1
|
Xia J, Lan L, You C, Tang L, Chen T, Yang Y, Lin L, Sun J. Interleukin-1β modulates lymphoid differentiation of Flt3-positive multipotent progenitors after transplantation. Cell Rep 2024; 43:114890. [PMID: 39425929 DOI: 10.1016/j.celrep.2024.114890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/05/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
Myeloablative pre-conditioning facilitates the differentiation of transplanted hematopoietic stem and progenitor cells (HSPCs). However, the factors in the stress environment that regulate HSPC behavior remain elusive. Here, we investigated the mechanisms that shaped the cell fates of transplanted murine multipotent progenitors (MPPs) expressing the Fms-related receptor tyrosine kinase 3 gene (Flt3). Using lineage tracing, clonal analysis, and single-cell RNA sequencing (RNA-seq), we showed that the myeloablative environment increased lymphoid priming of Flt3+ MPPs and that their efficient B cell output required intact interleukin 1 (IL-1) signaling. The Flt3+ MPPs with short-term exposure to IL-1β underwent a myeloid-biased to lymphoid-biased cell fate switch and produced more lymphoid-biased progeny with a stronger B lymphopoiesis capacity in vitro. Correspondingly, a brief exposure to IL-1β facilitated the B cell output of transplanted Flt3+ MPPs in vivo. Together, our study demonstrated an unrecognized function of IL-1β in promoting B lymphopoiesis and highlighted a latent effect of IL-1β in regulating MPP cell fate dynamics.
Collapse
Affiliation(s)
- Jing Xia
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lisi Lan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chenyu You
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Li Tang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tao Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunqiao Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Li Lin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Jianlong Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
2
|
Liu S, Gao Y, Feng X, Xu Y, Hu M, Fei H, Zheng H, Huang J, Li T, Zhao C, Sun L. A novel study on CXXC5: unraveling its regulatory mechanisms in hematopoietic stem cell biology through proteomics and gene editing. Genes Genomics 2024; 46:1133-1147. [PMID: 39150611 DOI: 10.1007/s13258-024-01540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/05/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND This study investigates the role of CXXC5 in the self-renewal and differentiation of hematopoietic stem cells (HSCs) within the bone marrow microenvironment, utilizing advanced methodologies such as single-cell RNA sequencing (scRNA-seq), CRISPR-Cas9, and proteomic analysis. METHODS We employed flow cytometry to isolate HSCs from bone marrow samples, followed by scRNA-seq analysis using the 10x Genomics platform to examine cell clustering and CXXC5 expression patterns. CRISPR-Cas9 and lentiviral vectors facilitated the knockout and overexpression of CXXC5 in HSCs. The impact on HSCs was assessed through qRT-PCR, Western blot, CCK-8, CFU, and LTC-IC assays, alongside flow cytometry to measure apoptosis and cell proportions. A mouse model was also used to evaluate the effects of CXXC5 manipulation on HSC engraftment and survival rates. RESULTS Our findings highlight the diversity of cell clustering and the significant role of CXXC5 in HSC regulation. Knockout experiments showed reduced proliferation and accelerated differentiation, whereas overexpression led to enhanced proliferation and delayed differentiation. Proteomic analysis identified key biological processes influenced by CXXC5, including cell proliferation, differentiation, and apoptosis. In vivo results demonstrated that CXXC5 silencing impaired HSC engraftment in a bone marrow transplantation model. CONCLUSION CXXC5 is crucial for the regulation of HSC self-renewal and differentiation in the bone marrow microenvironment. Its manipulation presents a novel approach for enhancing HSC function and provides a potential therapeutic target for hematological diseases.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Yan Gao
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Xianqi Feng
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Yujie Xu
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Minghui Hu
- Clinical Lab, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hairong Fei
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Hongying Zheng
- Clinical Lab, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junxia Huang
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Tianlan Li
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Chunting Zhao
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China.
| | - Lingjie Sun
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China.
| |
Collapse
|
3
|
Nakamura M, Chonabayashi K, Narita M, Matsumura Y, Nishikawa M, Ochi Y, Nannya Y, Hishizawa M, Inoue D, Delwel R, Ogawa S, Takaori-Kondo A, Yoshida Y. Modelling and drug targeting of a myeloid neoplasm with atypical 3q26/MECOM rearrangement using patient-specific iPSCs. Br J Haematol 2024; 205:1430-1443. [PMID: 39187468 DOI: 10.1111/bjh.19720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024]
Abstract
Structural variations involving enhancer hijacking induce aberrant oncogene expression and cause tumorigenesis. A rare translocation, t(3;8)(q26.2;q24), is associated with MECOM and MYC rearrangement, causing myeloid neoplasms with a dismal prognosis. The most recent World Health Organization classification recognises myeloid neoplasms with MECOM rearrangement as acute myeloid leukaemia (AML) with defining genetic abnormalities. Recently, the increasing use of induced pluripotent stem cell (iPSC) technology has helped elucidate the pathogenic processes of haematological malignancies. However, its utility for investigating enhancer hijacking in myeloid neoplasms remains unclear. In this study, we generated iPSC lines from patients with myelodysplastic syndromes (MDS) harbouring t(3;8)(q26.2;q24) and differentiated them into haematopoietic progenitor cells to model the pathophysiology of MDS with t(3;8)(q26.2;q24). Our iPSC model reproduced the primary patient's MECOM expression changes and histone H3 lysine 27 acetylation (H3K27ac) patterns in the MECOM promoter and MYC blood enhancer cluster (BENC). Furthermore, we revealed the apoptotic effects of the bromodomain and extra-terminal motif (BET) inhibitor on iPSC-derived MDS cells by suppressing activated MECOM. Our study demonstrates the usefulness of iPSC models for uncovering the precise mechanism of enhancer hijacking due to chromosomal structural changes and discovering potential therapeutic drug candidates for cancer treatment.
