1
|
Jiang ML, Liu L, Wang Z, Yang X, Lin Z, Jiang R, Zhang CJ, Wang W. Kanglaite alleviates lung squamous cell carcinoma through ferroptosis. Int Immunopharmacol 2025; 144:113616. [PMID: 39579539 DOI: 10.1016/j.intimp.2024.113616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/27/2024] [Accepted: 11/08/2024] [Indexed: 11/25/2024]
Abstract
Kanglaite, a compound predominantly composed of polyunsaturated fatty acids (PUFAs), has been employed in the clinical treatment of adenocarcinoma non-small cell lung cancer (NSCLC) in China for decades. However, its therapeutic efficacy and specific mechanism in the treatment of squamous NSCLC remains unexplored. In this study, we demonstrate that the co-treatment with ferric ion significantly enhances the cytotoxic effects of kanglaite by inducing ferroptosis in NCL-H1703, a cell line of human lung squamous cell carcinoma. Mechanistic investigations reveal that kanglaite induces mitochondrial dysfunction resulting in reactive oxygen species (ROS) excessive production, which is critical for the induction of ferroptosis. Further analysis shows that kanglaite suppresses the PI3K/AKT signaling pathway, leading to increased IP3 generation. IP3 subsequently binds to and activates IP3R, an endoplasmic reticulum (ER) calcium channel, exacerbating the excessive calcium transfer from the ER to mitochondria. The overloaded mitochondrial calcium contributes to its dysfunction and elevates ROS production. To optimize the synergistic effects of ferric ion and kanglaite, we develop a mesoporous silica-based nanodrug delivery system co-loaded with Kanglaite and Fe3O4, which offers several notable advantages, including reduced drug dosage and a faster therapeutic onset. Finally, in an NCL-H1703 xenograft model, the DMSN/Fe3O4-Kanglaite nanodrug significantly inhibited tumor growth. In conclusion, we identified the function and mechanism of kanglaite in treatment of squamous NSCLC and have developed a DMSN/Fe3O4-Kanglaite nanodrug, providing a superior therapeutic approach for the treatment of squamous NSCLC.
Collapse
Affiliation(s)
- Mei-Ling Jiang
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Li Liu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zilin Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 611731, China
| | - Xue Yang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhiyong Lin
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Runqiu Jiang
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210000, China.
| | - Cun-Jin Zhang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Weiyan Wang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
2
|
Huang X, Yu G, Jiang X, Shen F, Wang D, Wu S, Mi Y. ITGB4/GNB5 axis promotes M2 macrophage reprogramming in NSCLC metastasis. Int Immunopharmacol 2025; 144:113564. [PMID: 39577216 DOI: 10.1016/j.intimp.2024.113564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
OBJECTIVE Metastasis of non-small cell lung cancer (NSCLC) is a leading cause of high mortality. In recent years, the role of M2 macrophages in promoting tumor metastasis within the tumor microenvironment has garnered increasing attention. This study aims to investigate the role and potential mechanisms of the ITGB4/GNB5 axis in regulating M2 macrophage reprogramming and influencing NSCLC metastasis. METHODS This study first used single-cell sequencing technology to reveal the diverse subpopulation structure of NSCLC tumor tissues. Data analysis then identified the correlation between M2 macrophages and the malignant phenotype of NSCLC. Flow cytometry and immunohistochemistry were used to detect changes in M2 macrophages in NSCLC tissues. The impact of the ITGB4/GNB5 axis on M2 macrophage function was assessed through RNA sequencing and proteomic analysis. Finally, in vitro cell experiments and in vivo mouse models were used to validate the function and regulatory mechanisms of this axis. RESULTS Our study found diverse cellular subpopulations in NSCLC tumor tissues, with M2 macrophages closely associated with the malignant phenotype of NSCLC. We identified ITGB4 as a characteristic gene of NSCLC and predicted GNB5 as an interacting gene through database analysis. Activation of the ITGB4/GNB5 axis was shown to enhance M2 macrophage polarization, promoting their accumulation in the tumor microenvironment. This change further facilitated NSCLC invasion and metastasis by modulating related cytokines and signaling pathways. Animal experiments demonstrated that inhibition of the ITGB4/GNB5 axis significantly reduced tumor growth and metastasis. CONCLUSION The ITGB4/GNB5 axis reshapes the TME by promoting M2 macrophage polarization and functional enhancement, thereby facilitating tumor invasion and metastasis in NSCLC. This research provides new insights into the molecular mechanisms of NSCLC and offers potential molecular targets for future targeted therapies.
Collapse
Affiliation(s)
- Xiaofeng Huang
- Department of Cardiothoracic Surgery, Jiangyin Clinical College of Xuzhou Medical University, Jiangyin 214400, China
| | - Guiping Yu
- Department of Cardiothoracic Surgery, Jiangyin Clinical College of Xuzhou Medical University, Jiangyin 214400, China
| | - Xuewei Jiang
- Department of Cardiothoracic Surgery, Jiangyin Clinical College of Xuzhou Medical University, Jiangyin 214400, China
| | - Fei Shen
- Department of Cardiothoracic Surgery, Jiangyin Clinical College of Xuzhou Medical University, Jiangyin 214400, China
| | - Dengshu Wang
- Department of Cardiothoracic Surgery, Jiangyin Clinical College of Xuzhou Medical University, Jiangyin 214400, China
| | - Song Wu
- Department of Cardiothoracic Surgery, Jiangyin Clinical College of Xuzhou Medical University, Jiangyin 214400, China.
| | - Yedong Mi
- Department of Cardiothoracic Surgery, Jiangyin Clinical College of Xuzhou Medical University, Jiangyin 214400, China.
| |
Collapse
|
3
|
Liu Y, Tang A, Liu M, Luo Z, Cao F, Yang C. The effectiveness of sanggenon c in alleviating SLC7A11-induced ferroptosis in lung cancer was evaluated using in vivo, in vitro, and computational approaches. Int Immunopharmacol 2025; 145:113819. [PMID: 39657537 DOI: 10.1016/j.intimp.2024.113819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Sanggenon c, a component in Morus alba L, has been proved to possess various biological activities. The aim of this study is to investigate whether sanggenon c can target SLC7A11 and inhibit lung cancer by regulating the ferroptosis mechanism. The levels of antioxidant factor, Fe 2+, and SLC7A11 were measured in the lungs of cancerous mice and human A 549 lung cancer cells. The computer-aided techniques were employed to validate the molecular docking and molecular dynamics simulations of sanggenon c and SLC7A11. The sanggenon c significantly inhibits lung cancer cell metastasis in vivo and A 549 cell proliferation in vitro by targeting the over-expression of SLC7A11, which inhibits GPX 4 and induces the release of ROS and MDA, effectively triggering ferroptosis. The interaction between sanggenon c and SLC7A11 exhibits a strong binding affinity, leading to the significant inhibition of the key protein SLC7A11. This restriction of system xc- transport induces ferroptosis in lung cancer. It epitomizes a groundbreaking inhibitor specifically designed to target SLC7A11.
Collapse
Affiliation(s)
- Yang Liu
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Amei Tang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Meng Liu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Zhenliang Luo
- School of Health Care, Guizhou University of Traditional Chinese Medicine, Guiyang,550025, Guizhou, China
| | - Feng Cao
- School of Health Care, Guizhou University of Traditional Chinese Medicine, Guiyang,550025, Guizhou, China.
| | - Changfu Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China.
| |
Collapse
|
4
|
Mapendano CK, Nøhr AK, Sønderkær M, Pagh A, Carus A, Lörincz T, Haslund CA, Poulsen LØ, Ernst A, Bødker JS, Dahl SC, Sunde L, Brügmann AH, Vesteghem C, Pedersen IS, Ladekarl M. Longer survival with precision medicine in late-stage cancer patients. ESMO Open 2025; 10:104089. [PMID: 39754975 DOI: 10.1016/j.esmoop.2024.104089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND In a per-protocol analysis of molecularly profiled patients with treatment-refractory, end-stage cancer discussed at the National Molecular Tumor Board (NMTB), we aimed to assess the overall survival (OS) outcome of targeted treatment compared with no targeted treatment. MATERIALS AND METHODS Patients were prospectively included at a single oncological center. Whole exome and RNA sequencing (tumor-normal) were carried out, and cases were presented at the NMTB for discussion of targeted treatment. Treatment was available through a basket trial, by compassionate use or in early clinical trials. RESULTS One hundred and ninety-six patients were included from 2020 to 2023. In all but three patients a driver variant was disclosed, while 42% had simultaneous affection of more than three oncogenic pathways. In 42% of patients a druggable target was identified but two-thirds did not receive the suggested treatment. The fraction of patients initiating treatment yearly rose from 8% to 22%. For patients treated (N = 30), the clinical benefit rate was 44% and median time on treatment was 3.5 months. Druggable targets were enriched in lung cancers, while patients receiving or not receiving targeted treatment had similar clinical characteristics. The median OS was longer for patients receiving targeted treatment (15 months), but similar for patients with no druggable target and suggested targeted treatment not initiated (5 and 6 months, respectively) (P = 0.004). In multivariate analysis, targeted treatment (hazard ratio 0.43, confidence interval 0.25-0.72), few metastatic sites, and adenocarcinoma histology were predictive of improved OS while alterations of the RTK/RAS pathway were prognostically unfavorable. CONCLUSIONS Tissue-agnostic targeted treatment based on molecular tumor profiling is possible in an increasing fraction of end-stage cancer patients. In those who receive targeted treatment, results strongly suggest a significant survival benefit.
Collapse
Affiliation(s)
- C K Mapendano
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - A K Nøhr
- Center for Clinical Data Science, Aalborg University and Aalborg University Hospital, Aalborg, Denmark
| | - M Sønderkær
- Molecular Diagnostics and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - A Pagh
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - A Carus
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - T Lörincz
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - C A Haslund
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - L Ø Poulsen
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - A Ernst
- Molecular Diagnostics and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - J S Bødker
- Molecular Diagnostics and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - S C Dahl
- Center for Clinical Data Science, Aalborg University and Aalborg University Hospital, Aalborg, Denmark
| | - L Sunde
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Clinical Genetics and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - A H Brügmann
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - C Vesteghem
- Center for Clinical Data Science, Aalborg University and Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - I S Pedersen
- Molecular Diagnostics and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - M Ladekarl
- Department of Oncology and Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
5
|
Tan XC, Song XY, Jiang MQ, Wang NY, Liu J, Yu W, Zhang Q, Cai XW, Feng W, Fu XL. Clinical efficacies of different neoadjuvant therapies for non-small cell lung cancer. Transl Oncol 2025; 51:102195. [PMID: 39550889 PMCID: PMC11615615 DOI: 10.1016/j.tranon.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
Neoadjuvant therapy followed by surgery is a common clinical strategy for operable non-small cell lung cancer (NSCLC), and the mainstream neoadjuvant therapies include chemoimmunotherapy, targeted therapy, and chemotherapy. However, there is a lack of studies to report the difference in benefits between these treatment modalities in the same institution. Therefore, this study aimed to depict the short-term efficacy of radiology and pathology achieved by different therapies and their impact on long-term survival as well as the underlying clinical significance. A total of 243 NSCLC patients who underwent different neoadjuvant therapies were eligible for inclusion. Demographic, radiological, and pathological features of patients were recorded. The event-free survival (EFS) outcome was analyzed using Kaplan-Meier analysis. The objective response rates (ORR) of primary tumor in the chemoimmunotherapy, targeted therapy, and chemotherapy cohorts were 48.95 %, 57.58 %, and 34.09 % respectively, major pathological response (MPR) rates were 58.74 %, 15.15 %, and 20.83 % (P<.0001), and pathological complete response (pCR) rates were 41.26 %, 0 %, and 11.11 % (P<.0001). For consistency between imaging and pathological evaluation, Cohen's Kappa were 0.275, 0.233, and 0.330. The EFS of MPR group was significantly longer than that of non-MPR group in the chemoimmunotherapy and chemotherapy cohorts (P=.0077**&.0343*, HR=0.3287&0.3715), but this improvement was not observed in the targeted therapy cohort. Neoadjuvant chemoimmunotherapy often underestimates pathological efficacy in imaging but shows consistent long-term outcomes. Neoadjuvant chemotherapy with moderate overall effectiveness has a significant correlation between short-term benefits and reduced recurrence. Neoadjuvant targeted therapy shows remarkable short-term imaging improvements but often fails to convert into sustained long-term survival.
