1
|
Yamamoto Y, Shirai Y, Edahiro R, Kumanogoh A, Okada Y. Large-scale cross-trait genetic analysis highlights shared genetic backgrounds of autoimmune diseases. Immunol Med 2024:1-10. [PMID: 39171621 DOI: 10.1080/25785826.2024.2394258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024] Open
Abstract
Disorders associated with the immune system burden multiple organs, although the shared biology exists across the diseases. Preceding family-based studies reveal that immune diseases are heritable to varying degrees, providing the basis for immunogenomics. The recent cost reduction in genetic analysis intensively promotes biobank-scale studies and the development of frameworks for statistical genetics. The accumulating multi-layer omics data, including genome-wide association studies (GWAS) and RNA-sequencing at single-cell resolution, enable us to dissect the genetic backgrounds of immune-related disorders. Although autoimmune and allergic diseases are generally categorized into different disease categories, epidemiological studies reveal the high incidence of autoimmune and allergic disease complications, suggesting the shared genetics and biology between the disease categories. Biobank resources and consortia cover multiple immune-related disorders to accumulate phenome-wide associations of genetic variants and enhance researchers to analyze the shared and heterogeneous genetic backgrounds. The emerging post-GWAS and integrative multi-omics analyses provide genetic and biological insights into the multicategorical disease associations.
Collapse
Affiliation(s)
- Yuji Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuya Shirai
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- RIKEN Center for Integrative Medical Sciences, Laboratory for Systems Genetics, Yokohama, Japan
| | - Ryuya Edahiro
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- RIKEN Center for Integrative Medical Sciences, Laboratory for Systems Genetics, Yokohama, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- RIKEN Center for Integrative Medical Sciences, Laboratory for Systems Genetics, Yokohama, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Japan
| |
Collapse
|
2
|
Fan WW, Xu T, Gao J, Zhang HY, Li Y, Hu DD, Gao S, Zhang JH, Liu X, Liu D, Li PL, Wong CCL, Yao XB, Shi YY, Yang ZY, Wang XS, Ruan K. A bivalent inhibitor against TDRD3 to suppress phase separation of methylated G3BP1. Chem Commun (Camb) 2024; 60:762-765. [PMID: 38126399 DOI: 10.1039/d3cc04654k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The formation of membrane-less organelles is driven by multivalent weak interactions while mediation of such interactions by small molecules remains an unparalleled challenge. Here, we uncovered a bivalent inhibitor that blocked the recruitment of TDRD3 by the two methylated arginines of G3BP1. Relative to the monovalent inhibitor, this bivalent inhibitor demonstrated an enhanced binding affinity to TDRD3 and capability to suppress the phase separation of methylated G3BP1, TDRD3, and RNAs, and in turn inhibit the stress granule growth in cells. Our result paves a new path to mediate multivalent interactions involved in SG assembly for potential combinational chemotherapy by bivalent inhibitors.
Collapse
Affiliation(s)
- Wei-Wei Fan
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Tian Xu
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Jia Gao
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Han-Yu Zhang
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Yan Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Duo-Duo Hu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Shuaixin Gao
- Center for Precision Medicine Multi-omics Research, Peking University Health Science Center, Peking University First Hospital; School of Basic Medical Sciences, Peking University Health Science Center; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jia-Hai Zhang
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Xing Liu
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Dan Liu
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Pi-Long Li
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Catherine C L Wong
- Center for Precision Medicine Multi-omics Research, Peking University Health Science Center, Peking University First Hospital; School of Basic Medical Sciences, Peking University Health Science Center; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xue-Biao Yao
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Yun-Yu Shi
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Zhen-Ye Yang
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Xi-Sheng Wang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Ke Ruan
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
3
|
Min Y, Park HB, Baek KH, Hwang S. Cellular Functions of Deubiquitinating Enzymes in Ovarian Adenocarcinoma. Genes (Basel) 2023; 14:genes14040886. [PMID: 37107644 PMCID: PMC10137459 DOI: 10.3390/genes14040886] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
In ovarian cancer patients, the 5-year survival rate is 90% for stages I and II, but only 30% for stages III and IV. Unfortunately, as 75% of the patients are diagnosed at stages III and IV, many experience a recurrence. To ameliorate this, it is necessary to develop new biomarkers for early diagnosis and treatment. The ubiquitin-proteasome system is a post-translational modification that plays an important role in regulating protein stability through ubiquitination. In particular, deubiquitinating enzymes (DUBs) regulate protein stability through deubiquitinating substrate proteins. In this review, DUBs and substrates regulated by these enzymes are summarized based on their functions in ovarian cancer cells. This would be useful for the discovery of biomarkers for ovarian cancer and developing new therapeutic candidates.