Collapse
MESH Headings
- Humans
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/drug effects
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/pathology
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/metabolism
- Chromosomes, Human, Pair 3/genetics
- Translocation, Genetic
- Chromosomes, Human, Pair 8/genetics
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Gene Rearrangement
- Male
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Azepines/pharmacology
- Female
Collapse
Affiliation(s)
- Momoko Nakamura
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuhisa Chonabayashi
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Megumi Narita
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yasuko Matsumura
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Misato Nishikawa
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Hematopoietic Disease Control, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masakatsu Hishizawa
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Hematology, Kyoto-Katsura Hospital, Kyoto, Japan
| | - Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Hyogo, Japan
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshinori Yoshida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Martin-Rufino JD, Caulier A, Lee S, Castano N, King E, Joubran S, Jones M, Goldman SR, Arora UP, Wahlster L, Lander ES, Sankaran VG. Transcription factor networks disproportionately enrich for heritability of blood cell phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611392. [PMID: 39314298 PMCID: PMC11419094 DOI: 10.1101/2024.09.09.611392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Most phenotype-associated genetic variants map to non-coding regulatory regions of the human genome. Moreover, variants associated with blood cell phenotypes are enriched in regulatory regions active during hematopoiesis. To systematically explore the nature of these regions, we developed a highly efficient strategy, Perturb-multiome, that makes it possible to simultaneously profile both chromatin accessibility and gene expression in single cells with CRISPR-mediated perturbation of a range of master transcription factors (TFs). This approach allowed us to examine the connection between TFs, accessible regions, and gene expression across the genome throughout hematopoietic differentiation. We discovered that variants within the TF-sensitive accessible chromatin regions, while representing less than 0.3% of the genome, show a ~100-fold enrichment in heritability across certain blood cell phenotypes; this enrichment is strikingly higher than for other accessible chromatin regions. Our approach facilitates large-scale mechanistic understanding of phenotype-associated genetic variants by connecting key cis-regulatory elements and their target genes within gene regulatory networks.
Collapse
Affiliation(s)
- Jorge Diego Martin-Rufino
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
- Equally contributed to work
| | - Alexis Caulier
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
- Equally contributed to work
| | - Seayoung Lee
- Broad Institute of MIT and Harvard, Boston, MA, USA
- Equally contributed to work
| | - Nicole Castano
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
- Equally contributed to work
| | - Emily King
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Samantha Joubran
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Marcus Jones
- Nascent Transcriptomics Core, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Seth R. Goldman
- Nascent Transcriptomics Core, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Uma P. Arora
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Eric S. Lander
- Broad Institute of MIT and Harvard, Boston, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
5
|
Shi J, Zhang Y, Xu L, Wang F. Single-cell transcriptomics reveals tumor microenvironment remodeling in hepatocellular carcinoma with varying tumor subclonal complexity. Front Genet 2024; 15:1467682. [PMID: 39268081 PMCID: PMC11390501 DOI: 10.3389/fgene.2024.1467682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction The complexity of tumor cell subclonal structure has been extensively investigated in hepatocellular carcinoma. However, the role of subclonal complexity in reshaping the tumor microenvironment (TME) remains poorly understood. Methods We integrated single-cell transcriptome sequencing data from four independent HCC cohorts, involving 30 samples, to decode the associations between tumor subclonal complexity and the TME. We proposed a robust metric to accurately quantify the degree of subclonal complexity for each sample based on discrete copy number variations (CNVs) profiles. Results We found that tumor cells in the high-complexity group originated from the cell lineage with FGB overexpression and exhibited high levels of transcription factors associated with poor survival. In contrast, tumor cells in low-complexity patients showed activation of more hallmark signaling pathways, more active cell-cell communications within the TME and a higher immune activation status. Additionally, cytokines signaling activity analysis suggested a link between HMGB1 expressed by a specific endothelial subtype and T cell proliferation. Discussion Our study sheds light on the intricate relationship between the complexity of subclonal structure and the TME, offering novel insights into potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Jian Shi
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yanru Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fang Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Aksöz M, Gafencu GA, Stoilova B, Buono M, Zhang Y, Turkalj S, Meng Y, Jakobsen NA, Metzner M, Clark SA, Beveridge R, Thongjuea S, Vyas P, Nerlov C. Hematopoietic stem cell heterogeneity and age-associated platelet bias are evolutionarily conserved. Sci Immunol 2024; 9:eadk3469. [PMID: 39178276 DOI: 10.1126/sciimmunol.adk3469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 06/22/2024] [Accepted: 07/25/2024] [Indexed: 08/25/2024]
Abstract
Hematopoietic stem cells (HSCs) reconstitute multilineage human hematopoiesis after clinical bone marrow (BM) transplantation and are the cells of origin of some hematological malignancies. Although HSCs provide multilineage engraftment, individual murine HSCs are lineage biased and contribute unequally to blood cell lineages. Here, we performed high-throughput single-cell RNA sequencing in mice after xenograft with molecularly barcoded adult human BM HSCs. We demonstrated that human individual BM HSCs are also functionally and transcriptionally lineage biased. Specifically, we identified platelet-biased and multilineage human HSCs. Quantitative comparison of transcriptomes from single HSCs from young and aged BM showed that both the proportion of platelet-biased HSCs and their level of transcriptional platelet priming increase with age. Therefore, platelet-biased HSCs and their increased prevalence and transcriptional platelet priming during aging are conserved features of mammalian evolution.
Collapse
Affiliation(s)
- Merve Aksöz
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Grigore-Aristide Gafencu
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Bilyana Stoilova
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mario Buono
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ying Zhang
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sven Turkalj
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yiran Meng
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Niels Asger Jakobsen
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Marlen Metzner
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sally-Ann Clark
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ryan Beveridge
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Supat Thongjuea
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paresh Vyas
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Oxford NIHR BRC Haematology Theme, University of Oxford, Oxford, UK
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Venugopal P, Arts P, Fox LC, Simons A, Hiwase DK, Bardy PG, Swift A, Ross DM, van Vulpen LFD, Buijs A, Bolton KL, Getta B, Furlong E, Carter T, Krapels I, Hoeks M, Al Kindy A, Al Kindy F, de Munnik S, Evans P, Frank MSB, Bournazos AM, Cooper ST, Ha TT, Jackson MR, Arriola-Martinez L, Phillips K, Brennan Y, Bakshi M, Ambler K, Gao S, Kassahn KS, Kenyon R, Hung K, Babic M, McGovern A, Rawlings L, Vakulin C, Dejong L, Fathi R, McRae S, Myles N, Ladon D, Jongmans M, Kuiper RP, Poplawski NK, Barbaro P, Blombery P, Brown AL, Hahn CN, Scott HS. Unraveling facets of MECOM-associated syndrome: somatic genetic rescue, clonal hematopoiesis, and phenotype expansion. Blood Adv 2024; 8:3437-3443. [PMID: 38662475 PMCID: PMC11259931 DOI: 10.1182/bloodadvances.2023012331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/22/2024] [Indexed: 06/28/2024] Open
Affiliation(s)
- Parvathy Venugopal
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Peer Arts
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Lucy C. Fox
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Clinical Haematology at Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
