunit composition are unknown. Here, we identified the PRC1 subunit BMI1 as a novel HbF repressor. We uncovered the RNA binding proteins LIN28B, IGF2BP1, and IGF2BP3 genes as direct BMI1 targets, and demonstrate that they account for the entirety of BMI1's effect on HbF regulation. BMI1 functions as part of the canonical PRC1 (cPRC1) subcomplex as revealed by the physical and functional dissection of BMI1 protein partners. Lastly, we demonstrate that BMI1/cPRC1 acts in concert with PRC2 to repress HbF through the same target genes. Our study illuminates how PRC silences HbF, highlighting an epigenetic mechanism involved in hemoglobin switching.
Collapse
Affiliation(s)
- Kunhua Qin
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Xianjiang Lan
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Huang
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Megan S. Saari
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Eugene Khandros
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Cheryl A. Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, State College, PA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, State College, PA
| | - Osheiza Abdulmalik
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ross C. Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, State College, PA
| | - Gerd A. Blobel
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
17
|
Paschoudi K, Yannaki E, Psatha N. Precision Editing as a Therapeutic Approach for β-Hemoglobinopathies. Int J Mol Sci 2023; 24:9527. [PMID: 37298481 PMCID: PMC10253463 DOI: 10.3390/ijms24119527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Beta-hemoglobinopathies are the most common genetic disorders worldwide, caused by a wide spectrum of mutations in the β-globin locus, and associated with morbidity and early mortality in case of patient non-adherence to supportive treatment. Allogeneic transplantation of hematopoietic stem cells (allo-HSCT) used to be the only curative option, although the indispensable need for an HLA-matched donor markedly restricted its universal application. The evolution of gene therapy approaches made possible the ex vivo delivery of a therapeutic β- or γ- globin gene into patient-derived hematopoietic stem cells followed by the transplantation of corrected cells into myeloablated patients, having led to high rates of transfusion independence (thalassemia) or complete resolution of painful crises (sickle cell disease-SCD). Hereditary persistence of fetal hemoglobin (HPFH), a syndrome characterized by increased γ-globin levels, when co-inherited with β-thalassemia or SCD, converts hemoglobinopathies to a benign condition with mild clinical phenotype. The rapid development of precise genome editing tools (ZFN, TALENs, CRISPR/Cas9) over the last decade has allowed the targeted introduction of mutations, resulting in disease-modifying outcomes. In this context, genome editing tools have successfully been used for the introduction of HPFH-like mutations both in HBG1/HBG2 promoters or/and in the erythroid enhancer of BCL11A to increase HbF expression as an alternative curative approach for β-hemoglobinopathies. The current investigation of new HbF modulators, such as ZBTB7A, KLF-1, SOX6, and ZNF410, further expands the range of possible genome editing targets. Importantly, genome editing approaches have recently reached clinical translation in trials investigating HbF reactivation in both SCD and thalassemic patients. Showing promising outcomes, these approaches are yet to be confirmed in long-term follow-up studies.
Collapse
Affiliation(s)
- Kiriaki Paschoudi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Gene and Cell Therapy Center, Hematology Clinic, George Papanikolaou Hospital, Exokhi, 57010 Thessaloniki, Greece;
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Clinic, George Papanikolaou Hospital, Exokhi, 57010 Thessaloniki, Greece;
- Department of Hematology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Nikoletta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
18
|
Hong K, Yang Q, Yin H, Wei N, Wang W, Yu B. Comprehensive analysis of ZNF family genes in prognosis, immunity, and treatment of esophageal cancer. BMC Cancer 2023; 23:301. [PMID: 37013470 PMCID: PMC10069130 DOI: 10.1186/s12885-023-10779-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND As a common malignant tumor, esophageal carcinoma (ESCA) has a low early diagnosis rate and poor prognosis. This study aimed to construct the prognostic features composed of ZNF family genes to effectively predict the prognosis of ESCA patients. METHODS The mRNA expression matrix and clinical data were downloaded from TCGA and GEO database. Using univariate Cox analysis, lasso regression and multivariate Cox analysis, we screened six prognosis-related ZNF family genes to construct the prognostic model. We then used Kaplan-Meier plot, time-dependent receiver operating characteristic (ROC), multivariable Cox regression analysis of clinical information, and nomogram to evaluate the prognostic value within and across sets, separately and combined. We also validated the prognostic value of the six-gene signature using GSE53624 dataset. The different immune status was observed in the single sample Gene Set Enrichment Analysis (ssGSEA). Finally, real-time quantitative PCR was used to detect the expression of six prognostic ZNF genes in twelve pairs of ESCA and adjacent normal tissues. RESULTS A six prognosis-related ZNF family genes model consisted of ZNF91, ZNF586, ZNF502, ZNF865, ZNF106 and ZNF225 was identified. Multivariable Cox regression analysis revealed that six prognosis-related ZNF family genes were independent prognostic factors for overall survival of ESCA patients in TCGA and GSE53624. Further, a prognostic nomogram including the riskScore, age, gender, T, stage was constructed, and TCGA/GSE53624-based calibration plots indicated its excellent predictive performance. Drug Sensitivity and ssGSEA analysis showed that the six genes model was closely related to immune cells infiltration and could be used as a potential predictor of chemotherapy sensitivity. CONCLUSION We identified six prognosis-related ZNF family genes model of ESCA, which provide evidence for individualized prevention and treatment.
Collapse
Affiliation(s)
- Kunqiao Hong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Yang
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang City, Guizhou province, China
- NHC key Laboratory of Pulmonary Immune-related Disease, Guizhou Provincial People's Hospital, Guiyang City, Guizhou province, China
| | - Haisen Yin
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Na Wei
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, China
| | - Wei Wang
- Department of Gastroenterology, Affiliated Hospital of Hubei, Xiangyang Central Hospital, University of Arts and Science, Hubei, China.
