1
|
Iida N, Okada A, Kobayashi Y, Chiba K, Yatabe Y, Shiraishi Y. Systematically developing a registry of splice-site creating variants utilizing massive publicly available transcriptome sequence data. Nat Commun 2025; 16:426. [PMID: 39788962 PMCID: PMC11718197 DOI: 10.1038/s41467-024-55185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Genomic variants causing abnormal splicing play important roles in genetic disorders and cancer development. Among them, variants that cause the formation of novel splice-sites (splice-site creating variants, SSCVs) are particularly difficult to identify and often overlooked in genomic studies. Additionally, these SSCVs are frequently considered promising candidates for treatment with splice-switching antisense oligonucleotides (ASOs). To leverage massive transcriptome sequence data such as those available from the Sequence Read Archive, we develop a novel framework to screen for SSCVs solely using transcriptome data. We apply it to 322,072 publicly available transcriptomes and identify 30,130 SSCVs. Among them, 5121 SSCVs affect disease-causing variants. By utilizing this extensive collection of SSCVs, we reveal the characteristics of Alu exonization via SSCVs, especially the hotspots of SSCVs within Alu sequences and their evolutionary relationships. We discover novel gain-of-function SSCVs in the deep intronic region of the NOTCH1 gene and demonstrate that their activation can be suppressed using splice-switching ASOs. Collectively, we provide a systematic approach for automatically acquiring a registry of SSCVs, which facilitates the elucidation of novel biological mechanisms underlying splicing and serves as a valuable resource for drug discovery. The catalogs of SSCVs identified in this study are accessible on the SSCV DB ( https://sscvdb.io ).
Collapse
Affiliation(s)
- Naoko Iida
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Ai Okada
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshihisa Kobayashi
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenichi Chiba
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasushi Yatabe
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
2
|
Lee YJ, Jo DH. Retinal Organoids from Induced Pluripotent Stem Cells of Patients with Inherited Retinal Diseases: A Systematic Review. Stem Cell Rev Rep 2025; 21:167-197. [PMID: 39422807 PMCID: PMC11762450 DOI: 10.1007/s12015-024-10802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Currently, most inherited retinal diseases lack curative interventions, and available treatment modalities are constrained to symptomatic approaches. Retinal organoid technology has emerged as a method for treating inherited retinal diseases, with growing academic interest in recent years. The purpose of this review was to systematically organize the current protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal disease and to investigate the application of retinal organoids in inherited retinal disease research. METHODS Data were collected from the PubMed, Scopus, and Web of Science databases using a keyword search. The main search term used was "retinal organoid," accompanied by secondary keywords such as "optic cup," "three-dimensional," and "self-organizing." The final search was conducted on October 2, 2024. RESULTS Of the 2,129 studies retrieved, 130 were included in the qualitative synthesis. The protocols for the generation of retinal organoids in inherited retinal disease research use five major approaches, categorized into 3D and a combination of 2D/3D approaches, implemented with modifications. Disease phenotypes have been successfully reproduced via the generation of retinal organoids from the induced pluripotent stem cells of individuals with inherited retinal diseases, facilitating the progression of research into novel therapeutic developments. Cells have been obtained from retinal organoids for cell therapy, and progress toward their potential integration into clinical practice is underway. Considering their potential applications, retinal organoid technology has shown promise across various domains. CONCLUSION In this systematic review, we organized protocols for generating retinal organoids using induced pluripotent stem cells from patients with inherited retinal diseases. Retinal organoid technology has various applications including disease modeling, screening for novel therapies, and cell replacement therapy. Further advancements would make this technology a clinically significant tool for patients with inherited retinal diseases.
Collapse
Affiliation(s)
- Yoo Jin Lee
- Department of Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
3
|
D'Abrusco F, Serpieri V, Taccagni CM, Garau J, Cattaneo L, Boggioni M, Gana S, Battini R, Bertini E, Zanni G, Boltshauser E, Borgatti R, Romaniello R, Signorini S, Leuzzi V, Caputi C, Manti F, D'Arrigo S, De Laurentiis A, Graziano C, Lemke JR, Morelli F, Petković Ramadža D, Sirchia F, Giorgio E, Valente EM. Pathogenic cryptic variants detectable through exome data reanalysis significantly increase the diagnostic yield in Joubert syndrome. Eur J Hum Genet 2025; 33:72-79. [PMID: 39394465 PMCID: PMC11711660 DOI: 10.1038/s41431-024-01703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/02/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024] Open
Abstract
Joubert syndrome (JS) is a genetically heterogeneous neurodevelopmental ciliopathy. Despite exome sequencing (ES), several patients remain undiagnosed. This study aims to increase the diagnostic yield by uncovering cryptic variants through targeted ES reanalysis. We first focused on 26 patients in whom ES only disclosed heterozygous pathogenic coding variants in a JS gene. We reanalyzed raw ES data searching for copy number variants (CNVs) and intronic variants affecting splicing. We validated CNVs through real-time PCR or chromosomal microarray, and splicing variants through RT-PCR or minigenes. Cryptic variants were then searched in additional 44 ES-negative JS individuals. We identified cryptic "second hits" in 14 of 26 children (54%) and biallelic cryptic variants in 3 of 44 (7%), reaching a definite diagnosis in 17 of 70 (overall diagnostic gain 24%). We show that CNVs and intronic splicing variants are a common mutational mechanism in JS; more importantly, we demonstrate that a significant proportion of such variants can be disclosed simply through a focused reanalysis of available ES data, with a significantly increase of the diagnostic yield especially among patients previously found to carry heterozygous coding variants in the KIAA0586, CC2D2A and CPLANE1 genes.
Collapse
Affiliation(s)
- Fulvio D'Abrusco
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | - Jessica Garau
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Luca Cattaneo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Monica Boggioni
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Simone Gana
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberta Battini
- IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical ad Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enrico Bertini
- Research Unit of Neuromuscular and Neurodegenerative Disorders, IRCCS Bambino Gesù Pediatric Hospital, Rome, Italy
| | - Ginevra Zanni
- Research Unit of Neuromuscular and Neurodegenerative Disorders, IRCCS Bambino Gesù Pediatric Hospital, Rome, Italy
| | | | - Renato Borgatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Romina Romaniello
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Sabrina Signorini
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Caterina Caputi
- Developmental Age Rehabilitation Service, Trasimeno District, Magione (PG), Italy
| | - Filippo Manti
- Department of Human Neuroscience, Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Stefano D'Arrigo
- Department of Developmental Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Arianna De Laurentiis
- Department of Developmental Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Claudio Graziano
- Medical Genetics Unit, MeLabeT Department, AUSL Romagna, Cesena, Italy
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Federica Morelli
- Department of Psychiatry, Autism Spectrum Disorders and Related Conditions Service, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Danijela Petković Ramadža
- Department of Pediatrics, University Hospital Centre Zagreb and University of Zagreb School of Medicine, Zagreb, Croatia
| | - Fabio Sirchia
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Medical Genetics Unit, IRCCS San Matteo Foundation, Pavia, Italy
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
4
|
Abdulsalam L, Mordecai J, Ahmad I. Non-viral gene therapy for Leber's congenital amaurosis: progress and possibilities. Nanomedicine (Lond) 2024:1-14. [PMID: 39707712 DOI: 10.1080/17435889.2024.2443387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Leber's congenital amaurosis (LCA) represents a set of rare and pervasive hereditary conditions of the retina that cause severe vision loss starting in early childhood. Targeted treatment intervention has become possible thanks to recent advances in understanding LCA genetic basis. While viral vectors have shown efficacy in gene delivery, they present challenges related to safety, low cargo capacity, and the potential for random genomic integration. Non-viral gene therapy is a safer and more flexible alternative to treating the underlying genetic mutation causing LCA. Non-viral gene delivery methods, such as inorganic nanoparticles, polymer-based delivery systems, and lipid-based nanoparticles, bypass the risks of immunogenicity and genomic integration, potentially offering a more versatile and personalized treatment for patients. This review explores the genetic background of LCA, emphasizing the mutations involved, and explores diverse non-viral gene delivery methods being developed. It also highlights recent studies on non-viral gene therapy for LCA in animal models and clinical trials. It presents future perspectives for gene therapy, including integrating emerging technologies like CRISPR-Cas9, interdisciplinary collaborations, personalized medicine, and ethical considerations.
Collapse
Affiliation(s)
- Latifat Abdulsalam
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - James Mordecai
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| | - Irshad Ahmad
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
| |
Collapse
|
5
|
García-Bohórquez B, Barberán-Martínez P, Aller E, Jaijo T, Mínguez P, Rodilla C, Fernández-Caballero L, Blanco-Kelly F, Ayuso C, Sanchis-Juan A, Broekman S, de Vrieze E, van Wijk E, García-García G, Millán JM. Exploring non-coding variants and evaluation of antisense oligonucleotides for splicing redirection in Usher syndrome. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102374. [PMID: 39629117 PMCID: PMC11612772 DOI: 10.1016/j.omtn.2024.102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/24/2024] [Indexed: 12/06/2024]
Abstract
Exploring non-coding regions is increasingly gaining importance in the diagnosis of inherited retinal dystrophies. Deep-intronic variants causing aberrant splicing have been identified, prompting the development of antisense oligonucleotides (ASOs) to modulate splicing. We performed a screening of five previously described USH2A deep-intronic variants among USH2A monoallelic patients with Usher syndrome (USH) or isolated retinitis pigmentosa. Sequencing of entire USH2A or USH genes was then conducted in unresolved or newly monoallelic cases. The splicing impact of identified variants was assessed using minigene assays, and ASOs were designed to correct splicing. The screening allowed to diagnose 30.95% of the studied patients. The sequencing of USH genes revealed 16 new variants predicted to affect splicing, with four confirmed to affect splicing through minigene assays. Two of them were unreported deep-intronic variants and predicted to include a pseudoexon in the pre-mRNA, and the other two could alter a regulatory cis-element. ASOs designed for three USH2A deep-intronic variants successfully redirected splicing in vitro. Our study demonstrates the improvement in genetic characterization of IRDs when analyzing non-coding regions, highlighting that deep-intronic variants significantly contribute to USH2A pathogenicity. Furthermore, successful splicing modulation through ASOs highlights their therapeutic potential for patients carrying deep-intronic variants.
Collapse
Affiliation(s)
- Belén García-Bohórquez
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
| | - Pilar Barberán-Martínez
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
- University and Polytechnic La Fe Hospital of Valencia, 46026 Valencia, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
- University and Polytechnic La Fe Hospital of Valencia, 46026 Valencia, Spain
| | - Pablo Mínguez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Cristina Rodilla
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Lidia Fernández-Caballero
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Fiona Blanco-Kelly
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Carmen Ayuso
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Alba Sanchis-Juan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sanne Broekman
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Gema García-García
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
| | - José M. Millán
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
- University and Polytechnic La Fe Hospital of Valencia, 46026 Valencia, Spain
| |
Collapse
|
6
|
Aleman TS, Roman AJ, Uyhazi KE, Jiang YY, Bedoukian EC, Sumaroka A, Wu V, Swider M, Viarbitskaya I, Russell RC, Shagena EO, Santos AJ, Serrano LW, Parchinski KM, Kim RJ, Weber ML, Garafalo AV, Thompson DA, Maguire AM, Bennett J, Scoles DH, O'Neil EC, Morgan JIW, Cideciyan AV. Retinal Degeneration Associated With Biallelic RDH12 Variants: Longitudinal Evaluation of Retinal Structure and Visual Function in Pediatric Patients. Invest Ophthalmol Vis Sci 2024; 65:30. [PMID: 39693083 DOI: 10.1167/iovs.65.14.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Purpose The purpose of this study was to determine the natural history of the photoreceptor disease in a large group of pediatric patients with RHD12-associated Leber congenital amaurosis (RDH12-LCA), to estimate the changes expected over the duration of a clinical trial, and to define the relationship between the photoreceptor loss and visual dysfunction. Methods Forty-six patients representing 36 families were included. The great majority of patients were under the age of 18 years. Patients underwent complete ophthalmic examinations and imaging with various modalities including adaptive optics scanning laser ophthalmoscopy. Visual function was assessed with static and kinetic perimetry, and full-field stimulus test (FST) under dark- and light-adapted conditions. Results Patients had a severe and early onset retinal degeneration (EORD). Visual acuity losses showed a progression rate of 0.04 logMAR per year. A small foveal island could be retained but showed degeneration over time. Foveal cone sensitivity losses were predictable by the loss of photoreceptors. Peripapillary retina could be retained with no significant progression detectable. Peripapillary rod sensitivity was substantially less than expected from photoreceptor structure pointing to a large improvement potential. FST sensitivities were reliably recordable in pediatric patients and showed a small but significant improvement with age. Locally and globally, loss of rod sensitivity tended to be larger than loss of cone sensitivity. Conclusions Foveal cones of RDH12-LCA should be targeted with treatments aimed to slow progression, whereas peripapillary rod photoreceptors should be targeted with treatments aimed to improve night vision. Pediatric FST testing may be complicated by age-related maturation of decision making regarding threshold criteria.