| | - Annet Simons
- Department of Human Genetics, Nijmegen Center for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Devendra K. Hiwase
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Peter G. Bardy
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Clinical Haematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Annette Swift
- Department of Paediatric Haematology, Queensland Children’s Hospital, South Brisbane, QLD, Australia
| | - David M. Ross
- Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Department of Clinical Haematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, SA, Australia
- Department of Haematology, Flinders Medical Centre, Adelaide, SA, Australia
| | - Lize F. D. van Vulpen
- Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Arjan Buijs
- Department of Genetics, University Medical Center, Utrecht, The Netherlands
| | - Kelly L. Bolton
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Bartlomiej Getta
- Department of Haematology, Liverpool Hospital, Liverpool, NSW, Australia
| | - Eliska Furlong
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, Australia
| | - Tina Carter
- Department of Clinical Haematology, Oncology, Blood and Marrow Transplantation, Perth Children's Hospital, Perth, WA, Australia
| | - Ingrid Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marlijn Hoeks
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Adila Al Kindy
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital and Department of Genetics, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Farah Al Kindy
- Genetic and Developmental Medicine Clinic, Sultan Qaboos University Hospital and Department of Genetics, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Sonja de Munnik
- Department of Human Genetics, Nijmegen Center for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Pamela Evans
- Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Mahalia S. B. Frank
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Adam M. Bournazos
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Westmead, NSW, Australia
- The Children's Medical Research Institute, Westmead, NSW, Australia
| | - Sandra T. Cooper
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Westmead, NSW, Australia
- The Children's Medical Research Institute, Westmead, NSW, Australia
- School of Medicine, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Thuong Thi Ha
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Matilda R. Jackson
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
- Australian Genomics, Parkville, VIC, Australia
| | - Luis Arriola-Martinez
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Kerry Phillips
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Yvonne Brennan
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Madhura Bakshi
- Department of Clinical Genetics, Liverpool Hospital, Liverpool, NSW, Australia
| | - Karen Ambler
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Song Gao
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Karin S. Kassahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Rosalie Kenyon
- ACRF Genomics Facility, Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Kevin Hung
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Milena Babic
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Alan McGovern
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Lesley Rawlings
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Cassandra Vakulin
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Lucas Dejong
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Rema Fathi
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Simon McRae
- Western Haematology and Oncology Clinics, West Perth, WA, Australia
| | - Nicholas Myles
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Clinical Haematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Dariusz Ladon
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Marjolijn Jongmans
- Department of Genetics, University Medical Center, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Roland P. Kuiper
- Department of Genetics, University Medical Center, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Nicola K. Poplawski
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Pasquale Barbaro
- Department of Paediatric Haematology, Queensland Children’s Hospital, South Brisbane, QLD, Australia
| | - Piers Blombery
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Clinical Haematology at Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
| | - Anna L. Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Hamish S. Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- ACRF Genomics Facility, Centre for Cancer Biology, an alliance between SA Pathology and University of South Australia, Adelaide, SA, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
8
|
Pastoors D, Havermans M, Mulet-Lazaro R, Brian D, Noort W, Grasel J, Hoogenboezem R, Smeenk L, Demmers JAA, Milsom MD, Enver T, Groen RWJ, Bindels E, Delwel R. Oncogene EVI1 drives acute myeloid leukemia via a targetable interaction with CTBP2. SCIENCE ADVANCES 2024; 10:eadk9076. [PMID: 38748792 PMCID: PMC11095456 DOI: 10.1126/sciadv.adk9076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Acute myeloid leukemia (AML) driven by the activation of EVI1 due to chromosome 3q26/MECOM rearrangements is incurable. Because transcription factors such as EVI1 are notoriously hard to target, insight into the mechanism by which EVI1 drives myeloid transformation could provide alternative avenues for therapy. Applying protein folding predictions combined with proteomics technologies, we demonstrate that interaction of EVI1 with CTBP1 and CTBP2 via a single PLDLS motif is indispensable for leukemic transformation. A 4× PLDLS repeat construct outcompetes binding of EVI1 to CTBP1 and CTBP2 and inhibits proliferation of 3q26/MECOM rearranged AML in vitro and in xenotransplant models. This proof-of-concept study opens the possibility to target one of the most incurable forms of AML with specific EVI1-CTBP inhibitors. This has important implications for other tumor types with aberrant expression of EVI1 and for cancers transformed by different CTBP-dependent oncogenic transcription factors.
Collapse
Affiliation(s)
- Dorien Pastoors
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Marije Havermans
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Roger Mulet-Lazaro
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Duncan Brian
- Stem Cell Group, UCL Cancer Institute, University College London, London, UK
| | - Willy Noort
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, Netherlands
| | - Julius Grasel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
- Division of Experimental Hematology, German Cancer Research Center, DKFZ69120 Heidelberg, Germany
| | - Remco Hoogenboezem
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Leonie Smeenk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | | | - Michael D. Milsom
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
- Division of Experimental Hematology, German Cancer Research Center, DKFZ69120 Heidelberg, Germany
| | - Tariq Enver
- Stem Cell Group, UCL Cancer Institute, University College London, London, UK
| | - Richard W. J. Groen
- Department of Hematology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, Netherlands
| | - Eric Bindels
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Ruud Delwel
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
| |
Collapse
|
9
|
Jakubek YA, Ma X, Stilp AM, Yu F, Bacon J, Wong JW, Aguet F, Ardlie K, Arnett D, Barnes K, Bis JC, Blackwell T, Becker LC, Boerwinkle E, Bowler RP, Budoff MJ, Carson AP, Chen J, Cho MH, Coresh J, Cox N, de Vries PS, DeMeo DL, Fardo DW, Fornage M, Guo X, Hall ME, Heard-Costa N, Hidalgo B, Irvin MR, Johnson AD, Kenny EE, Levy D, Li Y, Lima JA, Liu Y, Loos RJF, Machiela MJ, Mathias RA, Mitchell BD, Murabito J, Mychaleckyj JC, North K, Orchard P, Parker SC, Pershad Y, Peyser PA, Pratte KA, Psaty BM, Raffield LM, Redline S, Rich SS, Rotter JI, Shah SJ, Smith JA, Smith AP, Smith A, Taub M, Tiwari HK, Tracy R, Tuftin B, Bick AG, Sankaran VG, Reiner AP, Scheet P, Auer PL. Genomic and phenotypic correlates of mosaic loss of chromosome Y in blood. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.16.24305851. [PMID: 38699360 PMCID: PMC11065036 DOI: 10.1101/2024.04.16.24305851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer's disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole genome sequencing of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program. This approach enabled us to identify differences in mLOY frequencies across populations defined by genetic similarity, revealing a higher frequency of mLOY in the European American (EA) ancestry group compared to those of Hispanic American (HA), African American (AA), and East Asian (EAS) ancestry. Further, we identified two genes ( CFHR1 and LRP6 ) that harbor multiple rare, putatively deleterious variants associated with mLOY susceptibility, show that subsets of human hematopoietic stem cells are enriched for activity of mLOY susceptibility variants, and that certain alleles on chromosome Y are more likely to be lost than others.
