1
|
Pfeifer GP, Jin SG. Methods and applications of genome-wide profiling of DNA damage and rare mutations. Nat Rev Genet 2024; 25:846-863. [PMID: 38918545 PMCID: PMC11563917 DOI: 10.1038/s41576-024-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
DNA damage is a threat to genome integrity and can be a cause of many human diseases, owing to either changes in the chemical structure of DNA or conversion of the damage into a mutation, that is, a permanent change in DNA sequence. Determining the exact positions of DNA damage and ensuing mutations in the genome are important for identifying mechanisms of disease aetiology when characteristic mutations are prevalent and probably causative in a particular disease. However, this approach is challenging particularly when levels of DNA damage are low, for example, as a result of chronic exposure to environmental agents or certain endogenous processes, such as the generation of reactive oxygen species. Over the past few years, a comprehensive toolbox of genome-wide methods has been developed for the detection of DNA damage and rare mutations at single-nucleotide resolution in mammalian cells. Here, we review and compare these methods, describe their current applications and discuss future research questions that can now be addressed.
Collapse
Affiliation(s)
- Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| | - Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
2
|
Park K, Jeon MC, Lee D, Kim JI, Im SW. Genetic and epigenetic alterations in aging and rejuvenation of human. Mol Cells 2024; 47:100137. [PMID: 39433213 PMCID: PMC11625158 DOI: 10.1016/j.mocell.2024.100137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024] Open
Abstract
All the information essential for life is encoded within our genome and epigenome, which orchestrates diverse cellular states spatially and temporally. In particular, the epigenome interacts with internal and external stimuli, encoding and preserving cellular experiences, and it serves as the regulatory base of the transcriptome across diverse cell types. The emergence of single-cell transcriptomic and epigenomic data collection has revealed unique omics signatures in diverse tissues, highlighting cellular heterogeneity. Recent research has documented age-related epigenetic changes at the single-cell level, alongside the validation of cellular rejuvenation through partial reprogramming, which involves simultaneous epigenetic modifications. These dynamic shifts, primarily fueled by stem cell plasticity, have catalyzed significant interest and cross-disciplinary research endeavors. This review explores the genomic and epigenomic alterations with aging, elucidating their reciprocal interactions. Additionally, it seeks to discuss the evolving landscape of rejuvenation research, with a particular emphasis on dissecting stem cell behavior through the lens of single-cell analysis. Moreover, it proposes potential research methodologies for future studies.
Collapse
Affiliation(s)
- Kyunghyuk Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea
| | - Min Chul Jeon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Dakyung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Il Kim
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea; Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Korea.
| | - Sun-Wha Im
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Gangwon, Korea.
| |
Collapse
|
3
|
Vijayraghavan S, Blouin T, McCollum J, Porcher L, Virard F, Zavadil J, Feghali-Bostwick C, Saini N. Widespread mutagenesis and chromosomal instability shape somatic genomes in systemic sclerosis. Nat Commun 2024; 15:8889. [PMID: 39406724 PMCID: PMC11480385 DOI: 10.1038/s41467-024-53332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Systemic sclerosis is a connective tissue disorder characterized by excessive fibrosis that primarily affects women, and can present as a multisystem pathology. Roughly 4-22% of patients with systemic sclerosis develop cancer, which drastically worsens prognosis. However, the mechanisms underlying systemic sclerosis initiation, propagation, and cancer development are poorly understood. We hypothesize that the inflammation and immune response associated with systemic sclerosis can trigger DNA damage, leading to elevated somatic mutagenesis, a hallmark of pre-cancerous tissues. To test our hypothesis, we culture clonal lineages of fibroblasts from the lung tissues of controls and systemic sclerosis patients and compare their mutation burdens and spectra. We find an overall increase in all major mutation types in systemic sclerosis samples compared to control lung samples, from small-scale events such as single base substitutions and insertions/deletions, to chromosome-level changes, including copy-number changes and structural variants. In the genomes of patients with systemic sclerosis, we find evidence of somatic hypermutation or kategis (typically only seen in cancer genomes), we identify mutation signatures closely resembling the error-prone translesion polymerase Polη activity, and observe an activation-induced deaminase-like mutation signature, which overlaps with genomic regions displaying kataegis.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas Blouin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - James McCollum
