1
|
Risha MA, Reddy KD, Nemani SSP, Jakwerth C, Schmidt-Weber C, Bahmer T, Hansen G, von Mutius E, Rabe KF, Dittrich AM, Grychtol R, Maison N, Schaub B, Kopp MV, Brinkmann F, Meiners S, Jappe U, Weckmann M. Epigenetic training of human bronchial epithelium cells by repeated rhinovirus infections. Allergy 2024. [PMID: 39513674 DOI: 10.1111/all.16388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Humans are subjected to various environmental stressors (bacteria, viruses, pollution) throughout life. As such, an inherent relationship exists between the effect of these exposures with age. The impact of these environmental stressors can manifest through DNA methylation (DNAm). However, whether these epigenetic effects selectively target genes, pathways, and biological regulatory mechanisms remains unclear. Due to the frequency of human rhinovirus (HRV) infections throughout life (particularly in early development), we propose the use of HRV under controlled conditions can model the effect of multiple exposures to environmental stressors. METHODS We generated a prediction model by combining transcriptome and DNAm datasets from human epithelial cells after repeated HRV infections. We applied a novel experimental statistical design and method to systematically explore the multifaceted experimental space (number of infections, multiplicity of infections and duration). Our model included 35 samples, each characterized by the three parameters defining their infection status. RESULTS Trainable genes were defined by a consistent linear directionality in DNAm and gene expression changes with successive infections. We identified 77 trainable genes which could be further explored in future studies. The identified methylation sites were tracked within a pediatric cohort to determine the relative changes in candidate-trained sites with disease status and age. CONCLUSIONS Repeated viral infections induce an immune training response in bronchial epithelial cells. Training-sensitive DNAm sites indicate alternate divergent associations in asthma compared to healthy individuals. Our novel model presents a robust tool for identifying trainable genes, providing a foundation for future studies.
Collapse
Affiliation(s)
- Marua Abu Risha
- Division of Clinical and Molecular Allergology, PA Chronic Lung Diseases, Research Center Borstel, Borstel, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
| | - Karosham D Reddy
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Department of Paediatric Pneumology & Allergology, University Clinic Schleswig-Holstein (UKSH), Lübeck, Germany
- Division of Epigenetics of Chronic Lung Diseases, Priority Area Chronic Lung Diseases, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| | - Sai Sneha Priya Nemani
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Department of Paediatric Pneumology & Allergology, University Clinic Schleswig-Holstein (UKSH), Lübeck, Germany
| | - Constanze Jakwerth
- Centre of Allergy and Environment (ZAUM), Technische Universität and Helmholtz Centre Munich, Munich, Germany
- Comprehensive Pneumology Centre Munich (CPC-M), Member of The German Centre for Lung Research (DZL), Munich, Germany
| | - Carsten Schmidt-Weber
- Centre of Allergy and Environment (ZAUM), Technische Universität and Helmholtz Centre Munich, Munich, Germany
- Comprehensive Pneumology Centre Munich (CPC-M), Member of The German Centre for Lung Research (DZL), Munich, Germany
| | - Thomas Bahmer
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Department of Pneumology, LungenClinic Grosshansdorf, Grosshansdorf, Germany
- University Hospital Schleswig-Holstein Campus Kiel, Department for Internal Medicine I, Kiel, Germany
| | - Gesine Hansen
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre of Lung Research (DZL), Munich, Germany
| | - Erika von Mutius
- Comprehensive Pneumology Centre Munich (CPC-M), Member of The German Centre for Lung Research (DZL), Munich, Germany
- Institute for Asthma and Allergy Prevention, Helmholtz Centre Munich, German Research Centre for Environmental Health, Neuherberg, Germany
- Department of Pulmonary and Allergy, Dr von Hauner Children's Hospital, University Children's Hospital, Ludwig Maximilian's University, Munich, Germany
| | - Klaus F Rabe
- Centre of Allergy and Environment (ZAUM), Technische Universität and Helmholtz Centre Munich, Munich, Germany
- Comprehensive Pneumology Centre Munich (CPC-M), Member of The German Centre for Lung Research (DZL), Munich, Germany
| | - Anna-Maria Dittrich
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre of Lung Research (DZL), Munich, Germany