Collapse
|
10
|
de Smith AJ, Wahlster L, Jeon S, Kachuri L, Black S, Langie J, Cato LD, Nakatsuka N, Chan TF, Xia G, Mazumder S, Yang W, Gazal S, Eng C, Hu D, Burchard EG, Ziv E, Metayer C, Mancuso N, Yang JJ, Ma X, Wiemels JL, Yu F, Chiang CWK, Sankaran VG. A noncoding regulatory variant in IKZF1 increases acute lymphoblastic leukemia risk in Hispanic/Latino children. CELL GENOMICS 2024; 4:100526. [PMID: 38537633 PMCID: PMC11019360 DOI: 10.1016/j.xgen.2024.100526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Hispanic/Latino children have the highest risk of acute lymphoblastic leukemia (ALL) in the US compared to other racial/ethnic groups, yet the basis of this remains incompletely understood. Through genetic fine-mapping analyses, we identified a new independent childhood ALL risk signal near IKZF1 in self-reported Hispanic/Latino individuals, but not in non-Hispanic White individuals, with an effect size of ∼1.44 (95% confidence interval = 1.33-1.55) and a risk allele frequency of ∼18% in Hispanic/Latino populations and <0.5% in European populations. This risk allele was positively associated with Indigenous American ancestry, showed evidence of selection in human history, and was associated with reduced IKZF1 expression. We identified a putative causal variant in a downstream enhancer that is most active in pro-B cells and interacts with the IKZF1 promoter. This variant disrupts IKZF1 autoregulation at this enhancer and results in reduced enhancer activity in B cell progenitors. Our study reveals a genetic basis for the increased ALL risk in Hispanic/Latino children.
Collapse
Affiliation(s)
- Adam J de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Soyoung Jeon
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Linda Kachuri
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Susan Black
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jalen Langie
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Liam D Cato
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Tsz-Fung Chan
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Guangze Xia
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Soumyaa Mazumder
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Steven Gazal
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Celeste Eng
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Biotherapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Donglei Hu
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Esteban González Burchard
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering and Biotherapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elad Ziv
- Department of Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas Mancuso
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiaomei Ma
- Yale School of Public Health, New Haven, CT 06520, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Fulong Yu
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Charleston W K Chiang
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
11
|
Weng C, Yu F, Yang D, Poeschla M, Liggett LA, Jones MG, Qiu X, Wahlster L, Caulier A, Hussmann JA, Schnell A, Yost KE, Koblan LW, Martin-Rufino JD, Min J, Hammond A, Ssozi D, Bueno R, Mallidi H, Kreso A, Escabi J, Rideout WM, Jacks T, Hormoz S, van Galen P, Weissman JS, Sankaran VG. Deciphering cell states and genealogies of human haematopoiesis. Nature 2024; 627:389-398. [PMID: 38253266 PMCID: PMC10937407 DOI: 10.1038/s41586-024-07066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived haematopoietic stem cells (HSCs)1. Perturbations to this process underlie diverse diseases, but the clonal contributions to human haematopoiesis and how this changes with age remain incompletely understood. Although recent insights have emerged from barcoding studies in model systems2-5, simultaneous detection of cell states and phylogenies from natural barcodes in humans remains challenging. Here we introduce an improved, single-cell lineage-tracing system based on deep detection of naturally occurring mitochondrial DNA mutations with simultaneous readout of transcriptional states and chromatin accessibility. We use this system to define the clonal architecture of HSCs and map the physiological state and output of clones. We uncover functional heterogeneity in HSC clones, which is stable over months and manifests as both differences in total HSC output and biases towards the production of different mature cell types. We also find that the diversity of HSC clones decreases markedly with age, leading to an oligoclonal structure with multiple distinct clonal expansions. Our study thus provides a clonally resolved and cell-state-aware atlas of human haematopoiesis at single-cell resolution, showing an unappreciated functional diversity of human HSC clones and, more broadly, paving the way for refined studies of clonal dynamics across a range of tissues in human health and disease.
Collapse
Affiliation(s)
- Chen Weng
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fulong Yu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, P.R. China
| | - Dian Yang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Molecular Pharmacology and Therapeutics, Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Michael Poeschla
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - L Alexander Liggett
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew G Jones
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Dermatology, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Xiaojie Qiu
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Genetics and Computer Science, BASE Research Initiative, Betty Irene Moore Children's Heart Center, Stanford University, Stanford, CA, USA
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexis Caulier
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jeffrey A Hussmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandra Schnell
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kathryn E Yost
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke W Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jorge D Martin-Rufino
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joseph Min
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alessandro Hammond
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel Ssozi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Raphael Bueno
- Division of Thoracic and Cardiac Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Hari Mallidi
- Division of Thoracic and Cardiac Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Antonia Kreso
- Division of Cardiac Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Javier Escabi
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - William M Rideout
- Koch Institute For Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Tyler Jacks
- Koch Institute For Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA
| | - Sahand Hormoz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Peter van Galen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Hematology, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute For Integrative Cancer Research at MIT, MIT, Cambridge, MA, USA.
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
12
|
Zhao J, Cato LD, Arora UP, Bao EL, Bryant SC, Williams N, Jia Y, Goldman SR, Nangalia J, Erb MA, Vos SM, Armstrong SA, Sankaran VG. Inherited blood cancer predisposition through altered transcription elongation. Cell 2024; 187:642-658.e19. [PMID: 38218188 PMCID: PMC10872907 DOI: 10.1016/j.cell.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/26/2023] [Accepted: 12/08/2023] [Indexed: 01/15/2024]
Abstract
Despite advances in defining diverse somatic mutations that cause myeloid malignancies, a significant heritable component for these cancers remains largely unexplained. Here, we perform rare variant association studies in a large population cohort to identify inherited predisposition genes for these blood cancers. CTR9, which encodes a key component of the PAF1 transcription elongation complex, is among the significant genes identified. The risk variants found in the cases cause loss of function and result in a ∼10-fold increased odds of acquiring a myeloid malignancy. Partial CTR9 loss of function expands human hematopoietic stem cells (HSCs) by increased super elongation complex-mediated transcriptional activity, which thereby increases the expression of key regulators of HSC self-renewal. By following up on insights from a human genetic study examining inherited predisposition to the myeloid malignancies, we define a previously unknown antagonistic interaction between the PAF1 and super elongation complexes. These insights could enable targeted approaches for blood cancer prevention.