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
19
|
Lu HY, Orkin SH, Sankaran VG. Fetal Hemoglobin Regulation in Beta-Thalassemia. Hematol Oncol Clin North Am 2023; 37:301-312. [PMID: 36907604 DOI: 10.1016/j.hoc.2022.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
β-thalassemia is caused by mutations that reduce β-globin production, causing globin chain imbalance, ineffective erythropoiesis, and consequent anemia. Increased fetal hemoglobin (HbF) levels can ameliorate the severity of β-thalassemia by compensating for the globin chain imbalance. Careful clinical observations paired with population studies and advances in human genetics have enabled the discovery of major regulators of HbF switching (i.e. BCL11A, ZBTB7A) and led to pharmacological and genetic therapies for treating β-thalassemia patients. Recent functional screens using genome editing and other emerging tools have identified many new HbF regulators, which may improve therapeutic HbF induction in the future.
Collapse
Affiliation(s)
- Henry Y Lu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Karp Family Research Laboratories, Boston Children's Hospital, 1 Blackfan Street, Boston, MA 02115, USA. https://twitter.com/realhenrylu
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Karp Family Research Laboratories, Boston Children's Hospital, 1 Blackfan Street, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Karp Family Research Laboratories, Boston Children's Hospital, 1 Blackfan Street, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
20
|
Abstract
Thalassemia syndromes are common monogenic disorders and represent a significant health issue worldwide. In this review, the authors elaborate on fundamental genetic knowledge about thalassemias, including the structure and location of globin genes, the production of hemoglobin during development, the molecular lesions causing α-, β-, and other thalassemia syndromes, the genotype-phenotype correlation, and the genetic modifiers of these conditions. In addition, they briefly discuss the molecular techniques applied for diagnosis and innovative cell and gene therapy strategies to cure these conditions.
Collapse
Affiliation(s)
- Nicolò Tesio
- Department of Clinical and Biological Sciences, San Luigi Gonzaga University Hospital, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Turin, Italy. https://twitter.com/nicolotesio
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Segura EER, Ayoub PG, Hart KL, Kohn DB. Gene Therapy for β-Hemoglobinopathies: From Discovery to Clinical Trials. Viruses 2023; 15:713. [PMID: 36992422 PMCID: PMC10054523 DOI: 10.3390/v15030713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Investigations to understand the function and control of the globin genes have led to some of the most exciting molecular discoveries and biomedical breakthroughs of the 20th and 21st centuries. Extensive characterization of the globin gene locus, accompanied by pioneering work on the utilization of viruses as human gene delivery tools in human hematopoietic stem and progenitor cells (HPSCs), has led to transformative and successful therapies via autologous hematopoietic stem-cell transplant with gene therapy (HSCT-GT). Due to the advanced understanding of the β-globin gene cluster, the first diseases considered for autologous HSCT-GT were two prevalent β-hemoglobinopathies: sickle cell disease and β-thalassemia, both affecting functional β-globin chains and leading to substantial morbidity. Both conditions are suitable for allogeneic HSCT; however, this therapy comes with serious risks and is most effective using an HLA-matched family donor (which is not available for most patients) to obtain optimal therapeutic and safe benefits. Transplants from unrelated or haplo-identical donors carry higher risks, although they are progressively improving. Conversely, HSCT-GT utilizes the patient's own HSPCs, broadening access to more patients. Several gene therapy clinical trials have been reported to have achieved significant disease improvement, and more are underway. Based on the safety and the therapeutic success of autologous HSCT-GT, the U.S. Food and Drug Administration (FDA) in 2022 approved an HSCT-GT for β-thalassemia (Zynteglo™). This review illuminates the β-globin gene research journey, adversities faced, and achievements reached; it highlights important molecular and genetic findings of the β-globin locus, describes the predominant globin vectors, and concludes by describing promising results from clinical trials for both sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Eva Eugenie Rose Segura
- Molecular Biology Interdepartmental Doctoral Program, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Paul George Ayoub
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kevyn Lopez Hart
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Donald Barry Kohn
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Pediatrics (Hematology/Oncology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center for Stem Cell Research and Regenerative Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
22
|
Kaur G, Ren R, Hammel M, Horton JR, Yang J, Cao Y, He C, Lan F, Lan X, Blobel GA, Blumenthal RM, Zhang X, Cheng X. Allosteric autoregulation of DNA binding via a DNA-mimicking protein domain: a biophysical study of ZNF410-DNA interaction using small angle X-ray scattering. Nucleic Acids Res 2023; 51:1674-1686. [PMID: 36660822 PMCID: PMC9976917 DOI: 10.1093/nar/gkac1274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/21/2023] Open
Abstract
ZNF410 is a highly-conserved transcription factor, remarkable in that it recognizes a 15-base pair DNA element but has just a single responsive target gene in mammalian erythroid cells. ZNF410 includes a tandem array of five zinc-fingers (ZFs), surrounded by uncharacterized N- and C-terminal regions. Unexpectedly, full-length ZNF410 has reduced DNA binding affinity, compared to that of the isolated DNA binding ZF array, both in vitro and in cells. AlphaFold predicts a partially-folded N-terminal subdomain that includes a 30-residue long helix, preceded by a hairpin loop rich in acidic (aspartate/glutamate) and serine/threonine residues. This hairpin loop is predicted by AlphaFold to lie against the DNA binding interface of the ZF array. In solution, ZNF410 is a monomer and binds to DNA with 1:1 stoichiometry. Surprisingly, the single best-fit model for the experimental small angle X-ray scattering profile, in the absence of DNA, is the original AlphaFold model with the N-terminal long-helix and the hairpin loop occupying the ZF DNA binding surface. For DNA binding, the hairpin loop presumably must be displaced. After combining biophysical, biochemical, bioinformatic and artificial intelligence-based AlphaFold analyses, we suggest that the hairpin loop mimics the structure and electrostatics of DNA, and provides an additional mechanism, supplementary to sequence specificity, of regulating ZNF410 DNA binding.