| | - Ruth Grychtol
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in End stage and Obstructive Lung Disease Hannover (BREATH), Member of the German Centre of Lung Research (DZL), Munich, Germany
| | - Nicole Maison
- Comprehensive Pneumology Centre Munich (CPC-M), Member of The German Centre for Lung Research (DZL), Munich, Germany
- Institute for Asthma and Allergy Prevention, Helmholtz Centre Munich, German Research Centre for Environmental Health, Neuherberg, Germany
- Department of Pulmonary and Allergy, Dr von Hauner Children's Hospital, University Children's Hospital, Ludwig Maximilian's University, Munich, Germany
| | - Bianca Schaub
- Comprehensive Pneumology Centre Munich (CPC-M), Member of The German Centre for Lung Research (DZL), Munich, Germany
- Department of Pulmonary and Allergy, Dr von Hauner Children's Hospital, University Children's Hospital, Ludwig Maximilian's University, Munich, Germany
- German Center for Child and Adolescent Health (DZKJ), Dr von Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - Matthias V Kopp
- Department of Paediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland
| | - Folke Brinkmann
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Department of Paediatric Pneumology & Allergology, University Clinic Schleswig-Holstein (UKSH), Lübeck, Germany
| | - Silke Meiners
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Immunology and Cell Biology, PA Chronic Lung Diseases, Research Center Borstel, Borstel, Germany
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, PA Chronic Lung Diseases, Research Center Borstel, Borstel, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Lübeck, Lübeck, Germany
| | - Markus Weckmann
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Borstel, Germany
- Department of Paediatric Pneumology & Allergology, University Clinic Schleswig-Holstein (UKSH), Lübeck, Germany
- Division of Epigenetics of Chronic Lung Diseases, Priority Area Chronic Lung Diseases, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
| |
Collapse
|
2
|
Hajishengallis G, Chavakis T. Central trained immunity and its impact on chronic inflammatory and autoimmune diseases. J Allergy Clin Immunol 2024; 154:1113-1116. [PMID: 38866209 DOI: 10.1016/j.jaci.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Affiliation(s)
- George Hajishengallis
- Laboratory of Innate Immunity and Inflammation, Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, Pa.
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Rocha PS, Silva AA, Queiroz-Junior CM, Braga AD, Moreira TP, Teixeira MM, Amaral FA. Trained immunity of synovial macrophages is associated with exacerbated joint inflammation and damage after Staphylococcus aureus infection. Inflamm Res 2024; 73:1995-2008. [PMID: 39340660 DOI: 10.1007/s00011-024-01946-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES Investigate whether and which synoviocytes would acquire trained immunity characteristics that could exacerbate joint inflammation following a secondary Staphylococcus aureus infection. METHODS Lipopolysaccharide (LPS) and S. aureus were separately or double injected (21 days of interval) into the tibiofemoral joint cavity of male C57BL/6 mice. At different time points after these stimulations, mechanical nociception was analyzed followed by the analysis of signs of inflammation and damage in the affected joints. The trained immunity markers, including the glycolytic and mTOR pathway, were analyzed in whole tissue or isolated synoviocytes. A group of mice was treated with Rapamycin, an mTOR inhibitor before LPS or S. aureus stimulation. RESULTS The double LPS - S. aureus hit promoted intense joint inflammation and damage compared to single joint stimulation, including markers in synoviocyte activation, production of proinflammatory cytokines, persistent nociception, and bone damage, despite not reducing the bacterial clearance. The double LPS - S. aureus hit joints increased the synovial macrophage population expressing CX3CR1 alongside triggering established epigenetic modifications associated with trained immunity events in these cells, such as the upregulation of the mTOR signaling pathway (p-mTOR and HIF1α) and the trimethylation of histone H3. Mice treated with Rapamycin presented reduced CX3CR1+ macrophage activation, joint inflammation, and bone damage. CONCLUSIONS There is a trained immunity phenotype in CX3CR1+ synovial macrophages that contributes to the exacerbation of joint inflammation and damage during septic arthritis caused by S. aureus.
