1
|
Niu W, Liu J, Duan Y, Zhong L, Pang L, Zhong G, Zhang Y, Bian X. Biosynthesis of Nonribosomal Peptides Chitinimides Reveal a Special Type of Thioesterase Domains. Chemistry 2024:e202402763. [PMID: 39298149 DOI: 10.1002/chem.202402763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Indexed: 11/01/2024]
Abstract
Non-ribosomal peptide synthetases (NRPSs) and their tailored enzymes have diverse biological functions. In this study, we investigated the biosynthesis and function of chitinimides, which belong to the non-ribosomal peptide (NRP) subfamily featuring a pyrrolidine-containing part (X part) connected to the polypeptide chain via an ester bond. A conserved gene cassette, chmHIJK, is responsible for oxyacylation of the pyrrolidine moiety in the X part. The thioesterase (TE) domain of ChmC (ChmC-TE) catalyzes transesterification reactions with a free X part or methanol as a nucleophilic reagent to form different chitinimides. The crucial amino acid residues in the ChmC-TE domains responsible for the specific recognition of the X part were identified, and they were conserved in all the biosynthetic pathways of this NRP subfamily to form a signature motif, YNHNR, suggesting a special type of TE domain in NRPSs. Chitinimides demonstrate the biological function of promoting the swarming ability of the native producer. This study provides deep insights into the biosynthesis of this special NRP subfamily, and shows that the special TE domain could be used to generate diverse NRPs by combinatorial biosynthesis.
Collapse
Affiliation(s)
- Weijing Niu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Jiaqi Liu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Yuwei Duan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Lin Zhong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Linlin Pang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Guannan Zhong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
2
|
Zhang M, Peng Z, Huang Z, Fang J, Li X, Qiu X. Functional Diversity and Engineering of the Adenylation Domains in Nonribosomal Peptide Synthetases. Mar Drugs 2024; 22:349. [PMID: 39195464 DOI: 10.3390/md22080349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Nonribosomal peptides (NRPs) are biosynthesized by nonribosomal peptide synthetases (NRPSs) and are widely distributed in both terrestrial and marine organisms. Many NRPs and their analogs are biologically active and serve as therapeutic agents. The adenylation (A) domain is a key catalytic domain that primarily controls the sequence of a product during the assembling of NRPs and thus plays a predominant role in the structural diversity of NRPs. Engineering of the A domain to alter substrate specificity is a potential strategy for obtaining novel NRPs for pharmaceutical studies. On the basis of introducing the catalytic mechanism and multiple functions of the A domains, this article systematically describes several representative NRPS engineering strategies targeting the A domain, including mutagenesis of substrate-specificity codes, substitution of condensation-adenylation bidomains, the entire A domain or its subdomains, domain insertion, and whole-module rearrangements.
Collapse
Affiliation(s)
- Mengli Zhang
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Zijing Peng
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Zhenkuai Huang
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Jiaqi Fang
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Xinhai Li
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Xiaoting Qiu
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| |
Collapse
|
3
|
Zou X, Hui Z, Shepherd RA, Zhao S, Wu Y, Shen Z, Pang C, Zhou S, Yu Z, Zhou J, Moore BS, Sanchez LM, Tang X. Unveiling a CAAX Protease-Like Protein Involved in Didemnin Drug Maturation and Secretion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306044. [PMID: 38032137 PMCID: PMC10811503 DOI: 10.1002/advs.202306044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/29/2023] [Indexed: 12/01/2023]
Abstract
The assembly line biosynthesis of the powerful anticancer-antiviral didemnin cyclic peptides is proposed to follow a prodrug release mechanism in Tristella bacteria. This strategy commences with the formation of N-terminal prodrug scaffolds and culminates in their cleavage during the cellular export of the mature products. In this study, a comprehensive exploration of the genetic and biochemical aspects of the enzymes responsible for both the assembly and cleavage of the acylated peptide prodrug scaffolds is provided. This process involves the assembly of N-acyl-polyglutamine moieties orchestrated by the nonribosomal peptide synthetase DidA and the cleavage of these components at the post-assembly stage by DidK, a transmembrane CAAX hydrolase homolog. The findings not only shed light on the complex prodrug mechanism that underlies the synthesis and secretion of didemnin compounds but also offer novel insights into the expanded role of CAAX hydrolases in microbes. Furthermore, this knowledge can be leveraged for the strategic design of genome mining approaches aimed at discovering new bioactive natural products that employ similar prodrug biochemical strategies.