Collapse
Affiliation(s)
- Yosuk Min
- Department of Biomedical Science, CHA University, Seongnam 13488, Gyeonggi-do, Republic of Korea
| | - Hong-Beom Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Gyeonggi-do, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Seongnam 13488, Gyeonggi-do, Republic of Korea
| | - Sohyun Hwang
- Department of Pathology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Gyeonggi-do, Republic of Korea
- CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam 13496, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Harrell TL, Davido DJ, Bertke AS. Herpes Simplex Virus 1 (HSV-1) Infected Cell Protein 0 (ICP0) Targets of Ubiquitination during Productive Infection of Primary Adult Sensory Neurons. Int J Mol Sci 2023; 24:2931. [PMID: 36769256 PMCID: PMC9917815 DOI: 10.3390/ijms24032931] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) enters sensory neurons with the potential for productive or latent infection. For either outcome, HSV-1 must curtail the intrinsic immune response, regulate viral gene expression, and remove host proteins that could restrict viral processes. Infected cell protein 0 (ICP0), a virus-encoded E3 ubiquitin ligase, supports these processes by mediating the transfer of ubiquitin to target proteins to change their location, alter their function, or induce their degradation. To identify ubiquitination targets of ICP0 during productive infection in sensory neurons, we immunoprecipitated ubiquitinated proteins from primary adult sensory neurons infected with HSV-1 KOS (wild-type), HSV-1 n212 (expressing truncated, defective ICP0), and uninfected controls using anti-ubiquitin antibody FK2 (recognizing K29, K48, K63 and monoubiquitinated proteins), followed by LC-MS/MS and comparative analyses. We identified 40 unique proteins ubiquitinated by ICP0 and 17 ubiquitinated by both ICP0 and host mechanisms, of which High Mobility Group Protein I/Y (HMG I/Y) and TAR DNA Binding Protein 43 (TDP43) were selected for further analysis. We show that ICP0 ubiquitinates HMG I/Y and TDP43, altering protein expression at specific time points during productive HSV-1 infection, demonstrating that ICP0 manipulates the sensory neuronal environment in a time-dependent manner to regulate infection outcome in neurons.