Collapse
Affiliation(s)
- Peter Silva Rocha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Adryan Aparecido Silva
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Amanda Dias Braga
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Thaiane Pinto Moreira
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Flávio Almeida Amaral
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| |
Collapse
|
4
|
Ullah I, Symmes K, Keita K, Zhu L, Grunst MW, Li W, Mothes W, Kumar P, Uchil PD. Beta Spike-Presenting SARS-CoV-2 Virus-like Particle Vaccine Confers Broad Protection against Other VOCs in Mice. Vaccines (Basel) 2024; 12:1007. [PMID: 39340037 PMCID: PMC11435481 DOI: 10.3390/vaccines12091007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Virus-like particles (VLPs) are non-infectious and serve as promising vaccine platforms because they mimic the membrane-embedded conformations of fusion glycoproteins on native viruses. Here, we employed SARS-CoV-2 VLPs (SMEN) presenting ancestral, Beta, or Omicron spikes to identify the variant spike that elicits potent and cross-protective immune responses in the highly sensitive K18-hACE2 challenge mouse model. A combined intranasal and intramuscular SMEN vaccine regimen generated the most effective immune responses to significantly reduce disease burden. Protection was primarily mediated by antibodies, with minor but distinct contributions from T cells in reducing virus spread and inflammation. Immunization with SMEN carrying ancestral spike resulted in 100, 75, or 0% protection against ancestral, Delta, or Beta variant-induced mortality, respectively. However, SMEN with an Omicron spike provided only limited protection against ancestral (50%), Delta (0%), and Beta (25%) challenges. By contrast, SMEN with Beta spikes offered 100% protection against the variants used in this study. Thus, the Beta variant not only overcame the immunity produced by other variants, but the Beta spike also elicited diverse and effective humoral immune responses. Our findings suggest that leveraging the Beta variant spike protein can enhance SARS-CoV-2 immunity, potentially leading to a more comprehensive vaccine against emerging variants.
Collapse
Affiliation(s)
- Irfan Ullah
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; (I.U.); (K.S.); (L.Z.); (P.K.)
| | - Kelly Symmes
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; (I.U.); (K.S.); (L.Z.); (P.K.)
| | - Kadiatou Keita
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA; (K.K.); (M.W.G.); (W.L.); (W.M.)
| | - Li Zhu
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; (I.U.); (K.S.); (L.Z.); (P.K.)
| | - Michael W. Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA; (K.K.); (M.W.G.); (W.L.); (W.M.)
| | - Wenwei Li
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA; (K.K.); (M.W.G.); (W.L.); (W.M.)
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA; (K.K.); (M.W.G.); (W.L.); (W.M.)
| | - Priti Kumar
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; (I.U.); (K.S.); (L.Z.); (P.K.)
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA; (K.K.); (M.W.G.); (W.L.); (W.M.)
| |
Collapse
|
5
|
Chen M, Kang X, Zhang Y, Liu Y. Trained immunity: A link between risk factors and cardiovascular disease. Br J Pharmacol 2024. [PMID: 38824960 DOI: 10.1111/bph.16472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/01/2024] [Accepted: 05/04/2024] [Indexed: 06/04/2024] Open
Abstract
Cardiovascular diseases are significant contributors to human mortality, closely associated with inflammation. With the changing living conditions and the extension of human lifespan, greater attention has been directed towards understanding the impact of early, long-term events on the development of cardiovascular events. Lifestyle factors such as stress, unhealthy diet and physical inactivity can increase the risk of cardiovascular diseases. Interestingly, even if the risk factors are addressed later, their influence may persist. Recently, the concept of trained innate immunity (TRIM), defined as sustained alterations in the function of innate immunocyte that promote a more robust response to downstream stimuli, has been proposed to be involved in cardiovascular diseases. It is hypothesized that TRIM may serve as a mediator bridging the impacts of aforementioned risk factors. This review aims to elucidate the role of TRIM in cardiovascular diseases and highlight its significance in uncovering new mechanisms and therapeutic targets.
Collapse
Affiliation(s)
- Mingqi Chen
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xuya Kang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yan Zhang
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yahan Liu
- Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
6
|
Robert M, Yatim N, Sacré K, Duffy D. Sarcoidosis immunopathogenesis - a new concept of maladaptive trained immunity. Trends Immunol 2024; 45:406-418. [PMID: 38796404 DOI: 10.1016/j.it.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
Sarcoidosis is a chronic immune disease of unknown origin for which we still lack an immunological framework unifying causal agents, host factors, and natural history of disease. Here, we discuss the initial triggers of disease, and how myeloid cells drive granuloma formation and contribute to immunopathogenesis. We highlight recent advances in our understanding of innate immune memory and propose the hypothesis that maladaptive innate immune training connects previous environmental exposure to granuloma maintenance and expansion. Lastly, we consider how this hypothesis may open novel therapeutic avenues, while corticosteroids remain the front-line treatment.