Collapse
Affiliation(s)
- Xiaolin Zou
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Zhen Hui
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Robert A. Shepherd
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzCA95064USA
| | - Shuaiqiang Zhao
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Yanfei Wu
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Zhuanglin Shen
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Cuiping Pang
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Shipeng Zhou
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Zehai Yu
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Jiahai Zhou
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Bradly S. Moore
- Scripps Institution of OceanographyUniversity of California San DiegoLa JollaCA92093USA
- Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of California San DiegoLa JollaCA92093USA
| | - Laura M. Sanchez
- Department of Chemistry and BiochemistryUniversity of California Santa CruzSanta CruzCA95064USA
| | - Xiaoyu Tang
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| |
Collapse
|
4
|
Gu B, Kim DG, Kim DK, Kim M, Kim HU, Oh MK. Heterologous overproduction of oviedomycin by refactoring biosynthetic gene cluster and metabolic engineering of host strain Streptomyces coelicolor. Microb Cell Fact 2023; 22:212. [PMID: 37838667 PMCID: PMC10576301 DOI: 10.1186/s12934-023-02218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Oviedomycin is one among several polyketides known for their potential as anticancer agents. The biosynthetic gene cluster (BGC) for oviedomycin is primarily found in Streptomyces antibioticus. However, because this BGC is usually inactive under normal laboratory conditions, it is necessary to employ systematic metabolic engineering methods, such as heterologous expression, refactoring of BGCs, and optimization of precursor biosynthesis, to allow efficient production of these compounds. RESULTS Oviedomycin BGC was captured from the genome of Streptomyces antibioticus by a newly constructed plasmid, pCBA, and conjugated into the heterologous strain, S. coelicolor M1152. To increase the production of oviedomycin, clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system was utilized in an in vitro setting to refactor the native promoters within the ovm BGC. The target promoters of refactoring were selected based on examination of factors such as transcription levels and metabolite profiling. Furthermore, genome-scale metabolic simulation was applied to find overexpression targets that could enhance the biosynthesis of precursors or cofactors related to oviedomycin production. The combined approach led to a significant increase in oviedomycin production, reaching up to 670 mg/L, which is the highest titer reported to date. This demonstrates the potential of the approach undertaken in this study. CONCLUSIONS The metabolic engineering approach used in this study led to the successful production of a valuable polyketide, oviedomycin, via BGC cloning, promoter refactoring, and gene manipulation of host metabolism aided by genome-scale metabolic simulation. This approach can be also useful for the efficient production of other secondary molecules encoded by 'silent' BGCs.
Collapse
Affiliation(s)
- Boncheol Gu
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Duck Gyun Kim
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Do-Kyung Kim
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Minji Kim
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Min-Kyu Oh
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
5
|
Patel KD, MacDonald MR, Ahmed SF, Singh J, Gulick AM. Structural advances toward understanding the catalytic activity and conformational dynamics of modular nonribosomal peptide synthetases. Nat Prod Rep 2023; 40:1550-1582. [PMID: 37114973 PMCID: PMC10510592 DOI: 10.1039/d3np00003f] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 04/29/2023]
Abstract
Covering: up to fall 2022.Nonribosomal peptide synthetases (NRPSs) are a family of modular, multidomain enzymes that catalyze the biosynthesis of important peptide natural products, including antibiotics, siderophores, and molecules with other biological activity. The NRPS architecture involves an assembly line strategy that tethers amino acid building blocks and the growing peptides to integrated carrier protein domains that migrate between different catalytic domains for peptide bond formation and other chemical modifications. Examination of the structures of individual domains and larger multidomain proteins has identified conserved conformational states within a single module that are adopted by NRPS modules to carry out a coordinated biosynthetic strategy that is shared by diverse systems. In contrast, interactions between modules are much more dynamic and do not yet suggest conserved conformational states between modules. Here we describe the structures of NRPS protein domains and modules and discuss the implications for future natural product discovery.
Collapse
Affiliation(s)
- Ketan D Patel
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Monica R MacDonald
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Syed Fardin Ahmed
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Jitendra Singh
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| |
Collapse
|
6
|
Murphy A, Corney M, Monson RE, Matilla MA, Salmond GPC, Leeper FJ. Biosynthesis of Antifungal Solanimycin May Involve an Iterative Nonribosomal Peptide Synthetase Module. ACS Chem Biol 2023; 18:1148-1157. [PMID: 37068480 PMCID: PMC10204066 DOI: 10.1021/acschembio.2c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Dickeya solani, a plant-pathogenic bacterium, produces solanimycin, a potent hybrid polyketide/nonribosomal peptide (PKS/NRPS) anti-fungal compound. The biosynthetic gene cluster responsible for synthesis of this compound has been identified. Because of instability, the complete structure of the compound has not yet been elucidated, but LC-MS2 identified that the cluster produces two main compounds, solanimycin A and B, differing by a single hydroxyl group. The fragmentation pattern revealed that the central part of solanimycin A is a hexapeptide, Gly-Dha-Dha-Dha-Dha-Dha (where Dha is dehydroalanine). This is supported by isotopic labeling studies using labeled serine and glycine. The N-terminal group is a polyketide-derived C16 acyl group containing a conjugated hexaene, a hydroxyl, and an amino group. The additional hydroxyl group in solanimycin B is on the α-carbon of the glycine residue. The incorporation of five sequential Dha residues is unprecedented because there is only one NRPS module in the cluster that is predicted to activate and attach serine (which is subsequently dehydrated to Dha), meaning that this NRPS module must act iteratively. While a few other iterative NRPS modules are known, they all involve iteration of two or three modules. We believe that the repetitive use of a single module makes the solanimycin biosynthetic pathway unique among NRPSs so far reported.