Collapse
Affiliation(s)
- Telvin L. Harrell
- Biomedical and Veterinary Science, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - David J. Davido
- Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Andrea S. Bertke
- Population Health Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
- Center for Emerging Zoonotic and Arthropod-Borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
5
|
Shirai Y, Nakanishi Y, Suzuki A, Konaka H, Nishikawa R, Sonehara K, Namba S, Tanaka H, Masuda T, Yaga M, Satoh S, Izumi M, Mizuno Y, Jo T, Maeda Y, Nii T, Oguro-Igashira E, Morisaki T, Kamatani Y, Nakayamada S, Nishigori C, Tanaka Y, Takeda Y, Yamamoto K, Kumanogoh A, Okada Y. Multi-trait and cross-population genome-wide association studies across autoimmune and allergic diseases identify shared and distinct genetic component. Ann Rheum Dis 2022; 81:1301-1312. [PMID: 35753705 PMCID: PMC9380494 DOI: 10.1136/annrheumdis-2022-222460] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Autoimmune and allergic diseases are outcomes of the dysregulation of the immune system. Our study aimed to elucidate differences or shared components in genetic backgrounds between autoimmune and allergic diseases. METHODS We estimated genetic correlation and performed multi-trait and cross-population genome-wide association study (GWAS) meta-analysis of six immune-related diseases: rheumatoid arthritis, Graves' disease, type 1 diabetes for autoimmune diseases and asthma, atopic dermatitis and pollinosis for allergic diseases. By integrating large-scale biobank resources (Biobank Japan and UK biobank), our study included 105 721 cases and 433 663 controls. Newly identified variants were evaluated in 21 778 cases and 712 767 controls for two additional autoimmune diseases: psoriasis and systemic lupus erythematosus. We performed enrichment analyses of cell types and biological pathways to highlight shared and distinct perspectives. RESULTS Autoimmune and allergic diseases were not only mutually classified based on genetic backgrounds but also they had multiple positive genetic correlations beyond the classifications. Multi-trait GWAS meta-analysis newly identified six allergic disease-associated loci. We identified four loci shared between the six autoimmune and allergic diseases (rs10803431 at PRDM2, OR=1.07, p=2.3×10-8, rs2053062 at G3BP1, OR=0.90, p=2.9×10-8, rs2210366 at HBS1L, OR=1.07, p=2.5×10-8 in Japanese and rs4529910 at POU2AF1, OR=0.96, p=1.9×10-10 across ancestries). Associations of rs10803431 and rs4529910 were confirmed at the two additional autoimmune diseases. Enrichment analysis demonstrated link to T cells, natural killer cells and various cytokine signals, including innate immune pathways. CONCLUSION Our multi-trait and cross-population study should elucidate complex pathogenesis shared components across autoimmune and allergic diseases.
Collapse
Affiliation(s)
- Yuya Shirai
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita,Japan, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Department of Advanced Clinical and Translational Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hachirou Konaka
- Department of Respiratory Medicine and Clinical Immunology, Public Interest Incorporated Foundation, Nippon Life Saiseikai, Nippon Life Hospital, Osaka, Japan
| | - Rika Nishikawa
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shinichi Namba
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroaki Tanaka
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- The First Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Fukuoka, Japan
| | - Tatsuo Masuda
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Japan
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Japan
| | - Moto Yaga
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shingo Satoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Mayuko Izumi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yumiko Mizuno
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tatsunori Jo
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuichi Maeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takuro Nii
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, Toyonaka, Japan
| | - Eri Oguro-Igashira
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takayuki Morisaki
- Division of Molecular Pathology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Internal Medicine, Institute of Medical Science, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Shingo Nakayamada
- The First Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Fukuoka, Japan
| | - Chikako Nishigori
- Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Fukuoka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita,Japan, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Alexander SP, Armstrong JF, Davenport AP, Davies JA, Faccenda E, Harding SD, Levi‐Schaffer F, Maguire JJ, Pawson AJ, Southan C, Spedding M. A rational roadmap for SARS-CoV-2/COVID-19 pharmacotherapeutic research and development: IUPHAR Review 29. Br J Pharmacol 2020; 177:4942-4966. [PMID: 32358833 PMCID: PMC7267163 DOI: 10.1111/bph.15094] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022] Open
Abstract