Collapse
Affiliation(s)
- Gundeep Kaur
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu Cao
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chenxi He
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xianjiang Lan
- Department of Systems Biology for Medicine, School of Basic Medical Sciences; Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Division of Hematology, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gerd A Blobel
- Division of Hematology, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
23
|
Fontana L, Alahouzou Z, Miccio A, Antoniou P. Epigenetic Regulation of β-Globin Genes and the Potential to Treat Hemoglobinopathies through Epigenome Editing. Genes (Basel) 2023; 14:genes14030577. [PMID: 36980849 PMCID: PMC10048329 DOI: 10.3390/genes14030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Beta-like globin gene expression is developmentally regulated during life by transcription factors, chromatin looping and epigenome modifications of the β-globin locus. Epigenome modifications, such as histone methylation/demethylation and acetylation/deacetylation and DNA methylation, are associated with up- or down-regulation of gene expression. The understanding of these mechanisms and their outcome in gene expression has paved the way to the development of new therapeutic strategies for treating various diseases, such as β-hemoglobinopathies. Histone deacetylase and DNA methyl-transferase inhibitors are currently being tested in clinical trials for hemoglobinopathies patients. However, these approaches are often uncertain, non-specific and their global effect poses serious safety concerns. Epigenome editing is a recently developed and promising tool that consists of a DNA recognition domain (zinc finger, transcription activator-like effector or dead clustered regularly interspaced short palindromic repeats Cas9) fused to the catalytic domain of a chromatin-modifying enzyme. It offers a more specific targeting of disease-related genes (e.g., the ability to reactivate the fetal γ-globin genes and improve the hemoglobinopathy phenotype) and it facilitates the development of scarless gene therapy approaches. Here, we summarize the mechanisms of epigenome regulation of the β-globin locus, and we discuss the application of epigenome editing for the treatment of hemoglobinopathies.
Collapse
Affiliation(s)
- Letizia Fontana
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Zoe Alahouzou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Correspondence: (A.M.); (P.A.)
| | - Panagiotis Antoniou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, 431 50 Gothenburg, Sweden
- Correspondence: (A.M.); (P.A.)
| |
Collapse
|
24
|
Abstract
Sickle cell disease (SCD) is the most-common monogenic recessive disease in humans, annually affecting almost 300,000 newborns worldwide, 75% of whom live in Africa. Genomics research can accelerate the development of curative therapies for SCD in three ways. First, research should explore the missing heritability of foetal haemoglobin (HbF) - the strongest known modifier of SCD clinical expression - among highly genetically heterogenous and understudied African populations, to provide novel therapeutics targets for HbF induction. Second, SCD research should invest in RNA therapies, either by using microRNA to target the production of HbF proteins by binding to the transcription machinery in a cell, or by directly mediating production of HbF or adult haemoglobin through injection of messenger RNA. Third, investigators should aim to identify currently unknown genetic risk factors for SCD cardiovascular complications, which will address mortality, particularly in adults. Now is the time for global research programs to uncover genomic keys to unlock SCD therapeutics.
Collapse
Affiliation(s)
- Ambroise Wonkam
- McKusick-Nathans Institute and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
25
|
Identification and characterization of RBM12 as a novel regulator of fetal hemoglobin expression. Blood Adv 2022; 6:5956-5968. [PMID: 35622975 PMCID: PMC9678958 DOI: 10.1182/bloodadvances.2022007904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/21/2022] [Indexed: 02/01/2023] Open
Abstract
The fetal-to-adult hemoglobin transition is clinically relevant because reactivation of fetal hemoglobin (HbF) significantly reduces morbidity and mortality associated with sickle cell disease (SCD) and β-thalassemia. Most studies on the developmental regulation of the globin genes, including genome-wide genetics screens, have focused on DNA binding proteins, including BCL11A and ZBTB7A/LRF and their cofactors. Our understanding of RNA binding proteins (RBPs) in this process is much more limited. Two RBPs, LIN28B and IGF2BP1, are known posttranscriptional regulators of HbF production, but a global view of RBPs is still lacking. Here, we carried out a CRISPR/Cas9-based screen targeting RBPs harboring RNA methyltransferase and/or RNA recognition motif (RRM) domains and identified RNA binding motif 12 (RBM12) as a novel HbF suppressor. Depletion of RBM12 induced HbF expression and attenuated cell sickling in erythroid cells derived from patients with SCD with minimal detrimental effects on cell maturation. Transcriptome and proteome profiling revealed that RBM12 functions independently of major known HbF regulators. Enhanced cross-linking and immunoprecipitation followed by high-throughput sequencing revealed strong preferential binding of RBM12 to 5' untranslated regions of transcripts, narrowing down the mechanism of RBM12 action. Notably, we pinpointed the first of 5 RRM domains as essential, and, in conjunction with a linker domain, sufficient for RBM12-mediated HbF regulation. Our characterization of RBM12 as a negative regulator of HbF points to an additional regulatory layer of the fetal-to-adult hemoglobin switch and broadens the pool of potential therapeutic targets for SCD and β-thalassemia.