Collapse
Affiliation(s)
- Annabel
C. Murphy
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Matthew Corney
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Rita E. Monson
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K.
| | - Miguel A. Matilla
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K.
| | - George P. C. Salmond
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K.
| | - Finian J. Leeper
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
7
|
Zhang G, Wang J, Li Y, Shang G. CRISPR/Cas9-assisted ssDNA recombineering for site-directed mutagenesis and saturation mutagenesis of plasmid-encoded genes. Biotechnol Lett 2023; 45:629-637. [PMID: 36930400 DOI: 10.1007/s10529-023-03363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/18/2023]
Abstract
Site-directed and saturation mutagenesis are critical DNA methodologies for studying protein structure and function. For plasmid-based gene mutation, PCR and overlap-extension PCR involve tedious cloning steps. When the plasmid size is large, PCR yield may be too low for cloning; and for saturation mutagenesis of a single codon, one experiment may not enough to generate all twenty coding variants. Oligo-mediated recombineering sidesteps the complicated cloning process by homologous recombination between a mutagenic oligo and its target site. However, the low recombineering efficiency and inability to select for the recombinant makes it necessary to screen a large number of clones. Herein, we describe two plasmid-based mutagenic strategies: CRISPR/Cas9-assisted ssDNA recombineering for site-directed mutagenesis (CRM) and saturation mutagenesis (CRSM). CRM and CRSM involve co-electroporation of target plasmid, sgRNA expression plasmid and mutagenic oligonucleotide into Escherichia coli cells with induced expression of λ-Red recombinase and Cas9, followed by plasmid extraction and characterization. We established CRM and CRSM via ampicillin resistance gene repair and mutagenesis of N-acetyl‑D‑neuraminic acid aldolase. The mutational efficiency was between 80 and 100% and all twenty amino acid coding variants were obtained at a target site via a single CRSM strategy. CRM and CRSM have the potential to be general plasmid-based gene mutagenesis tools.
Collapse
Affiliation(s)
- Guoyi Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No.1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu Province, People's Republic of China
| | - Junyu Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No.1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu Province, People's Republic of China
| | - Yiwen Li
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No.1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu Province, People's Republic of China
| | - Guangdong Shang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, No.1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu Province, People's Republic of China.
| |
Collapse
|
8
|
Weihmann R, Kubicki S, Bitzenhofer NL, Domröse A, Bator I, Kirschen LM, Kofler F, Funk A, Tiso T, Blank LM, Jaeger KE, Drepper T, Thies S, Loeschcke A. The modular pYT vector series employed for chromosomal gene integration and expression to produce carbazoles and glycolipids in P. putida. FEMS MICROBES 2022; 4:xtac030. [PMID: 37333445 PMCID: PMC10117823 DOI: 10.1093/femsmc/xtac030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/03/2022] [Accepted: 12/16/2022] [Indexed: 10/22/2023] Open
Abstract
The expression of biosynthetic genes in bacterial hosts can enable access to high-value compounds, for which appropriate molecular genetic tools are essential. Therefore, we developed a toolbox of modular vectors, which facilitate chromosomal gene integration and expression in Pseudomonas putida KT2440. To this end, we designed an integrative sequence, allowing customisation regarding the modes of integration (random, at attTn7, or into the 16S rRNA gene), promoters, antibiotic resistance markers as well as fluorescent proteins and enzymes as transcription reporters. We thus established a toolbox of vectors carrying integrative sequences, designated as pYT series, of which we present 27 ready-to-use variants along with a set of strains equipped with unique 'landing pads' for directing a pYT interposon into one specific copy of the 16S rRNA gene. We used genes of the well-described violacein biosynthesis as reporter to showcase random Tn5-based chromosomal integration leading to constitutive expression and production of violacein and deoxyviolacein. Deoxyviolacein was likewise produced after gene integration into the 16S rRNA gene of rrn operons. Integration in the attTn7 site was used to characterise the suitability of different inducible promoters and successive strain development for the metabolically challenging production of mono-rhamnolipids. Finally, to establish arcyriaflavin A production in P. putida for the first time, we compared different integration and expression modes, revealing integration at attTn7 and expression with NagR/PnagAa to be most suitable. In summary, the new toolbox can be utilised for the rapid generation of various types of P. putida expression and production strains.