In this review, we identify opportunities for drug discovery in the treatment of COVID-19 and, in so doing, provide a rational roadmap whereby pharmacology and pharmacologists can mitigate against the global pandemic. We assess the scope for targeting key host and viral targets in the mid-term, by first screening these targets against drugs already licensed, an agenda for drug repurposing, which should allow rapid translation to clinical trials. A simultaneous, multi-pronged approach using conventional drug discovery methods aimed at discovering novel chemical and biological means of targeting a short list of host and viral entities which should extend the arsenal of anti-SARS-CoV-2 agents. This longer term strategy would provide a deeper pool of drug choices for future-proofing against acquired drug resistance. Second, there will be further viral threats, which will inevitably evade existing vaccines. This will require a coherent therapeutic strategy which pharmacology and pharmacologists are best placed to provide. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Steve P.H. Alexander
- Chair, Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC‐IUPHAR), School of Life SciencesUniversity of NottinghamNottinghamUK
| | - Jane F. Armstrong
- Curator, Guide to PHARMACOLOGY (GtoPdb), Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | | | - Jamie A. Davies
- Principal Investigator, Guide to PHARMACOLOGY (GtoPdb), Executive Committee, NC‐IUPHAR, Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Elena Faccenda
- Curator, Guide to PHARMACOLOGY (GtoPdb), Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Simon D. Harding
- Database Developer, Guide to PHARMACOLOGY (GtoPdb), Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Francesca Levi‐Schaffer
- First Vice‐President and Chair of Immunopharmacology Section, International Union of Basic and Clinical Pharmacology (IUPHAR)Hebrew University of JerusalemJerusalemIsrael
| | | | - Adam J. Pawson
- Senior Curator, Guide to PHARMACOLOGY (GtoPdb), Executive Committee, NC‐IUPHAR, Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Christopher Southan
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
- TW2Informatics LtdGothenburgSweden
| | - Michael Spedding
- Secretary‐General, International Union of Basic and Clinical Pharmacology (IUPHAR) and Spedding Research Solutions SASLe VesinetFrance
| |
Collapse
|
7
|
Song JH, Ahn JH, Kim SR, Cho S, Hong EH, Kwon BE, Kim DE, Choi M, Choi HJ, Cha Y, Chang SY, Ko HJ. Manassantin B shows antiviral activity against coxsackievirus B3 infection by activation of the STING/TBK-1/IRF3 signalling pathway. Sci Rep 2019; 9:9413. [PMID: 31253850 PMCID: PMC6599049 DOI: 10.1038/s41598-019-45868-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/04/2019] [Indexed: 11/27/2022] Open
Abstract
Coxsackievirus B3 (CVB3) is an important human pathogen associated with the development of acute pancreatitis, myocarditis, and type 1 diabetes. Currently, no vaccines or antiviral therapeutics are approved for the prevention and treatment of CVB3 infection. We found that Saururus chinensis Baill extract showed critical antiviral activity against CVB3 infection in vitro. Further, manassantin B inhibited replication of CVB3 and suppressed CVB3 VP1 protein expression in vitro. Additionally, oral administration of manassantin B in mice attenuated CVB3 infection-associated symptoms by reducing systemic production of inflammatory cytokines and chemokines including TNF-α, IL-6, IFN-γ, CCL2, and CXCL-1. We found that the antiviral activity of manassantin B is associated with increased levels of mitochondrial ROS (mROS). Inhibition of mROS generation attenuated the antiviral activity of manassantin B in vitro. Interestingly, we found that manassantin B also induced cytosolic release of mitochondrial DNA based on cytochrome C oxidase DNA levels. We further confirmed that STING and IRF-3 expression and STING and TBK-1 phosphorylation were increased by manassantin B treatment in CVB3-infected cells. Collectively, these results suggest that manassantin B exerts antiviral activity against CVB3 through activation of the STING/TKB-1/IRF3 antiviral pathway and increased production of mROS.
Collapse
Affiliation(s)
- Jae-Hyoung Song
- College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Jae-Hee Ahn
- College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Seong-Ryeol Kim
- College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Sungchan Cho
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, Ochang, South Korea
| | - Eun-Hye Hong
- College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Bo-Eun Kwon
- College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Dong-Eun Kim
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, Ochang, South Korea
| | - Miri Choi
- Anticancer Agent Research Center, Korea Research Institute of Bioscience & Biotechnology, Ochang, South Korea
| | - Hwa-Jung Choi
- Department of Beauty Science, Kwangju Women's University, Gwangju, South Korea
| | - Younggil Cha
- College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Sun-Young Chang
- Research Institute of Pharmaceutical Science and Technology (RIPST), College of Pharmacy, Ajou University, Suwon, South Korea.
| | - Hyun-Jeong Ko
- College of Pharmacy, Kangwon National University, Chuncheon, South Korea.
| |
Collapse
|