1
|
Bakhtiyaridovvombaygi M, Yazdanparast S, Mikanik F, Izadpanah A, Parkhideh S, Shahbaz Ghasabeh A, Roshandel E, Hajifathali A, Gharehbaghian A. Cytokine-Induced Memory-Like NK Cells: Emerging strategy for AML immunotherapy. Biomed Pharmacother 2023; 168:115718. [PMID: 37857247 DOI: 10.1016/j.biopha.2023.115718] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease developed from the malignant expansion of myeloid precursor cells in the bone marrow and peripheral blood. The implementation of intensive chemotherapy and hematopoietic stem cell transplantation (HSCT) has improved outcomes associated with AML, but relapse, along with suboptimal outcomes, is still a common scenario. In the past few years, exploring new therapeutic strategies to optimize treatment outcomes has occurred rapidly. In this regard, natural killer (NK) cell-based immunotherapy has attracted clinical interest due to its critical role in immunosurveillance and their capabilities to target AML blasts. NK cells are cytotoxic innate lymphoid cells that mediate anti-viral and anti-tumor responses by producing pro-inflammatory cytokines and directly inducing cytotoxicity. Although NK cells are well known as short-lived innate immune cells with non-specific responses that have limited their clinical applications, the discovery of cytokine-induced memory-like (CIML) NK cells could overcome these challenges. NK cells pre-activated with the cytokine combination IL-12/15/18 achieved a long-term life span with adaptive immunity characteristics, termed CIML-NK cells. Previous studies documented that using CIML-NK cells in cancer treatment is safe and results in promising outcomes. This review highlights the current application, challenges, and opportunities of CIML-NK cell-based therapy in AML.
Collapse
Affiliation(s)
- Mehdi Bakhtiyaridovvombaygi
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Yazdanparast
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mikanik
- Student Research Committee, Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Izadpanah
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Parkhideh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Shahbaz Ghasabeh
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ahmad Gharehbaghian
- Department of Hematology and Blood Bank, School of Allied Medical Science, Shahid Beheshti University of Medical Science, Tehran, Iran; Pediatric Congenital Hematologic Disorders Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Planas R, Felber M, Vavassori S, Pachlopnik Schmid J. The hyperinflammatory spectrum: from defects in cytotoxicity to cytokine control. Front Immunol 2023; 14:1163316. [PMID: 37187762 PMCID: PMC10175623 DOI: 10.3389/fimmu.2023.1163316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Cytotoxic lymphocytes kill target cells through polarized release of the content of cytotoxic granules towards the target cell. The importance of this cytotoxic pathway in immune regulation is evidenced by the severe and often fatal condition, known as hemophagocytic lymphohistiocytosis (HLH) that occurs in mice and humans with inborn errors of lymphocyte cytotoxic function. The clinical and preclinical data indicate that the damage seen in severe, virally triggered HLH is due to an overwhelming immune system reaction and not the direct effects of the virus per se. The main HLH-disease mechanism, which links impaired cytotoxicity to excessive release of pro-inflammatory cytokines is a prolongation of the synapse time between the cytotoxic effector cell and the target cell, which prompts the former to secrete larger amounts of cytokines (including interferon gamma) that activate macrophages. We and others have identified novel genetic HLH spectrum disorders. In the present update, we position these newly reported molecular causes, including CD48-haploinsufficiency and ZNFX1-deficiency, within the pathogenic pathways that lead to HLH. These genetic defects have consequences on the cellular level on a gradient model ranging from impaired lymphocyte cytotoxicity to intrinsic activation of macrophages and virally infected cells. Altogether, it is clear that target cells and macrophages may play an independent role and are not passive bystanders in the pathogenesis of HLH. Understanding these processes which lead to immune dysregulation may pave the way to novel ideas for medical intervention in HLH and virally triggered hypercytokinemia.