Collapse
Affiliation(s)
- Robin Weihmann
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Sonja Kubicki
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Nora Lisa Bitzenhofer
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Andreas Domröse
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Isabel Bator
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Lisa-Marie Kirschen
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Franziska Kofler
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Aileen Funk
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Till Tiso
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Lars M Blank
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Institute of Bio-and Geosciences IBG 1: Biotechnology, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
9
|
Chen XW, Rao L, Chen JL, Zou Y. Unexpected assembly machinery for 4(3H)-quinazolinone scaffold synthesis. Nat Commun 2022; 13:6522. [PMID: 36316336 PMCID: PMC9622831 DOI: 10.1038/s41467-022-34340-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
4(3H)-quinazolinone is the core scaffold in more than 200 natural alkaloids and numerous drugs. Many chemosynthetic methodologies have been developed to generate it; however, investigation of its native enzymatic formation mechanism in fungi has been largely limited to fumiquinazolines, where the two nitrogen atoms come from anthranilate (N-1) and the α-NH2 of amino acids (N-3). Here, via biochemical investigation of the chrysogine pathway, unexpected assembly machinery for 4(3H)-quinazolinone is unveiled, which involves a fungal two-module nonribosomal peptide synthase ftChyA with an unusual terminal condensation domain catalysing tripeptide formation; reveals that N-3 originates from the inorganic ammonium ions or the amide of L-Gln; demonstrates an unusual α-ketoglutarate-dependent dioxygenase ftChyM catalysis of the C-N bond oxidative cleavage of a tripeptide to form a dipeptide. Our study uncovers a unique release and tailoring mechanism for nonribosomal peptides and an alternative route for the synthesis of 4(3H)-quinazolinone scaffolds.
Collapse
Affiliation(s)
- Xi-Wei Chen
- grid.263906.80000 0001 0362 4044College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 P. R. China
| | - Li Rao
- grid.263906.80000 0001 0362 4044College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 P. R. China
| | - Jia-Li Chen
- grid.263906.80000 0001 0362 4044College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 P. R. China
| | - Yi Zou
- grid.263906.80000 0001 0362 4044College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 P. R. China
| |
Collapse
|
10
|
Vollmann DJ, Winand L, Nett M. Emerging concepts in the semisynthetic and mutasynthetic production of natural products. Curr Opin Biotechnol 2022; 77:102761. [DOI: 10.1016/j.copbio.2022.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/18/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
|
11
|
Gnann AD, Xia Y, Soule J, Barthélemy C, Mawani JS, Musoke SN, Castellano BM, Brignole EJ, Frueh DP, Dowling DP. High-resolution structures of a siderophore-producing cyclization domain from Yersinia pestis offer a refined proposal of substrate binding. J Biol Chem 2022; 298:102454. [PMID: 36063993 PMCID: PMC9547227 DOI: 10.1016/j.jbc.2022.102454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/01/2023] Open
Abstract
Nonribosomal peptide synthetase heterocyclization (Cy) domains generate biologically important oxazoline/thiazoline groups found in natural products, including pharmaceuticals and virulence factors such as some siderophores. Cy domains catalyze consecutive condensation and cyclodehydration reactions, although the mechanism is unknown. To better understand Cy domain catalysis, here we report the crystal structure of the second Cy domain (Cy2) of yersiniabactin synthetase from the causative agent of the plague, Yersinia pestis. Our high-resolution structure of Cy2 adopts a conformation that enables exploration of interactions with the extended thiazoline-containing cyclodehydration intermediate and the acceptor carrier protein (CP) to which it is tethered. We also report complementary electrostatic interfaces between Cy2 and its donor CP that mediate donor binding. Finally, we explored domain flexibility through normal mode analysis and identified small-molecule fragment-binding sites that may inform future antibiotic design targeting Cy function. Our results suggest how CP binding may influence global Cy conformations, with consequences for active-site remodeling to facilitate the separate condensation and cyclodehydration steps as well as potential inhibitor development.