Collapse
Affiliation(s)
- Tomas S Aleman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Division of Ophthalmology and The Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Alejandro J Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Katherine E Uyhazi
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Yu You Jiang
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Emma C Bedoukian
- Division of Ophthalmology and The Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Vivian Wu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Iryna Viarbitskaya
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Robert C Russell
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Elizabeth O Shagena
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Arlene J Santos
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Leona W Serrano
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kelsey M Parchinski
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Rebecca J Kim
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Mariejel L Weber
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexandra V Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Dorothy A Thompson
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Albert M Maguire
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Division of Ophthalmology and The Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Jean Bennett
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Drew H Scoles
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Division of Ophthalmology and The Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Erin C O'Neil
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Division of Ophthalmology and The Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Jessica I W Morgan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
7
|
Gong X, Hertle RW. Infantile Nystagmus Syndrome-Associated Inherited Retinal Diseases: Perspectives from Gene Therapy Clinical Trials. Life (Basel) 2024; 14:1356. [PMID: 39598155 PMCID: PMC11595273 DOI: 10.3390/life14111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Inherited retinal diseases (IRDs) are a clinically and genetically diverse group of progressive degenerative disorders that can result in severe visual impairment or complete blindness. Despite their predominantly monogenic inheritance patterns, the genetic complexity of over 300 identified disease-causing genes presents a significant challenge in correlating clinical phenotypes with genotypes. Achieving a molecular diagnosis is crucial for providing patients with definitive diagnostic clarity and facilitating access to emerging gene-based therapies and ongoing clinical trials. Recent advances in next-generation sequencing technologies have markedly enhanced our ability to identify genes and genetic defects leading to IRDs, thereby propelling the development of gene-based therapies. The clinical success of voretigene neparvovec (Luxturna), the first approved retinal gene therapy for RPE65-associated Leber congenital amaurosis (LCA), has spurred considerable research and development in gene-based therapies, highlighting the importance of reviewing the current status of gene therapy for IRDs, particularly those utilizing adeno-associated virus (AAV)-based therapies. As novel disease-causing mutations continue to be discovered and more targeted gene therapies are developed, integrating these treatment opportunities into the standard care for IRD patients becomes increasingly critical. This review provides an update on the diverse phenotypic-genotypic landscape of IRDs, with a specific focus on recent advances in the understanding of IRDs in children with infantile nystagmus syndrome (INS). We highlight the complexities of the genotypic-phenotypic landscape of INS-associated IRDs, including conditions such as achromatopsia, LCA, congenital stationary night blindness, and subtypes of retinitis pigmentosa. Additionally, we provide an updated overview of AAV-based gene therapies for these diseases and discuss the potential of gene-based therapies for underlying IRDs that lead to INS, offering a valuable resource for pediatric patients potentially eligible for ongoing clinical trials.
Collapse
Affiliation(s)
- Xiaoming Gong
- Department of Ophthalmology, Akron Children’s Hospital, Akron, OH 44308, USA;
- Vision Center of Excellence, Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH 44308, USA
| | - Richard W. Hertle
- Department of Ophthalmology, Akron Children’s Hospital, Akron, OH 44308, USA;
- Vision Center of Excellence, Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH 44308, USA
| |
Collapse
|
8
|
Igoe JM, Lam BL, Gregori NZ. Update on Clinical Trial Endpoints in Gene Therapy Trials for Inherited Retinal Diseases. J Clin Med 2024; 13:5512. [PMID: 39336999 PMCID: PMC11431936 DOI: 10.3390/jcm13185512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Inherited retinal diseases (IRDs) encompass a wide spectrum of rare conditions characterized by diverse phenotypes associated with hundreds of genetic variations, often leading to progressive visual impairment and profound vision loss. Multiple natural history studies and clinical trials exploring gene therapy for various IRDs are ongoing. Outcomes for ophthalmic trials measure visual changes in three main categories-structural, functional, and patient-focused outcomes. Since IRDs may range from congenital with poor central vision from birth to affecting the peripheral retina initially and progressing insidiously with visual acuity affected late in the disease course, typical outcome measures such as central visual acuity and ocular coherence tomography (OCT) imaging of the macula may not provide adequate representation of therapeutic outcomes including alterations in disease course. Thus, alternative unique outcome measures are necessary to assess loss of peripheral vision, color vision, night vision, and contrast sensitivity in IRDs. These differences have complicated the assessment of clinical outcomes for IRD therapies, and the clinical trials for IRDs have had to design novel specialized endpoints to demonstrate treatment efficacy. As genetic engineering and gene therapy techniques continue to advance with growing investment from industry and accelerated approval tracks for orphan conditions, the clinical trials must continue to improve their assessments to demonstrate safety and efficacy of new gene therapies that aim to come to market. Here, we will provide an overview of the current gene therapy approaches, review various endpoints for measuring visual function, highlight those that are utilized in recent gene therapy trials, and provide an overview of stage 2 and 3 IRD trials through the second quarter of 2024.
Collapse
Affiliation(s)
- Jane M Igoe
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Byron L Lam
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ninel Z Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Miami Veterans Administration Medical Center, Miami, FL 33125, USA
| |
Collapse
|
9
|
Collin RWJ, Leroy BP. In vivo genome editing for inherited retinal disease: Opportunities and challenges. Mol Ther 2024; 32:2433-2434. [PMID: 39084223 PMCID: PMC11405168 DOI: 10.1016/j.ymthe.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Affiliation(s)
- Rob W J Collin
- Department of Human Genetics, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Bart P Leroy
- Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium; Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Bainbridge JWB. Success in Sight for Gene Editing. N Engl J Med 2024; 390:2025-2027. [PMID: 38838317 DOI: 10.1056/nejme2405256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Affiliation(s)
- James W B Bainbridge
- From the National Institute for Health Research Moorfields Biomedical Research Centre, University College London Institute of Ophthalmology, London
| |
Collapse
|
11
|
Pierce EA, Aleman TS, Jayasundera KT, Ashimatey BS, Kim K, Rashid A, Jaskolka MC, Myers RL, Lam BL, Bailey ST, Comander JI, Lauer AK, Maguire AM, Pennesi ME. Gene Editing for CEP290-Associated Retinal Degeneration. N Engl J Med 2024; 390:1972-1984. [PMID: 38709228 PMCID: PMC11389875 DOI: 10.1056/nejmoa2309915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
BACKGROUND CEP290-associated inherited retinal degeneration causes severe early-onset vision loss due to pathogenic variants in CEP290. EDIT-101 is a clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) gene-editing complex designed to treat inherited retinal degeneration caused by a specific damaging variant in intron 26 of CEP290 (IVS26 variant). METHODS We performed a phase 1-2, open-label, single-ascending-dose study in which persons 3 years of age or older with CEP290-associated inherited retinal degeneration caused by a homozygous or compound heterozygous IVS26 variant received a subretinal injection of EDIT-101 in the worse (study) eye. The primary outcome was safety, which included adverse events and dose-limiting toxic effects. Key secondary efficacy outcomes were the change from baseline in the best corrected visual acuity, the retinal sensitivity detected with the use of full-field stimulus testing (FST), the score on the Ora-Visual Navigation Challenge mobility test, and the vision-related quality-of-life score on the National Eye Institute Visual Function Questionnaire-25 (in adults) or the Children's Visual Function Questionnaire (in children). RESULTS EDIT-101 was injected in 12 adults 17 to 63 years of age (median, 37 years) at a low dose (in 2 participants), an intermediate dose (in 5), or a high dose (in 5) and in 2 children 9 and 14 years of age at the intermediate dose. At baseline, the median best corrected visual acuity in the study eye was 2.4 log10 of the minimum angle of resolution (range, 3.9 to 0.6). No serious adverse events related to the treatment or procedure and no dose-limiting toxic effects were recorded. Six participants had a meaningful improvement from baseline in cone-mediated vision as assessed with the use of FST, of whom 5 had improvement in at least one other key secondary outcome. Nine participants (64%) had a meaningful improvement from baseline in the best corrected visual acuity, the sensitivity to red light as measured with FST, or the score on the mobility test. Six participants had a meaningful improvement from baseline in the vision-related quality-of-life score. CONCLUSIONS The safety profile and improvements in photoreceptor function after EDIT-101 treatment in this small phase 1-2 study support further research of in vivo CRISPR-Cas9 gene editing to treat inherited retinal degenerations due to the IVS26 variant of CEP290 and other genetic causes. (Funded by Editas Medicine and others; BRILLIANCE ClinicalTrials.gov number, NCT03872479.).
Collapse
Affiliation(s)
- Eric A Pierce
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Tomas S Aleman
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Kanishka T Jayasundera
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Bright S Ashimatey
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Keunpyo Kim
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Alia Rashid
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Michael C Jaskolka
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Rene L Myers
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Byron L Lam
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Steven T Bailey
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Jason I Comander
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Andreas K Lauer
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Albert M Maguire
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| | - Mark E Pennesi
- From the Ocular Genomics Institute, Department of Ophthalmology, Mass Eye and Ear and Harvard Medical School, Boston (E.A.P., J.I.C.), and Editas Medicine, Cambridge (B.S.A., K.K., A.R., M.C.J., R.L.M.) - both in Massachusetts; the Scheie Eye Institute and the Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (T.S.A., A.M.M.); the University of Michigan Kellogg Eye Center, Ann Arbor (K.T.J.); the Bascom Palmer Eye Institute, University of Miami, Miami (B.L.L.); and the Casey Eye Institute, Oregon Health and Science University, Portland (S.T.B., A.K.L., M.E.P.)
| |
Collapse
|
12
|
Salehi O, Mack H, Colville D, Lewis D, Savige J. Ocular manifestations of renal ciliopathies. Pediatr Nephrol 2024; 39:1327-1346. [PMID: 37644229 PMCID: PMC10942941 DOI: 10.1007/s00467-023-06096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023]
Abstract
Renal ciliopathies are a common cause of kidney failure in children and adults, and this study reviewed their ocular associations. Genes affected in renal ciliopathies were identified from the Genomics England Panels. Ocular associations were identified from Medline and OMIM, and the genes additionally examined for expression in the human retina ( https://www.proteinatlas.org/humanproteome/tissue ) and for an ocular phenotype in mouse models ( http://www.informatics.jax.org/ ). Eighty-two of the 86 pediatric-onset renal ciliopathies (95%) have an ocular phenotype, including inherited retinal degeneration, oculomotor disorders, and coloboma. Diseases associated with pathogenic variants in ANK6, MAPKBP1, NEK8, and TCTN1 have no reported ocular manifestations, as well as low retinal expression and no ocular features in mouse models. Ocular abnormalities are not associated with the most common adult-onset "cystic" kidney diseases, namely, autosomal dominant (AD) polycystic kidney disease and the AD tubulointerstitial kidney diseases (ADTKD). However, other kidney syndromes with cysts have ocular features including papillorenal syndrome (optic disc dysplasia), Hereditary Angiopathy Nephropathy, Aneurysms and muscle Cramps (HANAC) (tortuous retinal vessels), tuberous sclerosis (retinal hamartomas), von Hippel-Lindau syndrome (retinal hemangiomas), and Alport syndrome (lenticonus, fleck retinopathy). Ocular abnormalities are associated with many pediatric-onset renal ciliopathies but are uncommon in adult-onset cystic kidney disease. However the demonstration of ocular manifestations may be helpful diagnostically and the features may require monitoring or treatment.