Collapse
|
26
|
Crossley M, Christakopoulos GE, Weiss MJ. Effective therapies for sickle cell disease: are we there yet? Trends Genet 2022; 38:1284-1298. [PMID: 35934593 PMCID: PMC9837857 DOI: 10.1016/j.tig.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 01/24/2023]
Abstract
Sickle cell disease (SCD) is a common genetic blood disorder associated with acute and chronic pain, progressive multiorgan damage, and early mortality. Recent advances in technologies to manipulate the human genome, a century of research and the development of techniques enabling the isolation, efficient genetic modification, and reimplantation of autologous patient hematopoietic stem cells (HSCs), mean that curing most patients with SCD could soon be a reality in wealthy countries. In parallel, ongoing research is pursuing more facile treatments, such as in-vivo-delivered genetic therapies and new drugs that can eventually be administered in low- and middle-income countries where most SCD patients reside.
Collapse
Affiliation(s)
- Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia 2052.
| | | | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
27
|
Cyrus C, Vatte C, Al-Nafie A, Chathoth S, Akhtar MS, Darwish M, Almohazey D, AlDubayan SH, Steinberg MH, Al-Ali A. miRNA Expression Associated with HbF in Saudi Sickle Cell Anemia. Medicina (B Aires) 2022; 58:medicina58101470. [PMID: 36295630 PMCID: PMC9611475 DOI: 10.3390/medicina58101470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: Sickle cell anemia (SCA) is a hereditary monogenic disease due to a single β-globin gene mutation that codes for the production of sickle hemoglobin. Its phenotype is modulated by fetal hemoglobin (HbF), a product of γ-globin genes. Exploring the molecules that regulate γ-globin genes at both transcriptional and translational levels, including microRNA (miRNA), might help identify alternative therapeutic targets. Materials and Methods: Using next-generation sequencing we identified pre-miRNAs and mature miRNA expression signatures associated with different HbF levels in patients homozygous for the sickle hemoglobin gene. The involvement of identified miRNAs in potential SCD-related pathways was investigated with the DIANA TOOL and miRWalk 2.0 database. Results: miR-184 were most highly upregulated in reticulocytes. miR-3609 and miR-483-5p were most highly downregulated in sickle cell anemia with high HbF. miR-370-3p that regulates LIN28A, and miR-451a which is effective in modulating α- and β- globin levels were also significantly upregulated. miRNA targeted gene pathway interaction identified BCL7A, BCL2L1, LIN28A, KLF6, GATA6, solute carrier family genes and ZNF genes associated with erythropoiesis, cell cycle regulation, glycosphingolipid biosynthesis, cAMP, cGMP-PKG, mTOR, MAPK and PI3K-AKT signaling pathways and cancer pathways. Conclusions: miRNA signatures and their target genes identified novel miRNAs that could regulate fetal hemoglobin production and might be exploited therapeutically.
Collapse
Affiliation(s)
- Cyril Cyrus
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Correspondence: ; Tel.: +966-553241441
| | - Chittibabu Vatte
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Awatif Al-Nafie
- Department of Pathology, King Fahd Hospital of the University, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34445, Saudi Arabia
| | - Shahanas Chathoth
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed S. Akhtar
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed Darwish
- Ministry of Health, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Dana Almohazey
- Department of Stem Cell Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Saud H. AlDubayan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Martin H. Steinberg
- Department of Medicine, Division of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Amein Al-Ali
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
28
|
Quagliano A, Acevedo D, Hardigan P, Prasad S. Using Clustered Regularly Interspaced Short Palindromic Repeats gene editing to induce permanent expression of fetal hemoglobin in β-thalassemia and sickle cell disease: A comparative meta-analysis. Front Med (Lausanne) 2022; 9:943631. [PMID: 36250099 PMCID: PMC9556862 DOI: 10.3389/fmed.2022.943631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
β-hemoglobinopathies like sickle cell disease (SCD) and β-thalassemia are characterized by differing mutations in the hemoglobin subunit beta gene (HBB). These disorders vary in phenotypic presentation and severity, with more severe manifestations leading to transfusion dependence along with associated complications such as infection and iron overload. β-hemoglobinopathies symptoms rapidly worsen after birth as the levels of fetal hemoglobin (HbF) begin to decline. To reverse this decline, current treatment plans typically involve the use of pharmacological agents such as hydroxyurea to raise expression levels of HbF. However, these treatments only result in transient effects and must be consistently administered. Gene editing technologies such as CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats- CRISPR associated protein) offer the opportunity to create novel treatments which can raise HbF expression with potential permanent effects. Two gene targets, B-cell lymphoma/leukemia 11A gene (BCL11A) and the promoter regions of gamma globin genes (HBG1/2), have been identified to significantly increase HbF protein expression. In order to differentiate the effectiveness of BCL11A and HBG1/2 editing, a meta-analysis was performed by first identifying 119 studies for inclusion based on the search terms terms “β-Thalassemia,” “beta-thal” “sickle cell disease,” “SCD,” and “CRISPR.” Following application of exclusion and inclusion criteria, we performed analysis on 8 peer-reviewed published studies from 2018 to 2021 were included in the study. Forest plots were generated using R (version 4.1.2). Primary comparative analysis shows HBG1/2 had a significantly (p < 0.01)greater impact on induction of HbF expression compared to BCL11A. This analysis leads us to conclude that HBG1/2 merits further investigation as a possible gene editing target for treatment of SCD and β-thalassemia.