Collapse
Affiliation(s)
- Raquel Planas
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Matthias Felber
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Stefano Vavassori
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
- Pediatric Immunology, University of Zurich, Zurich, Switzerland
- *Correspondence: Jana Pachlopnik Schmid,
| |
Collapse
|
3
|
Vaněk O, Kalousková B, Abreu C, Nejadebrahim S, Skořepa O. Natural killer cell-based strategies for immunotherapy of cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 129:91-133. [PMID: 35305726 DOI: 10.1016/bs.apcsb.2022.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Natural killer (NK) cells are a family of lymphocytes with a natural ability to kill infected, harmed, or malignantly transformed cells. As these cells are part of the innate immunity, the cytotoxic mechanisms are activated upon recognizing specific patterns without prior antigen sensitization. This recognition is crucial for NK cell function in the maintenance of homeostasis and immunosurveillance. NK cells not only act directly toward malignant cells but also participate in the complex immune response by producing cytokines or cross-talk with other immune cells. Cancer may be seen as a break of all immune defenses when malignant cells escape the immunity and invade surrounding tissues creating a microenvironment supporting tumor progression. This process may be reverted by intervening immune response with immunotherapy, which may restore immune recognition. NK cells are important effector cells for immunotherapy. They may be used for adoptive cell transfer, genetically modified with chimeric antigen receptors, or triggered with appropriate antibodies and other antibody-fragment-based recombinant therapeutic proteins tailored specifically for NK cell engagement. NK cell receptors, responsible for target recognition and activation of cytotoxic response, could also be targeted in immunotherapy, for example, by various bi-, tri-, or multi-specific fusion proteins designed to bridge the gap between tumor markers present on target cells and activation receptors expressed on NK cells. However, this kind of immunoactive therapeutics may be developed only with a deep functional and structural knowledge of NK cell receptor: ligand interactions. This review describes the recent developments in the fascinating protein-engineering field of NK cell immunotherapeutics.
Collapse
Affiliation(s)
- Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Barbora Kalousková
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Celeste Abreu
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Shiva Nejadebrahim
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
4
|
Gao F, Zhou Z, Lin Y, Shu G, Yin G, Zhang T. Biology and Clinical Relevance of HCMV-Associated Adaptive NK Cells. Front Immunol 2022; 13:830396. [PMID: 35464486 PMCID: PMC9022632 DOI: 10.3389/fimmu.2022.830396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are an important component of the innate immune system due to their strong ability to kill virally infected or transformed cells without prior exposure to the antigen (Ag). However, the biology of human NK (hNK) cells has largely remained elusive. Recent advances have characterized several novel hNK subsets. Among them, adaptive NK cells demonstrate an intriguing specialized antibody (Ab)-dependent response and several adaptive immune features. Most adaptive NK cells express a higher level of NKG2C but lack an intracellular signaling adaptor, FcϵRIγ (hereafter abbreviated as FcRγ). The specific expression pattern of these genes, with other signature genes, is the result of a specific epigenetic modification. The expansion of adaptive NK cells in vivo has been documented in various viral infections, while the frequency of adaptive NK cells among peripheral blood mononuclear cells correlates with improved prognosis of monoclonal Ab treatment against leukemia. This review summarizes the discovery and signature phenotype of adaptive NK cells. We also discuss the reported association between adaptive NK cells and pathological conditions. Finally, we briefly highlight the application of adaptive NK cells in adoptive cell therapy against cancer.
Collapse
Affiliation(s)
- Fei Gao
- Immuno-Oncology Laboratory, Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Zhengwei Zhou
- Immuno-Oncology Laboratory, Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Ying Lin
- Immuno-Oncology Laboratory, Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Guang Shu
- Immuno-Oncology Laboratory, Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Gang Yin
- Immuno-Oncology Laboratory, Department of Pathology, School of Basic Medicine, Central South University, Changsha, China
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
5
|
Abstract
Purpose of review Immunological memory is an important evolutionary adaptation of the immune system. Previously restricted to the adaptive immune system, the concept of memory has recently been broadened to the innate immune system. This review summarizes recent studies that highlight the contribution of the hematopoietic stem cells (HSCs) in supporting immunological memory. Recent findings Short-lived innate immune cells can build a long-lasting memory of infection to improve their response to secondary challenges. Studies show that these unexpected properties of the innate immune system are sustained by epigenetic and metabolic changes in the HSC compartment. Summary HSCs are durably altered in response to pathogens and serve as long-term support for innate immune memory. Many questions remain regarding the mechanisms contributing to the induction and the maintenance of this immune memory in HSCs. Answering these questions will open new perspectives to understand how environmental factors shape the HSC activity over time.