Collapse
Affiliation(s)
- Andrew D. Gnann
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Yuan Xia
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Jess Soule
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Clara Barthélemy
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Jayata S. Mawani
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Sarah Nzikoba Musoke
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Brian M. Castellano
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Edward J. Brignole
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dominique P. Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel P. Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts, USA,For correspondence: Daniel P. Dowling
| |
Collapse
|
12
|
Wang C, Xiao D, Dun B, Yin M, Tsega AS, Xie L, Li W, Yue Q, Wang S, Gao H, Lin M, Zhang L, Molnár I, Xu Y. Chemometrics and genome mining reveal an unprecedented family of sugar acid-containing fungal nonribosomal cyclodepsipeptides. Proc Natl Acad Sci U S A 2022; 119:e2123379119. [PMID: 35914151 PMCID: PMC9371744 DOI: 10.1073/pnas.2123379119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023] Open
Abstract
Xylomyrocins, a unique group of nonribosomal peptide secondary metabolites, were discovered in Paramyrothecium and Colletotrichum spp. fungi by employing a combination of high-resolution tandem mass spectrometry (HRMS/MS)-based chemometrics, comparative genome mining, gene disruption, stable isotope feeding, and chemical complementation techniques. These polyol cyclodepsipeptides all feature an unprecedented d-xylonic acid moiety as part of their macrocyclic scaffold. This biosynthon is derived from d-xylose supplied by xylooligosaccharide catabolic enzymes encoded in the xylomyrocin biosynthetic gene cluster, revealing a novel link between carbohydrate catabolism and nonribosomal peptide biosynthesis. Xylomyrocins from different fungal isolates differ in the number and nature of their amino acid building blocks that are nevertheless incorporated by orthologous nonribosomal peptide synthetase (NRPS) enzymes. Another source of structural diversity is the variable choice of the nucleophile for intramolecular macrocyclic ester formation during xylomyrocin chain termination. This nucleophile is selected from the multiple available alcohol functionalities of the polyol moiety, revealing a surprising polyspecificity for the NRPS terminal condensation domain. Some xylomyrocin congeners also feature N-methylated amino acid residues in positions where the corresponding NRPS modules lack N-methyltransferase (M) domains, providing a rare example of promiscuous methylation in the context of an NRPS with an otherwise canonical, collinear biosynthetic program.
Collapse
Affiliation(s)
- Chen Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Dongliang Xiao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Baoqing Dun
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Miaomiao Yin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Adigo Setargie Tsega
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Linan Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Wenhua Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Qun Yue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Han Gao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Liwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, Tucson, AZ 85706
- VTT Technical Research Centre of Finland, FI-02044 VTT, Espoo, Finland
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
13
|
Xiao D, Zhang M, Wu P, Li T, Li W, Zhang L, Yue Q, Chen X, Wei X, Xu Y, Wang C. Halovirs I–K, antibacterial and cytotoxic lipopeptaibols from the plant pathogenic fungus Paramyrothecium roridum NRRL 2183. J Antibiot (Tokyo) 2022; 75:247-257. [DOI: 10.1038/s41429-022-00517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/09/2022]
|
14
|
Bauman KD, Butler KS, Moore BS, Chekan JR. Genome mining methods to discover bioactive natural products. Nat Prod Rep 2021; 38:2100-2129. [PMID: 34734626 PMCID: PMC8597713 DOI: 10.1039/d1np00032b] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Indexed: 12/22/2022]
Abstract
Covering: 2016 to 2021With genetic information available for hundreds of thousands of organisms in publicly accessible databases, scientists have an unprecedented opportunity to meticulously survey the diversity and inner workings of life. The natural product research community has harnessed this breadth of sequence information to mine microbes, plants, and animals for biosynthetic enzymes capable of producing bioactive compounds. Several orthogonal genome mining strategies have been developed in recent years to target specific chemical features or biological properties of bioactive molecules using biosynthetic, resistance, or transporter proteins. These "biosynthetic hooks" allow researchers to query for biosynthetic gene clusters with a high probability of encoding previously undiscovered, bioactive compounds. This review highlights recent case studies that feature orthogonal approaches that exploit genomic information to specifically discover bioactive natural products and their gene clusters.
Collapse
Affiliation(s)
- Katherine D Bauman
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Keelie S Butler
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, 27402, USA.
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina Greensboro, Greensboro, NC, 27402, USA.
| |
Collapse
|
15
|
Martin-Pascual M, Batianis C, Bruinsma L, Asin-Garcia E, Garcia-Morales L, Weusthuis RA, van Kranenburg R, Martins Dos Santos VAP. A navigation guide of synthetic biology tools for Pseudomonas putida. Biotechnol Adv 2021; 49:107732. [PMID: 33785373 DOI: 10.1016/j.biotechadv.2021.107732] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
Pseudomonas putida is a microbial chassis of huge potential for industrial and environmental biotechnology, owing to its remarkable metabolic versatility and ability to sustain difficult redox reactions and operational stresses, among other attractive characteristics. A wealth of genetic and in silico tools have been developed to enable the unravelling of its physiology and improvement of its performance. However, the rise of this microbe as a promising platform for biotechnological applications has resulted in diversification of tools and methods rather than standardization and convergence. As a consequence, multiple tools for the same purpose have been generated, whilst most of them have not been embraced by the scientific community, which has led to compartmentalization and inefficient use of resources. Inspired by this and by the substantial increase in popularity of P. putida, we aim herein to bring together and assess all currently available (wet and dry) synthetic biology tools specific for this microbe, focusing on the last 5 years. We provide information on the principles, functionality, advantages and limitations, with special focus on their use in metabolic engineering. Additionally, we compare the tool portfolio for P. putida with those for other bacterial chassis and discuss potential future directions for tool development. Therefore, this review is intended as a reference guide for experts and new 'users' of this promising chassis.