Collapse
Affiliation(s)
- Anthony Quagliano
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Daniel Acevedo
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Patrik Hardigan
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Samiksha Prasad
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
29
|
Huang P, Peslak SA, Ren R, Khandros E, Qin K, Keller CA, Giardine B, Bell HW, Lan X, Sharma M, Horton JR, Abdulmalik O, Chou ST, Shi J, Crossley M, Hardison RC, Cheng X, Blobel GA. HIC2 controls developmental hemoglobin switching by repressing BCL11A transcription. Nat Genet 2022; 54:1417-1426. [PMID: 35941187 PMCID: PMC9940634 DOI: 10.1038/s41588-022-01152-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 07/05/2022] [Indexed: 02/02/2023]
Abstract
The fetal-to-adult switch in hemoglobin production is a model of developmental gene control with relevance to the treatment of hemoglobinopathies. The expression of transcription factor BCL11A, which represses fetal β-type globin (HBG) genes in adult erythroid cells, is predominantly controlled at the transcriptional level but the underlying mechanism is unclear. We identify HIC2 as a repressor of BCL11A transcription. HIC2 and BCL11A are reciprocally expressed during development. Forced expression of HIC2 in adult erythroid cells inhibits BCL11A transcription and induces HBG expression. HIC2 binds to erythroid BCL11A enhancers to reduce chromatin accessibility and binding of transcription factor GATA1, diminishing enhancer activity and enhancer-promoter contacts. DNA-binding and crystallography studies reveal direct steric hindrance as one mechanism by which HIC2 inhibits GATA1 binding at a critical BCL11A enhancer. Conversely, loss of HIC2 in fetal erythroblasts increases enhancer accessibility, GATA1 binding and BCL11A transcription. HIC2 emerges as an evolutionarily conserved regulator of hemoglobin switching via developmental control of BCL11A.
Collapse
Affiliation(s)
- Peng Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Scott A Peslak
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Hematology/Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ren Ren
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eugene Khandros
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kunhua Qin
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
- Genomics Research Incubator, Pennsylvania State University, University Park, PA, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Henry W Bell
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Xianjiang Lan
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Malini Sharma
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Osheiza Abdulmalik
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stella T Chou
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Junwei Shi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Mehta S, Buyanbat A, Kai Y, Karayel O, Goldman SR, Seruggia D, Zhang K, Fujiwara Y, Donovan KA, Zhu Q, Yang H, Nabet B, Gray NS, Mann M, Fischer ES, Adelman K, Orkin SH. Temporal resolution of gene derepression and proteome changes upon PROTAC-mediated degradation of BCL11A protein in erythroid cells. Cell Chem Biol 2022; 29:1273-1287.e8. [PMID: 35839780 PMCID: PMC9391307 DOI: 10.1016/j.chembiol.2022.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/01/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022]
Abstract
Reactivation of fetal hemoglobin expression by the downregulation of BCL11A is a promising treatment for β-hemoglobinopathies. A detailed understanding of BCL11A-mediated repression of γ-globin gene (HBG1/2) transcription is lacking, as studies to date used perturbations by shRNA or CRISPR-Cas9 gene editing. We leveraged the dTAG PROTAC degradation platform to acutely deplete BCL11A protein in erythroid cells and examined consequences by nascent transcriptomics, proteomics, chromatin accessibility, and histone profiling. Among 31 genes repressed by BCL11A, HBG1/2 and HBZ show the most abundant and progressive changes in transcription and chromatin accessibility upon BCL11A loss. Transcriptional changes at HBG1/2 were detected in <2 h. Robust HBG1/2 reactivation upon acute BCL11A depletion occurred without the loss of promoter 5-methylcytosine (5mC). Using targeted protein degradation, we establish a hierarchy of gene reactivation at BCL11A targets, in which nascent transcription is followed by increased chromatin accessibility, and both are uncoupled from promoter DNA methylation at the HBG1/2 loci.
Collapse
Affiliation(s)
- Stuti Mehta
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Altantsetseg Buyanbat
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Yan Kai
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Planegg, Germany
| | - Seth Raphael Goldman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Davide Seruggia
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kevin Zhang
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Yuko Fujiwara
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Qian Zhu
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Huan Yang
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, CHEM-H and SCI, Stanford Medical School, Stanford University, Stanford, CA, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Planegg, Germany
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Stuart H Orkin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA 02115, USA; Howard Hughes Medical Institute and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Liu B, Brendel C, Vinjamur DS, Zhou Y, Harris C, McGuinness M, Manis JP, Bauer DE, Xu H, Williams DA. Development of a double shmiR lentivirus effectively targeting both BCL11A and ZNF410 for enhanced induction of fetal hemoglobin to treat β-hemoglobinopathies. Mol Ther 2022; 30:2693-2708. [PMID: 35526095 PMCID: PMC9372373 DOI: 10.1016/j.ymthe.2022.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/01/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022] Open
Abstract
A promising treatment for β-hemoglobinopathies is the de-repression of γ-globin expression leading to increased fetal hemoglobin (HbF) by targeting BCL11A. Here, we aim to improve a lentivirus vector (LV) containing a single BCL11A shmiR (SS) to further increase γ-globin induction. We engineered a novel LV to express two shmiRs simultaneously targeting BCL11A and the γ-globin repressor ZNF410. Erythroid cells derived from human HSCs transduced with the double shmiR (DS) showed up to a 70% reduction of both BCL11A and ZNF410 proteins. There was a consistent and significant additional 10% increase in HbF compared to targeting BCL11A alone in erythroid cells. Erythrocytes differentiated from SCD HSCs transduced with the DS demonstrated significantly reduced in vitro sickling phenotype compared to the SS. Erythrocytes differentiated from transduced HSCs from β-thalassemia major patients demonstrated improved globin chain balance by increased γ-globin with reduced microcytosis. Reconstitution of DS-transduced cells from Berkeley SCD mice was associated with a statistically larger reduction in peripheral blood hemolysis markers compared with the SS vector. Overall, these results indicate that the DS LV targeting BCL11A and ZNF410 can enhance HbF induction for treating β-hemoglobinopathies and could be used as a model to simultaneously and efficiently target multiple gene products.