Collapse
Affiliation(s)
- Jiawei Zhao
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, China.
| | - Liam D Cato
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Uma P Arora
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erik L Bao
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Nicholas Williams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK; UK and MRC-Wellcome Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Yuemeng Jia
- Harvard Stem Cell Institute, Cambridge, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Seth R Goldman
- Nascent Transcriptomics Core, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK; UK and MRC-Wellcome Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Michael A Erb
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Seychelle M Vos
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott A Armstrong
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
13
|
Martell DJ, Merens HE, Caulier A, Fiorini C, Ulirsch JC, Ietswaart R, Choquet K, Graziadei G, Brancaleoni V, Cappellini MD, Scott C, Roberts N, Proven M, Roy NBA, Babbs C, Higgs DR, Sankaran VG, Churchman LS. RNA polymerase II pausing temporally coordinates cell cycle progression and erythroid differentiation. Dev Cell 2023; 58:2112-2127.e4. [PMID: 37586368 PMCID: PMC10615711 DOI: 10.1016/j.devcel.2023.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Controlled release of promoter-proximal paused RNA polymerase II (RNA Pol II) is crucial for gene regulation. However, studying RNA Pol II pausing is challenging, as pause-release factors are almost all essential. In this study, we identified heterozygous loss-of-function mutations in SUPT5H, which encodes SPT5, in individuals with β-thalassemia. During erythropoiesis in healthy human cells, cell cycle genes were highly paused as cells transition from progenitors to precursors. When the pathogenic mutations were recapitulated by SUPT5H editing, RNA Pol II pause release was globally disrupted, and as cells began transitioning from progenitors to precursors, differentiation was delayed, accompanied by a transient lag in erythroid-specific gene expression and cell cycle kinetics. Despite this delay, cells terminally differentiate, and cell cycle phase distributions normalize. Therefore, hindering pause release perturbs proliferation and differentiation dynamics at a key transition during erythropoiesis, identifying a role for RNA Pol II pausing in temporally coordinating the cell cycle and erythroid differentiation.
Collapse
Affiliation(s)
- Danya J Martell
- Department of Genetics, Harvard University, Boston, MA, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hope E Merens
- Department of Genetics, Harvard University, Boston, MA, USA
| | - Alexis Caulier
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Claudia Fiorini
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jacob C Ulirsch
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Karine Choquet
- Department of Genetics, Harvard University, Boston, MA, USA
| | - Giovanna Graziadei
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Valentina Brancaleoni
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca'Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| | - Caroline Scott
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nigel Roberts
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Melanie Proven
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Noémi B A Roy
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre and BRC/NHS Translational Molecular Diagnostics Centre, John Radcliffe Hospital, Oxford, UK; Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Christian Babbs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Douglas R Higgs
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | | |
Collapse
|
14
|
Lux S, Milsom MD. EVI1-mediated Programming of Normal and Malignant Hematopoiesis. Hemasphere 2023; 7:e959. [PMID: 37810550 PMCID: PMC10553128 DOI: 10.1097/hs9.0000000000000959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Ecotropic viral integration site 1 (EVI1), encoded at the MECOM locus, is an oncogenic zinc finger transcription factor with diverse roles in normal and malignant cells, most extensively studied in the context of hematopoiesis. EVI1 interacts with other transcription factors in a context-dependent manner and regulates transcription and chromatin remodeling, thereby influencing the proliferation, differentiation, and survival of cells. Interestingly, it can act both as a transcriptional activator as well as a transcriptional repressor. EVI1 is expressed, and fulfills important functions, during the development of different tissues, including the nervous system and hematopoiesis, demonstrating a rigid spatial and temporal expression pattern. However, EVI1 is regularly overexpressed in a variety of cancer entities, including epithelial cancers such as ovarian and pancreatic cancer, as well as in hematologic malignancies like myeloid leukemias. Importantly, EVI1 overexpression is generally associated with a very poor clinical outcome and therapy-resistance. Thus, EVI1 is an interesting candidate to study to improve the prognosis and treatment of high-risk patients with "EVI1high" hematopoietic malignancies.
Collapse
Affiliation(s)
- Susanne Lux
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael D. Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
15
|
Joubran S, Sankaran VG. Getting an aMPLe grasp on hematopoiesis. Cell 2023; 186:4005-4006. [PMID: 37714132 DOI: 10.1016/j.cell.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023]
Abstract
Hematopoiesis requires balance between self-renewal of stem cells and differentiation into mature blood cells, orchestrated by pathways such as thrombopoietin signaling. In this issue of Cell, Tsutsumi et al. report the structure of the thrombopoietin ligand-receptor complex and demonstrate the potential to decouple its roles in self-renewal and hematopoietic differentiation.
Collapse
Affiliation(s)
- Samantha Joubran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
16
|
Kawashima N, Bezzerri V, Corey SJ. The Molecular and Genetic Mechanisms of Inherited Bone Marrow Failure Syndromes: The Role of Inflammatory Cytokines in Their Pathogenesis. Biomolecules 2023; 13:1249. [PMID: 37627314 PMCID: PMC10452082 DOI: 10.3390/biom13081249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Inherited bone marrow failure syndromes (IBMFSs) include Fanconi anemia, Diamond-Blackfan anemia, Shwachman-Diamond syndrome, dyskeratosis congenita, severe congenital neutropenia, and other rare entities such as GATA2 deficiency and SAMD9/9L mutations. The IBMFS monogenic disorders were first recognized by their phenotype. Exome sequencing has validated their classification, with clusters of gene mutations affecting DNA damage response (Fanconi anemia), ribosome structure (Diamond-Blackfan anemia), ribosome assembly (Shwachman-Diamond syndrome), or telomere maintenance/stability (dyskeratosis congenita). The pathogenetic mechanisms of IBMFSs remain to be characterized fully, but an overarching hypothesis states that different stresses elicit TP53-dependent growth arrest and apoptosis of hematopoietic stem, progenitor, and precursor cells. Here, we review the IBMFSs and propose a role for pro-inflammatory cytokines, such as TGF-β, IL-1β, and IFN-α, in mediating the cytopenias. We suggest a pathogenic role for cytokines in the transformation to myeloid neoplasia and hypothesize a role for anti-inflammatory therapies.