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Latarsha Porcher
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - François Virard
- University Claude Bernard Lyon 1, INSERM U1052-CNRS UMR5286, Cancer Research Center, Centre Léon Bérard, Lyon, France
| | - Jiri Zavadil
- International Agency for Research on Cancer WHO, Epigenomics and Mechanisms Branch, Lyon, France
| | - Carol Feghali-Bostwick
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, SC, USA
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
4
|
Yu Z, Coorens THH, Uddin MM, Ardlie KG, Lennon N, Natarajan P. Genetic variation across and within individuals. Nat Rev Genet 2024; 25:548-562. [PMID: 38548833 PMCID: PMC11457401 DOI: 10.1038/s41576-024-00709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 04/12/2024]
Abstract
Germline variation and somatic mutation are intricately connected and together shape human traits and disease risks. Germline variants are present from conception, but they vary between individuals and accumulate over generations. By contrast, somatic mutations accumulate throughout life in a mosaic manner within an individual due to intrinsic and extrinsic sources of mutations and selection pressures acting on cells. Recent advancements, such as improved detection methods and increased resources for association studies, have drastically expanded our ability to investigate germline and somatic genetic variation and compare underlying mutational processes. A better understanding of the similarities and differences in the types, rates and patterns of germline and somatic variants, as well as their interplay, will help elucidate the mechanisms underlying their distinct yet interlinked roles in human health and biology.
Collapse
Affiliation(s)
- Zhi Yu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Md Mesbah Uddin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Niall Lennon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pradeep Natarajan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Spisak N, de Manuel M, Milligan W, Sella G, Przeworski M. The clock-like accumulation of germline and somatic mutations can arise from the interplay of DNA damage and repair. PLoS Biol 2024; 22:e3002678. [PMID: 38885262 PMCID: PMC11213356 DOI: 10.1371/journal.pbio.3002678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/28/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
The rates at which mutations accumulate across human cell types vary. To identify causes of this variation, mutations are often decomposed into a combination of the single-base substitution (SBS) "signatures" observed in germline, soma, and tumors, with the idea that each signature corresponds to one or a small number of underlying mutagenic processes. Two such signatures turn out to be ubiquitous across cell types: SBS signature 1, which consists primarily of transitions at methylated CpG sites thought to be caused by spontaneous deamination, and the more diffuse SBS signature 5, which is of unknown etiology. In cancers, the number of mutations attributed to these 2 signatures accumulates linearly with age of diagnosis, and thus the signatures have been termed "clock-like." To better understand this clock-like behavior, we develop a mathematical model that includes DNA replication errors, unrepaired damage, and damage repaired incorrectly. We show that mutational signatures can exhibit clock-like behavior because cell divisions occur at a constant rate and/or because damage rates remain constant over time, and that these distinct sources can be teased apart by comparing cell lineages that divide at different rates. With this goal in mind, we analyze the rate of accumulation of mutations in multiple cell types, including soma as well as male and female germline. We find no detectable increase in SBS signature 1 mutations in neurons and only a very weak increase in mutations assigned to the female germline, but a significant increase with time in rapidly dividing cells, suggesting that SBS signature 1 is driven by rounds of DNA replication occurring at a relatively fixed rate. In contrast, SBS signature 5 increases with time in all cell types, including postmitotic ones, indicating that it accumulates independently of cell divisions; this observation points to errors in DNA repair as the key underlying mechanism. Thus, the two "clock-like" signatures observed across cell types likely have distinct origins, one set by rates of cell division, the other by damage rates.