Collapse
Affiliation(s)
- Xin-Chen Tan
- Department of Radiation Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China; School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, PR China
| | - Xin-Yun Song
- Department of Radiation Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Meng-Qi Jiang
- Department of Radiation Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Neng-Yang Wang
- Department of Radiation Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Jun Liu
- Department of Radiation Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Wen Yu
- Department of Radiation Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Qin Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Xu-Wei Cai
- Department of Radiation Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Wen Feng
- Department of Radiation Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| | - Xiao-Long Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, PR China.
| |
Collapse
|
6
|
Fu Q, Luo Y, Li J, Zhang P, Tang S, Song X, Fu J, Liu M, Mo R, Wei M, Li H, Liu X, Wang T, Ni G. Improving the efficacy of cancer immunotherapy by host-defence caerin 1.1 and 1.9 peptides. Hum Vaccin Immunother 2024; 20:2385654. [PMID: 39193797 PMCID: PMC11364082 DOI: 10.1080/21645515.2024.2385654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/07/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Cancer remains a major global health challenge. Immunotherapy has revolutionized the management of cancer, yet only a limited number of patients respond to such treatments. This is largely attributed to the immunosuppressive tumor microenvironment, which diminishes the effectiveness of immunotherapy. Recent studies have underscored the potential of naturally derived caerin 1 peptides, particularly caerin 1.1 and caerin 1.9, which exhibit strong antitumor effects and enhance the efficacy of immunotherapies in animal models. This review encapsulates the current research aimed at augmenting the effectiveness of immunotherapy, focusing on the role of caerin 1.1 and caerin 1.9 in boosting immunotherapeutic outcomes, elucidating possible mechanisms, and discussing their limitations and challenges.
Collapse
Affiliation(s)
- Quanlan Fu
- Medical School of Guizhou University, Guiyang, Guizhou, China
| | - Yuandong Luo
- Medical School of Guizhou University, Guiyang, Guizhou, China
| | - Junjie Li
- R&D Department, Zhongao Bio-pharmaceutical Technology Co., Ltd., Zhongshan, Guangdong Province, China
| | - Pingping Zhang
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Shuxian Tang
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Xinyi Song
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiawei Fu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Mengqi Liu
- Medical School of Guizhou University, Guiyang, Guizhou, China
| | - Rongmi Mo
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Ming Wei
- School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Hejie Li
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, Australia
| | - Xiaosong Liu
- R&D Department, Zhongao Bio-pharmaceutical Technology Co., Ltd., Zhongshan, Guangdong Province, China
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong, China
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, Australia
| | - Guoying Ni
- R&D Department, Zhongao Bio-pharmaceutical Technology Co., Ltd., Zhongshan, Guangdong Province, China
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong, China
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Xu M, Xu C, Qiu Y, Feng Y, Shi Q, Liu Y, Deng H, Ma X, Lin N, Shi Q, Shen Z, Meng S, Yang J, Chen H, Xue F. Zinc-based radioenhancers to activate tumor radioimmunotherapy by PD-L1 and cGAS-STING pathway. J Nanobiotechnology 2024; 22:782. [PMID: 39702231 DOI: 10.1186/s12951-024-02999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024] Open
Abstract
Radiotherapy and immunotherapy have already become the primary form of treatment for non-small-cell lung cancer (NSCLC), but are limited by high radiotherapy dose and low immune response rate. Herein, a multi-pronged strategy using a radio-immuno-enhancer (ZnO-Au@mSiO2) is developed by inducing tumor cells apoptosis and reprograming the immunosuppressive tumor microenvironment (TME). The radio-immuno-enhancer employed Au as a radiosensitizer, transition Zn ions as immune activators, which not only tremendously enhances the anti-proliferative activity of radiotherapy toward cancer cells, but also activates the immune response with multi-targets to let "exhausted" T cells "back to life" by triggering immunogenic cell death (ICD), immune checkpoint blockade (ICB) that target PD-1/PD-L1 and cGAS-STING under X-ray irradiation with a low dosage. The in vivo results demonstrate desirable antitumor and immunogenic effects of radio-immuno-enhancer-mediated immune activation by increasing the ratio of cytotoxic T cells (CTLs) and helper T cells. This work provides a feasible approach for future development of effective transition metal ion-activated radio-immunotherapeutic agents.
Collapse
Affiliation(s)
- Mengjiao Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Chao Xu
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Yu Qiu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
| | - Yushuo Feng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
| | - Qianqian Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
| | - Yaqing Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
| | - Huaping Deng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
| | - Xiaoqian Ma
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
| | - Nuo Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
| | - Qunying Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
| | - Zhiyang Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
| | - Shanshan Meng
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hongmin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Intergration in Vaccine Research, Xiamen University, Xiamen, China.
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| | - Fangqin Xue
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
| |
Collapse
|
8
|
Yu Y, Niu F, Sun B, Zhang S, Cai Z. Preclinical study of TLR stimulation combined PD-1 antibody enhance the therapeutic effect of microwave ablation on NSCLC. Clin Transl Oncol 2024:10.1007/s12094-024-03820-x. [PMID: 39702688 DOI: 10.1007/s12094-024-03820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
PURPOSE The purpose of this study was to investigate the therapeutic efficacy of the combination of microwave ablation (MWA) with immune checkpoints blockade and TLR9 stimulation in the treatment of non-small cell lung cancer (NSCLC) using the C57BL/6 tumor-bearing mice model. MATERIALS AND METHODS Tumor-bearing mice were treated with MWA, programmed cell death protein1 blockade (PD-1) plus MWA (MWA + P), TLR9 agonist CpG ODNs and MWA (MWA + C), PD-1 blockade and CpG ODNs (P + C), MWA plus PD-1 blockade and CpG ODNs (MWA + P + C), or untreated. Survival time was evaluated with the Kaplan-Meyer method comparing survival curves by log-rank test. On day 15 after MWA, ten mice from the combination therapy group received tumor rechallenge with LLC cells and the volumes of rechallenge tumor were calculated every 5 days. Immune cells were identified by immunohistochemistry and flow cytometry, and the concentrations of IFN-γ、TNF-α and TGF-β were identified by enzyme-linked immunosorbent assay (ELISA). RESULTS The MWA + P + C combination therapy significantly prolonged tumor-bearing mice survival and reduced tumor size compared to untreated group, MWA group, MWA + P group, M + C group, P + C group. The combination therapy also protected most surviving mice from LLC tumor rechallenge. CD8 + T-cell in tumor and spleen were remarkably induced by MWA + P + C and Treg cell further diminished by combination therapy. Both tumor necrosis factor-alpha (TNF-α) and interferon-gama (IFN-γ) concentrations in plasma were significantly elevated in the combination therapy group compared to other groups, while transforming growth factor Beta (TGF-β) was reduced. CONCLUSION MWA combined with immune checkpoints blockade and TLR stimulation could significantly enhance antitumor efficacy with augmented specific immune responses, and the combination therapy is a promising approach to treat non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Ying Yu
- Hebei Key Laboratory of Respiratory Critical Care Medicine, The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Institute of Respiratory Diseases, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
- Department of Infectious Diseases, First hospital of Qinhuangdao, Qinhuangdao, Hebei, 066000, China
| | - Fu Niu
- Hebei Key Laboratory of Respiratory Critical Care Medicine, The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Institute of Respiratory Diseases, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Bo Sun
- Hebei Key Laboratory of Respiratory Critical Care Medicine, The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Institute of Respiratory Diseases, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Shusen Zhang
- Hebei Key Laboratory of Respiratory Critical Care Medicine, The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Institute of Respiratory Diseases, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Zhigang Cai
- Hebei Key Laboratory of Respiratory Critical Care Medicine, The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Hebei Institute of Respiratory Diseases, No. 215 Heping West Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
9
|
Becirovic T, Zhang B, Vakifahmetoglu-Norberg H, Kaminskyy VO, Kochetkova E, Norberg E. USP39 regulates pyruvate handling in non-small cell lung cancer. Cell Death Discov 2024; 10:502. [PMID: 39695108 DOI: 10.1038/s41420-024-02264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
The ubiquitin-specific peptidase 39 (USP39) belongs to the USP family of cysteine proteases representing the largest group of human deubiquitinases (DUBs). While the oncogenic function of USP39 has been investigated in various cancer types, its roles in non-small cell lung cancer (NSCLC) remain largely unknown. Here, by applying a gene set enrichment analysis (GSEA) on lung adenocarcinoma tissues and metabolite set enrichment analysis (MSEA) on NSCLC cells depleted of USP39, we identified a previously unknown link between USP39 and the metabolism in NSCLC cells. Mechanistically, we uncovered a component of the pyruvate dehydrogenase (PDH) complex, pyruvate dehydrogenase E1 subunit alpha (PDHA), as a target of USP39. We further present that USP39 silencing caused an elevation in Lys63 ubiquitination on PDHA and a reduction in the PDH complex activity, the levels of TCA cycle intermediates, mitochondrial respiration, cell proliferation in vitro, and of tumor growth in vivo. Consistently, citrate supplementation restored mitochondrial respiration and cell growth in USP39-depleted cells. Our study elucidates and describes how USP39 regulates pyruvate metabolism through a deubiquitylation process that affects NSCLC tumor growth.
Collapse
Affiliation(s)
- Tina Becirovic
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Boxi Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | | | - Vitaliy O Kaminskyy
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden.
| | - Elena Kochetkova
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden.
| | - Erik Norberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden.