Collapse
|
6
|
Michel T, Ollert M, Zimmer J. A Hot Topic: Cancer Immunotherapy and Natural Killer Cells. Int J Mol Sci 2022; 23:ijms23020797. [PMID: 35054985 PMCID: PMC8776043 DOI: 10.3390/ijms23020797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/24/2022] Open
Abstract
Despite significant progress in recent years, the therapeutic approach of the multiple different forms of human cancer often remains a challenge. Besides the well-established cancer surgery, radiotherapy and chemotherapy, immunotherapeutic strategies gain more and more attention, and some of them have already been successfully introduced into the clinic. Among these, immunotherapy based on natural killer (NK) cells is considered as one of the most promising options. In the present review, we will expose the different possibilities NK cells offer in this context, compare data about the theoretical background and mechanism(s) of action, report some results of clinical trials and identify several very recent trends. The pharmaceutical industry is quite interested in NK cell immunotherapy, which will benefit the speed of progress in the field.
Collapse
Affiliation(s)
- Tatiana Michel
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (T.M.); (M.O.)
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (T.M.); (M.O.)
- Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health, 29 Rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; (T.M.); (M.O.)
- Correspondence:
| |
Collapse
|
7
|
Yamazaki T, Wennerberg E, Hensler M, Buqué A, Kraynak J, Fucikova J, Zhou XK, Sveinbjørnsson B, Rekdal Ø, Demaria S, Galluzzi L. LTX-315-enabled, radiotherapy-boosted immunotherapeutic control of breast cancer by NK cells. Oncoimmunology 2021; 10:1962592. [PMID: 34408925 PMCID: PMC8366543 DOI: 10.1080/2162402x.2021.1962592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
LTX-315 is a nonameric oncolytic peptide in early clinical development for the treatment of solid malignancies. Preclinical and clinical evidence indicates that the anticancer properties of LTX-315 originate not only from its ability to selectively kill cancer cells, but also from its capacity to promote tumor-targeting immune responses. Here, we investigated the therapeutic activity and immunological correlates of intratumoral LTX-315 administration in three syngeneic mouse models of breast carcinoma, with a focus on the identification of possible combinatorial partners. We found that breast cancer control by LTX-315 is accompanied by a reconfiguration of the immunological tumor microenvironment that supports the activation of anticancer immunity and can be boosted by radiation therapy. Mechanistically, depletion of natural killer (NK) cells compromised the capacity of LTX-315 to limit local and systemic disease progression in a mouse model of triple-negative breast cancer, and to extend the survival of mice bearing hormone-accelerated, carcinogen-driven endogenous mammary carcinomas. Altogether, our data suggest that LTX-315 controls breast cancer progression by engaging NK cell-dependent immunity.
Collapse
Affiliation(s)
- Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Erik Wennerberg
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Jeffrey Kraynak
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,2nd Faculty of Medicine and University Hospital Motol, Department of Immunology, Charles University, Prague, Czech Republic
| | - Xi Kathy Zhou
- Department of Population Health Sciences, Weill Cornell Medical College, New York, NY, USA
| | - Baldur Sveinbjørnsson
- Lytix Biopharma, Oslo, Norway.,Department of Medical Biology, University of Tromsø, Tromsø, Norway.,Childhood Cancer Research Unit, Department of Women and Children Health, Karolinska Institute, Stockholm, Sweden
| | - Øystein Rekdal
- Lytix Biopharma, Oslo, Norway.,Department of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| |
Collapse
|