Collapse
Affiliation(s)
- Nozomu Kawashima
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy;
| | - Seth J. Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH 44195, USA;
| |
Collapse
|
17
|
Fleischauer J, Bastone AL, Selich A, John-Neek P, Weisskoeppel L, Schaudien D, Schambach A, Rothe M. TGF β Inhibitor A83-01 Enhances Murine HSPC Expansion for Gene Therapy. Cells 2023; 12:1978. [PMID: 37566057 PMCID: PMC10416825 DOI: 10.3390/cells12151978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
Murine hematopoietic stem and progenitor cells (HSPCs) are commonly used as model systems during gene therapeutic retroviral vector development and preclinical biosafety assessment. Here, we developed cell culture conditions to maintain stemness and prevent differentiation during HSPC culture. We used the small compounds A83-01, pomalidomide, and UM171 (APU). Highly purified LSK SLAM cells expanded in medium containing SCF, IL-3, FLT3-L, and IL-11 but rapidly differentiated to myeloid progenitors and mast cells. The supplementation of APU attenuated the differentiation and preserved the stemness of HSPCs. The TGFβ inhibitor A83-01 was identified as the major effector. It significantly inhibited the mast-cell-associated expression of FcεR1α and the transcription of genes regulating the formation of granules and promoted a 3800-fold expansion of LSK cells. As a functional readout, we used expanded HSPCs in state-of-the-art genotoxicity assays. Like fresh cells, APU-expanded HSPCs transduced with a mutagenic retroviral vector developed a myeloid differentiation block with clonal restriction and dysregulated oncogenic transcriptomic signatures due to vector integration near the high-risk locus Mecom. Thus, expanded HSPCs might serve as a novel cell source for retroviral vector testing and genotoxicity studies.
Collapse
Affiliation(s)
- Jenni Fleischauer
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Antonella Lucia Bastone
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Anton Selich
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Philipp John-Neek
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Luisa Weisskoeppel
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Schaudien
- Department of Inhalation Toxicology, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai Fuchs Strasse 1, 30625 Hannover, Germany;
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, 30625 Hannover, Germany
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; (J.F.); (A.L.B.); (A.S.); (P.J.-N.); (L.W.); (A.S.)
- REBIRTH—Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
18
|
Voit RA, Sankaran VG. MECOM Deficiency: from Bone Marrow Failure to Impaired B-Cell Development. J Clin Immunol 2023:10.1007/s10875-023-01545-0. [PMID: 37407873 DOI: 10.1007/s10875-023-01545-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
MECOM deficiency is a recently identified inborn error of immunity and inherited bone marrow failure syndrome caused by haploinsufficiency of the hematopoietic transcription factor MECOM. It is unique among inherited bone marrow failure syndromes, many of which present during later childhood or adolescence, because of the early age of onset and severity of the pancytopenia, emphasizing the importance and gene dose dependency of MECOM during hematopoiesis. B-cell lymphopenia and hypogammaglobulinemia have been described in a subset of patients with MECOM deficiency. While the mechanisms underlying the B-cell deficiency are currently unknown, recent work has provided mechanistic insights into the function of MECOM in hematopoietic stem cell (HSC) maintenance. MECOM binds to regulatory enhancers that control the expression of a network of genes essential for HSC maintenance and self-renewal. Heterozygous mutations, as seen in MECOM-deficient bone marrow failure, lead to dysregulated MECOM network expression. Extra-hematopoietic manifestations of MECOM deficiency, including renal and cardiac anomalies, radioulnar synostosis, clinodactyly, and hearing loss, have been reported. Individuals with specific genotypes have some of the systemic manifestations with isolated mild thrombocytopenia or without hematologic abnormalities, highlighting the tissue specificity of mutations in some MECOM domains. Those infants with MECOM-associated bone marrow failure require HSC transplantation for survival. Here, we review the expanding cohort of patient phenotypes and accompanying genotypes resulting in MECOM deficiency, and the proposed mechanisms underlying MECOM regulation of human HSC maintenance and B-cell development.
Collapse
Affiliation(s)
- Richard A Voit
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
19
|
Lozano Chinga MM, Bertuch AA, Afify Z, Dollerschell K, Hsu JI, John TD, Rao ES, Rowe RG, Sankaran VG, Shimamura A, Williams DA, Nakano TA. Expanded phenotypic and hematologic abnormalities beyond bone marrow failure in MECOM-associated syndromes. Am J Med Genet A 2023; 191:1826-1835. [PMID: 37067177 PMCID: PMC10330190 DOI: 10.1002/ajmg.a.63208] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/17/2023] [Accepted: 03/31/2023] [Indexed: 04/18/2023]
Abstract
The MECOM gene encodes multiple protein isoforms that are essential for hematopoietic stem cell self-renewal and maintenance. Germline MECOM variants have been associated with congenital thrombocytopenia, radioulnar synostosis and bone marrow failure; however, the phenotypic spectrum of MECOM-associated syndromes continues to expand and novel pathogenic variants continue to be identified. We describe eight unrelated patients who add to the previously known phenotypes and genetic defects of MECOM-associated syndromes. As each subject presented with unique MECOM variants, the series failed to demonstrate clear genotype-to-phenotype correlation but may suggest a role for additional modifiers that affect gene expression and subsequent phenotype. Recognition of the expanded hematologic and non-hematologic clinical features allows for rapid molecular diagnosis, early identification of life-threatening complications, and improved genetic counseling for families. A centralized international publicly accessible database to share annotated MECOM variants would advance their clinical interpretation and provide a foundation to perform functional MECOM studies.