| |
Collapse
|
10
|
Qian L, Ji Z, Mei L, Zhao J. IGF2BP2 promotes lung adenocarcinoma progression by regulating LOX1 and tumor-associated neutrophils. Immunol Res 2024; 73:16. [PMID: 39688738 DOI: 10.1007/s12026-024-09563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024]
Abstract
Lung adenocarcinoma (LUAD) is the common form of lung cancer and is prone to distant metastasis. IGF2BP2, an m6A modification regulator, is upregulated in lung cancer tissue, but its specific role within the LUAD tumor microenvironment (TME) is unknown. We explored the role of IGF2BP2 in the progression of LUAD. IGF2BP2 expression in LUAD patient specimens and controls was evaluated through bioinformatics, Western blot, and immunohistochemistry. LUAD subcutaneous and orthotopic xenograft tumor models were established, alongside a co-culture system of tumor-associated neutrophils (TANs) and A549 cells. Functional assays assessed IGF2BP2's role under treatment with JX5, an IGF2BP2 inhibitor. Mechanistic assays explored the interaction between IGF2BP2 and LOX1 in 293T cells. IGF2BP2 was significantly upregulated in LUAD tissues, with higher expression levels predicting worse prognosis for patients (p < 0.001). In subcutaneous and orthotopic xenograft models, treatment with JX5, an IGF2BP2 inhibitor, reduced tumor size, volume, and weight (p < 0.001). JX5 also significantly reduced the concentrations of pro-inflammatory cytokines in peripheral blood (p < 0.01 and p < 0.001). Flow cytometry analysis indicated JX5 reduced CD11b+Ly6G+/CD45+ cells (TANs) in the TME (p < 0.001). Mechanistically, JX5 downregulated LOX1 expression in vivo, and co-culture experiments further demonstrated that IGF2BP2 promotes LUAD progression through LOX1-mediated regulation of TAN activity (p < 0.01 and p < 0.001). Overexpression of LOX1 reversed the inhibitory effects of JX5 on TAN infiltration, tumor cell viability, and apoptosis (p < 0.01 and p < 0.001). Additionally, RNA immunoprecipitation revealed that IGF2BP2 binds to LOX1 mRNA at its m6A modification site, stabilizing LOX1 and enhancing its function in the TME. Knockdown of IGF2BP2 accelerated LOX1 mRNA degradation, confirming its role in maintaining LOX1 stability (p < 0.01 and p < 0.001). IGF2BP2 recognizes and stabilizes LOX1 through m6A modification, contributing to TAN-mediated LUAD progression. Overall, these findings offer new insights into LUAD progression and demonstrate that IGF2BP2 is a key regulator that promotes tumor advancement, highlighting the IGF2BP2-LOX1 axis as a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Long Qian
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China
- Department of Thoracic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Zhuqing Ji
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Department of Medical Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Lingyun Mei
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, No. 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
11
|
Lu J, Liang J, Xiao G, He Z, Yu G, Zhang L, Cai C, Yi G, Xie J. Cathepsin L in Lung Adenocarcinoma: Prognostic Significance and Immunotherapy Response Through a Multi Omics Perspective. Cancer Inform 2024; 23:11769351241307492. [PMID: 39687501 PMCID: PMC11648051 DOI: 10.1177/11769351241307492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Objectives Lung adenocarcinoma (LUAD), a predominant form of lung cancer, is characterized by a high rate of metastasis and recurrence, leading to a poor prognosis for LUAD patients. This study aimed to identify and rigorously validate a highly precise biomarker, Cathepsin L (CTSL), for the prognostic prediction of lung adenocarcinoma. Methods We employed a multicenter and omics-based approach, analyzing RNA sequencing data and mutation information from public databases such as The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). The DepMap portal with Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) technology was used to assess the functional impact of CTSL. Immunohistochemistry (IHC) was conducted on a local cohort to validate the prognostic significance of CTSL at the protein expression level. Results Our findings revealed a significant correlation between elevated CTSL expression and advanced disease stage in LUAD patients. Kaplan-Meier survival analysis and Cox regression modeling revealed that high CTSL expression is associated with poor overall survival. The in vitro studies corroborated these findings, revealing notable suppression of tumor proliferation following CTSL knockout in cell lines, particularly in LUAD. Functional enrichment revealed that CTSL activated pathways associated with tumor progression, such as angiogenesis and Transforming growth factor beta (TGF-beta) signaling, and inhibited pathways such as apoptosis and DNA repair. Mutation analysis revealed distinct variations in the CTSL expression groups. Conclusion This study highlights the crucial role of CTSL as a prognostic biomarker in LUAD. This combined multicenter and omics-based analysis provides comprehensive insights into the biological role of CTSL, supporting its potential as a target for therapeutic intervention and a marker for prognosis in patients with LUAD.
Collapse
Affiliation(s)
- Jianming Lu
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiaqi Liang
- Pneumology Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gang Xiao
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Thoracic Surgery, Guangzhou First People’s Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong, China
| | - Zitao He
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Guifang Yu
- Oncology Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Le Zhang
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, USA
| | - Chao Cai
- Department of Urology, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gao Yi
- Pneumology Department, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianjiang Xie
- Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Thoracic Surgery, Guangzhou First People’s Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Pooresmaeil F, Azadi S, Hasannejad-Asl B, Takamoli S, Bolhassani A. Pivotal Role of miRNA-lncRNA Interactions in Human Diseases. Mol Biotechnol 2024:10.1007/s12033-024-01343-y. [PMID: 39673006 DOI: 10.1007/s12033-024-01343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
New technologies have shown that most of the genome comprises transcripts that cannot code for proteins and are referred to as non-coding RNAs (ncRNAs). Some ncRNAs, like long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are of substantial interest because of their critical function in controlling genes and numerous biological activities. The expression levels and function of miRNAs and lncRNAs are rigorously monitored throughout developmental processes and the maintenance of physiological homeostasis. Due to their critical roles, any dysregulation or changes in their expression can significantly influence the pathogenesis of various human diseases. The interactions between miRNAs and lncRNAs have been found to influence gene expression in various ways. These interactions significantly influence the understanding of disease etiology, cellular processes, and potential therapeutic targets. Different experimental and in silico methods can be used to investigate miRNA-lncRNA interactions. By aiding the elucidation of miRNA-lncRNA interactions and deepening the understanding of post-transcriptional gene regulation, researchers can open a new window for designing hypotheses, conducting experiments, and discovering methods for diagnosing and treating complex human diseases. This review briefly summarizes miRNA and lncRNA functions, discusses their interaction mechanisms, and examines the experimental and computational methods used to study these interactions. Additionally, we highlight significant studies on lncRNA and miRNA interactions in various diseases from 2000 to 2024, using the academic research databases such as PubMed, Google Scholar, ScienceDirect, and Scopus.
Collapse
Affiliation(s)
- Farkhondeh Pooresmaeil
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Science, Tehran, Iran
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Sareh Azadi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Behnam Hasannejad-Asl
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Shahla Takamoli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Azam Bolhassani
- Department of Hepatitis & AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
13
|
Li KM, Meng LF, Yang ZH, Hu WT. NUP155 and NDC1 interaction in NSCLC: a promising target for tumor progression. Front Pharmacol 2024; 15:1514367. [PMID: 39720592 PMCID: PMC11666513 DOI: 10.3389/fphar.2024.1514367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/28/2024] [Indexed: 12/26/2024] Open
Abstract
Background NUP155 was reported to involve breast invasive carcinoma and hepatocellular carcinoma. We hypothesized that NUP155 and NDC1impacted the progression of NSCLC. Methods The dataset was analyzed to find differentially expressed genes. Functional enrichment analysis and Kaplan-Meier survival analysis were performed for differentially expressed genes. Western blot, Clone formation assay, Transwell assay and CCK-8 assay were performed to determine the performance and role of the target gene in NSCLC. Results The research found that the NUP family played a role in various diseases. Differential expression analysis and survival analysis were performed to identify 6 related-genes, including NUP155, NDC1, KPNA2, MAD2L1, NUP62CL, and POM121L2NUP155 and NDC1 could interact with NUP53, respectively. This effect was necessary to complete the assembly of the nuclear pore complex. Conclusion NUP155 interacted with NDC1 to complete the assembly of the nuclear pore complex, which promoted the development of NSCLC. Our study demonstrated that NUP155 was expected to be a potential target for the treatment of NSCLC.
Collapse
Affiliation(s)
| | | | | | - Wen-Tao Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
14
|
Liu M, Li Q, Meng X, Cui Y, Sun W, Wang H, Gao Q. Identification of gene signatures relevant to the efficacy of immune checkpoint inhibitors in non-small cell lung cancer. Medicine (Baltimore) 2024; 103:e40569. [PMID: 39654181 PMCID: PMC11630944 DOI: 10.1097/md.0000000000040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) through immunotherapy, many patients still exhibit resistance to this approach. This study aims to identify the characteristics of individuals who can benefit from immunotherapy, especially immune checkpoint inhibitors (ICIs), and to investigate optimal strategies for patients who experience resistance to it. Data on gene expression patterns and clinical information from NSCLC patients who underwent immunotherapy were obtained from the Gene Expression Omnibus databases. A predictive signature for immunotherapy prognosis was developed using a training dataset and validated with validation datasets. Immune landscape and immunotherapy responsiveness analyses were conducted to assess the risk signature. Additionally, data from a study on immunotherapy were used to evaluate the correlation between MNX1 mutation and the effectiveness of ICIs, including clinical data and whole exome sequencing data. We identified 7 genes in NSCLC using RNA-seq data that were significantly associated with the efficacy of immunotherapy. Based on these genes, a risk signature was created to predict the efficacy of ICIs. Patients in the low-risk group had better outcomes compared to those in the high-risk group after receiving ICIs. Additionally, our analysis of the immune landscape revealed a significant association between the high-risk signature and an immunosuppressive state. We also discovered an unexpected role of tumor-specific MNX1 and HOXD1 in suppressing the immune response against cancer. Notably, NSCLC patients with MNX1 mutations experienced prolonged progression-free survival. Furthermore, we identified several medications that exhibited increased sensitivity in patients with high MNX1 expression, with topoisomerase inhibitors showing the highest level of sensitivity. This could be a potential strategy to improve the efficacy of ICIs. The risk signature has demonstrated its effectiveness in forecasting the prognosis of NSCLC treated with ICIs, enabling better patient stratification and more accurate prediction of immunotherapy response. Moreover, MNX1 and HOXD1 have been identified as key molecules related to immunotherapy resistance. Inhibition of these molecules, combined with current ICIs, offers novel strategies for the management of NSCLC patients.
Collapse
Affiliation(s)
- Min Liu
- Department of General Medicine, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Qiao Li
- The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaohong Meng
- The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanan Cui
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Weirong Sun
- Radiological Department, The Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongmei Wang
- Department of General Medicine, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Qingjun Gao
- Department of Thoracic Surgery, The People’s Hospital of Rushan City, Weihai, PR China
| |
Collapse
|
15
|
Wang H, Xiong A, Chen X, Guo J, Tang Z, Wu C, Ren S, Zhou C, Chen J, Hou L, Jiang T. CXCR1 + neutrophil infiltration orchestrates response to third-generation EGFR-TKI in EGFR mutant non-small-cell lung cancer. Signal Transduct Target Ther 2024; 9:342. [PMID: 39638994 PMCID: PMC11621634 DOI: 10.1038/s41392-024-02045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Although third-generation Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKI) is standard of care for patients with EGFR-mutant Non-small cell lung cancer (NSCLC), little is known about the predictors of response or resistance. Here, we integrated single-cell RNA (scRNA) sequencing, bulk RNA sequencing, multiplexed immunofluorescence and flow cytometry data from pretreatment and post-resistant tumor samples of EGFR-mutant NSCLC patients received third-generation EGFR-TKIs. We show that resistant samples had a markedly enriched CXCR1+ neutrophils infiltration (P < 0.01) than pretreatment samples, which were distinguished from other subtypes of neutrophils and displayed immunosupressive characteristics. Spatial analysis showed that increased CXCR1+ neutrophils predominantly infiltrated into the tumor core in resistant samples and the average distance of neutrophils to tumor cells markedly reduced from 33 to 19 μm. Deep analysis of scRNA and bulk RNA sequencing data revealed the increased interactions between CXCR1+ neutrophils and tumor cells and activated TNF-α/NF-κB signaling pathway in tumor cells of resistant samples. In vitro and in vivo experiments validated that CXCR1+ neutrophils resulted in resistance to third-generation EGFR-TKI via activating TNF-α/NF-κB signaling pathway in tumor cells. Importantly, patients with low pretreatment CXCR1+ neutrophil infiltration abundance had a dramatically longer progression-free survival (11.8 vs. 7.5 months; P = 0.019) and overall survival (33.0 vs. 23.5 months; P = 0.029) than those with high infiltration abundance. Collectively, these findings suggest that CXCR1+ neutrophils infiltration was associated with the efficacy of third-generation EGFR-TKI in patients with EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Haowei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Anwen Xiong
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Junhong Guo
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhuoran Tang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Tao Jiang
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Zhao Z, Zhao Q, Mao Z, Tian Y, Yang L, Ma Y, Gu J, Tan R. High-throughput screening of the natural STK11 agonist dauricine: A biphenylisoquinoline alkaloid exerting anti-NSCLC effects and reversing gefitinib resistance. Eur J Pharmacol 2024; 984:177024. [PMID: 39362388 DOI: 10.1016/j.ejphar.2024.177024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Serine/threonine kinase 11 (STK11) deletion and downregulation caused cancer progression, and were widely associated with drug resistance. Accurate screening of natural small molecules about anti-cancer and anti-drug resistance is the key to the development and utilization of natural product application, which could promote traditional Chinese medicine in the treatment of cancer. Dauricine, which is derived from the rhizome of Menispermum dauricum DC., has certain potential but unexplored mechanism for the treatment of cancer. PURPOSE The aim of this study was to screen and validate the role and mechanism of natural STK11 agonists with anti-drug resistance from plants in the treatment of NSCLC. METHODS A lentiviral STK11 overexpression cell model was employed for the screening of natural STK11 agonists. The efficacy of dauricine in the treatment of NSCLC was validated on PC-9 and HCC827 cells. In vivo validation of dauricine activity was performed using nude mouse models equipped with PC9 xenografts. To investigate the anti-resistant effects of dauricine, gefitinib-resistant PC9 cell models were constructed. RESULTS As a natural agonist of STK11, it causes the activation of the STK11/AMPK pathway and inhibits the growth of PC-9 cells. Dauricine synergises the inhibitory effect with gefitinib on PC9. The up-regulation of STK11 protein expression by dauricine was demonstrated in vitro and in vivo, while restoring the sensitivity of PC9/GR to gefitinib by down-regulating the protein expression of Nrf2 and Pgp. CONCLUSION Dauricine, a natural agonist of STK11, effectively inhibited NSCLC, and its combination treatment with gefitinib reversed drug-resistant NSCLC.