Collapse
Affiliation(s)
- Maria Martin-Pascual
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Christos Batianis
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Lyon Bruinsma
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Luis Garcia-Morales
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Richard van Kranenburg
- Corbion, Gorinchem 4206 AC, The Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands; LifeGlimmer GmbH, Berlin 12163, Germany.
| |
Collapse
|
16
|
Combinatorial biosynthesis for the generation of new-to-nature peptide antimicrobials. Biochem Soc Trans 2021; 49:203-215. [PMID: 33439248 DOI: 10.1042/bst20200425] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Natural peptide products are a valuable source of important therapeutic agents, including antibiotics, antivirals and crop protection agents. Aided by an increased understanding of structure-activity relationships of these complex molecules and the biosynthetic machineries that produce them, it has become possible to re-engineer complete machineries and biosynthetic pathways to create novel products with improved pharmacological properties or modified structures to combat antimicrobial resistance. In this review, we will address the progress that has been made using non-ribosomally produced peptides and ribosomally synthesized and post-translationally modified peptides as scaffolds for designed biosynthetic pathways or combinatorial synthesis for the creation of novel peptide antimicrobials.
Collapse
|
17
|
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021; 38:362-413. [PMID: 33570537 DOI: 10.1039/d0np00089b] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
18
|
Alvarez R, de Lera AR. Natural polyenic macrolactams and polycyclic derivatives generated by transannular pericyclic reactions: optimized biogenesis challenging chemical synthesis. Nat Prod Rep 2020; 38:1136-1220. [PMID: 33283831 DOI: 10.1039/d0np00050g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering from 1992 to the end of 2020-11-20.Genetically-encoded polyenic macrolactams, which are constructed by Nature using hybrid polyketide synthase/nonribosomal peptide synthase (PKSs/NRPSs) assembly lines, are part of the large collection of natural products isolated from bacteria. Activation of cryptic (i.e., silent) gene clusters in these microorganisms has more recently allowed to generate and eventually isolate additional members of the family. Having two unsaturated fragments separated by short saturated chains, the primary macrolactam is posited to undergo transannular reactions and further rearrangements thus leading to the generation of a structurally diverse collection of polycyclic (natural) products and oxidized derivatives. The review will cover the challenges that scientists face on the isolation of these unstable compounds from the cultures of the producing microorganisms, their structural characterization, biological activities, optimized biogenetic routes, as well as the skeletal rearrangements of the primary structures of the natural macrolactams derived from pericyclic reactions of the polyenic fragments. The efforts of the synthetic chemists to emulate Nature on the successful generation and structural confirmation of these natural products will also be reported.
Collapse
Affiliation(s)
- Rosana Alvarez
- Department of Organic Chemistry and Center for Biomedical Research (CINBIO), IBIV, Universidade de Vigo, 36310 Vigo, Spain.
| | | |
Collapse
|
19
|
Hai Y, Jenner M, Tang Y. Fungal siderophore biosynthesis catalysed by an iterative nonribosomal peptide synthetase. Chem Sci 2020; 11:11525-11530. [PMID: 34094397 PMCID: PMC8162485 DOI: 10.1039/d0sc03627g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Siderophores play a vital role in the viability of fungi and are essential for the virulence of many pathogenic fungal species. Despite their importance in fungal physiology and pathogenesis, the programming rule of siderophore assembly by fungal nonribosomal peptide synthetases (NRPSs) remains unresolved. Here, we report the characterization of the bimodular fungal NRPS, SidD, responsible for construction of the extracellular siderophore fusarinine C. The use of intact protein mass spectrometry, together with in vitro biochemical assays of native and dissected enzymes, provided snapshots of individual biosynthetic steps during NPRS catalysis. The adenylation and condensation domain of SidD can iteratively load and condense the amino acid building block cis-AMHO, respectively, to synthesize fusarinine C. Our study showcases the iterative programming features of fungal siderophore-producing NRPSs.