Collapse
Affiliation(s)
- Omar Salehi
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia
| | - Heather Mack
- University Department of Surgery (Ophthalmology), Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Deb Colville
- University Department of Surgery (Ophthalmology), Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | - Debbie Lewis
- Nephrology Department, The Children's Hospital at Westmead, Westmead, NSW, 2145, Australia
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.
| |
Collapse
|
13
|
Du X, Butler AG, Chen HY. Cell-cell interaction in the pathogenesis of inherited retinal diseases. Front Cell Dev Biol 2024; 12:1332944. [PMID: 38500685 PMCID: PMC10944940 DOI: 10.3389/fcell.2024.1332944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/06/2024] [Indexed: 03/20/2024] Open
Abstract
The retina is part of the central nervous system specialized for vision. Inherited retinal diseases (IRD) are a group of clinically and genetically heterogenous disorders that lead to progressive vision impairment or blindness. Although each disorder is rare, IRD accumulatively cause blindness in up to 5.5 million individuals worldwide. Currently, the pathophysiological mechanisms of IRD are not fully understood and there are limited treatment options available. Most IRD are caused by degeneration of light-sensitive photoreceptors. Genetic mutations that abrogate the structure and/or function of photoreceptors lead to visual impairment followed by blindness caused by loss of photoreceptors. In healthy retina, photoreceptors structurally and functionally interact with retinal pigment epithelium (RPE) and Müller glia (MG) to maintain retinal homeostasis. Multiple IRD with photoreceptor degeneration as a major phenotype are caused by mutations of RPE- and/or MG-associated genes. Recent studies also reveal compromised MG and RPE caused by mutations in ubiquitously expressed ciliary genes. Therefore, photoreceptor degeneration could be a direct consequence of gene mutations and/or could be secondary to the dysfunction of their interaction partners in the retina. This review summarizes the mechanisms of photoreceptor-RPE/MG interaction in supporting retinal functions and discusses how the disruption of these processes could lead to photoreceptor degeneration, with an aim to provide a unique perspective of IRD pathogenesis and treatment paradigm. We will first describe the biology of retina and IRD and then discuss the interaction between photoreceptors and MG/RPE as well as their implications in disease pathogenesis. Finally, we will summarize the recent advances in IRD therapeutics targeting MG and/or RPE.
Collapse
Affiliation(s)
| | | | - Holly Y. Chen
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
14
|
Charng J, Escalona IAV, Turpin A, McKendrick AM, Mackey DA, Alonso-Caneiro D, Chen FK. Nonlinear Reduction in Hyperautofluorescent Ring Area in Retinitis Pigmentosa. Ophthalmol Retina 2024; 8:298-306. [PMID: 37743021 DOI: 10.1016/j.oret.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
PURPOSE To report baseline dimension of the autofluorescent (AF) ring in a large cohort of retinitis pigmentosa (RP) patients and to evaluate models of ring progression. DESIGN Cohort study. PARTICIPANTS Four hundred and forty-five eyes of 224 patients with clinical diagnosis of RP. METHODS Autofluorescent rings from near-infrared AF (NIRAF) and short-wavelength AF (SWAF) imaging modalities in RP eyes were segmented with ring area and horizontal extent extracted from each image for cross-sectional and longitudinal analyses. In longitudinal analysis, for each eye, ring area, horizontal extent, and natural logarithm of the ring area were assessed as the best dependent variable for linear regression by evaluating R2 values. Linear mixed-effects modeling was utilized to account for intereye correlation. MAIN OUTCOME MEASURES Autofluorescent ring size characteristics at baseline and ring progression rates. RESULTS A total of 439 eyes had SWAF imaging at baseline with the AF ring observed in 206 (46.9%) eyes. Mean (95% confidence interval) of ring area and horizontal extent were 7.85 (6.60 to 9.11) mm2 and 3.35 (3.10 to 3.60) mm, respectively. In NIRAF, the mean ring area and horizontal extent were 7.74 (6.60 to 8.89) mm2 and 3.26 (3.02 to 3.50) mm, respectively in 251 out of 432 eyes. Longitudinal analysis showed mean progression rates of -0.57 mm2/year and -0.12 mm/year in SWAF using area and horizontal extent as the dependent variable, respectively. When ln(Area) was analyzed as the dependent variable, mean progression was -0.07 ln(mm2)/year, which equated to 6.80% decrease in ring area per year. Similar rates were found in NIRAF (area: -0.59 mm2/year, horizontal extent: -0.12 mm/year and ln(Area): -0.08 ln(mm2)/year, equated to 7.75% decrease in area per year). Analysis of R2 showed that the dependent variable ln(Area) provided the best linear model for ring progression in both imaging modalities, especially in eyes with large overall area change. CONCLUSIONS Our data suggest that using an exponential model to estimate progression of the AF ring area in RP is more appropriate than the models assuming linear decrease. Hence, the progression estimates provided in this study should provide more accurate reference points in designing clinical trials in RP patients. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Jason Charng
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia; Department of Optometry, School of Allied Health, The University of Western Australia, Perth, Australia
| | - Ignacio A V Escalona
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - Andrew Turpin
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia; School of Population Health, Curtin University, Perth, Australia
| | - Allison M McKendrick
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia; Department of Optometry, School of Allied Health, The University of Western Australia, Perth, Australia
| | - David A Mackey
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia
| | - David Alonso-Caneiro
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology (QUT), Kelvin Grove, Australia; School of Science, Technology and Engineering, University of Sunshine Coast, Petrie, Queensland, Australia
| | - Fred K Chen
- Centre of Ophthalmology and Visual Science (incorporating Lions Eye Institute), The University of Western Australia, Western Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia; Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia; Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia.
| |
Collapse
|
15
|
Jung R, Kempf M, Holocher S, Kortüm FC, Stingl K, Stingl K. Multi-luminance mobility testing after gene therapy in the context of retinal functional diagnostics. Graefes Arch Clin Exp Ophthalmol 2024; 262:601-607. [PMID: 37768368 PMCID: PMC10844143 DOI: 10.1007/s00417-023-06237-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Voretigene neparvovec (Luxturna®) is the first approved gene therapy for RPE65-linked Leber congenital amaurosis (LCA). Though individual effects are highly variable, most recipients report improved vision in everyday life. To describe such effects, visual navigation tests are now frequently used in clinical trials. However, it is still unclear how their results should be interpreted compared to conventional parameters of visual function. METHODS Seven LCA patients underwent a multi-luminance visual navigation test (Ora-VNCTM) before and 3 months after receiving Luxturna gene therapy. Their performance was rated based on the luminance level at which they passed the course. Differences between the first and second test were correlated to changes in visual acuity, full-field stimulus thresholds, chromatic pupil campimetry, and dark-adapted perimetry. RESULTS A few patients displayed notable improvements in conventional measures of visual function whereas patients with advanced retinal degeneration showed no relevant changes. Independent of these results, almost all participants improved in the visual navigation task by one or more levels. The improvement in the mobility test was best correlated to the change in full-field stimulus thresholds. Other measures of visual functions showed no clear correlation with visual navigation. DISCUSSION In patients who passed the test's more difficult levels, improved visual navigation can be attributed to the reactivation of rods. However, the performance of patients with low vision seemed to depend much more on confounding factors in the easier levels. In sum, such tests might only be meaningful for patients with better preserved visual functions.
Collapse
Affiliation(s)
- Ronja Jung
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Str.7, Tübingen, Germany.
| | - Melanie Kempf
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Str.7, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany
| | - Saskia Holocher
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Str.7, Tübingen, Germany
| | - Friederike C Kortüm
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Str.7, Tübingen, Germany
| | - Krunoslav Stingl
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Str.7, Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany
| | - Katarina Stingl
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Elfriede-Aulhorn-Str.7, Tübingen, Germany.
- Center for Rare Eye Diseases, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
16
|
Jolly JK, Grigg JR, McKendrick AM, Fujinami K, Cideciyan AV, Thompson DA, Matsumoto C, Asaoka R, Johnson C, Dul MW, Artes PH, Robson AG. ISCEV and IPS guideline for the full-field stimulus test (FST). Doc Ophthalmol 2024; 148:3-14. [PMID: 38238632 PMCID: PMC10879267 DOI: 10.1007/s10633-023-09962-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 02/21/2024]
Abstract
The full-field stimulus test (FST) is a psychophysical technique designed for the measurement of visual function in low vision. The method involves the use of a ganzfeld stimulator, as used in routine full-field electroretinography, to deliver full-field flashes of light. This guideline was developed jointly by the International Society for Clinical Electrophysiology of Vision (ISCEV) and Imaging and Perimetry Society (IPS) in order to provide technical information, promote consistency of testing and reporting, and encourage convergence of methods for FST. It is intended to aid practitioners and guide the formulation of FST protocols, with a view to future standardisation.
Collapse
Affiliation(s)
- J K Jolly
- Vision and Eye Research Institute, Anglia Ruskin University, Young Street, Cambridge, CB1 2LZ, UK.
| | - J R Grigg
- Save Sight Institute, Specialty of Clinical Ophthalmology and Eye Health, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Eye Genetics Research Unit, Sydney Children's Hospitals Network, Save Sight Institute, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - A M McKendrick
- Lions Eye Institute, University of Western Australia, Perth, Australia
- School of Allied Health, University of Western Australia, Crawley, Australia
| | - K Fujinami
- Laboratory of Visual Physiology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
- Institute of Ophthalmology, University College London, London, UK
| | - A V Cideciyan
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, University of Pennsylvania, Philadelphia, USA
| | - D A Thompson
- The Tony Kriss Visual Electrophysiology Unit, Clinical and Academic, Department of Ophthalmology, Sight and Sound Centre, Great Ormond Street Hospital for Children NHS Trust, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - C Matsumoto
- Department of Ophthalmology, Kindai University, Osakasayama, Japan
| | - R Asaoka
- Department of Ophthalmology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan
- Seirei Christopher University, Hamamatsu, Shizuoka, Japan
- Nanovision Research Division, Research Institute of Electronics, Shizuoka University, Shizuoka, Japan
- The Graduate School for the Creation of New Photonics Industries, Shizuoka, Japan
| | - C Johnson
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
- School of Optometry, The Ohio State University, Columbus, IA, USA
| | - M W Dul
- Department of Biological and Vision Science, College of Optometry, State University of New York, New York, USA
| | - P H Artes
- Faculty of Health, University of Plymouth, Plymouth, UK
| | - A G Robson
- Institute of Ophthalmology, University College London, London, UK
- Department of Electrophysiology, Moorfields Eye Hospital, London, UK
| |
Collapse
|
17
|
Shi LF, Hall AJ, Thompson DA. Full-field stimulus threshold testing: a scoping review of current practice. Eye (Lond) 2024; 38:33-53. [PMID: 37443335 PMCID: PMC10764876 DOI: 10.1038/s41433-023-02636-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The full-field stimulus threshold (FST) is a psychophysical measure of whole-field retinal light sensitivity. It can assess residual visual function in patients with severe retinal disease and is increasingly being adopted as an endpoint in clinical trials. FST applications in routine ophthalmology clinics are also growing, but as yet there is no formalised standard guidance for measuring FST. This scoping review explored current variability in FST conduct and reporting, with an aim to inform further evidence synthesis and consensus guidance. A comprehensive electronic search and review of the literature was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis Extension for Scoping Reviews (PRISMA-ScR) checklist. Key source, participant, methodology and outcomes data from 85 included sources were qualitatively and quantitatively compared and summarised. Data from 85 sources highlight how the variability and insufficient reporting of FST methodology, including parameters such as units of flash luminance, colour, duration, test strategy and dark adaptation, can hinder comparison and interpretation of clinical significance across centres. The review also highlights an unmet need for paediatric-specific considerations for test optimisation. Further evidence synthesis, empirical research or structured panel consultation may be required to establish coherent standardised guidance on FST methodology and context or condition dependent modifications. Consistent reporting of core elements, most crucially the flash luminance equivalence to 0 dB reference level is a first step. The development of criteria for quality assurance, calibration and age-appropriate reference data generation may further strengthen rigour of measurement.