Collapse
Affiliation(s)
- Zhigao Zhao
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zhiyuan Mao
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yang Tian
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Li Yang
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yu Ma
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, 610225, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
17
|
Shiller M, Johnson M, Auber R, Patel SP. Clinical perspectives on the value of testing for STK11 and KEAP1 mutations in advanced NSCLC. Front Oncol 2024; 14:1459737. [PMID: 39703851 PMCID: PMC11655323 DOI: 10.3389/fonc.2024.1459737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
Standard first-line therapy for patients with metastatic non-small cell lung cancer (mNSCLC) without identified actionable mutations consists of regimens comprising immune checkpoint inhibitors (ICIs), alone or in combination with platinum-based chemotherapy (CTx). However, approximately 20-30% of patients with mNSCLC (including some patients with high tumor programmed cell death ligand-1 expression) display primary resistance to ICIs, either alone or in combination with CTx. Mutations in tumor suppressor genes serine/threonine kinase 11 (STK11), and Kelch-like ECH-associated protein 1 (KEAP1) often detected in patients with Kirsten rat sarcoma virus mutations, are associated with an aggressive disease phenotype and resistance to standard ICI regimens. Consequently, there is an important need for effective treatments for patients with NSCLC with STK11 or KEAP1 mutations. In this article, we describe new data on the prevalence of STK11 and KEAP1 mutations in a large clinical population, consider practicalities around the detection of these mutations using available biomarker testing methodologies, and describe experiences of managing some of these difficult-to-treat patients in our clinical practice.
Collapse
Affiliation(s)
- Michelle Shiller
- Department of Pathology, Baylor University Medical Center, Dallas, TX, United States
| | - Melissa Johnson
- Department of Medical Oncology, Sarah Cannon Cancer Research Institute, Nashville, TN, United States
| | - Robert Auber
- Department of Molecular Oncology, PathGroup, Nashville, TN, United States
| | - Sandip Pravin Patel
- Division of Hematology and Oncology, Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
18
|
Wang Z, Sun L, Xu Y, Huang J, Yang F, Chang Y. Discovery of novel VEGFR2 inhibitors against non-small cell lung cancer based on fingerprint-enhanced graph attention convolutional network. J Transl Med 2024; 22:1097. [PMID: 39627783 PMCID: PMC11613592 DOI: 10.1186/s12967-024-05893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/14/2024] [Indexed: 12/08/2024] Open
Abstract
Despite the proven inhibitory effects of drugs targeting vascular endothelial growth factor receptor 2 (VEGFR2) on solid tumors, including non-small cell lung cancer (NSCLC), the development of anti-NSCLC drugs solely targeting VEGFR2 still faces risks such as off-target effects and limited efficacy. This study aims to develop a novel fingerprint-enhanced graph attention convolutional network (FnGATGCN) model for predicting the activity of anti-NSCLC drugs. Employing a multimodal fusion strategy, the model integrates a feature extraction layer that comprises molecular graph feature extraction and molecular fingerprint feature extraction. The performance evaluation results indicate that the model exhibits high accuracy and stability in predicting activity. Moreover, we explored the relationship between molecular features and biological activity through visualization analysis, thus improving the interpretability of the approach. Utilizing this model, we screened the ZINC database and conducted high-precision molecular docking, leading to the identification of 11 potential active molecules. Subsequently, molecular dynamics simulations and free energy calculations were performed. The results demonstrate that all 11 aforementioned molecules can stably bind to VEGFR2 under dynamic conditions. Among the short-listed compounds, the top six exhibited satisfactory inhibitory activity against VEGFR2 and A549 cells. Especially, compound Z-3 displayed VEGFR2 inhibitory with IC50 values of 0.88 μM, and anti-proliferative activity against A549 cells with IC50 values of 4.23 ± 0.45 μM. This approach combines the advantages of target-based and phenotype-based screening, facilitating the rapid and efficient identification of candidate compounds with dual activity against VEGFR2 and A549 cell lines. It provides new insights and methods for the development of anti-NSCLC drugs. Furthermore, further biological activity tests revealed that Z1-Z3 and Z6 manifested relatively strong antiproliferative activities against NCI-H23 and NCI-H460, and relatively low toxicity towards GES-1. The hit compounds were promising candidates for the further development of novel VEGFR2 inhibitors against NSCLC.
Collapse
Affiliation(s)
- Zixiao Wang
- Department of Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Lili Sun
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yu Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing Huang
- Department of Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Fang Yang
- Department of Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yu Chang
- Department of Pharmacy, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
19
|
Qin S, Zhang H, Liu C, Yi M. Editorial: Investigating tumor immunotherapy responses in lung cancer using deep learning. Front Immunol 2024; 15:1529949. [PMID: 39691722 PMCID: PMC11649539 DOI: 10.3389/fimmu.2024.1529949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Affiliation(s)
- Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Chao Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ming Yi
- Department of Breast Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Sima L, Wang Z, Yu L, Hou Y, Zhao D, Luo B, Liao W, Liu X. Discovery of LAH-1 as potent c-Met inhibitor for the treatment of non-small cell lung cancer. J Enzyme Inhib Med Chem 2024; 39:2286435. [PMID: 38078363 DOI: 10.1080/14756366.2023.2286435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
ABSTRCTDysregulated HGF/c-Met pathway has been implicated in multiple human cancers and has become an attractive target for cancer intervention. Herein, we report the discovery of N-(3-fluoro-4-((2-(3-hydroxyazetidine-1-carboxamido)pyridin-4-yl)oxy)phenyl)-1-(4-fluorophenyl)-4-methyl-6-oxo-1,6-dihydropyridazine-3-carboxamide (LAH-1), which demonstrated nanomolar MET kinase activity as well as desirable antiproliferative activity, especially against EBC-1 cells. Mechanism studies confirmed the effects of LAH-1 on modulation of HGF/c-Met pathway, induction of cell apoptosis, inhibition on colony formation as well as cell migration and invasion. In addition, LAH-1 also showed desirable in vitro ADME properties as well as acceptable in vivo PK parameters. The design, synthesis, and characterisation of LAH-1 are described herein.
Collapse
Affiliation(s)
- Lijie Sima
- Department of Hematology and Oncology, The Affiliated Shaoyang Hospital, Hengyang Medical School, University of South China (Shaoyang Central Hospital), Shaoyang, China
| | - Zhongyuan Wang
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, China
| | - Ling Yu
- Department of Pharmacy, Guiyang Healthcare Vocational University, Guiyang, China
| | - Youli Hou
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Dongsheng Zhao
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Bilan Luo
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Weike Liao
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, China
| | - Xinfu Liu
- Department of Hematology and Oncology, The Affiliated Shaoyang Hospital, Hengyang Medical School, University of South China (Shaoyang Central Hospital), Shaoyang, China
| |
Collapse
|
21
|
Zhou J, Xu Y, Liu J, Feng L, Yu J, Chen D. Global burden of lung cancer in 2022 and projections to 2050: Incidence and mortality estimates from GLOBOCAN. Cancer Epidemiol 2024; 93:102693. [PMID: 39536404 DOI: 10.1016/j.canep.2024.102693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Lung cancer continues to pose a serious global public health challenge. Timely evidence on the global epidemiological profile of the disease is crucial to facilitate the implementation to lung cancer control efforts. This study provides updated global estimates for lung cancer incidence and mortality in 2022, along with projections for new cases and deaths up to 2050. METHODS In the population-based study, we extracted data about lung cancer new cases and deaths from GLOBOCAN 2022 database across 185 countries or territories. We analyzed age-standardized rates by sex, country, region, and human development index (HDI). Projected new cases and deaths for 2050 were estimated using global demographic projections. RESULTS In 2022, lung cancer stood as the most frequently diagnosed cancer and the primary cause of cancer-related deaths on a global scale with approximately 2.48 million new cases and 1.8 million deaths, respectively. The incidence and mortality rates of lung cancer exhibited disparities in sex and world regions. Furthermore, incidence and mortality rates increasing as HDI increased. If the incidence and mortality rates remain stable as in 2022, the burden of lung cancer is projected to increase to 4·62 million new cases and 3·55 million deaths by 2050. CONCLUSIONS Lung cancer is the predominant form of cancer and the foremost contributor to cancer-related mortality in 2022 with notable geographical, sex, and socioeconomic disparities.
Collapse
Affiliation(s)
- Jialin Zhou
- Shandong University Cancer Center, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Precision Oncology, Jinan, Shandong, China; Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Ying Xu
- Shandong University Cancer Center, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Precision Oncology, Jinan, Shandong, China; Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jianmin Liu
- Shandong Second Medical University, Weifang, Shandong, China; Shandong Provincial Key Laboratory of Precision Oncology, Jinan, Shandong, China; Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Lili Feng
- Shandong University Cancer Center, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Precision Oncology, Jinan, Shandong, China; Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jinming Yu
- Shandong University Cancer Center, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Precision Oncology, Jinan, Shandong, China; Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dawei Chen
- Shandong University Cancer Center, Jinan, Shandong, China; Shandong Provincial Key Laboratory of Precision Oncology, Jinan, Shandong, China; Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
22
|
Wang J, He X, Jia Z, Yan A, Xiao K, Liu S, Hou M, Long Y, Ding X. Shenqi Fuzheng injection restores the sensitivity to gefitinib in non-small cell lung cancer by inhibiting the IL-22/STAT3/AKT pathway. PHARMACEUTICAL BIOLOGY 2024; 62:33-41. [PMID: 38100532 PMCID: PMC10732196 DOI: 10.1080/13880209.2023.2292266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
CONTEXT Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Gefitinib is a first-line treatment for NSCLC. However, its effectiveness is hindered by the development of drug resistance. At present, Shenqi Fuzheng injection (SFI) is widely accepted as an adjuvant therapy in NSCLC. OBJECTIVE This study investigates the molecular mechanism of SFI when combined with gefitinib in regulating cell progression among EGFR-TKI-resistant NSCLC. MATERIALS AND METHODS We established gefitinib-resistant PC9-GR cells by exposing gefitinib escalation from 10 nM with the indicated concentrations of SFI in PC9 cells (1, 4, and 8 mg/mL). Quantitative real-time polymerase chain reaction was performed to assess gene expression. PC9/GR and H1975 cells were treated with 50 ng/mL of interleukin (IL)-22 alone or in combination with 10 mg/mL of SFI. STAT3, p-STAT3, AKT, and p-AKT expression were evaluated using Western blot. The effects on cell proliferation, clonogenicity, and apoptosis in NSCLC cells were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation and flow cytometry assays. RESULTS SFI treatment alleviated the development of gefitinib resistance in NSCLC. PC9/GR and H1975 cells treated with SFI significantly exhibited a reduction in IL-22 protein and mRNA overexpression levels. SFI effectively counteracted the activation of the STAT3/AKT signaling pathway induced by adding exogenous IL-22 to PC9/GR and H1975 cells. Moreover, IL-22 combined with gefitinib markedly increased cell viability while reducing apoptosis. In contrast, combining SFI with gefitinib and the concurrent treatment of SFI with gefitinib and IL-22 demonstrated the opposite effect. DISCUSSION AND CONCLUSION SFI can be a valuable therapeutic option to address gefitinib resistance in NSCLC by suppressing the IL-22/STAT3/AKT pathway.