Collapse
Affiliation(s)
- Yang Hai
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles California 90095 USA
| | - Matthew Jenner
- Department of Chemistry, Warwick Integrative Synthetic Biology Center, University of Warwick Coventry UK
- Warwick Integrative Synthetic Biology (WISB) Centre, University of Warwick Coventry UK
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles California 90095 USA
- Department of Chemistry and Biochemistry, University of California Los Angeles California 90095 USA
| |
Collapse
|
20
|
Girard L, Höfte M, De Mot R. Lipopeptide families at the interface between pathogenic and beneficial Pseudomonas-plant interactions. Crit Rev Microbiol 2020; 46:397-419. [PMID: 32885723 DOI: 10.1080/1040841x.2020.1794790] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipopeptides (LPs) are a prominent class of molecules among the steadily growing spectrum of specialized metabolites retrieved from Pseudomonas, in particular soil-dwelling and plant-associated isolates. Among the multiple LP families, pioneering research focussed on phytotoxic and antimicrobial cyclic lipopeptides (CLPs) of the ubiquitous plant pathogen Pseudomonas syringae (syringomycin and syringopeptin). Their non-ribosomal peptide synthetases (NRPSs) are embedded in biosynthetic gene clusters (BGCs) that are tightly co-clustered on a pathogenicity island. Other members of the P. syringae group (Pseudomonas cichorii) and some species of the Pseudomonas asplenii group and Pseudomonas fluorescens complex have adopted these biosynthetic strategies to co-produce their own mycin and peptin variants, in some strains supplemented with an analogue of the P. syringae linear LP (LLP), syringafactin. This capacity is not confined to phytopathogens but also occurs in some biocontrol strains, which indicates that these LP families not solely function as general virulence factors. We address this issue by scrutinizing the structural diversity and bioactivities of LPs from the mycin, peptin, and factin families in a phylogenetic and evolutionary perspective. BGC functional organization (including associated regulatory and transport genes) and NRPS modular architectures in known and candidate LP producers were assessed by genome mining.
Collapse
Affiliation(s)
- Léa Girard
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Heverlee-Leuven, Belgium
| | - Monica Höfte
- Department of Plants and Crops, Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Heverlee-Leuven, Belgium
| |
Collapse
|
21
|
Lundy TA, Mori S, Garneau-Tsodikova S. A thorough analysis and categorization of bacterial interrupted adenylation domains, including previously unidentified families. RSC Chem Biol 2020; 1:233-250. [PMID: 34458763 PMCID: PMC8341866 DOI: 10.1039/d0cb00092b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/04/2020] [Indexed: 11/25/2022] Open
Abstract
Interrupted adenylation (A) domains are key to the immense structural diversity seen in the nonribosomal peptide (NRP) class of natural products (NPs). Interrupted A domains are A domains that contain within them the catalytic portion of another domain, most commonly a methylation (M) domain. It has been well documented that methylation events occur with extreme specificity on either the backbone (N-) or side chain (O- or S-) of the amino acid (or amino acid-like) building blocks of NRPs. Here, through taxonomic and phylogenetic analyses as well as multiple sequence alignments, we evaluated the similarities and differences between interrupted A domains. We probed their taxonomic distribution amongst bacterial organisms, their evolutionary relatedness, and described conserved motifs of each type of M domain found to be embedded in interrupted A domains. Additionally, we categorized interrupted A domains and the M domains within them into a total of seven distinct families and six different types, respectively. The families of interrupted A domains include two new families, 6 and 7, that possess new architectures. Rather than being interrupted between the previously described a2–a3 or a8–a9 of the ten conserved A domain sequence motifs (a1–a10), family 6 contains an M domain between a6–a7, a previously unknown interruption site. Family 7 demonstrates that di-interrupted A domains exist in Nature, containing an M domain between a2–a3 as well as one between a6–a7, displaying a novel arrangement. These in-depth investigations of amino acid sequences deposited in the NCBI database highlighted the prevalence of interrupted A domains in bacterial organisms, with each family of interrupted A domains having a different taxonomic distribution. They also emphasized the importance of utilizing a broad range of bacteria for NP discovery. Categorization of the families of interrupted A domains and types of M domains allowed for a better understanding of the trends of naturally occurring interrupted A domains, which illuminated patterns and insights on how to harness them for future engineering studies. In-depth study of intriguing bacterial interrupted adenylation domains from seven distinct families and six different types.![]()
Collapse
Affiliation(s)
- Taylor A Lundy
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy Lexington KY 40536-0596 USA
| | - Shogo Mori
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy Lexington KY 40536-0596 USA
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy Lexington KY 40536-0596 USA
| |
Collapse
|
22
|
Malico AA, Nichols L, Williams GJ. Synthetic biology enabling access to designer polyketides. Curr Opin Chem Biol 2020; 58:45-53. [PMID: 32758909 DOI: 10.1016/j.cbpa.2020.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/08/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022]
Abstract
The full potential of polyketide discovery has yet to be reached owing to a lack of suitable technologies and knowledge required to advance engineering of polyketide biosynthesis. Recent investigations on the discovery, enhancement, and non-natural use of these biosynthetic gene clusters via computational biology, metabolic engineering, structural biology, and enzymology-guided approaches have facilitated improved access to designer polyketides. Here, we discuss recent successes in gene cluster discovery, host strain engineering, precursor-directed biosynthesis, combinatorial biosynthesis, polyketide tailoring, and high-throughput synthetic biology, as well as challenges and outlooks for rapidly generating useful target polyketides.