Collapse
Affiliation(s)
- Boya Liu
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christian Brendel
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA
| | - Divya S Vinjamur
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Yu Zhou
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Chad Harris
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Meaghan McGuinness
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - John P Manis
- Department of Laboratory Medicine, Boston Children's Hospital, MA, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA
| | - Haiming Xu
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - David A Williams
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Boston, MA, USA.
| |
Collapse
|
32
|
Tao X, Du R, Guo S, Feng X, Yu T, OuYang Q, Chen Q, Fan X, Wang X, Guo C, Li X, Xue F, Chen S, Tong M, Lazarus M, Zuo S, Yu Y, Shen Y. PGE 2 -EP3 axis promotes brown adipose tissue formation through stabilization of WTAP RNA methyltransferase. EMBO J 2022; 41:e110439. [PMID: 35781818 DOI: 10.15252/embj.2021110439] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022] Open
Abstract
Brown adipose tissue (BAT) functions as a thermogenic organ and is negatively associated with cardiometabolic diseases. N6 -methyladenosine (m6 A) modulation regulates the fate of stem cells. Here, we show that the prostaglandin E2 (PGE2 )-E-prostanoid receptor 3 (EP3) axis was activated during mouse interscapular BAT development. Disruption of EP3 impaired the browning process during adipocyte differentiation from pre-adipocytes. Brown adipocyte-specific depletion of EP3 compromised interscapular BAT formation and aggravated high-fat diet-induced obesity and insulin resistance in vivo. Mechanistically, activation of EP3 stabilized the Zfp410 mRNA via WTAP-mediated m6 A modification, while knockdown of Zfp410 abolished the EP3-induced enhancement of brown adipogenesis. EP3 prevented ubiquitin-mediated degradation of WTAP by eliminating PKA-mediated ERK1/2 inhibition during brown adipocyte differentiation. Ablation of WTAP in brown adipocytes abrogated the protective effect of EP3 overexpression in high-fat diet-fed mice. Inhibition of EP3 also retarded human embryonic stem cell differentiation into mature brown adipocytes by reducing the WTAP levels. Thus, a conserved PGE2 -EP3 axis promotes BAT development by stabilizing WTAP/Zfp410 signaling in a PKA/ERK1/2-dependent manner.
Collapse
Affiliation(s)
- Xixi Tao
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ronglu Du
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shumin Guo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiangling Feng
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tingting Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian OuYang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Qiaoli Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Xutong Fan
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xueqi Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chen Guo
- Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaozhou Li
- Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Minghan Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba City, Japan
| | - Shengkai Zuo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
33
|
Tu Z, Zheng Y. Role of ATP-dependent chromatin remodelers in hematopoietic stem and progenitor cell maintenance. Curr Opin Hematol 2022; 29:174-180. [PMID: 35787545 PMCID: PMC9257093 DOI: 10.1097/moh.0000000000000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW ATP-dependent chromatin remodeling factors utilize energy from ATP hydrolysis to modulate DNA-histone structures and regulate gene transcription. They are essential during hematopoiesis and for hematopoietic stem and progenitor cell (HSPC) function. This review discusses the recently unveiled roles of these chromatin remodelers in HSPC regulation, with an emphasis on the mechanism of chromodomain helicase DNA-binding (CHD) family members. RECENT FINDINGS Recent studies of ATP-dependent chromatin remodelers have revealed that individual CHD family members engage in distinct mechanisms in regulating HSPC cell fate. For example, CHD8 is required for HSPC survival by restricting both P53 transcriptional activity and protein stability in steady state hematopoiesis while the related CHD7 physically interacts with RUNX family transcription factor 1 (RUNX1) and suppresses RUNX1-induced expansion of HSPCs during blood development. Moreover, other CHD subfamily members such as CHD1/CHD2 and CHD3/CHD4, as well as the switch/sucrose non-fermentable, imitation SWI, and SWI2/SNF2 related (SWR) families of chromatin modulators, have also been found important for HSPC maintenance by distinct mechanisms. SUMMARY The expanding knowledge of ATP-dependent chromatin remodelers in hematopoiesis illustrates their respective critical roles in HSPC maintenance including the regulation of HSPC differentiation, survival, and self-renewal. Further studies are warranted to elucidate how different chromatin remodeling complexes are integrated in various HSPC cell fate decisions during steady-state and stress hematopoiesis.
Collapse
Affiliation(s)
- Zhaowei Tu
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
34
|
Andrieu-Soler C, Soler E. Erythroid Cell Research: 3D Chromatin, Transcription Factors and Beyond. Int J Mol Sci 2022; 23:6149. [PMID: 35682828 PMCID: PMC9181152 DOI: 10.3390/ijms23116149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Studies of the regulatory networks and signals controlling erythropoiesis have brought important insights in several research fields of biology and have been a rich source of discoveries with far-reaching implications beyond erythroid cells biology. The aim of this review is to highlight key recent discoveries and show how studies of erythroid cells bring forward novel concepts and refine current models related to genome and 3D chromatin organization, signaling and disease, with broad interest in life sciences.
Collapse
Affiliation(s)
| | - Eric Soler
- IGMM, Université Montpellier, CNRS, 34093 Montpellier, France;
- Laboratory of Excellence GR-Ex, Université de Paris, 75015 Paris, France
| |
Collapse
|
35
|
Qin K, Huang P, Feng R, Keller CA, Peslak SA, Khandros E, Saari MS, Lan X, Mayuranathan T, Doerfler PA, Abdulmalik O, Giardine B, Chou ST, Shi J, Hardison RC, Weiss MJ, Blobel GA. Dual function NFI factors control fetal hemoglobin silencing in adult erythroid cells. Nat Genet 2022; 54:874-884. [PMID: 35618846 PMCID: PMC9203980 DOI: 10.1038/s41588-022-01076-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/08/2022] [Indexed: 12/13/2022]
Abstract
The mechanisms by which the fetal-type β-globin-like genes HBG1 and HBG2 are silenced in adult erythroid precursor cells remain a fundamental question in human biology and have therapeutic relevance to sickle cell disease (SCD) and β-thalassemia. Here, we identify via a CRISPR-Cas9 genetic screen two members of the NFI transcription factor family – NFIA and NFIX – as HBG1/2 repressors. NFIA and NFIX are expressed at elevated levels in adult erythroid cells compared to fetal cells, and function cooperatively to repress HBG1/2 in cultured cells and in human-to-mouse xenotransplants. Genomic profiling, genome editing, and DNA binding assays demonstrate that the potent concerted activity of NFIA and NFIX is explained in part by their ability to stimulate the expression of BCL11A, a known silencer of the HBG1/2 genes, and in part by directly repressing the HBG1/2 genes. Thus, NFI factors emerge as versatile regulators of the fetal-to-adult switch in β-globin production.