Collapse
Affiliation(s)
- Jiali Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xianhai He
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhirong Jia
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Aiwen Yan
- Jiangsu Food & Pharmaceutical Science College, Jiangsu Food Science College, Huanan, China
| | - Kang Xiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shuo Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengjun Hou
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yaling Long
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
23
|
Shi M, Dong T, Lin J, Huang L, Zhang H, Sun S. Characterizing dynamic tumor-immune interactions in lung adenocarcinoma through orthotopic allograft modeling. Eur J Immunol 2024; 54:e2451342. [PMID: 39479750 DOI: 10.1002/eji.202451342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/11/2024]
Abstract
The major clinical challenge in lung cancer immunotherapy is drug resistance. Therefore, establishing efficient orthotopic lung cancer mouse models to explore the mechanisms of drug immunotherapy resistance is highly important. In this study, we generated multiple fluorescently labeled lung adenocarcinoma cell lines from a genetically engineered KPZ mice model. Orthotopic transplantation of the primary 1F3 cell line induced a strong immune response, causing many small tumors to disappear, but some tumors evaded the immune attack and eventually formed large tumors. Tumor microenvironment analysis demonstrated that M2 macrophages play key roles in the immune response. Further mechanistic studies revealed that the chemokine CCL7 promoted the infiltration of M2 macrophages to facilitate immune escape, thereby promoting tumor growth in the orthotopic mouse model. Moreover, CCL7 levels were elevated in human lung cancer biopsies and positively correlated with M2 macrophage infiltration, and high CCL7 levels predicted advanced pathological stage and poor survival in lung cancer patients. Overall, we established a visualized and orthotopic mouse model with fluorescently labeled cells to better dissect the tumor microenvironment of lung cancer and define the critical role of CCL7 in promoting M2 macrophage polarization and tumorigenesis, providing new preclinical tools and potential targets for lung cancer immunotherapy.
Collapse
Affiliation(s)
- Mingjun Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tianqi Dong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiaming Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huixia Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
24
|
Wei Q, Lin J, Lin Z, Yu N, Wu Y, Tan X, Xue D. GOLPH3 inhibition overcomes cisplatin resistance by restoring the glutathione/reactive oxygen species balance in the A549 non‑small cell lung cancer cell line. Oncol Rep 2024; 52:170. [PMID: 39422070 PMCID: PMC11526445 DOI: 10.3892/or.2024.8829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/17/2024] [Indexed: 10/19/2024] Open
Abstract
Cisplatin resistance is common in non‑small cell lung cancer (NSCLC); however, the molecular mechanisms remain unclear. The present study aimed to identify a new function of Golgi phosphoprotein 3 (GOLPH3) in NSCLC‑associated cisplatin resistance. Using A549 human NSCLC cells and the cisplatin‑resistant variant, stable cell lines with GOLPH3 knockdown or overexpression were established using lentiviral vectors. Through Cell Counting Kit‑8 and EdU assays, it was revealed that knockdown of GOLPH3 significantly enhanced cisplatin sensitivity in NSCLC cells. Specifically, flow cytometric analysis showed that GOLPH3 knockdown promoted apoptosis and G2‑phase cell cycle arrest in A549 cells. Mechanistically, intracellular reactive oxygen species (ROS) and glutathione (GSH) levels were measured using assay kits, and it was demonstrated that GOLPH3 knockdown decreased intracellular GSH levels, and further attenuated intracellular cisplatin efflux and GSH/ROS imbalance. In addition, tumor‑sphere formation assays verified that GOLPH3 knockdown mitigated the stem cell‑like phenotype of NSCLC cells. In conclusion, the present findings indicated the relevance of GOLPH3 in NSCLC‑associated cisplatin resistance, and thus targeting GOLPH3 may be developed into a combination therapy to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Qiongying Wei
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Jinquan Lin
- Department of Trauma Center and Emergency Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
- Department of Trauma Center and Emergency Surgery, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350212, P.R. China
| | - Zhuangbin Lin
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Nanding Yu
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yingxiao Wu
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Xuexue Tan
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Dan Xue
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
25
|
Thapa R, Magar AT, Shrestha J, Panth N, Idrees S, Sadaf T, Bashyal S, Elwakil BH, Sugandhi VV, Rojekar S, Nikhate R, Gupta G, Singh SK, Dua K, Hansbro PM, Paudel KR. Influence of gut and lung dysbiosis on lung cancer progression and their modulation as promising therapeutic targets: a comprehensive review. MedComm (Beijing) 2024; 5:e70018. [PMID: 39584048 PMCID: PMC11586092 DOI: 10.1002/mco2.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Lung cancer (LC) continues to pose the highest mortality and exhibits a common prevalence among all types of cancer. The genetic interaction between human eukaryotes and microbial cells plays a vital role in orchestrating every physiological activity of the host. The dynamic crosstalk between gut and lung microbiomes and the gut-lung axis communication network has been widely accepted as promising factors influencing LC progression. The advent of the 16s rDNA sequencing technique has opened new horizons for elucidating the lung microbiome and its potential pathophysiological role in LC and other infectious lung diseases using a molecular approach. Numerous studies have reported the direct involvement of the host microbiome in lung tumorigenesis processes and their impact on current treatment strategies such as radiotherapy, chemotherapy, or immunotherapy. The genetic and metabolomic cross-interaction, microbiome-dependent host immune modulation, and the close association between microbiota composition and treatment outcomes strongly suggest that designing microbiome-based treatment strategies and investigating new molecules targeting the common holobiome could offer potential alternatives to develop effective therapeutic principles for LC treatment. This review aims to highlight the interaction between the host and microbiome in LC progression and the possibility of manipulating altered microbiome ecology as therapeutic targets.
Collapse
Affiliation(s)
- Rajan Thapa
- Department of Pharmacy, Universal college of medical sciencesTribhuvan UniversityBhairahawaRupendehiNepal
| | - Anjana Thapa Magar
- Department of MedicineKathmandu Medical College Teaching Hospital, SinamangalKathmanduNepal
| | - Jesus Shrestha
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Nisha Panth
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Sobia Idrees
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Tayyaba Sadaf
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Saroj Bashyal
- Department of Pharmacy, Manmohan Memorial Institute of Health SciencesTribhuvan University, SoalteemodeKathmanduNepal
| | - Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences TechnologyPharos University in AlexandriaAlexandriaEgypt
| | - Vrashabh V. Sugandhi
- Department of pharmaceutical sciences, College of Pharmacy & Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Satish Rojekar
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ram Nikhate
- Department of PharmaceuticsDattakala Shikshan Sanstha, Dattakala college of pharmacy (Affiliated to Savitribai Phule Pune universityPuneMaharashtraIndia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Centre of Medical and Bio‐allied Health Sciences ResearchAjman UniversityAjmanUAE
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| |
Collapse
|
26
|
Guo H, Nie G, Zhao X, Liu J, Yu K, Li Y. A nomogram for cancer-specific survival of lung adenocarcinoma patients: A SEER based analysis. Surg Open Sci 2024; 22:13-23. [PMID: 39525881 PMCID: PMC11543903 DOI: 10.1016/j.sopen.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Background Non-small cell lung cancer (NSCLC) accounts for 85 % of lung cancer cases. Among NSCLC subtypes, lung adenocarcinoma (LUAD) stands as the most prevalent. Regrettably, LUAD continues to exhibit a notably unfavorable overall prognosis. This study's primary aim was to develop and validate prognostic tools capable of predicting the likelihood of cancer-specific survival (CSS) in patients with LUAD. Methods We retrospectively collected 21,099 patients diagnosed with LUAD between 2010 and 2015, and 8290 patients diagnosed between 2004 and 2009 from SEER database. The cohort of 21,099 patients served as the prognostic group for the exploration of LUAD-related prognostic risk factors. The cohort of 8290 patients was designated for external validation. We created a training set and an internal validation set in the prognostic group for the development and internal validation of CSS nomograms. CSS predictors were identified through the least absolute shrinkage and selection operator (Lasso) regression analysis. Prognostic model was constructed via Cox hazard regression analysis, presented in the form of both static and dynamic network-based nomograms. Results Several independent prognostic factors were incorporated into the construction of nomogram. The nomogram accurately predicted CSS at 1, 3, and 5 years, with respective AUC values of 0.769, 0.761, and 0.748 for the training group, and 0.741, 0.752, and 0.740 for the testing group. The study demonstrated a strong agreement between anticipated and actual CSS values, supported by decision curve analysis (DCA) and time-dependent calibrated curves. High-risk patients based on the nomogram exhibiting significantly lower survival rates compared to their low-risk counterparts according to Kaplan-Meier (K-M) curves. The nomogram demonstrates excellent predictive power in the external validation cohort. Conclusions A dependable and user-friendly nomogram has been developed, available in both static and online dynamic calculator formats, to facilitate healthcare professionals in accurately estimating the likelihood of CSS for patients diagnosed LUAD.
Collapse
Affiliation(s)
- Hong Guo
- First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of Anesthesiology, Inner Mongolia Hospital of Peking University Cancer Hospital, The Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot 10020, China
| | - Guole Nie
- Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou, 256600, China
| | - Xin Zhao
- Department of Anesthesiology, Inner Mongolia Hospital of Peking University Cancer Hospital, The Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot 10020, China
| | - Jialu Liu
- First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Kaihua Yu
- First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Yulan Li
- First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
- Department of Anesthesiology, First Hospital of Lanzhou University, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
27
|
Xu H, Liang Y, Tang W, Yang X, Du X. Efficacy and safety of anlotinib combined with S‑1 as a third‑ or later‑line treatment for advanced non‑small cell lung cancer in China: A systematic review and meta‑analysis. Oncol Lett 2024; 28:613. [PMID: 39493432 PMCID: PMC11528180 DOI: 10.3892/ol.2024.14746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/19/2024] [Indexed: 11/05/2024] Open
Abstract
Anlotinib is presently used as a third-line treatment for non-small cell lung cancer. However, it is not yet reported whether combining anlotinib with S-1 as a third- or later-line treatment offers superior outcomes compared with anlotinib alone. The present meta-analysis aimed to address this question by systematically searching the PubMed, Embase, Web of Science, Cochrane Library, CMB and China National Knowledge Infrastructure databases for eligible studies published from the establishment of the database to January 10, 2024. Primary outcomes of interest included progression-free survival (PFS), overall survival (OS), objective response rate (ORR), disease control rate (DCR) and the incidence of adverse effects, which were presented as hazard ratios and 95% CIs. The present analysis included 5 retrospective studies with a total of 317 patients and compared the outcomes of patients treated with a combination of anlotinib and S-1 (experimental group) compared with anlotinib alone (control group). The combination treatment significantly improved PFS, OS, ORR and DCR in the experimental group compared with the control group. Bone marrow suppression and fatigue were significantly higher in the experimental group compared with the control group. However, incidences of hypertension, proteinuria, gastrointestinal adverse reactions, hepatic and renal insufficiency and functional hand-foot syndrome were higher in the control group compared with the experimental group, but there was no statistical significance. In summary, combining anlotinib with S-1 may be more effective compared with anlotinib alone for treating advanced non-small cell lung cancer. Despite the higher incidence of adverse reactions with the combination therapy, these reactions could be considered manageable and controllable.