Collapse
Affiliation(s)
- Linda F Shi
- Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Amanda J Hall
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Dorothy A Thompson
- Tony Kriss Visual Electrophysiology Unit, Clinical and Academic Department of Ophthalmology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- UCL Great Ormond Street Institute for Child Health, University College London, London, UK.
| |
Collapse
|
18
|
Aartsma-Rus A, Collin RWJ, Elgersma Y, Lauffer MC, van Roon-Mom W. Joining forces to develop individualized antisense oligonucleotides for patients with brain or eye diseases: the example of the Dutch Center for RNA Therapeutics. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241273465. [PMID: 39328974 PMCID: PMC11425740 DOI: 10.1177/26330040241273465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/15/2024] [Indexed: 09/28/2024]
Abstract
Antisense oligonucleotides (ASOs) offer versatile tools to modify the processing and expression levels of gene transcripts. As such, they have a high therapeutic potential for rare genetic diseases, where applicability of each ASO ranges from thousands of patients worldwide to single individuals based on the prevalence of the causative pathogenic variant. It was shown that development of individualized ASOs was feasible within an academic setting, starting with Milasen for the treatment of a patient with CLN7 Batten's disease in the USA. Inspired by this, the Dutch Center for RNA Therapeutics (DCRT) was established by three academic medical centers in the Netherlands with a track record in ASO development for progressive, genetic neurodegenerative, neurodevelopmental, and retinal disorders. The goal of the DCRT is to bundle expertise and address national ethical, regulatory, and financial issues related to ASO treatment, and ultimately to develop individualized ASOs for eligible patients with genetic diseases affecting the central nervous system in an academic, not-for-profit setting. In this perspective, we describe the establishment of the DCRT in 2020 and the achievements so far, with a specific focus on lessons learned: the need for processes and procedures, the need for global collaboration, the need to raise awareness, and the fact that N-of-1 is N-of-a-few.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Dutch Center for RNA Therapeutic, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob W J Collin
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ype Elgersma
- Dutch Center for RNA Therapeutics, Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Marlen C Lauffer
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Willeke van Roon-Mom
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
19
|
Cideciyan AV, Jacobson SG, Ho AC, Swider M, Sumaroka A, Roman AJ, Wu V, Russell RC, Viarbitskaya I, Garafalo AV, Schwartz MR, Girach A. Durable vision improvement after a single intravitreal treatment with antisense oligonucleotide in CEP290-LCA: Replication in two eyes. Am J Ophthalmol Case Rep 2023; 32:101873. [PMID: 37388818 PMCID: PMC10302566 DOI: 10.1016/j.ajoc.2023.101873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
Purpose An intravitreally injected antisense oligonucleotide, sepofarsen, was designed to modulate splicing within retinas of patients with severe vision loss due to deep intronic c.2991 + 1655A > G variant in the CEP290 gene. A previous report showed vision improvements following a single injection in one eye with unexpected durability lasting at least 15 months. The current study evaluated durability of efficacy beyond 15 months in the previously treated left eye. In addition, peak efficacy and durability were evaluated in the treatment-naive right eye, and re-injection of the left eye 4 years after the first injection. Observations Visual function was evaluated with best corrected standard and low-luminance visual acuities, microperimetry, dark-adapted chromatic perimetry, and full-field sensitivity testing. Retinal structure was evaluated with OCT imaging. At the fovea, all visual function measures and IS/OS intensity of the OCT showed transient improvements peaking at 3-6 months, remaining better than baseline at ∼2 years, and returning to baseline by 3-4 years after each single injection. Conclusions and Importance These results suggest that sepofarsen reinjection intervals may need to be longer than 2 years.
Collapse
Affiliation(s)
- Artur V. Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel G. Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Allen C. Ho
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, USA
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alejandro J. Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivian Wu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert C. Russell
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Iryna Viarbitskaya
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra V. Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
20
|
Bremond-Gignac D, Robert MP, Daruich A. Update on gene therapies in pediatric ophthalmology. Arch Pediatr 2023; 30:8S41-8S45. [PMID: 38043982 DOI: 10.1016/s0929-693x(23)00226-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Rare eye diseases encompass a broad spectrum of genetic anomalies with or without additional extraocular manifestations. Genetic eye disorders in pediatric patients often lead to severe visual impairments. Therefore, a challenge of gene therapy is to provide better vision to these affected children. In recent years, inherited retinal diseases, inherited optic neuropathies, and corneal dystrophies have dominated discussions to establish gene and cell replacement therapies for these diseases. Gene therapy involves the transfer of genetic material to remove, replace, repair, or introduce a gene, or to overexpress a protein, whose activity would have a therapeutic impact. For the majority of anterior segment diseases, these studies are still emerging at a preclinical stage; however, for inherited retinal disorders, translation has been reached, leading to the introduction of the first gene therapies into clinical practice. In the past decade, the first gene therapy for biallelic RPE65-mediated inherited retinal dystrophy has been developed and the FDA and EMA both approved ocular gene therapy. Other promising approaches by intravitreal injection have been investigated such as in CEP290-Leber congenital amaurosis. Various techniques of gene therapies include gene supplementation, CRISPR-based genome editing, as well as RNA modulation and optogenetics. Optogenetic therapies deliver light-activated ion channels to surviving retinal cell types in order to restore photosensitivity. Beyond retinal function, ataluren, a nonsense mutation suppression therapy, enables ribosomal read-through of mRNA containing premature termination codons, resulting in the production of a full-length protein. An ophthalmic formulation was recently evaluated with the aim of repairing corneal damage, pending new clinical studies. However, various congenital disorders exhibit severe developmental defects or cell loss at birth, limiting the potential for viral gene therapy. Therefore mutation-independent strategies seem promising for maintaining the survival of photoreceptors or for restoring visual function. Restoring vision in children with gene therapy continues to be a challenge in ophthalmology. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.
Collapse
Affiliation(s)
- Dominique Bremond-Gignac
- Département d'Ophthalmologie, Hôpital Universitaire Necker-Enfants malades, AP-HP, Université Paris Cité, Paris, France; INSERM, UMRS1138, Equipe 17 Sorbonne Université, Université Paris Cité, Centre de Recherche des Cordeliers, Paris, France.
| | - Matthieu P Robert
- Département d'Ophthalmologie, Hôpital Universitaire Necker-Enfants malades, AP-HP, Université Paris Cité, Paris, France; Centre Borelli, UMR 9010 CNRS - SSA - ENS Paris Saclay - Paris University
| | - Alejandra Daruich
- Département d'Ophthalmologie, Hôpital Universitaire Necker-Enfants malades, AP-HP, Université Paris Cité, Paris, France; INSERM, UMRS1138, Equipe 17 Sorbonne Université, Université Paris Cité, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
21
|
Keuthan CJ, Karma S, Zack DJ. Alternative RNA Splicing in the Retina: Insights and Perspectives. Cold Spring Harb Perspect Med 2023; 13:a041313. [PMID: 36690463 PMCID: PMC10547393 DOI: 10.1101/cshperspect.a041313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alternative splicing is a fundamental and highly regulated post-transcriptional process that enhances transcriptome and proteome diversity. This process is particularly important in neuronal tissues, such as the retina, which exhibit some of the highest levels of differentially spliced genes in the body. Alternative splicing is regulated both temporally and spatially during neuronal development, can be cell-type-specific, and when altered can cause a number of pathologies, including retinal degeneration. Advancements in high-throughput sequencing technologies have facilitated investigations of the alternative splicing landscape of the retina in both healthy and disease states. Additionally, innovations in human stem cell engineering, specifically in the generation of 3D retinal organoids, which recapitulate many aspects of the in vivo retinal microenvironment, have aided studies of the role of alternative splicing in human retinal development and degeneration. Here we review these advances and discuss the ongoing development of strategies for the treatment of alternative splicing-related retinal disease.
Collapse
Affiliation(s)
- Casey J Keuthan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Sadik Karma
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Donald J Zack
- Departments of Ophthalmology, Wilmer Eye Institute, Neuroscience, Molecular Biology and Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| |
Collapse
|
22
|
Abdalla Elsayed MEA, Taylor LJ, Josan AS, Fischer MD, MacLaren RE. Choroideremia: The Endpoint Endgame. Int J Mol Sci 2023; 24:14354. [PMID: 37762657 PMCID: PMC10532430 DOI: 10.3390/ijms241814354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Choroideremia is an X-linked retinal degeneration resulting from the progressive, centripetal loss of photoreceptors and choriocapillaris, secondary to the degeneration of the retinal pigment epithelium. Affected individuals present in late childhood or early teenage years with nyctalopia and progressive peripheral visual loss. Typically, by the fourth decade, the macula and fovea also degenerate, resulting in advanced sight loss. Currently, there are no approved treatments for this condition. Gene therapy offers the most promising therapeutic modality for halting or regressing functional loss. The aims of the current review are to highlight the lessons learnt from clinical trials in choroideremia, review endpoints, and propose a future strategy for clinical trials.
Collapse
Affiliation(s)
- Maram E. A. Abdalla Elsayed
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Laura J. Taylor
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Amandeep S. Josan
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - M. Dominik Fischer
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Oxford Eye Hospital, Oxford University Hospitals National Health Service Foundation Trust, Oxford OX3 9DU, UK
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
23
|
Mangla P, Vicentini Q, Biscans A. Therapeutic Oligonucleotides: An Outlook on Chemical Strategies to Improve Endosomal Trafficking. Cells 2023; 12:2253. [PMID: 37759475 PMCID: PMC10527716 DOI: 10.3390/cells12182253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The potential of oligonucleotide therapeutics is undeniable as more than 15 drugs have been approved to treat various diseases in the liver, central nervous system (CNS), and muscles. However, achieving effective delivery of oligonucleotide therapeutics to specific tissues still remains a major challenge, limiting their widespread use. Chemical modifications play a crucial role to overcome biological barriers to enable efficient oligonucleotide delivery to the tissues/cells of interest. They provide oligonucleotide metabolic stability and confer favourable pharmacokinetic/pharmacodynamic properties. This review focuses on the various chemical approaches implicated in mitigating the delivery problem of oligonucleotides and their limitations. It highlights the importance of linkers in designing oligonucleotide conjugates and discusses their potential role in escaping the endosomal barrier, a bottleneck in the development of oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Priyanka Mangla
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| | - Quentin Vicentini
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
- Department of Laboratory Medicine, Clinical Research Centre, Karolinska Institute, 141 57 Stockholm, Sweden
| | - Annabelle Biscans
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| |
Collapse
|
24
|
Whelan L, Dockery A, Stephenson KAJ, Zhu J, Kopčić E, Post IJM, Khan M, Corradi Z, Wynne N, O' Byrne JJ, Duignan E, Silvestri G, Roosing S, Cremers FPM, Keegan DJ, Kenna PF, Farrar GJ. Detailed analysis of an enriched deep intronic ABCA4 variant in Irish Stargardt disease patients. Sci Rep 2023; 13:9380. [PMID: 37296172 PMCID: PMC10256698 DOI: 10.1038/s41598-023-35889-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Over 15% of probands in a large cohort of more than 1500 inherited retinal degeneration patients present with a clinical diagnosis of Stargardt disease (STGD1), a recessive form of macular dystrophy caused by biallelic variants in the ABCA4 gene. Participants were clinically examined and underwent either target capture sequencing of the exons and some pathogenic intronic regions of ABCA4, sequencing of the entire ABCA4 gene or whole genome sequencing. ABCA4 c.4539 + 2028C > T, p.[= ,Arg1514Leufs*36] is a pathogenic deep intronic variant that results in a retina-specific 345-nucleotide pseudoexon inclusion. Through analysis of the Irish STGD1 cohort, 25 individuals across 18 pedigrees harbour ABCA4 c.4539 + 2028C > T and another pathogenic variant. This includes, to the best of our knowledge, the only two homozygous patients identified to date. This provides important evidence of variant pathogenicity for this deep intronic variant, highlighting the value of homozygotes for variant interpretation. 15 other heterozygous incidents of this variant in patients have been reported globally, indicating significant enrichment in the Irish population. We provide detailed genetic and clinical characterization of these patients, illustrating that ABCA4 c.4539 + 2028C > T is a variant of mild to intermediate severity. These results have important implications for unresolved STGD1 patients globally with approximately 10% of the population in some western countries claiming Irish heritage. This study exemplifies that detection and characterization of founder variants is a diagnostic imperative.