Collapse
Affiliation(s)
- Marie Robert
- Translational Immunology Unit, Institut Pasteur, Université Paris-Cité, Paris, France; Department of Internal Medicine, Hôpital Bichat, Paris, France; Université Paris-Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, Paris, France
| | - Nader Yatim
- Translational Immunology Unit, Institut Pasteur, Université Paris-Cité, Paris, France; Department of Internal Medicine, Hôpital Bichat, Paris, France
| | - Karim Sacré
- Department of Internal Medicine, Hôpital Bichat, Paris, France; Université Paris-Cité, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Laboratoire d'Excellence Inflamex, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris-Cité, Paris, France; CBUtechS, Institut Pasteur, Université Paris-Cité, Paris, France.
| |
Collapse
|
7
|
Serafini N, Di Santo JP. Group 3 innate lymphoid cells: A trained Gutkeeper. Immunol Rev 2024; 323:126-137. [PMID: 38491842 DOI: 10.1111/imr.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Group 3 innate lymphoid cells (ILC3s) are tissue-resident immune lymphocytes that critically regulate intestinal homeostasis, organogenesis, and immunity. ILC3s possess the capacity to "sense" the inflammatory environment within tissues, especially in the context of pathogen challenges that imprints durable non-antigen-specific changes in ILC3 function. As such, ILC3s become a new actor in the emerging field of trained innate immunity. Here, we summarize recent discoveries regarding ILC3 responses to bacterial challenges and the role these encounters play in triggering trained innate immunity. We further discuss how signaling events throughout ILC3 ontogeny potentially control the development and function of trained ILC3s. Finally, we highlight the open questions surrounding ILC3 "training" the answers to which may reveal new insights into innate immunity. Understanding the fundamental concepts behind trained innate immunity could potentially lead to the development of new strategies for improving immunity-based modulation therapies for inflammation, infectious diseases, and cancer.
Collapse
Affiliation(s)
- Nicolas Serafini
- Innate Immunity Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, Paris, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Université Paris Cité, Inserm U1223, Paris, France
| |
Collapse
|
8
|
López-Collazo E, del Fresno C. Endotoxin tolerance and trained immunity: breaking down immunological memory barriers. Front Immunol 2024; 15:1393283. [PMID: 38742111 PMCID: PMC11089161 DOI: 10.3389/fimmu.2024.1393283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
For decades, innate immune cells were considered unsophisticated first responders, lacking the adaptive memory of their T and B cell counterparts. However, mounting evidence demonstrates the surprising complexity of innate immunity. Beyond quickly deploying specialized cells and initiating inflammation, two fascinating phenomena - endotoxin tolerance (ET) and trained immunity (TI) - have emerged. ET, characterized by reduced inflammatory response upon repeated exposure, protects against excessive inflammation. Conversely, TI leads to an enhanced response after initial priming, allowing the innate system to mount stronger defences against subsequent challenges. Although seemingly distinct, these phenomena may share underlying mechanisms and functional implications, blurring the lines between them. This review will delve into ET and TI, dissecting their similarities, differences, and the remaining questions that warrant further investigation.
Collapse
Affiliation(s)
- Eduardo López-Collazo
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Tumour Immunology Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER), Respiratory Diseases (CIBRES), Madrid, Spain
| | - Carlos del Fresno
- The Innate Immune Response Group, Hospital la Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Immunomodulation Laboratory, IdiPAZ, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
9
|
Liu Y, Wang Z, Jin H, Cui L, Huo B, Xie C, Li J, Ding H, Zhang H, Xiong W, Li M, Zhang H, Guo H, Li C, Wang T, Wang X, He W, Wang Z, Bei JX, Huang P, Liu J, Xia X. Squalene-epoxidase-catalyzed 24(S),25-epoxycholesterol synthesis promotes trained-immunity-mediated antitumor activity. Cell Rep 2024; 43:114094. [PMID: 38613784 DOI: 10.1016/j.celrep.2024.114094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/18/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2024] Open
Abstract
The importance of trained immunity in antitumor immunity has been increasingly recognized, but the underlying metabolic regulation mechanisms remain incompletely understood. In this study, we find that squalene epoxidase (SQLE), a key enzyme in cholesterol synthesis, is required for β-glucan-induced trained immunity in macrophages and ensuing antitumor activity. Unexpectedly, the shunt pathway, but not the classical cholesterol synthesis pathway, catalyzed by SQLE, is required for trained immunity induction. Specifically, 24(S),25-epoxycholesterol (24(S),25-EC), the shunt pathway metabolite, activates liver X receptor and increases chromatin accessibility to evoke innate immune memory. Meanwhile, SQLE-induced reactive oxygen species accumulation stabilizes hypoxia-inducible factor 1α protein for metabolic switching into glycolysis. Hence, our findings identify 24(S),25-EC as a key metabolite for trained immunity and provide important insights into how SQLE regulates trained-immunity-mediated antitumor activity.