Collapse
Affiliation(s)
- Haonan Xu
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
- Department of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Yuwen Liang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
- Department of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Wenqiang Tang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
- Department of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Xiongxin Yang
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaobo Du
- Department of Oncology, National Health Commission Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| |
Collapse
|
28
|
Chen S, He Z, Li M, Weng L, Lin J. Efficacy and safety of metronomic oral vinorelbine and its combination therapy as second- and later-line regimens for advanced non-small-cell lung cancer: a retrospective analysis. Clin Transl Oncol 2024; 26:3202-3210. [PMID: 38851648 DOI: 10.1007/s12094-024-03543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVE This retrospective analysis aimed to evaluate the efficacy and adverse reactions of metronomic oral vinorelbine and its combination therapy as second- and later-line regimens for advanced non-small-cell lung cancer (NSCLC). METHODS NSCLC patients undergoing metronomic oral vinorelbine as second- and later-line regimens in Fujian Cancer Hospital from October 2018 to October 2022 were enrolled, and patients' demographic and clinical characteristics were collected. The efficacy and safety of metronomic oral vinorelbine monotherapy and its combination therapy regimens were compared. RESULTS Of 57 study subjects, 63.2% received third- and later-line therapy, with median progression-free survival (mPFS) of 4 months, overall response rate (ORR) of 10.5%, and disease control rate (DCR) of 80.7%. The incidence of therapy-related adverse events was 42.1%, and there was only one case presenting grades 3 and 4 adverse events (1.8%). Among driver gene-negative participants, vinorelbine combination therapy regimens achieved longer mPFS (4.6 vs. 1.2 months, hazards ratio = 0.11, P < 0.0001) and comparable toxicity in relative to metronomic oral vinorelbine, and metronomic oral vinorelbine combined with immune checkpoint inhibitors showed the highest response, with mPFS of 5.6 months (95% CI 4.8 to 6.4 months), ORR of 25%, and DCR of 81.3%. Among participants with gradual resistance to osimertinib, continuing osimertinib in combination with metronomic oral vinorelbine achieved mPFS of 6.3 months (95% CI 0.1 to 12.5 months) and DCR of 86.7%. CONCLUSION Metronomic oral vinorelbine and its combination therapy regimens are favorable options as second- and later-line therapy for advanced NSCLC patients, with acceptable efficacy and tolerable toxicity. Vinorelbine combination therapy regimens show higher efficacy and comparable toxicity in relative to metronomic oral vinorelbine, and metronomic oral vinorelbine may have a synergistic effect with immunotherapy and EGFR-TKI targeted therapy.
Collapse
Affiliation(s)
- ShiJie Chen
- Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuma Street, Jinan District, Fuzhou, 350014, China
| | - ZhiYong He
- Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuma Street, Jinan District, Fuzhou, 350014, China
| | - MeiFang Li
- Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuma Street, Jinan District, Fuzhou, 350014, China
| | - LiHong Weng
- Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuma Street, Jinan District, Fuzhou, 350014, China
| | - JingHui Lin
- Fujian Cancer Hospital, Clinical Oncology School of Fujian Medical University, Fuma Street, Jinan District, Fuzhou, 350014, China.
| |
Collapse
|
29
|
Zhou Z, Fan B, Qiu Q, Cheng H, Wang L, Wu Y, Xie J, Ni C, Li N. Pan-cancer analysis and experimental validation reveal FAM72D as a potential novel biomarker and therapeutic target in lung adenocarcinoma. Gene 2024; 928:148764. [PMID: 39013484 DOI: 10.1016/j.gene.2024.148764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Cancers, particularly lung adenocarcinoma (LUAD), represent a major global health concern. However, the role of FAM72D in various cancers, including LUAD, remains poorly understood. METHODS We utilized databases such as The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression Project (GTEx) and online tools to investigate the correlation between FAM72D expression and its prognostic, diagnostic, and mutational significance, as well as its impact on immune cell infiltration across multiple cancers. Additionally, we developed LUAD cell lines overexpressing FAM72D to confirm its oncogenic role. RESULTS FAM72D expression was elevated in cancerous tissues compared to noncancerous tissues, with diagnostic and prognostic implications in many cancers, including LUAD. Moreover, associations were identified between FAM72D expression and diverse immune subtypes, alongside factors such as microsatellite instability, neoantigens, and tumour mutational burden across pan-cancers. Additionally, FAM72D was associated with immune infiltration and various immune checkpoint-related genes in LUAD. In vitro experiments demonstrated that FAM72D promoted cell proliferation, colony formation, and migration, while inhibiting apoptosis in LUAD cells. CONCLUSIONS Our study establishes associations between FAM72D expression and diagnosis, prognosis, and tumour immunity across multiple cancers, as well as its oncogenic effects in LUAD. FAM72D shows promise as a biomarker and therapeutic target in LUAD.
Collapse
Affiliation(s)
- Zonglang Zhou
- Department of Respiratory and Critical Care Medicine, Center for Respiratory Medicine, The Fourth Affiliated Hospital, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Bingfu Fan
- Graduate School of Bengbu Medical College, Bengbu, Anhui, China
| | - Qinming Qiu
- Department of Psychiatry, Huzhou Third Municipal Hospital, Huzhou, China
| | - Hongrong Cheng
- Department of Neurology, The Fourth Affiliated Hospital, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Li Wang
- The Fourth Affiliated Hospital, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yibo Wu
- Department of Orthopedics, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Jun Xie
- Department of Nephrology, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| | - Cheng Ni
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Ning Li
- Department of Respiratory and Critical Care Medicine, Center for Respiratory Medicine, The Fourth Affiliated Hospital, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| |
Collapse
|
30
|
Zhou F, Guo H, Xia Y, Le X, Tan DSW, Ramalingam SS, Zhou C. The changing treatment landscape of EGFR-mutant non-small-cell lung cancer. Nat Rev Clin Oncol 2024:10.1038/s41571-024-00971-2. [PMID: 39614090 DOI: 10.1038/s41571-024-00971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/01/2024]
Abstract
The discovery of the association between EGFR mutations and the efficacy of EGFR tyrosine-kinase inhibitors (TKIs) has revolutionized the treatment paradigm for patients with non-small-cell lung cancer (NSCLC). Currently, third-generation EGFR TKIs, which are often characterized by potent central nervous system penetrance, are the standard-of-care first-line treatment for advanced-stage EGFR-mutant NSCLC. Rational combinations of third-generation EGFR TKIs with anti-angiogenic drugs, chemotherapy, the EGFR-MET bispecific antibody amivantamab or local tumour ablation are being investigated as strategies to delay drug resistance and increase clinical benefit. Furthermore, EGFR TKIs are being evaluated in patients with early stage or locally advanced EGFR-mutant NSCLC, with the ambitious aim of achieving cancer cure. Despite the inevitable challenge of acquired resistance, emerging treatments such as new TKIs, antibody-drug conjugates, new immunotherapeutic approaches and targeted protein degraders have shown considerable promise in patients with progression of EGFR-mutant NSCLC on or after treatment with EGFR TKIs. In this Review, we describe the current first-line treatment options for EGFR-mutant NSCLC, provide an overview of the mechanisms of acquired resistance to third-generation EGFR TKIs and explore novel promising treatment strategies. We also highlight potential avenues for future research that are aimed at improving the survival outcomes of patients with this disease.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Xia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuning Le
- Department of Thoracic Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Duke-NUS Medical School, Singapore, Singapore
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute, Atlanta, GA, USA
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
31
|
Wallen ZD, Nesline MK, Tierno M, Roos A, Schnettler E, Husain H, Sathyan P, Caveney B, Eisenberg M, Severson EA, Ramkissoon SH. Genomic profiling of NSCLC tumors with the TruSight oncology 500 assay provides broad coverage of clinically actionable genomic alterations and detection of known and novel associations between genomic alterations, TMB, and PD-L1. Front Oncol 2024; 14:1473327. [PMID: 39664186 PMCID: PMC11631745 DOI: 10.3389/fonc.2024.1473327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Matching patients to an effective targeted therapy or immunotherapy is a challenge for advanced and metastatic non-small cell lung cancer (NSCLC), especially when relying on assays that test one marker at a time. Unlike traditional single marker tests, comprehensive genomic profiling (CGP) can simultaneously assess NSCLC tumors for hundreds of genomic biomarkers and markers for immunotherapy response, leading to quicker and more precise matches to therapeutics. Methods In this study, we performed CGP on 7,606 patients with advanced or metastatic NSCLC using the Illumina TruSight Oncology 500 (TSO 500) CGP assay to show its coverage and utility in detecting known and novel features of NSCLC. Results Testing revealed distinct genomic profiles of lung adenocarcinoma and squamous cell carcinomas and detected variants with a current targeted therapy or clinical trial in >72% of patient tumors. Known associations between genomic alterations and immunotherapy markers were observed including significantly lower TMB levels in tumors with therapy-associated alterations and significantly higher PD-L1 levels in tumors with ALK, MET, BRAF, or ROS1 driver mutations. Co-occurrence analysis followed by network analysis with gene module detection revealed known and novel co-occurrences between genomic alterations. Further, certain modules of genes with co-occurring genomic alterations had dose-dependent relationships with histology and increasing or decreasing levels of PD-L1 and TMB, suggesting a complex relationship between PD-L1, TMB, and genomic alterations in these gene modules. Discussion This study is the largest clinical study to date utilizing the TSO 500. It provides an opportunity to further characterize the landscape of NSCLC using this newer technology and show its clinical utility in detecting known and novel facets of NSCLC to inform treatment decision-making.
Collapse
Affiliation(s)
| | | | | | | | | | - Hatim Husain
- Moores Cancer Center at UC San Diego Health, La Jolla, CA, United States
| | | | | | | | | | - Shakti H. Ramkissoon
- Labcorp Oncology, Durham, NC, United States
- Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Department of Pathology, Winston-Salem, NC, United States
| |
Collapse
|
32
|
Yue P, He Y, Zuo R, Gong W, Wang Y, Chen L, Luo Y, Feng Y, Gao Y, Liu Z, Chen P, Guo H. CCDC34 maintains stemness phenotype through β-catenin-mediated autophagy and promotes EGFR-TKI resistance in lung adenocarcinoma. Cancer Gene Ther 2024:10.1038/s41417-024-00843-y. [PMID: 39587349 DOI: 10.1038/s41417-024-00843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 11/27/2024]
Abstract
Despite recent advances in treatment strategy, lung cancer remains the leading cause of cancer-related mortality worldwide, and it is a serious threat to human health. Lung adenocarcinoma (LUAD) is the most common histological type of lung cancer, and approximately 40-50% of patients with LUAD in Asian populations have epidermal growth factor receptor (EGFR) mutations. The use of EGFR tyrosine kinase inhibitors (EGFR-TKIs) has revolutionarily improved the prognosis of patients with EGFR-mutated LUAD. However, acquired drug resistance is the main cause of treatment failure. Therefore, new therapeutic strategies are necessary to address the resistance to EGFR-TKIs in patients with LUAD. Cancer stemness-related factors lead to multiple-drug resistance in cancer treatment, including EGFR-TKI resistance. Coiled-coil domain-containing 34 (CCDC34) serves as an oncogene in several types of cancer. However, the role and molecular mechanism of CCDC34 in the malignant progression of LUAD have not been reported to date. In the present study, we found that CCDC34 may be associated with LUAD stemness through weighted gene co-expression network analysis (WGCNA). Furthermore, we demonstrated that CCDC34 promoted LUAD stemness properties through β-catenin-mediated regulation of ATG5-induced autophagy, which was conducive to acquired EGFR-TKI resistance in LUAD in vitro and in vivo. Knockdown CCDC34 can synergistically inhibit tumor growth when combined with EGFR-TKIs. This study reveals a positive association between CCDC34 and the stemness phenotype of LUAD, providing new insights into overcoming EGFR-TKI resistance in LUAD by inhibiting CCDC34 expression.