Collapse
Affiliation(s)
- Natanael Spisak
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Marc de Manuel
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - William Milligan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Guy Sella
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Program for Mathematical Genomics, Columbia University, New York, New York, United States of America
| | - Molly Przeworski
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| |
Collapse
|
6
|
Liu J, Dai L, Wang Q, Li C, Liu Z, Gong T, Xu H, Jia Z, Sun W, Wang X, Lu M, Shang T, Zhao N, Cai J, Li Z, Chen H, Su J, Liu Z. Multimodal analysis of cfDNA methylomes for early detecting esophageal squamous cell carcinoma and precancerous lesions. Nat Commun 2024; 15:3700. [PMID: 38697989 PMCID: PMC11065998 DOI: 10.1038/s41467-024-47886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
Detecting early-stage esophageal squamous cell carcinoma (ESCC) and precancerous lesions is critical for improving survival. Here, we conduct whole-genome bisulfite sequencing (WGBS) on 460 cfDNA samples from patients with non-metastatic ESCC or precancerous lesions and matched healthy controls. We develop an expanded multimodal analysis (EMMA) framework to simultaneously identify cfDNA methylation, copy number variants (CNVs), and fragmentation markers in cfDNA WGBS data. cfDNA methylation markers are the earliest and most sensitive, detectable in 70% of ESCCs and 50% of precancerous lesions, and associated with molecular subtypes and tumor microenvironments. CNVs and fragmentation features show high specificity but are linked to late-stage disease. EMMA significantly improves detection rates, increasing AUCs from 0.90 to 0.99, and detects 87% of ESCCs and 62% of precancerous lesions with >95% specificity in validation cohorts. Our findings demonstrate the potential of multimodal analysis of cfDNA methylome for early detection and monitoring of molecular characteristics in ESCC.
Collapse
Affiliation(s)
- Jiaqi Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lijun Dai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiang Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Chenghao Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhichao Liu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Tongyang Gong
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Hengyi Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Ziqi Jia
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Wanyuan Sun
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyu Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Minyi Lu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Tongxuan Shang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Ning Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Jiahui Cai
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Zhigang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Jianzhong Su
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| |
Collapse
|
7
|
Nakauma-González JA, Rijnders M, Noordsij MTW, Martens JWM, van der Veldt AAM, Lolkema MPJ, Boormans JL, van de Werken HJG. Whole-genome mapping of APOBEC mutagenesis in metastatic urothelial carcinoma identifies driver hotspot mutations and a novel mutational signature. CELL GENOMICS 2024; 4:100528. [PMID: 38552621 PMCID: PMC11019362 DOI: 10.1016/j.xgen.2024.100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 04/13/2024]
Abstract
Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) enzymes mutate specific DNA sequences and hairpin-loop structures, challenging the distinction between passenger and driver hotspot mutations. Here, we characterized 115 whole genomes of metastatic urothelial carcinoma (mUC) to identify APOBEC mutagenic hotspot drivers. APOBEC-associated mutations were detected in 92% of mUCs and were equally distributed across the genome, while APOBEC hotspot mutations (ApoHMs) were enriched in open chromatin. Hairpin loops were frequent targets of didymi (twins in Greek), two hotspot mutations characterized by the APOBEC SBS2 signature, in conjunction with an uncharacterized mutational context (Ap[C>T]). Next, we developed a statistical framework that identified ApoHMs as drivers in coding and non-coding genomic regions of mUCs. Our results and statistical framework were validated in independent cohorts of 23 non-metastatic UCs and 3,744 samples of 17 metastatic cancers, identifying cancer-type-specific drivers. Our study highlights the role of APOBEC in cancer development and may contribute to developing novel targeted therapy options for APOBEC-driven cancers.
Collapse
Affiliation(s)
- J Alberto Nakauma-González
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands; Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands; Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands.
| | - Maud Rijnders
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands
| | - Minouk T W Noordsij
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands
| | - Astrid A M van der Veldt
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands
| | - Martijn P J Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands
| | - Joost L Boormans
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands; Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands; Department of Immunology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands.
| |
Collapse
|
8
|
Chatsirisupachai K, de Magalhães JP. Somatic mutations in human ageing: New insights from DNA sequencing and inherited mutations. Ageing Res Rev 2024; 96:102268. [PMID: 38490496 DOI: 10.1016/j.arr.2024.102268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
The accumulation of somatic mutations is a driver of cancer and has long been associated with ageing. Due to limitations in quantifying mutation burden with age in non-cancerous tissues, the impact of somatic mutations in other ageing phenotypes is unclear. Recent advances in DNA sequencing technologies have allowed the large-scale quantification of somatic mutations in ageing tissues. These studies have revealed a gradual accumulation of mutations in normal tissues with age as well as a substantial clonal expansion driven mostly by cancer-related mutations. Nevertheless, it is difficult to envision how the burden and stochastic nature of age-related somatic mutations identified so far can explain most ageing phenotypes that develop gradually. Studies across species have also found that longer-lived species have lower somatic mutation rates, though these could be due to selective pressures acting on other phenotypes such as perhaps cancer. Recent studies in patients with higher somatic mutation burden and no signs of accelerated ageing further question the role of somatic mutations in ageing. Overall, with a few exceptions like cancer, recent DNA sequencing studies and inherited mutations do not support the idea that somatic mutations accumulating with age drive ageing phenotypes, and the phenotypic role, if any, of somatic mutations in ageing remains unclear.