Collapse
Affiliation(s)
- Yongxiang Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Zifeng Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Huan Jin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Lei Cui
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Bitao Huo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Chunyuan Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jiahui Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P.R. China
| | - Honglu Ding
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Huanling Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Wenjing Xiong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Mengyun Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; College of Life Science, Sun Yat-sen University, Guangzhou, P.R. China
| | - Hongxia Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Hui Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Chunwei Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Tiantian Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xiaojuan Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Wenzhuo He
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Zining Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; Metabolic Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Jinyun Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; Metabolic Center, Sun Yat-sen University, Guangzhou, P.R. China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| |
Collapse
|
10
|
Torcellan T, Friedrich C, Doucet-Ladevèze R, Ossner T, Solé VV, Riedmann S, Ugur M, Imdahl F, Rosshart SP, Arnold SJ, Gomez de Agüero M, Gagliani N, Flavell RA, Backes S, Kastenmüller W, Gasteiger G. Circulating NK cells establish tissue residency upon acute infection of skin and mediate accelerated effector responses to secondary infection. Immunity 2024; 57:124-140.e7. [PMID: 38157853 PMCID: PMC10783803 DOI: 10.1016/j.immuni.2023.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/25/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Natural killer (NK) cells are present in the circulation and can also be found residing in tissues, and these populations exhibit distinct developmental requirements and are thought to differ in terms of ontogeny. Here, we investigate whether circulating conventional NK (cNK) cells can develop into long-lived tissue-resident NK (trNK) cells following acute infections. We found that viral and bacterial infections of the skin triggered the recruitment of cNK cells and their differentiation into Tcf1hiCD69hi trNK cells that share transcriptional similarity with CD56brightTCF1hi NK cells in human tissues. Skin trNK cells arose from interferon (IFN)-γ-producing effector cells and required restricted expression of the transcriptional regulator Blimp1 to optimize Tcf1-dependent trNK cell formation. Upon secondary infection, trNK cells rapidly gained effector function and mediated an accelerated NK cell response. Thus, cNK cells redistribute and permanently position at sites of previous infection via a mechanism promoting tissue residency that is distinct from Hobit-dependent developmental paths of NK cells and ILC1 seeding tissues during ontogeny.
Collapse
Affiliation(s)
- Tommaso Torcellan
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Christin Friedrich
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Rémi Doucet-Ladevèze
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Thomas Ossner
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany; International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism (IMPRS-IEM), 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Virgínia Visaconill Solé
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Sofie Riedmann
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Milas Ugur
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Fabian Imdahl
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97078 Würzburg, Germany
| | - Stephan P Rosshart
- Department of Microbiome Research, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Signaling Research Centers BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Mercedes Gomez de Agüero
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Nicola Gagliani
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Richard A Flavell
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Simone Backes
- Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
11
|
Sviridov D, Bukrinsky M. Neuro-HIV-New insights into pathogenesis and emerging therapeutic targets. FASEB J 2023; 37:e23301. [PMID: 37942865 PMCID: PMC11032165 DOI: 10.1096/fj.202301239rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) is a term describing a complex set of cognitive impairments accompanying HIV infection. Successful antiretroviral therapy (ART) reduces the most severe forms of HAND, but milder forms affect over 50% of people living with HIV (PLWH). Pathogenesis of HAND in the ART era remains unknown. A variety of pathogenic factors, such as persistent HIV replication in the brain reservoir, HIV proteins released from infected brain cells, HIV-induced neuroinflammation, and some components of ART, have been implicated in driving HAND pathogenesis in ART-treated individuals. Here, we propose another factor-impairment of cholesterol homeostasis and lipid rafts by HIV-1 protein Nef-as a possible contributor to HAND pathogenesis. These effects of Nef on cholesterol may also underlie the effects of other pathogenic factors that constitute the multifactorial nature of HAND pathogenesis. The proposed Nef- and cholesterol-focused mechanism may provide a long-sought unified explanation of HAND pathogenesis that takes into account all contributing factors. Evidence for the impairment by Nef of cellular cholesterol balance, potential effects of this impairment on brain cells, and opportunities to therapeutically target this element of HAND pathogenesis are discussed.
Collapse
Affiliation(s)
- Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Michael Bukrinsky
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|