Collapse
Affiliation(s)
- Michell M Lozano Chinga
- Primary Children's Hospital, University of Utah, Salt Lake City, Utah, USA
- University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Alison A Bertuch
- Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Zeinab Afify
- Primary Children's Hospital, University of Utah, Salt Lake City, Utah, USA
| | - Kaylee Dollerschell
- Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Joanne I Hsu
- Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Tami D John
- Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Emily S Rao
- Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Robert Grant Rowe
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Vijay G Sankaran
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Akiko Shimamura
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - David A Williams
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Taizo A Nakano
- Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
20
|
Zerella JR, Homan CC, Arts P, Brown AL, Scott HS, Hahn CN. Transcription factor genetics and biology in predisposition to bone marrow failure and hematological malignancy. Front Oncol 2023; 13:1183318. [PMID: 37377909 PMCID: PMC10291195 DOI: 10.3389/fonc.2023.1183318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription factors (TFs) play a critical role as key mediators of a multitude of developmental pathways, with highly regulated and tightly organized networks crucial for determining both the timing and pattern of tissue development. TFs can act as master regulators of both primitive and definitive hematopoiesis, tightly controlling the behavior of hematopoietic stem and progenitor cells (HSPCs). These networks control the functional regulation of HSPCs including self-renewal, proliferation, and differentiation dynamics, which are essential to normal hematopoiesis. Defining the key players and dynamics of these hematopoietic transcriptional networks is essential to understanding both normal hematopoiesis and how genetic aberrations in TFs and their networks can predispose to hematopoietic disease including bone marrow failure (BMF) and hematological malignancy (HM). Despite their multifaceted and complex involvement in hematological development, advances in genetic screening along with elegant multi-omics and model system studies are shedding light on how hematopoietic TFs interact and network to achieve normal cell fates and their role in disease etiology. This review focuses on TFs which predispose to BMF and HM, identifies potential novel candidate predisposing TF genes, and examines putative biological mechanisms leading to these phenotypes. A better understanding of the genetics and molecular biology of hematopoietic TFs, as well as identifying novel genes and genetic variants predisposing to BMF and HM, will accelerate the development of preventative strategies, improve clinical management and counseling, and help define targeted treatments for these diseases.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Anna L. Brown
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hamish S. Scott
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
21
|
Martin-Rufino JD, Castano N, Pang M, Grody EI, Joubran S, Caulier A, Wahlster L, Li T, Qiu X, Riera-Escandell AM, Newby GA, Al'Khafaji A, Chaudhary S, Black S, Weng C, Munson G, Liu DR, Wlodarski MW, Sims K, Oakley JH, Fasano RM, Xavier RJ, Lander ES, Klein DE, Sankaran VG. Massively parallel base editing to map variant effects in human hematopoiesis. Cell 2023; 186:2456-2474.e24. [PMID: 37137305 PMCID: PMC10225359 DOI: 10.1016/j.cell.2023.03.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/26/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023]
Abstract
Systematic evaluation of the impact of genetic variants is critical for the study and treatment of human physiology and disease. While specific mutations can be introduced by genome engineering, we still lack scalable approaches that are applicable to the important setting of primary cells, such as blood and immune cells. Here, we describe the development of massively parallel base-editing screens in human hematopoietic stem and progenitor cells. Such approaches enable functional screens for variant effects across any hematopoietic differentiation state. Moreover, they allow for rich phenotyping through single-cell RNA sequencing readouts and separately for characterization of editing outcomes through pooled single-cell genotyping. We efficiently design improved leukemia immunotherapy approaches, comprehensively identify non-coding variants modulating fetal hemoglobin expression, define mechanisms regulating hematopoietic differentiation, and probe the pathogenicity of uncharacterized disease-associated variants. These strategies will advance effective and high-throughput variant-to-function mapping in human hematopoiesis to identify the causes of diverse diseases.
Collapse
Affiliation(s)
- Jorge D Martin-Rufino
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole Castano
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael Pang
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Samantha Joubran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology PhD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Alexis Caulier
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tongqing Li
- Department of Pharmacology and Yale Cancer Biology Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xiaojie Qiu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Gregory A Newby
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Aziz Al'Khafaji
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Susan Black
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chen Weng
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Glen Munson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David R Liu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Marcin W Wlodarski
- Department of Hematology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kacie Sims
- St. Jude Affiliate Clinic at Our Lady of the Lake Children's Health, Baton Rouge, LA 70809, USA
| | - Jamie H Oakley
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Ross M Fasano
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA 30322, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daryl E Klein
- Department of Pharmacology and Yale Cancer Biology Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
22
|
Diamond B, Ziccheddu B, Maclachlan K, Taylor J, Boyle E, Ossa JA, Jahn J, Affer M, Totiger TM, Coffey D, Chandhok N, Watts J, Cimmino L, Lu SX, Bolli N, Bolton K, Landau H, Park JH, Ganesh K, McPherson A, Sekeres MA, Lesokhin A, Chung DJ, Zhang Y, Ho C, Roshal M, Tyner J, Nimer S, Papaemmanuil E, Usmani S, Morgan G, Landgren O, Maura F. Tracking the evolution of therapy-related myeloid neoplasms using chemotherapy signatures. Blood 2023; 141:2359-2371. [PMID: 36626250 PMCID: PMC10273163 DOI: 10.1182/blood.2022018244] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Patients treated with cytotoxic therapies, including autologous stem cell transplantation, are at risk for developing therapy-related myeloid neoplasms (tMN). Preleukemic clones (ie, clonal hematopoiesis [CH]) are detectable years before the development of these aggressive malignancies, although the genomic events leading to transformation and expansion are not well defined. Here, by leveraging distinctive chemotherapy-associated mutational signatures from whole-genome sequencing data and targeted sequencing of prechemotherapy samples, we reconstructed the evolutionary life-history of 39 therapy-related myeloid malignancies. A dichotomy was revealed, in which neoplasms with evidence of chemotherapy-induced mutagenesis from platinum and melphalan were hypermutated and enriched for complex structural variants (ie, chromothripsis), whereas neoplasms with nonmutagenic chemotherapy exposures were genomically similar to de novo acute myeloid leukemia. Using chemotherapy-associated mutational signatures as temporal barcodes linked to discrete clinical exposure in each patient's life, we estimated that several complex events and genomic drivers were acquired after chemotherapy was administered. For patients with prior multiple myeloma who were treated with high-dose melphalan and autologous stem cell transplantation, we demonstrate that tMN can develop from either a reinfused CH clone that escapes melphalan exposure and is selected after reinfusion, or from TP53-mutant CH that survives direct myeloablative conditioning and acquires melphalan-induced DNA damage. Overall, we revealed a novel mode of tMN progression that is not reliant on direct mutagenesis or even exposure to chemotherapy. Conversely, for tMN that evolve under the influence of chemotherapy-induced mutagenesis, distinct chemotherapies not only select preexisting CH but also promote the acquisition of recurrent genomic drivers.