Collapse
Affiliation(s)
- Ping Yue
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuchao He
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Ran Zuo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Integrated Chinese and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Wenchen Gong
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yu Wang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Liwei Chen
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yi Luo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yuanying Feng
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yuan Gao
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Zhiyong Liu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Peng Chen
- Department of Thoracic Oncology, Lung Cancer Diagnosis and Treatment Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| | - Hua Guo
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
- National Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| |
Collapse
|
33
|
Cao Y, Zhao X, Miao Y, Wang X, Deng D. How the Versatile Self-Assembly in Drug Delivery System to Afford Multimodal Cancer Therapy? Adv Healthc Mater 2024:e2403715. [PMID: 39587000 DOI: 10.1002/adhm.202403715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/04/2024] [Indexed: 11/27/2024]
Abstract
The rapid development of self-assembly technology during the past few decades has effectively addressed plenty of the issues associated with carrier-based drug delivery systems, such as low loading efficiency, complex fabrication processes, and inherent toxicity of carriers. The integration of nanoscale delivery systems with self-assembly techniques has enabled efficient and targeted self-administration of drugs, enhanced bioavailability, prolonged circulation time, and controllable drug release. Concurrently, the limitations of single-mode cancer treatment, including low bioavailability, poor therapeutic outcomes, and significant side effects, have highlighted the urgent need for multimodal combined antitumor therapies. Set against the backdrop of multimodal cancer therapy, this review summarizes the research progress and applications of a large number of self-assembled drug delivery platforms, including natural small molecule self-assembled, carrier-free self-assembled, amphiphilic polymer-based self-assembled, peptide-based self-assembled, and metal-based self-assembled nano drug delivery systems. This review particularly analyzes the latest advances in the application of self-assembled nano drug delivery platforms in combined antitumor therapies mediated by chemotherapy, phototherapy, radiotherapy, sonodynamic therapy, and immunotherapy, providing innovative research insights for further optimization and expansion of self-assembled nano drug delivery systems in the clinical translation and development of antitumor combined therapy.
Collapse
Affiliation(s)
- Yuqi Cao
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaomin Zhao
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuhang Miao
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Xin Wang
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Dawei Deng
- Department of Pharmaceutical Engineering and Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
34
|
Wei J, Lei G, Chen Q, Huang W, Ning H, Yang M, Dong J, Hu L, Peng S, Gong H, Yuan M, Yuan P. Casticin inhibits proliferation of Non-small cell lung cancer cells through regulating reprogramming of glucose metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:156278. [PMID: 39647464 DOI: 10.1016/j.phymed.2024.156278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, with poor prognosis due to its rapid progression and resistance to existing therapies. Metabolic reprogramming, particularly alterations in glucose metabolism, is a key mechanism underlying tumor growth and progression, providing potential targets for novel therapeutic strategies. Casticin (CAS), a bioactive flavonoid, has shown anticancer effects in various cancers, but its specific role in NSCLC metabolism remains unclear. PURPOSE This study aims to investigate the effects of casticin on the proliferation and glucose metabolism of NSCLC cells, and to explore its underlying mechanisms. STUDY DESIGN AND METHODS We used both in vitro and in vivo models. (18)F-FDG PET/MR imaging was employed to assess the impact of casticin on glucose metabolism in A549 xenograft mice. NSCLC cell lines (A549 and H157) were treated with casticin to evaluate its effects on cell viability, glycolysis, oxidative phosphorylation, and fatty acid oxidation. Key metabolic enzyme expressions were analyzed using molecular detection techniques, and in vivo validation was performed using a subcutaneous xenograft mouse model. RESULTS Casticin significantly inhibited glucose metabolism and cell proliferation in a dose-dependent manner, while promoting oxidative phosphorylation without affecting lipid metabolism. The drug suppressed glycolysis by downregulating the expression of key glycolytic enzymes (GLUT1, HK2, GPI, ALDOA, ENO2, PKM2, and MCT4) through the regulation of HIF-1α. Overexpression of HIF-1α in both in vitro and in vivo models reversed the inhibitory effects of casticin, indicating that HIF-1α plays a central role in its mechanism of action. CONCLUSION Casticin inhibits NSCLC cell proliferation by suppressing glycolytic reprogramming via HIF-1α regulation. These findings highlight the potential of casticin as an anticancer therapeutic, particularly in targeting glucose metabolism in NSCLC.
Collapse
Affiliation(s)
- Jingyi Wei
- Department of nuclear medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China; Shaanxi University of Chinese Medicine, Shaanxi Xianyang 710046, PR China
| | - Guangyan Lei
- Department of thoracic surgery, Tumor Hospital of Shaanxi Province, Xi'an, Shaanxi 710061, PR China
| | - Qiang Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, PR China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, PR China
| | - Wen Huang
- Department of nuclear medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China; Medical School of Yan'an University, Yan'an, Shaanxi 716000, PR China
| | - Hui Ning
- Shaanxi University of Chinese Medicine, Shaanxi Xianyang 710046, PR China
| | - Meng Yang
- Shaanxi University of Chinese Medicine, Shaanxi Xianyang 710046, PR China
| | - Jiaqi Dong
- Shaanxi University of Chinese Medicine, Shaanxi Xianyang 710046, PR China
| | - Longquan Hu
- Department of nuclear medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China
| | - Shujia Peng
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China
| | - Hui Gong
- Department of nuclear medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China; Hospital of Unit 94162, Air Force of the CPLA, Xi'an, Shaanxi 710613, PR China
| | - Menghui Yuan
- Department of nuclear medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China.
| | - Peng Yuan
- Department of nuclear medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China.
| |
Collapse
|
35
|
Li H, Yuan Y, Xu Q, Liang G, Hu Z, Li X, Zhang W, Lei H. A comprehensive nomogram for assessing the prognosis of non-small cell lung cancer patients receiving immunotherapy: a prospective cohort study in China. Front Immunol 2024; 15:1487078. [PMID: 39635526 PMCID: PMC11614804 DOI: 10.3389/fimmu.2024.1487078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Objective In China, lung cancer ranks first in both incidence and mortality among all malignant tumors. Non-small cell lung cancer (NSCLC) constitutes the vast majority of cases, accounting for 80% to 85% of cases. Immune checkpoint inhibitors (ICIs), either as monotherapies or combined with other treatments, have become the standard first-line therapy for NSCLC patients. This study aimed to establish a nomogram model for NSCLC patients receiving immunotherapy incorporating demographic information, clinical characteristics, and laboratory indicators. Methods From January 1, 2019, to December 31, 2022, a prospective longitudinal cohort study involving 1321 patients with NSCLC undergoing immunotherapy was conducted at Chongqing University Cancer Hospital. Clinical and pathological characteristics, as well as follow-up data, were collected and analyzed. To explore prognostic factors affecting overall survival (OS), a Cox regression model was used to test the significance of various variables. Independent prognostic indicators were identified through multivariate analysis and then used to construct a nomogram prediction model. To validate the accuracy and practicality of this model, the concordance index (C-index), area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA) were used to assess the predictive performance of the nomogram. Result In the final model, 11 variables from the training cohort were identified as independent risk factors for patients with NSCLC: age, KPS score, BMI, diabetes, targeted therapy, Hb, WBC, LDH, CRP, PLR, and LMR. The C-index for OS in the training cohort was 0.717 (95% CI, 0.689-0.745) and 0.704 (95% CI, 0.660-0.750) in the validation cohort. Calibration curves for survival probability showed good concordance between the nomogram predictions and actual observations. The AUCs for 1-year, 2-year, and 3-year OS in the training cohort were 0.724, 0.764, and 0.79, respectively, and 0.725, 0.736, and 0.818 in the validation cohort. DCA demonstrated that the nomogram model had a greater overall net benefit. Conclusion A prognostic model for OS in NSCLC patients receiving immunotherapy was established, providing a simple and reliable tool for predicting patient survival (https://icisnsclc.shinyapps.io/DynNomapp/). This model offers valuable guidance for clinicians in making treatment decisions and recommendations.
Collapse
Affiliation(s)
- Hongmei Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yuliang Yuan
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qianjie Xu
- Chongqing Cancer Multi-omics Big Data Application Engineering Research Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Guangzhong Liang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Zuhai Hu
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Xiaosheng Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Wei Zhang
- Chongqing Cancer Multi-omics Big Data Application Engineering Research Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Haike Lei
- Chongqing Cancer Multi-omics Big Data Application Engineering Research Center, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
36
|
Ren Q. Correspondence on 'Non-invasive multimodal CT deep learning biomarker to predict pathological complete response of non-small cell lung cancer following neoadjuvant immunochemotherapy: a multicenter study' by Ye et al. J Immunother Cancer 2024; 12:e010828. [PMID: 39557545 PMCID: PMC11574464 DOI: 10.1136/jitc-2024-010828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/20/2024] Open
Affiliation(s)
- Qiuping Ren
- Department of Radiology, Jinan University First Affiliated Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
37
|
Marroquin-Muciño M, Benito-Lopez JJ, Perez-Medina M, Aguilar-Cazares D, Galicia-Velasco M, Chavez-Dominguez R, Meza-Toledo SE, Meneses-Flores M, Camarena A, Lopez-Gonzalez JS. SOCS1 Inhibits IL-6-Induced CD155 Overexpression in Lung Adenocarcinoma. Int J Mol Sci 2024; 25:12141. [PMID: 39596207 PMCID: PMC11595078 DOI: 10.3390/ijms252212141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
CD155, also known as the poliovirus receptor (PVR), is a crucial molecule in the development and progression of cancer, as its overexpression favors immune evasion and resistance to immunotherapy. However, little is known about the mechanisms that regulate its overexpression. Proinflammatory factors produced by various cellular components of the tumor microenvironment (TME) have been associated with CD155 expression. We analyzed the effect of interleukin (IL)-6 on CD155 expression in lung adenocarcinoma. We found a positive relationship between mRNA and protein levels. This correlation was also observed in bioinformatics analysis and in biopsies and serum from patients with lung adenocarcinoma. Interestingly, lung adenocarcinoma cell lines expressing suppressor of cytokine signaling 1 (SOCS1) did not show increased CD155 levels upon IL-6 stimulation, and SOCS1 silencing reverted this effect. IL-6 and SOCS1 are critical regulators of CD155 expression in lung adenocarcinoma. Further basic and clinical studies are needed to define the role of these molecules during tumor development and to improve their clinical impact as biomarkers and targets for predicting the efficacy of immunotherapies. This study deepens the understanding of the intricate regulation of the immune checkpoints mediated by soluble factors and allows us to devise new ways to combine conventional treatments with the most innovative anticancer options.