Collapse
Affiliation(s)
- Kasit Chatsirisupachai
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK; Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Mindelsohn Way, Birmingham, UK.
| |
Collapse
|
9
|
Pravallika G, Rajasekaran R. Stage II oesophageal carcinoma: peril in disguise associated with cellular reprogramming and oncogenesis regulated by pseudogenes. BMC Genomics 2024; 25:135. [PMID: 38308202 PMCID: PMC10835973 DOI: 10.1186/s12864-024-10023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
INTRODUCTION Pseudogenes have been implicated for their role in regulating cellular differentiation and organismal development. However, their role in promoting cancer-associated differentiation has not been well-studied. This study explores the tumour landscape of oesophageal carcinoma to identify pseudogenes that may regulate events of differentiation to promote oncogenic transformation. MATERIALS AND METHOD De-regulated differentiation-associated pseudogenes were identified using DeSeq2 followed by 'InteractiVenn' analysis to identify their expression pattern. Gene expression dependent and independent enrichment analyses were performed with GSEA and ShinyGO, respectively, followed by quantification of cellular reprogramming, extent of differentiation and pleiotropy using three unique metrics. Stage-specific gene regulatory networks using Bayesian Network Splitting Average were generated, followed by network topology analysis. MEME, STREME and Tomtom were employed to identify transcription factors and miRNAs that play a regulatory role downstream of pseudogenes to initiate cellular reprogramming and further promote oncogenic transformation. The patient samples were stratified based on the expression pattern of pseudogenes, followed by GSEA, mutation analysis and survival analysis using GSEA, MAF and 'survminer', respectively. RESULTS Pseudogenes display a unique stage-wise expression pattern that characterizes stage II (SII) ESCA with a high rate of cellular reprogramming, degree of differentiation and pleiotropy. Gene regulatory network and associated topology indicate high robustness, thus validating high pleiotropy observed for SII. Pseudogene-regulated expression of SOX2, FEV, PRRX1 and TFAP2A in SII may modulate cellular reprogramming and promote oncogenesis. Additionally, patient stratification-based mutational analysis in SII signifies APOBEC3A (A3A) as a potential hallmark of homeostatic mutational events of reprogrammed cells which in addition to de-regulated APOBEC3G leads to distinct events of hypermutations. Further enrichment analysis for both cohorts revealed the critical role of combinatorial expression of pseudogenes in cellular reprogramming. Finally, survival analysis reveals distinct genes that promote poor prognosis in SII ESCA and patient-stratified cohorts, thus providing valuable prognostic bio-markers along with markers of differentiation and oncogenesis for distinct landscapes of pseudogene expression. CONCLUSION Pseudogenes associated with the events of differentiation potentially aid in the initiation of cellular reprogramming to facilitate oncogenic transformation, especially during SII ESCA. Despite a better overall survival of SII, patient stratification reveals combinatorial de-regulation of pseudogenes as a notable marker for a high degree of cellular differentiation with a unique mutational landscape.