Collapse
Affiliation(s)
- Kunhua Qin
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peng Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ruopeng Feng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Scott A Peslak
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Hematology/Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Eugene Khandros
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Megan S Saari
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xianjiang Lan
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | | | - Phillip A Doerfler
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Osheiza Abdulmalik
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Stella T Chou
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Abstract
INTRODUCTION Sickle cell disease and β thalassemia are the principal β hemoglobinopathies. The complex pathophysiology of sickle cell disease is initiated by sickle hemoglobin polymerization. In β thalassemia, insufficient β-globin synthesis results in excessive free α globin, ineffective erythropoiesis and severe anemia. Fetal hemoglobin (HbF) prevents sickle hemoglobin polymerization; in β thalassemia HbF compensates for the deficit of normal hemoglobin. When HbF constitutes about a third of total cell hemoglobin, the complications of sickle cell disease are nearly totally prevented. Similarly, sufficient HbF in β thalassemia diminishes or prevents ineffective erythropoiesis and hemolysis. AREAS COVERED This article examines the pathophysiology of β hemoglobinopathies, the physiology of HbF, intracellular distribution and the regulation of HbF expression. Inducing high levels of HbF by targeting its regulatory pathways pharmacologically or with cell-based therapeutics provides major clinical benefit and perhaps a "cure." EXPERT OPINION Erythrocytes must contain about 10 pg of HbF to "cure" sickle cell disease. If HbF is the only hemoglobin present, much higher levels are needed to "cure" β thalassemia. These levels of HbF can be obtained by different iterations of gene therapy. Small molecule drugs that can achieve even modest pancellular HbF concentrations are a major unmet need.
Collapse
Affiliation(s)
- Martin H Steinberg
- Professor of Medicine, Pediatrics, Pathology and Laboratory Medicine, Boston University School of Medicine.,Department of Medicine, Division of Hematology/Oncology, Center of Excellence for Sickle Cell Disease, Boston University School of Medicine, 72 East Concord St., Boston, MA, 02118, USA.,Department of Medicine, Boston University School of Medicine, 72 E. Concord St. Boston, MA 02118. ., Tel
| |
Collapse
|
37
|
Down-regulation of the transcriptional repressor ZNF802 (JAZF1) reactivates fetal hemoglobin in β 0-thalassemia/HbE. Sci Rep 2022; 12:4952. [PMID: 35322124 PMCID: PMC8943019 DOI: 10.1038/s41598-022-08920-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Reactivating of fetal hemoglobin (HbF; α2γ2) can ameliorate the severity of β-thalassemia disease by compensating for adult hemoglobin deficiency in patients. Previously, microarray analysis revealed that zinc finger protein (ZNF)802 (also known as Juxta-posed with another zinc finger gene-1 (JAZF1)) was upregulated in human erythroblasts derived from adult peripheral blood compared with fetal liver-derived cells, implying a potential role as a HbF repressor. However, deficiency in ZNF802 induced by lentiviral shRNA in β0-thalassemia/hemoglobinE erythroblasts had no effect on erythroblast proliferation and differentiation. Remarkably, the induction of HBG expression was observed at the transcriptional and translational levels resulting in an increase of HbF to 35.0 ± 3.5%. Interestingly, the embryonic globin transcripts were also upregulated but the translation of embryonic globin was not detected. These results suggest ZNF802 might be a transcriptional repressor of the γ-globin gene in adult erythroid cells.
Collapse
|
38
|
Demirci S, Leonard A, Essawi K, Tisdale JF. CRISPR-Cas9 to induce fetal hemoglobin for the treatment of sickle cell disease. Mol Ther Methods Clin Dev 2021; 23:276-285. [PMID: 34729375 PMCID: PMC8526756 DOI: 10.1016/j.omtm.2021.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Genome editing is potentially a curative technique available to all individuals with β-hemoglobinopathies, including sickle cell disease (SCD). Fetal hemoglobin (HbF) inhibits sickle hemoglobin (HbS) polymerization, and it is well described that naturally occurring hereditary persistence of HbF (HPFH) alleviates disease symptoms; therefore, reawakening of developmentally silenced HbF in adult red blood cells (RBCs) has long been of interest as a therapeutic strategy. Recent advances in genome editing platforms, particularly with the use of CRISPR-Cas9, have paved the way for efficient HbF induction through the creation of artificial HPFH mutations, editing of transcriptional HbF silencers, and modulating epigenetic intermediates that govern HbF expression. Clinical trials investigating BCL11A enhancer editing in patients with β-hemoglobinopathies have demonstrated promising results, although follow-up is short and the number of patients treated to date is low. While practical, economic, and clinical challenges of genome editing are well recognized by the scientific community, potential solutions to overcome these hurdles are in development. Here, we review the recent progress and obstacles yet to be overcome for the most effective and feasible HbF reactivation practice using CRISPR-Cas9 genome editing as a curative strategy for patients with SCD.