Collapse
Affiliation(s)
- Laura Whelan
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland.
| | - Adrian Dockery
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
- Next Generation Sequencing Laboratory, Pathology Department, The Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Kirk A J Stephenson
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Julia Zhu
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Ella Kopčić
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Iris J M Post
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| | - Mubeen Khan
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- International Max Planck Research School for Language Sciences, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Niamh Wynne
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - James J O' Byrne
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin 7, Ireland
- International Max Planck Research School for Language Sciences, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- National Centre for Inherited Metabolic Disorders, The Mater Misericordiae University Hospital, Dublin 7, Ireland
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Emma Duignan
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - Giuliana Silvestri
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Ophthalmology, The Royal Victoria Hospital, Belfast, Northern Ireland, UK
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
- Academic Alliance Genetics, Radboud University Medical Center, Nijmegen, and Maastricht University Medical Center+, Maastricht, The Netherlands
| | - David J Keegan
- Mater Clinical Ophthalmic Genetics Unit, The Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Paul F Kenna
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
- Department of Ophthalmology, Royal Victoria Eye and Ear Hospital, Dublin 2, Ireland
| | - G Jane Farrar
- The School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
25
|
Corral-Serrano JC, Sladen PE, Ottaviani D, Rezek OF, Athanasiou D, Jovanovic K, van der Spuy J, Mansfield BC, Cheetham ME. Eupatilin Improves Cilia Defects in Human CEP290 Ciliopathy Models. Cells 2023; 12:1575. [PMID: 37371046 PMCID: PMC10297203 DOI: 10.3390/cells12121575] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The photoreceptor outer segment is a highly specialized primary cilium that is essential for phototransduction and vision. Biallelic pathogenic variants in the cilia-associated gene CEP290 cause non-syndromic Leber congenital amaurosis 10 (LCA10) and syndromic diseases, where the retina is also affected. While RNA antisense oligonucleotides and gene editing are potential treatment options for the common deep intronic variant c.2991+1655A>G in CEP290, there is a need for variant-independent approaches that could be applied to a broader spectrum of ciliopathies. Here, we generated several distinct human models of CEP290-related retinal disease and investigated the effects of the flavonoid eupatilin as a potential treatment. Eupatilin improved cilium formation and length in CEP290 LCA10 patient-derived fibroblasts, in gene-edited CEP290 knockout (CEP290 KO) RPE1 cells, and in both CEP290 LCA10 and CEP290 KO iPSCs-derived retinal organoids. Furthermore, eupatilin reduced rhodopsin retention in the outer nuclear layer of CEP290 LCA10 retinal organoids. Eupatilin altered gene transcription in retinal organoids by modulating the expression of rhodopsin and by targeting cilia and synaptic plasticity pathways. This work sheds light on the mechanism of action of eupatilin and supports its potential as a variant-independent approach for CEP290-associated ciliopathies.
Collapse
Affiliation(s)
| | - Paul E. Sladen
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (P.E.S.); (D.O.)
| | - Daniele Ottaviani
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (P.E.S.); (D.O.)
- Department of Biology, University of Padova, Padova, 35122 Padova PD, Italy
| | - Olivia F. Rezek
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (P.E.S.); (D.O.)
| | - Dimitra Athanasiou
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (P.E.S.); (D.O.)
| | - Katarina Jovanovic
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (P.E.S.); (D.O.)
| | | | - Brian C. Mansfield
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 6710B, Rockledge Drive, Montgomery County, MD 20892, USA
| | - Michael E. Cheetham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (P.E.S.); (D.O.)
| |
Collapse
|
26
|
Daruich A, Robert MP, Bremond-Gignac D. Gene therapies in pediatric ophthalmology. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1188522. [PMID: 38983032 PMCID: PMC11182252 DOI: 10.3389/fopht.2023.1188522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/16/2023] [Indexed: 07/11/2024]
Abstract
Genetic pediatric eye disease frequently leads to severe vision impairment or blindness. Voretigene neparvovec is the first approved gene therapy for an inherited retinal dystrophy (IRD). Voretigene neparvovec has been shown to be well tolerated and safe, with encouraging results in terms of efficacy, mainly when administered early in childhood. While we assisted at the first gene therapy available in clinical practice for an IRD, some questions remain unanswered, especially when gene therapy is delivered in young children. We review here the most recent reports and promising ongoing studies concerning various approaches on gene therapy in pediatric ophthalmology.
Collapse
Affiliation(s)
- Alejandra Daruich
- Ophthalmology Department, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris Cité University, Paris, France
- INSERM, UMRS1138, Team 17, From physiopathology of ocular diseases to clinical development, Sorbonne Paris Citeí University, Centre de Recherche des Cordeliers, Paris, France
| | - Matthieu P Robert
- Ophthalmology Department, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris Cité University, Paris, France
- Borelli Centre, UMR 9010 CNRS-SSA-ENS Paris Saclay-Paris Cité University, Paris, France
| | - Dominique Bremond-Gignac
- Ophthalmology Department, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris Cité University, Paris, France
- INSERM, UMRS1138, Team 17, From physiopathology of ocular diseases to clinical development, Sorbonne Paris Citeí University, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
27
|
Corral-Serrano JC, Sladen PE, Ottaviani D, Rezek FO, Jovanovic K, Athanasiou D, van der Spuy J, Mansfield BC, Cheetham ME. Eupatilin improves cilia defects in human CEP290 ciliopathy models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536565. [PMID: 37205323 PMCID: PMC10187159 DOI: 10.1101/2023.04.12.536565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The photoreceptor outer segment is a highly specialized primary cilium essential for phototransduction and vision. Biallelic pathogenic variants in the cilia-associated gene CEP290 cause non-syndromic Leber congenital amaurosis 10 (LCA10) and syndromic diseases, where the retina is also affected. While RNA antisense oligonucleotides and gene editing are potential treatment options for the common deep intronic variant c.2991+1655A>G in CEP290 , there is a need for variant-independent approaches that could be applied to a broader spectrum of ciliopathies. Here, we generated several distinct human models of CEP290 -related retinal disease and investigated the effects of the flavonoid eupatilin as a potential treatment. Eupatilin improved cilium formation and length in CEP290 LCA10 patient-derived fibroblasts, in gene-edited CEP290 knockout (CEP290 KO) RPE1 cells, and in both CEP290 LCA10 and CEP290 KO iPSCs-derived retinal organoids. Furthermore, eupatilin reduced rhodopsin retention in the outer nuclear layer of CEP290 LCA10 retinal organoids. Eupatilin altered gene transcription in retinal organoids, by modulating the expression of rhodopsin, and by targeting cilia and synaptic plasticity pathways. This work sheds light into the mechanism of action of eupatilin, and supports its potential as a variant-independent approach for CEP290 -associated ciliopathies. Abstract Figure
Collapse
Affiliation(s)
- JC Corral-Serrano
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - PE Sladen
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - D Ottaviani
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
- Department of Biology, University of Padova, Padova, Italy
| | - FO Rezek
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - K Jovanovic
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - D Athanasiou
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - J van der Spuy
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - BC Mansfield
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - ME Cheetham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| |
Collapse
|
28
|
Sangermano R, Galdikaité-Braziené E, Bujakowska KM. Non-syndromic Retinal Degeneration Caused by Pathogenic Variants in Joubert Syndrome Genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:173-182. [PMID: 37440031 DOI: 10.1007/978-3-031-27681-1_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Inherited retinal degenerations (IRDs) are a group of genetic disorders characterized by progressive dysfunction and loss of photoreceptors. IRDs are classified as non-syndromic or syndromic, depending on whether retinal degeneration manifests alone or in combination with other associated symptoms. Joubert syndrome (JBTS) is a genetically and clinically heterogeneous disorder affecting the central nervous system and other organs and tissues, including the neuroretina. To date, 39 genes have been associated with JBTS, a majority of which encode structural or functional components of the primary cilium, a specialized sensory organelle present in most post-mitotic cells, including photoreceptors. The use of whole exome and IRD panel next-generation sequencing in routine diagnostics of non-syndromic IRD cases led to the discovery of pathogenic variants in JBTS genes that cause photoreceptor loss without other syndromic features. Here, we recapitulate these findings, describing the JBTS gene defects leading to non-syndromic IRDs.
Collapse
Affiliation(s)
- Riccardo Sangermano
- Ocular Genomics Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Egle Galdikaité-Braziené
- Ocular Genomics Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
RNA-targeting strategies as a platform for ocular gene therapy. Prog Retin Eye Res 2023; 92:101110. [PMID: 35840489 DOI: 10.1016/j.preteyeres.2022.101110] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023]
Abstract
Genetic medicine is offering hope as new therapies are emerging for many previously untreatable diseases. The eye is at the forefront of these advances, as exemplified by the approval of Luxturna® by the United States Food and Drug Administration (US FDA) in 2017 for the treatment of one form of Leber Congenital Amaurosis (LCA), an inherited blindness. Luxturna® was also the first in vivo human gene therapy to gain US FDA approval. Numerous gene therapy clinical trials are ongoing for other eye diseases, and novel delivery systems, discovery of new drug targets and emerging technologies are currently driving the field forward. Targeting RNA, in particular, is an attractive therapeutic strategy for genetic disease that may have safety advantages over alternative approaches by avoiding permanent changes in the genome. In this regard, antisense oligonucleotides (ASO) and RNA interference (RNAi) are the currently popular strategies for developing RNA-targeted therapeutics. Enthusiasm has been further fuelled by the emergence of clustered regularly interspersed short palindromic repeats (CRISPR)-CRISPR associated (Cas) systems that allow targeted manipulation of nucleic acids. RNA-targeting CRISPR-Cas systems now provide a novel way to develop RNA-targeted therapeutics and may provide superior efficiency and specificity to existing technologies. In addition, RNA base editing technologies using CRISPR-Cas and other modalities also enable precise alteration of single nucleotides. In this review, we showcase advances made by RNA-targeting systems for ocular disease, discuss applications of ASO and RNAi technologies, highlight emerging CRISPR-Cas systems and consider the implications of RNA-targeting therapeutics in the development of future drugs to treat eye disease.
Collapse
|
30
|
Stingl K, Kempf M, Jung R, Kortüm F, Righetti G, Reith M, Dimopoulos S, Ott S, Kohl S, Stingl K. Therapy with voretigene neparvovec. How to measure success? Prog Retin Eye Res 2023; 92:101115. [PMID: 36096933 DOI: 10.1016/j.preteyeres.2022.101115] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 02/01/2023]
Abstract
Retinal gene supplementation therapy such as the first approved one, voretigene neparvovec, delivers a functioning copy of the missing gene enabling the protein transcription in retinal cells and restore visual functions. After gene supplementation for the genetic defect, a complex network of functional regeneration is the consequence, whereas the extent is very individualized. Diagnostic and functional testings that have been used routinely by ophthalmologists so far to define the correct diagnosis, cannot be applied in the new context of defining small, sometimes subtle changes in visual functions. New view on retinal diagnostics is needed to understand this processes that define safety and efficacy of the treatment. Not only does vision have many aspects that must be addressed by specific evaluations and imaging techniques, but objective readouts of local retinal function for rods and cones separately have been an unmet need until recently. A reliable test-retest variability is necessary in rare diseases such as inherited retinal dystrophies, because statistics are often not applicable due to a low number of participants. Methods for a reliable individual evaluation of the therapy success are needed. In this manuscript we present an elaboration on retinal diagnostics combining psychophysics (eg. full-field stimulus threshold or dark adapted perimetry) as well as objective measures for local retinal function (eg. photopic and scotopic chromatic pupil campimetry) and retinal imaging for a meaningful workflow to apply in evaluation of the individual success in patients receiving gene therapy for photoreceptor diseases.