Collapse
Affiliation(s)
- Govada Pravallika
- Quantitative Biology Lab, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ramalingam Rajasekaran
- Quantitative Biology Lab, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
10
|
Kawale AS, Ran X, Patel PS, Saxena S, Lawrence MS, Zou L. APOBEC3A induces DNA gaps through PRIMPOL and confers gap-associated therapeutic vulnerability. SCIENCE ADVANCES 2024; 10:eadk2771. [PMID: 38241374 PMCID: PMC10798555 DOI: 10.1126/sciadv.adk2771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/20/2023] [Indexed: 01/21/2024]
Abstract
Mutation signatures associated with apolipoprotein B mRNA editing catalytic polypeptide-like 3A/B (APOBEC3A/B) cytidine deaminases are prevalent across cancers, implying their roles as mutagenic drivers during tumorigenesis and tumor evolution. APOBEC3A (A3A) expression induces DNA replication stress and increases the cellular dependency on the ataxia telangiectasia and Rad3-related (ATR) kinase for survival. Nonetheless, how A3A induces DNA replication stress remains unclear. We show that A3A induces replication stress without slowing replication forks. We find that A3A induces single-stranded DNA (ssDNA) gaps through PrimPol-mediated repriming. A3A-induced ssDNA gaps are repaired by multiple pathways involving ATR, RAD51, and translesion synthesis. Both ATR inhibition and trapping of poly(ADP-ribose) polymerase (PARP) on DNA by PARP inhibitor impair the repair of A3A-induced gaps, preferentially killing A3A-expressing cells. When used in combination, PARP and ATR inhibitors selectively kill A3A-expressing cells synergistically in a manner dependent on PrimPol-generated gaps. Thus, A3A-induced replication stress arises from PrimPol-generated ssDNA gaps, which confer a therapeutic vulnerability to gap-targeted DNA repair inhibitors.
Collapse
Affiliation(s)
- Ajinkya S. Kawale
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Xiaojuan Ran
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Parasvi S. Patel
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Sneha Saxena
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Michael S. Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Dananberg A, Striepen J, Rozowsky JS, Petljak M. APOBEC Mutagenesis in Cancer Development and Susceptibility. Cancers (Basel) 2024; 16:374. [PMID: 38254863 PMCID: PMC10814203 DOI: 10.3390/cancers16020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
APOBEC cytosine deaminases are prominent mutators in cancer, mediating mutations in over 50% of cancers. APOBEC mutagenesis has been linked to tumor heterogeneity, persistent cell evolution, and therapy responses. While emerging evidence supports the impact of APOBEC mutagenesis on cancer progression, the understanding of its contribution to cancer susceptibility and malignant transformation is limited. We examine the existing evidence for the role of APOBEC mutagenesis in carcinogenesis on the basis of the reported associations between germline polymorphisms in genes encoding APOBEC enzymes and cancer risk, insights into APOBEC activities from sequencing efforts of both malignant and non-malignant human tissues, and in vivo studies. We discuss key knowledge gaps and highlight possible ways to gain a deeper understanding of the contribution of APOBEC mutagenesis to cancer development.
Collapse
Affiliation(s)
- Alexandra Dananberg
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (J.S.)
| | - Josefine Striepen
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (A.D.); (J.S.)
| | - Jacob S. Rozowsky
- Medical Scientist Training Program, New York University Grossman School of Medicine, New York, NY 10016, USA;
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Mia Petljak
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
12
|
Adler N, Bahcheli AT, Cheng KC, Al-Zahrani KN, Slobodyanyuk M, Pellegrina D, Schramek D, Reimand J. Mutational processes of tobacco smoking and APOBEC activity generate protein-truncating mutations in cancer genomes. SCIENCE ADVANCES 2023; 9:eadh3083. [PMID: 37922356 PMCID: PMC10624356 DOI: 10.1126/sciadv.adh3083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2023]
Abstract
Mutational signatures represent a genomic footprint of endogenous and exogenous mutational processes through tumor evolution. However, their functional impact on the proteome remains incompletely understood. We analyzed the protein-coding impact of single-base substitution (SBS) signatures in 12,341 cancer genomes from 18 cancer types. Stop-gain mutations (SGMs) (i.e., nonsense mutations) were strongly enriched in SBS signatures of tobacco smoking, APOBEC cytidine deaminases, and reactive oxygen species. These mutational processes alter specific trinucleotide contexts and thereby substitute serines and glutamic acids with stop codons. SGMs frequently affect cancer hallmark pathways and tumor suppressors such as TP53, FAT1, and APC. Tobacco-driven SGMs in lung cancer correlate with smoking history and highlight a preventable determinant of these harmful mutations. APOBEC-driven SGMs are enriched in YTCA motifs and associate with APOBEC3A expression. Our study exposes SGM expansion as a genetic mechanism by which endogenous and carcinogenic mutational processes directly contribute to protein loss of function, oncogenesis, and tumor heterogeneity.