Collapse
Affiliation(s)
- Benjamin Diamond
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | | | - Kylee Maclachlan
- Division of Myeloma, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Eileen Boyle
- Myeloma Research Program, New York University Langone, Perlmutter Cancer Center, New York, NY
| | - Juan Arango Ossa
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jacob Jahn
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Maurizio Affer
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | | | - David Coffey
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Namrata Chandhok
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Justin Watts
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Luisa Cimmino
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Sydney X. Lu
- Division of Hematology, Stanford Hospital and Clinics, Stanford University, Stanford, CA
| | - Niccolò Bolli
- Department of Oncology and Onco-Hematology, Università degli Studi di Milano, Milan, Italy
- Hematology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Kelly Bolton
- Division of Oncology, Washington University School of Medicine, St. Louis, MO
| | - Heather Landau
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jae H. Park
- Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Karuna Ganesh
- Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Andrew McPherson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Alexander Lesokhin
- Division of Myeloma, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David J. Chung
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Caleb Ho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mikhail Roshal
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jeffrey Tyner
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR
| | - Stephen Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Saad Usmani
- Division of Myeloma, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gareth Morgan
- Myeloma Research Program, New York University Langone, Perlmutter Cancer Center, New York, NY
| | - Ola Landgren
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Francesco Maura
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| |
Collapse
|
23
|
Cato LD, Li R, Lu HY, Yu F, Wissman M, Mkumbe BS, Ekwattanakit S, Deelen P, Mwita L, Sangeda R, Suksangpleng T, Riolueang S, Bronson PG, Paul DS, Kawabata E, Astle WJ, Aguet F, Ardlie K, de Lapuente Portilla AL, Kang G, Zhang Y, Nouraie SM, Gordeuk VR, Gladwin MT, Garrett ME, Ashley-Koch A, Telen MJ, Custer B, Kelly S, Dinardo CL, Sabino EC, Loureiro P, Carneiro-Proietti AB, Maximo C, Méndez A, Hammerer-Lercher A, Sheehan VA, Weiss MJ, Franke L, Nilsson B, Butterworth AS, Viprakasit V, Nkya S, Sankaran VG. Genetic regulation of fetal hemoglobin across global populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.24.23287659. [PMID: 36993312 PMCID: PMC10055601 DOI: 10.1101/2023.03.24.23287659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Human genetic variation has enabled the identification of several key regulators of fetal-to-adult hemoglobin switching, including BCL11A, resulting in therapeutic advances. However, despite the progress made, limited further insights have been obtained to provide a fuller accounting of how genetic variation contributes to the global mechanisms of fetal hemoglobin (HbF) gene regulation. Here, we have conducted a multi-ancestry genome-wide association study of 28,279 individuals from several cohorts spanning 5 continents to define the architecture of human genetic variation impacting HbF. We have identified a total of 178 conditionally independent genome-wide significant or suggestive variants across 14 genomic windows. Importantly, these new data enable us to better define the mechanisms by which HbF switching occurs in vivo. We conduct targeted perturbations to define BACH2 as a new genetically-nominated regulator of hemoglobin switching. We define putative causal variants and underlying mechanisms at the well-studied BCL11A and HBS1L-MYB loci, illuminating the complex variant-driven regulation present at these loci. We additionally show how rare large-effect deletions in the HBB locus can interact with polygenic variation to influence HbF levels. Our study paves the way for the next generation of therapies to more effectively induce HbF in sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Liam D. Cato
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Rick Li
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Henry Y. Lu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Fulong Yu
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Mariel Wissman
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Baraka S. Mkumbe
- Sickle Cell Program, Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Biochemistry, Muhimbili University of Health and Allied Science, Dar es Salaam, Tanzania
- Department of Artificial Intelligence and Innovative Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Supachai Ekwattanakit
- Siriraj Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patrick Deelen
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Liberata Mwita
- Department of Pharmaceutical Microbiology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Raphael Sangeda
- Sickle Cell Program, Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Pharmaceutical Microbiology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Thidarat Suksangpleng
- Siriraj Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suchada Riolueang
- Siriraj Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Paola G. Bronson
- R&D Translational Biology, Biogen, Cambridge, Massachusetts, USA
| | - Dirk S. Paul
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Emily Kawabata
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - William J. Astle
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Francois Aguet
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kristin Ardlie
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Guolian Kang
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yingze Zhang
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seyed Mehdi Nouraie
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Victor R. Gordeuk
- Division of Hematology and Oncology, Department of Medicine, Comprehensive Sickle Cell Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark T. Gladwin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Melanie E. Garrett
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Allison Ashley-Koch
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Marilyn J. Telen
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Brian Custer
- Vitalant Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Shannon Kelly
- Vitalant Research Institute, San Francisco, California, USA
- Division of Pediatric Hematology, UCSF Benioff Children's Hospital, Oakland, California, USA
| | - Carla Luana Dinardo
- Fundacao Pro-Sangue Hemocentro de Sao Paulo, Sao Paulo, Brazil
- Institute of Tropical Medicine, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ester C. Sabino
- Institute of Tropical Medicine, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | - Adriana Méndez
- Institute of Laboratory Medicine, Cantonal Hospital Aarau, 5000 Aarau, Switzerland
| | | | - Vivien A. Sheehan
- Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta & Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Lude Franke
- Oncode Institute, Amsterdam, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Björn Nilsson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
- Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
| | - Adam S. Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Vip Viprakasit
- Siriraj Thalassemia Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siana Nkya
- Sickle Cell Program, Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Biochemistry, Muhimbili University of Health and Allied Science, Dar es Salaam, Tanzania
- Tanzania Human Genetics Organisation, Tanzania
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Biochemistry, Muhimbili University of Health and Allied Science
| |
Collapse
|
24
|
Zhao J, Jia Y, Mahmut D, Deik AA, Jeanfavre S, Clish CB, Sankaran VG. Human hematopoietic stem cell vulnerability to ferroptosis. Cell 2023; 186:732-747.e16. [PMID: 36803603 PMCID: PMC9978939 DOI: 10.1016/j.cell.2023.01.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/20/2022] [Accepted: 01/12/2023] [Indexed: 02/18/2023]
Abstract
Hematopoietic stem cells (HSCs) have a number of unique physiologic adaptations that enable lifelong maintenance of blood cell production, including a highly regulated rate of protein synthesis. Yet, the precise vulnerabilities that arise from such adaptations have not been fully characterized. Here, inspired by a bone marrow failure disorder due to the loss of the histone deubiquitinase MYSM1, characterized by selectively disadvantaged HSCs, we show how reduced protein synthesis in HSCs results in increased ferroptosis. HSC maintenance can be fully rescued by blocking ferroptosis, despite no alteration in protein synthesis rates. Importantly, this selective vulnerability to ferroptosis not only underlies HSC loss in MYSM1 deficiency but also characterizes a broader liability of human HSCs. Increasing protein synthesis rates via MYSM1 overexpression makes HSCs less susceptible to ferroptosis, more broadly illustrating the selective vulnerabilities that arise in somatic stem cell populations as a result of physiologic adaptations.
Collapse
Affiliation(s)
- Jiawei Zhao
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yuemeng Jia
- Stem Cell Program, Boston Children's Hospital, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Dilnar Mahmut
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy A Deik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sarah Jeanfavre
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
25
|
Feurstein S. Emerging bone marrow failure syndromes- new pieces to an unsolved puzzle. Front Oncol 2023; 13:1128533. [PMID: 37091189 PMCID: PMC10119586 DOI: 10.3389/fonc.2023.1128533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
Inherited bone marrow failure (BMF) syndromes are genetically diverse - more than 100 genes have been associated with those syndromes and the list is rapidly expanding. Risk assessment and genetic counseling of patients with recently discovered BMF syndromes is inherently difficult as disease mechanisms, penetrance, genotype-phenotype associations, phenotypic heterogeneity, risk of hematologic malignancies and clonal markers of disease progression are unknown or unclear. This review aims to shed light on recently described BMF syndromes with sparse concise data and with an emphasis on those associated with germline variants in ADH5/ALDH2, DNAJC21, ERCC6L2 and MECOM. This will provide important data that may help to individualize and improve care for these patients.
Collapse
|