Collapse
Affiliation(s)
- Krunoslav Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany; Center for Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany.
| | - Melanie Kempf
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany; Center for Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany.
| | - Ronja Jung
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Friederike Kortüm
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Giulia Righetti
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Milda Reith
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Spyridon Dimopoulos
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Saskia Ott
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany.
| | - Susanne Kohl
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tuebingen, Tuebingen, Germany.
| | - Katarina Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Tuebingen, Germany; Center for Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
31
|
Aleman TS, O'Neil EC, Uyhazi KE, Parchinski KM, Santos AJ, Weber ML, Colclough SP, Billek AS, Zhu X, Leroy BP, Bedoukian EC. Fleck-like lesions in CEP290-associated leber congenital amaurosis: a case series. Ophthalmic Genet 2022; 43:824-833. [PMID: 36469661 DOI: 10.1080/13816810.2022.2147960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To provide a detailed ophthalmic phenotype of a small cohort of patients with Leber Congenital Amaurosis (LCA) caused by mutations in CEP290 (CEP290-LCA) with a focus on elucidating the origin of yellow-white lesions observed in 30% of patients with this condition. METHODS This is a retrospective review of records of five patients with CEP290-LCA. Patients had comprehensive ophthalmic evaluations. Visual function was assessed with full-field electroretinograms (ffERGs) and full-field sensitivity testing (FST). Multimodal imaging was performed with spectral domain optical coherence tomography (SD-OCT), fundus autofluorescence (FAF) with short- (SW) and near-infrared (NIR) excitation wavelengths. RESULTS All patients showed relative structural preservation of the foveal and near midperipheral retina separated by a pericentral area of photoreceptor loss. Yellow-white, fleck-like lesions in an annular distribution around the near midperiphery co-localized with hyperreflective lesions on SD-OCT. The lesions located between the inner segment ellipsoid signal and the apical retinal pigment epithelium (RPE). The inner retina was normal. Longitudinal observations in one of the patients indicates the abnormalities may represent an intermediate stage in the degenerative process between the near normal appearing retina previously documented in young CEP290-LCA patients and the pigmentary retinopathy observed along the same region in older individuals. CONCLUSIONS We speculate that fleck-like lesions in CEP290-LCA correspond to malformed, rudimentary or degenerated, including shed, photoreceptor outer segments. The topography and possible origin of the abnormalities may inform the planning of evolving genetic therapies for this disease.
Collapse
Affiliation(s)
- Tomas S Aleman
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erin C O'Neil
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,The Division of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine E Uyhazi
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelsey M Parchinski
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arlene J Santos
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariejel L Weber
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sherice P Colclough
- The Division of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew S Billek
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xiaosong Zhu
- The Division of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bart P Leroy
- The Division of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Head & Skin, Ghent University, Ghent, Belgium.,Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Emma C Bedoukian
- The Division of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,The Individualized Medical Genetics Center of the Children's Hospital of Philadelphia, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Nanegrungsunk O, Au A, Sarraf D, Sadda SR. New frontiers of retinal therapeutic intervention: a critical analysis of novel approaches. Ann Med 2022; 54:1067-1080. [PMID: 35467460 PMCID: PMC9045775 DOI: 10.1080/07853890.2022.2066169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A recent wave of pharmacologic and technologic innovations has revolutionized our management of retinal diseases. Many of these advancements have demonstrated efficacy and can increase the quality of life while potentially reducing complications and decreasing the burden of care for patients. Some advances, such as longer-acting anti-vascular endothelial growth factor agents, port delivery systems, gene therapy, and retinal prosthetics have been approved by the US Food and Drug Administration, and are available for clinical use. Countless other therapeutics are in various stages of development, promising a bright future for further improvements in the management of the retinal disease. Herein, we have highlighted several important novel therapies and therapeutic approaches and examine the opportunities and limitations offered by these innovations at the new frontier. KEY MESSAGESNumerous pharmacologic and technologic advancements have been emerging, providing a higher treatment efficacy while decreasing the burden and associated side effects.Anti-vascular endothelial growth factor (anti-VEGF) and its longer-acting agents have dramatically improved visual outcomes and have become a mainstay treatment in various retinal diseases.Gene therapy and retinal prosthesis implantation in the treatment of congenital retinal dystrophy can accomplish the partial restoration of vision and improved daily function in patients with blindness, an unprecedented success in the field of retina.
Collapse
Affiliation(s)
- Onnisa Nanegrungsunk
- Doheny Eye Institute, Pasadena, CA, USA.,Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.,Retina Division, Department of Ophthalmology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Adrian Au
- Stein Eye Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - David Sarraf
- Stein Eye Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Srinivas R Sadda
- Doheny Eye Institute, Pasadena, CA, USA.,Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
33
|
Mittal S, Tang I, Gleeson JG. Evaluating human mutation databases for “treatability” using patient-customized therapy. MED 2022; 3:740-759. [DOI: 10.1016/j.medj.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022]
|
34
|
Jo DH, Bae S, Kim HH, Kim JS, Kim JH. In vivo application of base and prime editing to treat inherited retinal diseases. Prog Retin Eye Res 2022; 94:101132. [PMID: 36241547 DOI: 10.1016/j.preteyeres.2022.101132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
Inherited retinal diseases (IRDs) are vision-threatening retinal disorders caused by pathogenic variants of genes related to visual functions. Genomic analyses in patients with IRDs have revealed pathogenic variants which affect vision. However, treatment options for IRDs are limited to nutritional supplements regardless of genetic variants or gene-targeting approaches based on antisense oligonucleotides and adeno-associated virus vectors limited to targeting few genes. Genome editing, particularly that involving clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 technologies, can correct pathogenic variants and provide additional treatment opportunities. Recently developed base and prime editing platforms based on CRISPR-Cas9 technologies are promising for therapeutic genome editing because they do not employ double-stranded breaks (DSBs), which are associated with P53 activation, large deletions, and chromosomal translocations. Instead, using attached deaminases and reverse transcriptases, base and prime editing efficiently induces specific base substitutions and intended genetic changes (substitutions, deletions, or insertions), respectively, without DSBs. In this review, we will discuss the recent in vivo application of CRISPR-Cas9 technologies, focusing on base and prime editing, in animal models of IRDs.
Collapse
|
35
|
Lando L, Borooah S. Late-Onset Retinal Degeneration: Clinical Perspectives. Clin Ophthalmol 2022; 16:3225-3246. [PMID: 36204011 PMCID: PMC9531619 DOI: 10.2147/opth.s362691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Late-onset retinal degeneration (L-ORD) is a type of retinal dystrophy marked by nyctalopia and subretinal pigment epithelium deposits, which eventually promote retinal atrophy with final visual compromise. L-ORD may also present with changes in the anterior segment, notably long anterior zonules and iris atrophy, distinguishing it from other inherited eye conditions. Although it can clinically simulate age-related macular degeneration, L-ORD has a different course of progression and prognosis, requiring adequate diagnosis for patient counseling. This review summarizes the main clinical, genetic, pathophysiological, diagnostic, and therapeutic aspects of L-ORD to help ophthalmologists identify and manage this rare ocular disease.
Collapse
Affiliation(s)
- Leonardo Lando
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Shyamanga Borooah
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
36
|
De Angeli P, Reuter P, Hauser S, Schöls L, Stingl K, Wissinger B, Kohl S. Effective splicing restoration of a deep-intronic ABCA4 variant in cone photoreceptor precursor cells by CRISPR/SpCas9 approaches. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:511-524. [PMID: 35991315 PMCID: PMC9375153 DOI: 10.1016/j.omtn.2022.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/20/2022] [Indexed: 12/26/2022]
Affiliation(s)
- Pietro De Angeli
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, 72076 Tübingen, Germany
- Corresponding author Pietro De Angeli, Institute for Ophthalmic Research, Centre for Ophthalmology, Elfriede-Aulhorn-Strasse 5–7, 72076 Tübingen, Germany.
| | - Peggy Reuter
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Ludger Schöls
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Katarina Stingl
- Centre for Ophthalmology, University Hospital Tübingen, 72076 Tübingen, Germany
- Center for Rare Eye Diseases, University of Tübingen, 72076 Tübingen, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
37
|
Han RC, MacLaren RE. RNA gene editing in the eye and beyond: The neglected tool of the gene editing armatorium? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 372:175-205. [PMID: 36064264 DOI: 10.1016/bs.ircmb.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA editing allows correction of pathological point mutations without permanently altering genomic DNA. Theoretically targetable to any RNA type and site, its flexibility and reversibility makes it a potentially powerful gene editing tool. RNA editing offers a host of potential advantages in specific niches when compared to currently available alternative gene manipulation techniques. Unlike DNA editors, which are currently too large to be delivered in vivo using a viral vector, smaller RNA editors fit easily within the capabilities of an adeno-associated virus (AAV). Unlike gene augmentation, which is limited by gene size and viral packaging constraints, RNA editing may correct transcripts too long to fit within a viral vector. In this article we examine the development of RNA editing and discuss potential applications and pitfalls. We argue that, although in its infancy, an RNA editing approach can offer unique advantages for selected retinal diseases.
Collapse
Affiliation(s)
- Ruofan Connie Han
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Oxford Eye Hospital, John Radcliffe, Oxford, United Kingdom
| |
Collapse
|
38
|
Panikker P, Roy S, Ghosh A, Poornachandra B, Ghosh A. Advancing precision medicines for ocular disorders: Diagnostic genomics to tailored therapies. Front Med (Lausanne) 2022; 9:906482. [PMID: 35911417 PMCID: PMC9334564 DOI: 10.3389/fmed.2022.906482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Successful sequencing of the human genome and evolving functional knowledge of gene products has taken genomic medicine to the forefront, soon combining broadly with traditional diagnostics, therapeutics, and prognostics in patients. Recent years have witnessed an extraordinary leap in our understanding of ocular diseases and their respective genetic underpinnings. As we are entering the age of genomic medicine, rapid advances in genome sequencing, gene delivery, genome surgery, and computational genomics enable an ever-increasing capacity to provide a precise and robust diagnosis of diseases and the development of targeted treatment strategies. Inherited retinal diseases are a major source of blindness around the world where a large number of causative genes have been identified, paving the way for personalized diagnostics in the clinic. Developments in functional genetics and gene transfer techniques has also led to the first FDA approval of gene therapy for LCA, a childhood blindness. Many such retinal diseases are the focus of various clinical trials, making clinical diagnoses of retinal diseases, their underlying genetics and the studies of natural history important. Here, we review methodologies for identifying new genes and variants associated with various ocular disorders and the complexities associated with them. Thereafter we discuss briefly, various retinal diseases and the application of genomic technologies in their diagnosis. We also discuss the strategies, challenges, and potential of gene therapy for the treatment of inherited and acquired retinal diseases. Additionally, we discuss the translational aspects of gene therapy, the important vector types and considerations for human trials that may help advance personalized therapeutics in ophthalmology. Retinal disease research has led the application of precision diagnostics and precision therapies; therefore, this review provides a general understanding of the current status of precision medicine in ophthalmology.
Collapse
Affiliation(s)
| | - Shomereeta Roy
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Anuprita Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | | | - Arkasubhra Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| |
Collapse
|
39
|
Inhibition of microRNA-33b specifically ameliorates abdominal aortic aneurysm formation via suppression of inflammatory pathways. Sci Rep 2022; 12:11984. [PMID: 35835906 PMCID: PMC9283493 DOI: 10.1038/s41598-022-16017-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a lethal disease, but no beneficial therapeutic agents have been established to date. Previously, we found that AAA formation is suppressed in microRNA (miR)-33-deficient mice compared with wild-type mice. Mice have only one miR-33, but humans have two miR-33 s, miR-33a and miR-33b. The data so far strongly support that inhibiting miR-33a or miR-33b will be a new strategy to treat AAA. We produced two specific anti-microRNA oligonucleotides (AMOs) that may inhibit miR-33a and miR-33b, respectively. In vitro studies showed that the AMO against miR-33b was more effective; therefore, we examined the in vivo effects of this AMO in a calcium chloride (CaCl2)-induced AAA model in humanized miR-33b knock-in mice. In this model, AAA was clearly improved by application of anti-miR-33b. To further elucidate the mechanism, we evaluated AAA 1 week after CaCl2 administration to examine the effect of anti-miR-33b. Histological examination revealed that the number of MMP-9-positive macrophages and the level of MCP-1 in the aorta of mice treated with anti-miR-33b was significantly reduced, and the serum lipid profile was improved compared with mice treated with control oligonucleotides. These results support that inhibition of miR-33b is effective in the treatment for AAA.