Collapse
Affiliation(s)
- Alexandra A Malico
- Department of Chemistry, NC State University, Raleigh, NC, 27695, United States
| | - Lindsay Nichols
- Department of Chemistry, NC State University, Raleigh, NC, 27695, United States
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC, 27695, United States; Comparative Medicine Institute, NC State University, Raleigh, NC, 27695, United States.
| |
Collapse
|
23
|
Zhang JJ, Moore BS. Site-Directed Mutagenesis of Large Biosynthetic Gene Clusters via Oligonucleotide Recombineering and CRISPR/Cas9 Targeting. ACS Synth Biol 2020; 9:1917-1922. [PMID: 32584552 DOI: 10.1021/acssynbio.0c00265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Genetic engineering of natural product biosynthetic gene clusters represents an attractive approach to access new and complex bioactive small molecules. However, due to the large number and size of some genes involved in specialized metabolism, notably those encoding modular polyketide synthase and nonribosomal peptide synthetase megaproteins, it remains difficult to introduce precise genetic mutations to probe domain activity or alter chemical product formation. Here, we report the development and validation of a robust method combining oligonucleotide recombineering and CRISPR/Cas9 targeting for rapid site-directed mutagenesis of cloned pathways, which can be directly transferred to a heterologous host for expression. We rapidly generated 12 point mutations and identified several important determinants of successful mutagenesis, including the protospacer/PAM sequence and presence of regions of local homology. Our approach may be broadly applicable for researchers interested in probing natural product biosynthesis or performing pathway engineering.
Collapse
Affiliation(s)
- Jia Jia Zhang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92037, United States
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California 92037, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92037, United States
| |
Collapse
|
24
|
Loeschcke A, Thies S. Engineering of natural product biosynthesis in Pseudomonas putida. Curr Opin Biotechnol 2020; 65:213-224. [PMID: 32498036 DOI: 10.1016/j.copbio.2020.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Germany.
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Germany.
| |
Collapse
|
25
|
Sigrist R, Luhavaya H, McKinnie SMK, Ferreira da Silva A, Jurberg ID, Moore BS, Gonzaga de Oliveira L. Nonlinear Biosynthetic Assembly of Alpiniamide by a Hybrid cis/ trans-AT PKS-NRPS. ACS Chem Biol 2020; 15:1067-1077. [PMID: 32195572 DOI: 10.1021/acschembio.0c00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alpiniamide A is a linear polyketide produced by Streptomyces endophytic bacteria. Despite its relatively simple chemical structure suggestive of a linear assembly line biosynthetic construction involving a hybrid polyketide synthase-nonribosomal peptide synthetase enzymatic protein machine, we report an unexpected nonlinear synthesis of this bacterial natural product. Using a combination of genomics, heterologous expression, mutagenesis, isotope-labeling, and chain terminator experiments, we propose that alpiniamide A is assembled in two halves and then ligated into the mature molecule. We show that each polyketide half is constructed using orthogonal biosynthetic strategies, employing either cis- or trans-acyl transferase mechanisms, thus prompting an alternative proposal for the operation of this PKS-NRPS.
Collapse
Affiliation(s)
- Renata Sigrist
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | - Hanna Luhavaya
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Shaun M. K. McKinnie
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Amanda Ferreira da Silva
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | - Igor D. Jurberg
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Luciana Gonzaga de Oliveira
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| |
Collapse
|
26
|
Unraveling the iterative type I polyketide synthases hidden in Streptomyces. Proc Natl Acad Sci U S A 2020; 117:8449-8454. [PMID: 32217738 DOI: 10.1073/pnas.1917664117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Type I polyketide synthases (T1PKSs) are one of the most extensively studied PKSs, which can act either iteratively or via an assembly-line mechanism. Domains in the T1PKSs can readily be predicted by computational tools based on their highly conserved sequences. However, to distinguish between iterative and noniterative at the module level remains an overwhelming challenge, which may account for the seemingly biased distribution of T1PKSs in fungi and bacteria: small iterative monomodular T1PKSs that are responsible for the enormously diverse fungal natural products exist almost exclusively in fungi. Here we report the discovery of iterative T1PKSs that are unexpectedly both abundant and widespread in Streptomyces Seven of 11 systematically selected T1PKS monomodules from monomodular T1PKS biosynthetic gene clusters (BGCs) were experimentally confirmed to be iteratively acting, synthesizing diverse branched/nonbranched linear intermediates, and two of them produced bioactive allenic polyketides and citreodiols as end products, respectively. This study indicates the huge potential of iterative T1PKS BGCs from streptomycetes in the discovery of novel polyketides.
Collapse
|