Collapse
Affiliation(s)
- Nina Adler
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Alexander T. Bahcheli
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Kevin C. L. Cheng
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | - Mykhaylo Slobodyanyuk
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Diogo Pellegrina
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Daniel Schramek
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Spisak N, de Manuel M, Milligan W, Sella G, Przeworski M. Disentangling sources of clock-like mutations in germline and soma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.07.556720. [PMID: 37745549 PMCID: PMC10515775 DOI: 10.1101/2023.09.07.556720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The rates of mutations vary across cell types. To identify causes of this variation, mutations are often decomposed into a combination of the single base substitution (SBS) "signatures" observed in germline, soma and tumors, with the idea that each signature corresponds to one or a small number of underlying mutagenic processes. Two such signatures turn out to be ubiquitous across cell types: SBS signature 1, which consists primarily of transitions at methylated CpG sites caused by spontaneous deamination, and the more diffuse SBS signature 5, which is of unknown etiology. In cancers, the number of mutations attributed to these two signatures accumulates linearly with age of diagnosis, and thus the signatures have been termed "clock-like." To better understand this clock-like behavior, we develop a mathematical model that includes DNA replication errors, unrepaired damage, and damage repaired incorrectly. We show that mutational signatures can exhibit clock-like behavior because cell divisions occur at a constant rate and/or because damage rates remain constant over time, and that these distinct sources can be teased apart by comparing cell lineages that divide at different rates. With this goal in mind, we analyze the rate of accumulation of mutations in multiple cell types, including soma as well as male and female germline. We find no detectable increase in SBS signature 1 mutations in neurons and only a very weak increase in mutations assigned to the female germline, but a significant increase with time in rapidly-dividing cells, suggesting that SBS signature 1 is driven by rounds of DNA replication occurring at a relatively fixed rate. In contrast, SBS signature 5 increases with time in all cell types, including post-mitotic ones, indicating that it accumulates independently of cell divisions; this observation points to errors in DNA repair as the key underlying mechanism. Thus, the two "clock-like" signatures observed across cell types likely have distinct origins, one set by rates of cell division, the other by damage rates.
Collapse
Affiliation(s)
- Natanael Spisak
- Department of Biological Sciences, Columbia University, New York, United States
| | - Marc de Manuel
- Department of Biological Sciences, Columbia University, New York, United States
| | - William Milligan
- Department of Biological Sciences, Columbia University, New York, United States
| | - Guy Sella
- Department of Biological Sciences, Columbia University, New York, United States
- Program for Mathematical Genomics, Columbia University, New York, United States
| | - Molly Przeworski
- Department of Biological Sciences, Columbia University, New York, United States
- Department of Systems Biology, Columbia University, New York, United States
| |
Collapse
|
14
|
Butler K, Banday AR. APOBEC3-mediated mutagenesis in cancer: causes, clinical significance and therapeutic potential. J Hematol Oncol 2023; 16:31. [PMID: 36978147 PMCID: PMC10044795 DOI: 10.1186/s13045-023-01425-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Apolipoprotein B mRNA-editing enzyme, catalytic polypeptides (APOBECs) are cytosine deaminases involved in innate and adaptive immunity. However, some APOBEC family members can also deaminate host genomes to generate oncogenic mutations. The resulting mutations, primarily signatures 2 and 13, occur in many tumor types and are among the most common mutational signatures in cancer. This review summarizes the current evidence implicating APOBEC3s as major mutators and outlines the exogenous and endogenous triggers of APOBEC3 expression and mutational activity. The review also discusses how APOBEC3-mediated mutagenesis impacts tumor evolution through both mutagenic and non-mutagenic pathways, including by inducing driver mutations and modulating the tumor immune microenvironment. Moving from molecular biology to clinical outcomes, the review concludes by summarizing the divergent prognostic significance of APOBEC3s across cancer types and their therapeutic potential in the current and future clinical landscapes.
Collapse
Affiliation(s)
- Kelly Butler
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - A Rouf Banday
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|