Collapse
Affiliation(s)
- Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Alexis Leonard
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Khaled Essawi
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| |
Collapse
|
39
|
Rosanwo TO, Bauer DE. Editing outside the body: Ex vivo gene-modification for β-hemoglobinopathy cellular therapy. Mol Ther 2021; 29:3163-3178. [PMID: 34628053 PMCID: PMC8571174 DOI: 10.1016/j.ymthe.2021.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/26/2022] Open
Abstract
Genome editing produces genetic modifications in somatic cells, offering novel curative possibilities for sickle cell disease and β-thalassemia. These opportunities leverage clinical knowledge of hematopoietic stem cell transplant and gene transfer. Advantages to this mode of ex vivo therapy include locus-specific alteration of patient hematopoietic stem cell genomes, lack of allogeneic immune response, and avoidance of insertional mutagenesis. Despite exciting progress, many aspects of this approach remain to be optimized for ideal clinical implementation, including the efficiency and specificity of gene modification, delivery to hematopoietic stem cells, and robust and nontoxic engraftment of gene-modified cells. This review highlights genome editing as compared to other genetic therapies, the differences between editing strategies, and the clinical prospects and challenges of implementing genome editing as a novel treatment. As the world's most common monogenic disorders, the β-hemoglobinopathies are at the forefront of bringing genome editing to the clinic and hold promise for molecular medicine to address human disease at its root.
Collapse
Affiliation(s)
- Tolulope O Rosanwo
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston MA, USA; Department of Pediatrics, Boston Medical Center, Boston, MA, USA
| | - Daniel E Bauer
- Department of Pediatrics, Harvard Medical School, Boston MA, USA; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
40
|
Mussolino C, Strouboulis J. Recent Approaches for Manipulating Globin Gene Expression in Treating Hemoglobinopathies. Front Genome Ed 2021; 3:618111. [PMID: 34713248 PMCID: PMC8525358 DOI: 10.3389/fgeed.2021.618111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Tissue oxygenation throughout life depends on the activity of hemoglobin (Hb) one of the hemeproteins that binds oxygen in the lungs and secures its delivery throughout the body. Hb is composed of four monomers encoded by eight different genes the expression of which is tightly regulated during development, resulting in the formation of distinct hemoglobin tetramers in each developmental stage. Mutations that alter hemoglobin structure or its regulated expression result in a large group of diseases typically referred to as hemoglobinopathies that are amongst the most common genetic defects worldwide. Unprecedented efforts in the last decades have partially unraveled the complex mechanisms that control globin gene expression throughout development. In addition, genome wide association studies have revealed protective genetic traits capable of ameliorating the clinical manifestations of severe hemoglobinopathies. This knowledge has fueled the exploration of innovative therapeutic approaches aimed at modifying the genome or the epigenome of the affected cells to either restore hemoglobin function or to mimic the effect of protective traits. Here we describe the key steps that control the switch in gene expression that concerns the different globin genes during development and highlight the latest efforts in altering globin regulation for therapeutic purposes.
Collapse
Affiliation(s)
- Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - John Strouboulis
- Laboratory of Molecular Erythropoiesis, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
41
|
Yannaki E, Psatha N, Papadopoulou A, Athanasopoulos T, Gravanis A, Roubelakis MG, Tsirigotis P, Anagnostopoulos A, Anagnou NP, Vassilopoulos G. Success Stories and Challenges Ahead in Hematopoietic Stem Cell Gene Therapy: Hemoglobinopathies as Disease Models. Hum Gene Ther 2021; 32:1120-1137. [PMID: 34662232 DOI: 10.1089/hum.2021.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene therapy is a relatively novel field that amounts to around four decades of continuous growth with its good and bad moments. Currently, the field has entered the clinical arena with the ambition to fulfil its promises for a permanent fix of incurable genetic disorders. Hemoglobinopathies as target diseases and hematopoietic stem cells (HSCs) as target cells of genetic interventions had a major share in the research effort toward efficiently implementing gene therapy. Dissection of HSC biology and improvements in gene transfer and gene expression technologies evolved in an almost synchronous manner to a point where the two fields seem to be functionally intercalated. In this review, we focus specifically on the development of gene therapy for hemoglobin disorders and look at both gene addition and gene correction strategies that may dominate the field of HSC-directed gene therapy in the near future and transform the therapeutic landscape for genetic diseases.
Collapse
Affiliation(s)
- Evangelia Yannaki
- Hematology Department-HCT Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Nikoletta Psatha
- Altius Institute for Biomedical Sciences, Seattle, Washington, USA
| | - Anastasia Papadopoulou
- Hematology Department-HCT Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Takis Athanasopoulos
- Cell and Gene Therapy (CGT), Medicinal Science and Technology (MST), GlaxoSmithKline (GSK), Medicines Research Centre, Stevenage, United Kingdom
| | - Achilleas Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Greece
| | - Maria G Roubelakis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece and Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Panagiotis Tsirigotis
- 2nd Department of Internal Medicine, ATTIKO General University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Achilles Anagnostopoulos
- Hematology Department-HCT Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | | | - George Vassilopoulos
- BRFAA, Cell and Gene Therapy Lab, Athens, Greece.,Department of Hematology, UHL, University of Thessaly Medical School, Athens, Greece
| |
Collapse
|
42
|
Tumburu L, Thein SL. Targeting ZNF410 as a potential β-hemoglobinopathy therapy. Nat Genet 2021; 53:589-590. [PMID: 33859418 DOI: 10.1038/s41588-021-00817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laxminath Tumburu
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, MD, USA
| | - Swee Lay Thein
- National Heart, Lung and Blood Institute/NIH, Sickle Cell Branch, Bethesda, MD, USA.
| |
Collapse
|