Collapse
|
40
|
Burgess FR, Hall HN, Megaw R. Emerging Gene Manipulation Strategies for the Treatment of Monogenic Eye Disease. Asia Pac J Ophthalmol (Phila) 2022; 11:380-391. [PMID: 36041151 DOI: 10.1097/apo.0000000000000545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Abstract
Genetic eye diseases, representing a wide spectrum of simple and complex conditions, are one of the leading causes of visual loss in children and working adults, and progress in the field has led to changes in disease investigation, diagnosis, and management. The past 15 years have seen the emergence of novel therapies for these previously untreatable conditions to the extent that we now have a licensed therapy for one form of genetic eye disease and many more in clinical trial. This is a systematic review of published and ongoing clinical trials of gene therapies for monogenic eye diseases. Databases of clinical trials and the published literature were searched for interventional studies of gene therapies for eye diseases. Standard methodological procedures were used to assess the relevance of search results. A total of 59 registered clinical trials are referenced, showing the significant level of interest in the potential for translation of these therapies from bench to bedside. The breadth of therapy design is encouraging, providing multiple possible therapeutic mechanisms. Some fundamental questions regarding gene therapy for genetic eye diseases remain, such as optimal dosing, the relative benefits of adeno-associated virus (AAV)-packaging and the potential for a significant inflammatory response to the therapy itself. As a result, despite the promise of the eye as a target, it has proven difficult to deliver clinically effective gene therapies to the eye. Despite setbacks, the licensing of Luxturna (voretigene neparvovec, Novartis) for the treatment of RPE65-mediated Leber congenital amaurosis (LCA) is a major advance in efforts to treat these rare, but devastating, causes of visual loss.
Collapse
Affiliation(s)
- Frederick R Burgess
- Princess Alexandra Eye Pavilion, NHS Lothian, UK
- Ophthalmology Department, School of Medicine, University of St Andrews, UK
| | - Hildegard Nikki Hall
- Princess Alexandra Eye Pavilion, NHS Lothian, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, UK
| | - Roly Megaw
- Princess Alexandra Eye Pavilion, NHS Lothian, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, UK
| |
Collapse
|
41
|
Roman AJ, Cideciyan AV, Wu V, Mascio AA, Krishnan AK, Garafalo AV, Jacobson SG. Mobility test to assess functional vision in dark-adapted patients with Leber congenital amaurosis. BMC Ophthalmol 2022; 22:266. [PMID: 35701753 PMCID: PMC9195222 DOI: 10.1186/s12886-022-02475-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Inherited retinal degenerations (IRDs) affect daylight and night vision to different degrees. In the current work, we devise a method to quantify mobility under dark-adapted conditions in patients with severe childhood blindness due to Leber congenital amaurosis (LCA). Mobility thresholds from two different LCA genotypes are compared to dark-adapted vision measurements using the full-field stimulus test (FST), a conventional desktop outcome measure of rod vision. METHODS A device consisting of vertical LED strips on a plane resembling a beaded curtain was programmed to produce a rectangular pattern target defining a 'door' of varying luminance that could appear at one of three positions. Mobility performance was evaluated by letting the subject walk from a fixed starting position ~ 4 m away from the device with instructions to touch the door. Success was defined as the subject touching within the 'door' area. Ten runs were performed and the process was repeated for different levels of luminance. Tests were performed monocularly in dark-adapted and dilated eyes. Results from LCA patients with the GUCY2D and CEP290 genotypes and normal subjects were analyzed using logistic regression to estimate the mobility threshold for successful navigation. The relation of thresholds for mobility, FST and visual acuity were quantified using linear regression. RESULTS Normal subjects had mobility thresholds near limits of dark-adapted rod vision. GUCY2D-LCA patients had a wide range of mobility thresholds from within 1 log of normal to greater than 8 log abnormal. CEP290-LCA patients had abnormal mobility thresholds that were between 5 and 6 log from normal. Sensitivity loss estimates using FST related linearly to the mobility thresholds which were not correlated with visual acuity. CONCLUSIONS The mobility task we developed can quantify functional vision in severely disabled patients with LCA. Taken together with other outcome measures of rod and cone photoreceptor-mediated vision, dark-adapted functional vision should provide a more complete understanding of the natural history and effects of treatment in patients with LCA.
Collapse
Affiliation(s)
- Alejandro J. Roman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, 51 North 39th St, PA 19104 Philadelphia, USA
| | - Artur V. Cideciyan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, 51 North 39th St, PA 19104 Philadelphia, USA
| | - Vivian Wu
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, 51 North 39th St, PA 19104 Philadelphia, USA
| | - Abraham A. Mascio
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, 51 North 39th St, PA 19104 Philadelphia, USA
| | - Arun K. Krishnan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, 51 North 39th St, PA 19104 Philadelphia, USA
| | - Alexandra V. Garafalo
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, 51 North 39th St, PA 19104 Philadelphia, USA
| | - Samuel G. Jacobson
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, 51 North 39th St, PA 19104 Philadelphia, USA
| |
Collapse
|
42
|
Kamenarova K, Mihova K, Veleva N, Mermeklieva E, Mihaylova B, Dimitrova G, Oscar A, Shandurkov I, Cherninkova S, Kaneva R. Panel-based next-generation sequencing identifies novel mutations in Bulgarian patients with inherited retinal dystrophies. Mol Genet Genomic Med 2022; 10:e1997. [PMID: 35656873 PMCID: PMC9356554 DOI: 10.1002/mgg3.1997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Next-generation sequencing (NGS)-based method is being used broadly for genetic testing especially for clinically and genetically heterogeneous disorders, such as inherited retinal degenerations (IRDs) but still not routinely used for molecular diagnostics in Bulgaria. Consequently, the purpose of this study was to evaluate the effectiveness of a molecular diagnostic approach, based on targeted NGS for the identification of the disease-causing mutations in 16 Bulgarian patients with different IRDs. METHODS We applied a customized NGS panel, including 125 genes associated with retinal and other eye diseases to the patients with hereditary retinopathies. RESULTS Systematic filtering approach coupled with copy number variation analysis and segregation study lead to the identification of 16 pathogenic and likely pathogenic variants in 12/16 (75%) of IRD patients, 2 of which novel (12.5%): ABCA4-c.668delA (p.K223Rfs18) and RР1-c.2015dupA (p.K673Efs*25). Mutations in the ABCA4, PRPH2, USH2A, BEST1, RР1, CDHR1, and RHO genes were detected reaching a diagnostic yield between 42.9% for Retinitis pigmentosa cases and 100% for macular degeneration, Usher syndrome, and cone-rod dystrophy patients. CONCLUSION Our results confirm the usefulness of targeted NGS approach based on frequently mutated genes as a comprehensive and successful genetic diagnostic tool for IRDs with significant impact on patients counseling.
Collapse
Affiliation(s)
- Kunka Kamenarova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria.,Laboratory of Genomic Diagnostics, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Kalina Mihova
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria.,Laboratory of Genomic Diagnostics, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Nevyana Veleva
- Department of Ophthalmology, University Hospital "Alexandrovska", Medical University of Sofia, Sofia, Bulgaria
| | - Elena Mermeklieva
- Clinic of Ophthalmology, University Hospital "Lozenetz", Medical Faculty, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | | | - Galina Dimitrova
- Department of Ophthalmology, University Hospital "Alexandrovska", Medical University of Sofia, Sofia, Bulgaria
| | - Alexander Oscar
- Department of Ophthalmology, University Hospital "Alexandrovska", Medical University of Sofia, Sofia, Bulgaria
| | | | - Sylvia Cherninkova
- Department of Neurology, University hospital "Alexandrovska", Medical University of Sofia, Sofia, Bulgaria
| | - Radka Kaneva
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria.,Laboratory of Genomic Diagnostics, Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
43
|
Cideciyan AV, Jacobson SG, Ho AC, Krishnan AK, Roman AJ, Garafalo AV, Wu V, Swider M, Sumaroka A, Van Cauwenbergh C, Russell SR, Drack AV, Leroy BP, Schwartz MR, Girach A. Restoration of Cone Sensitivity to Individuals with Congenital Photoreceptor Blindness within the Phase 1/2 Sepofarsen Trial. OPHTHALMOLOGY SCIENCE 2022; 2:100133. [PMID: 36249682 PMCID: PMC9562351 DOI: 10.1016/j.xops.2022.100133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022]
Abstract
Purpose To understand consequences of reconstituting cone photoreceptor function in congenital binocular blindness resulting from mutations in the centrosomal protein 290 (CEP290) gene. Design Phase 1b/2 open-label, multicenter, multiple-dose, dose-escalation trial. Participants A homogeneous subgroup of 5 participants with light perception (LP) vision at the time of enrollment (age range, 15–41 years) selected for detailed analyses. Medical histories of 4 participants were consistent with congenital binocular blindness, whereas 1 participant showed evidence of spatial vision in early life that was later lost. Intervention Participants received a single intravitreal injection of sepofarsen (160 or 320 μg) into the study eye. Main Outcome Measures Full-field stimulus testing (FST), visual acuity (VA), and transient pupillary light reflex (TPLR) were measured at baseline and for 3 months after the injection. Results All 5 participants with LP vision demonstrated severely abnormal FST and TPLR findings. At baseline, FST threshold estimates were 0.81 and 1.0 log cd/m2 for control and study eyes, respectively. At 3 months, study eyes showed a large mean improvement of –1.75 log versus baseline (P < 0.001), whereas untreated control eyes were comparable with baseline. Blue minus red FST values were not different than 0 (P = 0.59), compatible with cone mediation of remnant vision. At baseline, TPLR response amplitude and latency estimates were 0.39 mm and 0.72 seconds, respectively, for control eyes, and 0.28 mm and 0.78 seconds, respectively, for study eyes. At 3 months, study eyes showed a mean improvement of 0.44 mm in amplitude and a mean acceleration of 0.29 seconds in latency versus baseline (P < 0.001), whereas control eyes showed no significant change versus baseline. Specialized tests performed in 1 participant confirmed and extended the standardized results from all 5 participants. Conclusions By subjective and objective evidence, intravitreal sepofarsen provides improvement of light sensitivity for individuals with LP vision. However, translation of increased light sensitivity to improved spatial vision may occur preferentially in those with a history of visual experience during early neurodevelopment. Interventions for congenital lack of spatial vision in CEP290-associated Leber congenital amaurosis may lead to better results if performed before visual cortex maturity.
Collapse
Affiliation(s)
- Artur V. Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Correspondence: Artur V. Cideciyan, PhD, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, 51 North 39th Street, Philadelphia, PA 19104.
| | - Samuel G. Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Allen C. Ho
- Wills Eye Hospital, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Arun K. Krishnan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alejandro J. Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexandra V. Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vivian Wu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Stephen R. Russell
- The University of Iowa Institute for Vision Research, University of Iowa, Iowa City, Iowa
| | - Arlene V. Drack
- The University of Iowa Institute for Vision Research, University of Iowa, Iowa City, Iowa
| | - Bart P. Leroy
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Division of Ophthalmology and Center for Cellular & Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
44
|
Bellingrath JS, McClements ME, Shanks M, Clouston P, Fischer MD, MacLaren RE. Envisioning the development of a CRISPR-Cas mediated base editing strategy for a patient with a novel pathogenic CRB1 single nucleotide variant. Ophthalmic Genet 2022; 43:661-670. [PMID: 35538629 DOI: 10.1080/13816810.2022.2073599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Inherited retinal degeneration (IRD) associated with mutations in the Crumbs homolog 1 (CRB1) gene is associated with a severe, early-onset retinal degeneration for which no therapy currently exists. Base editing, with its capability to precisely catalyse permanent nucleobase conversion in a programmable manner, represents a novel therapeutic approach to targeting this autosomal recessive IRD, for which a gene supplementation is challenging due to the need to target three different retinal CRB1 isoforms. PURPOSE To report and classify a novel CRB1 variant and envision a possible therapeutic approach in form of base editing. METHODS Case report. RESULTS A 16-year-old male patient with a clinical diagnosis of early-onset retinitis pigmentosa (RP) and characteristic clinical findings of retinal thickening and coarse lamination was seen at the Oxford Eye Hospital. He was found to be compound heterozygous for two CRB1 variants: a novel pathogenic nonsense variant in exon 9, c.2885T>A (p.Leu962Ter), and a likely pathogenic missense change in exon 6, c.2056C>T (p.Arg686Cys). While a base editing strategy for c.2885T>A would encompass a CRISPR-pass mediated "read-through" of the premature stop codon, the resulting missense changes were predicted to be "possibly damaging" in in-silico analysis. On the other hand, the transversion missense change, c.2056C>T, is amenable to transition editing with an adenine base editor (ABE) fused to a SaCas9-KKH with a negligible chance of bystander edits due to an absence of additional Adenines (As) in the editing window. CONCLUSIONS This case report records a novel pathogenic nonsense variant in CRB1 and gives an example of thinking about a base editing strategy for a patient compound heterozygous for CRB1 variants.
Collapse
Affiliation(s)
- J-S Bellingrath
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M Shanks
- Genetics Laboratories, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - P Clouston
- Genetics Laboratories, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M D Fischer
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - R E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
45
|
Russell SR, Drack AV, Cideciyan AV, Jacobson SG, Leroy BP, Van Cauwenbergh C, Ho AC, Dumitrescu AV, Han IC, Martin M, Pfeifer WL, Sohn EH, Walshire J, Garafalo AV, Krishnan AK, Powers CA, Sumaroka A, Roman AJ, Vanhonsebrouck E, Jones E, Nerinckx F, De Zaeytijd J, Collin RWJ, Hoyng C, Adamson P, Cheetham ME, Schwartz MR, den Hollander W, Asmus F, Platenburg G, Rodman D, Girach A. Intravitreal antisense oligonucleotide sepofarsen in Leber congenital amaurosis type 10: a phase 1b/2 trial. Nat Med 2022; 28:1014-1021. [PMID: 35379979 PMCID: PMC9117145 DOI: 10.1038/s41591-022-01755-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 02/18/2022] [Indexed: 02/05/2023]
Abstract
CEP290-associated Leber congenital amaurosis type 10 (LCA10) is a retinal disease resulting in childhood blindness. Sepofarsen is an RNA antisense oligonucleotide targeting the c.2991+1655A>G variant in the CEP290 gene to treat LCA10. In this open-label, phase 1b/2 ( NCT03140969 ), 12-month, multicenter, multiple-dose, dose-escalation trial, six adult patients and five pediatric patients received ≤4 doses of intravitreal sepofarsen into the worse-seeing eye. The primary objective was to evaluate sepofarsen safety and tolerability via the frequency and severity of ocular adverse events (AEs); secondary objectives were to evaluate pharmacokinetics and efficacy via changes in functional outcomes. Six patients received sepofarsen 160 µg/80 µg, and five patients received sepofarsen 320 µg/160 µg. Ten of 11 (90.9%) patients developed ocular AEs in the treated eye (5/6 with 160 µg/80 µg; 5/5 with 320 µg/160 µg) versus one of 11 (9.1%) in the untreated eye; most were mild in severity and dose dependent. Eight patients developed cataracts, of which six (75.0%) were categorized as serious (2/3 with 160 µg/80 µg; 4/5 with 320 µg/160 µg), as lens replacement was required. As the 160-µg/80-µg group showed a better benefit-risk profile, higher doses were discontinued or not initiated. Statistically significant improvements in visual acuity and retinal sensitivity were reported (post hoc analysis). The manageable safety profile and improvements reported in this trial support the continuation of sepofarsen development.
Collapse
Affiliation(s)
- Stephen R Russell
- University of Iowa Institute for Vision Research, University of Iowa, Iowa City, IA, USA.
| | - Arlene V Drack
- University of Iowa Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Artur V Cideciyan
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel G Jacobson
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bart P Leroy
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
- Division of Ophthalmology and Center for Cellular & Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Allen C Ho
- Wills Eye Hospital/Mid Atlantic Retina, Philadelphia, PA, USA
| | - Alina V Dumitrescu
- University of Iowa Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Ian C Han
- University of Iowa Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Mitchell Martin
- University of Iowa Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Wanda L Pfeifer
- University of Iowa Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Elliott H Sohn
- University of Iowa Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Jean Walshire
- University of Iowa Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Alexandra V Garafalo
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arun K Krishnan
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian A Powers
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander Sumaroka
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alejandro J Roman
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eva Vanhonsebrouck
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Eltanara Jones
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Fanny Nerinckx
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Rob W J Collin
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carel Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tang Z, Fan X, Chen Y, Gu P. Ocular Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2003699. [PMID: 35150092 PMCID: PMC9130902 DOI: 10.1002/advs.202003699] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/31/2021] [Indexed: 05/07/2023]
Abstract
Intrinsic shortcomings associated with conventional therapeutic strategies often compromise treatment efficacy in clinical ophthalmology, prompting the rapid development of versatile alternatives for satisfactory diagnostics and therapeutics. Given advances in material science, nanochemistry, and nanobiotechnology, a broad spectrum of functional nanosystems has been explored to satisfy the extensive requirements of ophthalmologic applications. In the present review, the recent progress in nanosystems, both conventional and emerging nanomaterials in ophthalmology from state-of-the-art studies, are comprehensively examined and the role of their fundamental physicochemical properties in bioavailability, tissue penetration, biodistribution, and elimination after interacting with the ophthalmologic microenvironment emphasized. Furthermore, along with the development of surface engineering of nanomaterials, emerging theranostic methodologies are promoted as potential alternatives for multipurpose ocular applications, such as emerging biomimetic ophthalmology (e.g., smart electrochemical eye), thus provoking a holistic review of "ocular nanomedicine." By affording insight into challenges encountered by ocular nanomedicine and further highlighting the direction of future studies, this review provides an incentive for enriching ocular nanomedicine-based fundamental research and future clinical translation.
Collapse
Affiliation(s)
- Zhimin Tang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Xianqun Fan
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Ping Gu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| |
Collapse
|
47
|
Daich Varela M, Cabral de Guimaraes TA, Georgiou M, Michaelides M. Leber congenital amaurosis/early-onset severe retinal dystrophy: current management and clinical trials. Br J Ophthalmol 2022; 106:445-451. [PMID: 33712480 PMCID: PMC8961750 DOI: 10.1136/bjophthalmol-2020-318483] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/18/2021] [Accepted: 02/23/2021] [Indexed: 12/26/2022]
Abstract
Leber congenital amaurosis (LCA) is a severe congenital/early-onset retinal dystrophy. Given its monogenic nature and the immunological and anatomical privileges of the eye, LCA has been particularly targeted by cutting-edge research. In this review, we describe the current management of LCA, and highlight the clinical trials that are on-going and planned. RPE65-related LCA pivotal trials, which culminated in the first Food and Drug Administration-approved and European Medicines Agency-approved ocular gene therapy, have paved the way for a new era of genetic treatments in ophthalmology. At present, multiple clinical trials are available worldwide applying different techniques, aiming to achieve better outcomes and include more genes and variants. Genetic therapy is not only implementing gene supplementation by the use of adeno-associated viral vectors, but also clustered regularly interspaced short palindromic repeats (CRISPR)-mediated gene editing and post-transcriptional regulation through antisense oligonucleotides. Pharmacological approaches intending to decrease photoreceptor degeneration by supplementing 11-cis-retinal and cell therapy's aim to replace the retinal pigment epithelium, providing a trophic and metabolic retinal structure, are also under investigation. Furthermore, optoelectric devices and optogenetics are also an option for patients with residual visual pathway. After more than 10 years since the first patient with LCA received gene therapy, we also discuss future challenges, such as the overlap between different techniques and the long-term durability of efficacy. The next 5 years are likely to be key to whether genetic therapies will achieve their full promise, and whether stem cell/cellular therapies will break through into clinical trial evaluation.
Collapse
Affiliation(s)
- Malena Daich Varela
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| | | | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, London, UK
| |
Collapse
|
48
|
Garanto A, Ferreira CR, Boon CJF, van Karnebeek CDM, Blau N. Clinical and biochemical footprints of inherited metabolic disorders. VII. Ocular phenotypes. Mol Genet Metab 2022; 135:311-319. [PMID: 35227579 PMCID: PMC10518078 DOI: 10.1016/j.ymgme.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/19/2022] [Accepted: 02/11/2022] [Indexed: 12/11/2022]
Abstract
Ocular manifestations are observed in approximately one third of all inherited metabolic disorders (IMDs). Although ocular involvement is not life-threatening, it can result in severe vision loss, thereby leading to an additional burden for the patient. Retinal degeneration with or without optic atrophy is the most frequent phenotype, followed by oculomotor problems, involvement of the cornea and lens, and refractive errors. These phenotypes can provide valuable clues that contribute to its diagnosis. In this issue we found 577 relevant IMDs leading to ophthalmologic manifestations. This article is the seventh of a series attempting to create and maintain a comprehensive list of clinical and metabolic differential diagnoses according to system involvement.
Collapse
Affiliation(s)
- Alejandro Garanto
- Department of Pediatrics, Amalia Children's Hospital Radboud Center for Mitochondrial and Metabolic Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Camiel J F Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands and Amsterdam University Medical Centers, Academic Medical Center, Department of Ophthalmology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Clara D M van Karnebeek
- Department of Pediatrics, Amalia Children's Hospital Radboud Center for Mitochondrial and Metabolic Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Departments of Pediatrics and Human Genetics, Emma Children's Hospital, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, Amsterdam, the Netherlands.
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zürich, Switzerland.
| |
Collapse
|
49
|
Dirnagl U, Duda GN, Grainger DW, Reinke P, Roubenoff R. Reproducibility, relevance and reliability as barriers to efficient and credible biomedical technology translation. Adv Drug Deliv Rev 2022; 182:114118. [PMID: 35066104 DOI: 10.1016/j.addr.2022.114118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 12/23/2022]
Abstract
Biomedical research accuracy and relevance for improving healthcare are increasingly identified as costly problems. Basic research data quality, reporting and methodology, and reproducibility are common factors implicated in this challenge. Preclinical models of disease and therapy, largely conducted in rodents, have known deficiencies in replicating most human conditions. Their translation to human results is acknowledged to be poor for decades. Clinical data quality and quantity is also recognized as deficient; gold standard randomized clinical trials are expensive. Few solid conclusions from clinical studies are replicable and many remain unpublished. The translational pathway from fundamental biomedical research through to innovative solutions handed to clinical practitioners is therefore highly inefficient and costly in terms of wasted resources, early claims from fundamental discoveries never witnessed in humans, and few new, improved solutions available clinically for myriad diseases. Improving this biomedical research strategy and resourcing for reliability, translational relevance, reproducibility and clinical impact requires careful analysis and consistent enforcement at both funding and peer review levels.
Collapse
Affiliation(s)
- Ulrich Dirnagl
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Germany; QUEST Center for Responsible Research, Berlin Institute of Health, Germany
| | - Georg N Duda
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany; Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - David W Grainger
- Department of Pharmaceutics and Pharmaceutical Chemistry, Health Sciences, University of Utah, Salt Lake City, UT 84112 USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112 USA.
| | - Petra Reinke
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitaetsmedizin Berlin, 13353 Berlin, Germany
| | - Ronenn Roubenoff
- Novartis Institutes for Biomedical Research, Cambridge, Basel, Massachusetts, Switzerland
| |
Collapse
|
50
|
Antisense RNA Therapeutics: A Brief Overview. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2434:33-49. [PMID: 35213008 DOI: 10.1007/978-1-0716-2010-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nucleic acid therapeutics is a growing field aiming to treat human conditions that has gained special attention due to the successful development of mRNA vaccines against SARS-CoV-2. Another type of nucleic acid therapeutics is antisense oligonucleotides, versatile tools that can be used in multiple ways to target pre-mRNA and mRNA. While some years ago these molecules were just considered a useful research tool and a curiosity in the clinical market, this has rapidly changed. These molecules are promising strategies for personalized treatments for rare genetic diseases and they are in development for very common disorders too. In this chapter, we provide a brief description of the different mechanisms of action of these RNA therapeutic molecules, with clear examples at preclinical and clinical stages.
Collapse
|