Collapse
Affiliation(s)
- Mario Marroquin-Muciño
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City 11340, Mexico;
| | - Jesus J. Benito-Lopez
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico
| | - Mario Perez-Medina
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City 11340, Mexico;
| | - Dolores Aguilar-Cazares
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
| | - Miriam Galicia-Velasco
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
| | - Rodolfo Chavez-Dominguez
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
| | - Sergio E. Meza-Toledo
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City 11340, Mexico;
| | - Manuel Meneses-Flores
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
- Departamento de Patologia, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico
| | - Angel Camarena
- Laboratorio de Inmunobiologia y Genetica, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico;
| | - Jose S. Lopez-Gonzalez
- Laboratorio de Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.M.-M.); (M.P.-M.); (D.A.-C.); (M.G.-V.); (R.C.-D.); (M.M.-F.)
| |
Collapse
|
38
|
Wang X, Zhu J, Li L, Zhao Q, Huang Y, Wen C, Chen D, Wu L. Utility of patient-derived xenografts to evaluate drug sensitivity and select optimal treatments for individual non-small-cell lung cancer patients. Mol Med 2024; 30:209. [PMID: 39528952 PMCID: PMC11556205 DOI: 10.1186/s10020-024-00934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/11/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Patient-derived xenograft (PDX) is currently considered a preferred preclinical model to evaluate drug sensitivity, explore drug resistance mechanisms, and select individualized treatment regimens. METHODS Histopathological examination, immunohistochemistry and whole-exome sequencing confirmed similarity between our PDX tumors and primary tumors in terms of morphology and genetic characteristics. The drug reactivity of the PDX tumor was validated in vivo. The mechanisms of acquired resistance to Osimertinib PDX tumors were investigated by WES and WB. RESULTS We successfully established 13 NSCLC-PDXs derived from 62 patients, including eight adenocarcinomas, four squamous-cell carcinoma, and one large-cell neuroendocrine carcinoma. Histological subtype and clinical stage were significant factors affecting the successful PDXs establishment. The treatment responses to conventional chemotherapy in PDXs were entirely consistent with that of their corresponding patients. According to the genetic status of tumors, more appropriate targeted agents were selected in PDXs for their corresponding patients as alternative treatment options. In addition, a PDX model with acquired resistance to osimertinib was induced, and the overactivation of RAS mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) signaling pathway caused by the dual-specificity phosphatase 6 (DUSP6) M62I mutation was found to play a key role in the development of osimertinib resistance. Trametinib, a specific inhibitor of the MAPK-ERK pathway significantly slowed down the tumor growth in osimertinib-resistant PDX models, providing an alternative treatment in patients after osimertinib failure.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Pharmacogenetics and Pharmacogenomics Laboratory, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Ju Zhu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lingling Li
- Pharmacogenetics and Pharmacogenomics Laboratory, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Qilin Zhao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yutang Huang
- Pharmacogenetics and Pharmacogenomics Laboratory, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Chunjie Wen
- Pharmacogenetics and Pharmacogenomics Laboratory, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Dan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Lanxiang Wu
- Pharmacogenetics and Pharmacogenomics Laboratory, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
39
|
Cao Y, Hao Z, Liu M, Xue J, Wang Y, Wang Y, Li J, Lu Y, Wang C, Shi J. Cremastrae Pseudobulbus Pleiones Pseudobulbus (CPPP) Against Non-Small-Cell Lung Cancer: Elucidating Effective Ingredients and Mechanism of Action. Pharmaceuticals (Basel) 2024; 17:1515. [PMID: 39598428 PMCID: PMC11597303 DOI: 10.3390/ph17111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/31/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
Cremastrae Pseudobulbus Pleiones Pseudobulbus (CPPP) is derived from the dried pseudobulb of the orchid family plants Cremastra appendiculata (D.Don) Makino, Pleione bulbocodioides (Franch.) Rolfe, or Pleione yunnanensis Rolfe, and has the properties of clearing heat, detoxification, resolving phlegm, and dispersing nodules. It is frequently used for the treatment of various malignant tumors in clinical practice, especially lung cancer. CPPP is divided into two commercial specifications in the market, Maocigu (MCG) and Bingqiuzi (BQZ). However, owing to a lack of appropriate research strategies, the active ingredients and molecular mechanisms involved have not yet been clarified. This study intended to discover the combination of effective anti-lung-cancer ingredients in CPPP and explore their potential mechanisms of action. In this study, UHPLC-MS fingerprints of MCG and BQZ were established separately. Inhibitory effects on the proliferative viability and migratory ability of A459 and H1299 cells were evaluated as pharmacodynamic indicators. GRA and BCA were used to determine spectrum-effect relationships. Next, the identification and analysis of components of drug-containing serum were performed using UHPLC-Q-Exactive Orbitrap MS. Then, the results of the two analyses were combined to jointly screen out the anti-lung-cancer candidate active monomers of CPPP, and their in vitro activities were verified. Afterward, all effective ingredient combinations of MCG (MCGC) and BQZ (BQZC) were prepared according to their contents in the original medicinal materials. Their anti-lung-cancer activities in vitro and in vivo were compared and verified. Finally, we used the human lung cancer cell line A549 and the Lewis tumor xenograft model to investigate how BQZC would influence autophagy and apoptosis processes and the mechanisms involved. Overall, 11 predominant anti-lung-cancer active ingredients from CPPP were screened. Next, MCGC and BQZC were prepared according to their contents in the original medicinal materials, respectively, and their anti-tumor effects were equivalent to those of the original materials in vitro and in vivo. We found that BQZC could inhibit lung cancer cell growth and induce protective autophagy and apoptosis in lung cancer cells by activating the AMPK-mTOR-ULK1/BMF signaling pathway. These results provide important evidence for the clinical application and deep development of CPPP against tumors.
Collapse
Affiliation(s)
- Yuxin Cao
- School of Chinese Medica Materia, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (Z.H.); (M.L.); (J.X.); (Y.W.); (Y.W.); (J.L.); (Y.L.)
| | - Zhuangzhuang Hao
- School of Chinese Medica Materia, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (Z.H.); (M.L.); (J.X.); (Y.W.); (Y.W.); (J.L.); (Y.L.)
| | - Mengmeng Liu
- School of Chinese Medica Materia, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (Z.H.); (M.L.); (J.X.); (Y.W.); (Y.W.); (J.L.); (Y.L.)
| | - Jingwen Xue
- School of Chinese Medica Materia, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (Z.H.); (M.L.); (J.X.); (Y.W.); (Y.W.); (J.L.); (Y.L.)
| | - Yuqing Wang
- School of Chinese Medica Materia, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (Z.H.); (M.L.); (J.X.); (Y.W.); (Y.W.); (J.L.); (Y.L.)
| | - Yu Wang
- School of Chinese Medica Materia, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (Z.H.); (M.L.); (J.X.); (Y.W.); (Y.W.); (J.L.); (Y.L.)
| | - Jiayuan Li
- School of Chinese Medica Materia, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (Z.H.); (M.L.); (J.X.); (Y.W.); (Y.W.); (J.L.); (Y.L.)
| | - Yifan Lu
- School of Chinese Medica Materia, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (Z.H.); (M.L.); (J.X.); (Y.W.); (Y.W.); (J.L.); (Y.L.)
| | - Chunguo Wang
- Institute of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China;
| | - Jinli Shi
- School of Chinese Medica Materia, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.C.); (Z.H.); (M.L.); (J.X.); (Y.W.); (Y.W.); (J.L.); (Y.L.)
| |
Collapse
|
40
|
Hockemeyer KG, Rusthoven CG, Pike LRG. Advances in the Management of Lung Cancer Brain Metastases. Cancers (Basel) 2024; 16:3780. [PMID: 39594735 PMCID: PMC11593022 DOI: 10.3390/cancers16223780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Lung cancer, both non-small cell and small cell, harbors a high propensity for spreading to the central nervous system. Radiation therapy remains the backbone of the management of brain metastases. Recent advances in stereotactic radiosurgery have expanded its indications and ongoing studies seek to elucidate optimal fractionation and coordination with systemic therapies, especially targeted inhibitors with intracranial efficacy. Efforts in whole-brain radiotherapy aim to preserve neurocognition and to investigate the need for prophylactic cranial irradiation. As novel combinatorial strategies are tested and prognostic/predictive biomarkers are identified and tested, the management of brain metastases in lung cancer will become increasingly personalized to optimally balance intracranial efficacy with preserving neurocognitive function and patient values.
Collapse
Affiliation(s)
- Kathryn G. Hockemeyer
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chad G. Rusthoven
- Department of Radiation Oncology, University of Colorado, Aurora, CO 80045, USA
| | - Luke R. G. Pike
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
41
|
Li Y, Zhao H, Shen Z, Zheng Y, Jiang Y, Song Y, Cai Y. Enhancing DOX efficacy against NSCLC through UDCA-mediated modulation of the TGF-β/MAPK autophagy pathways. Sci Rep 2024; 14:27169. [PMID: 39511265 PMCID: PMC11544154 DOI: 10.1038/s41598-024-73736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/20/2024] [Indexed: 11/15/2024] Open
Abstract
Lung carcinoma, predominantly manifested as non-small cell lung cancer (NSCLC), significantly contributes to oncological mortality, underscoring an imperative for novel therapeutic paradigms. Amidst this context, the present investigation delineates the synergistic potentiation of doxorubicin (DOX)-a canonical chemotherapeutic-by Ursodeoxycholic acid (UDCA), a compound with a historical pedigree in hepatobiliary medicine, now repositioned within oncological pharmacotherapy due to its dichotomous cellular modulation-affording cytoprotection to non-malignant epithelia whilst eliciting apoptotic cascades in neoplastic counterparts. This study, through a rigorous methodological framework, elucidates UDCA's capacity to inhibit NSCLC cellular proliferation and induce apoptosis, thereby significantly amplifying DOX's chemotherapeutic efficacy. Notably, the co-administration of UDCA and DOX was observed to attenuate DOX-induced autophagy via the modulation of the TGF-β/MAPK signaling axis, a pathway pivotal in mediating cellular survival and autophagic mechanisms. Such findings not only underscore the therapeutic potential of UDCA as a chemosensitizer but also illuminate the molecular underpinnings of its modulatory effects, thereby contributing to the corpus of knowledge necessary to surmount chemoresistance in NSCLC. The implications of this research are twofold: firstly, it offers a compelling evidence base for the clinical reevaluation of UDCA in combinatory chemotherapeutic regimens; secondly, it posits a novel mechanistic insight into the modulation of chemotherapeutic efficacy and resistance. Collectively, these insights advocate for the expedited clinical translation of UDCA-DOX synergy, potentially heralding a paradigm shift in the management of NSCLC, thereby addressing a critical lacuna in contemporary oncological therapy.
Collapse
Affiliation(s)
- Ying Li
- Department of Nursing, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China
| | - Helian Zhao
- Department of Nursing, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Zhoumin Shen
- Department of Nursing, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China
| | - Yao Zheng
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China
| | - Yuanyuan Jiang
- Department of Nursing, School of Medicine, Hunan Normal University, Changsha, 410013, China
| | - Ying Song
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China.
| | - Yimin Cai
- Department of Nursing, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, 410005, China.
| |
Collapse
|
42
|
Ping W, Zhang X, Zeng H, Zhu T, Zhang N, Yan Q. Ultrasound-Driven Nanomachine for Enhanced Sonodynamic Therapy of Non-Small-Cell Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59803-59813. [PMID: 39437325 DOI: 10.1021/acsami.4c11546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Non-small-cell lung cancer (NSCLC) is the most prevalent type of lung cancer, and there is an urgent need for developing novel therapies. Sonodynamic therapy exhibits exceptional tissue penetration and minimal harm to healthy tissue, making it extremely promising for cancer treatment. The efficacy of SDT is limited by the intricate immunological microenvironment and the resistance to tumor treatment. This study developed targeted nanoparticles that use ultrasound to concentrate on treating NSCLC. The hybrid targeted nanoparticles utilize gold nanoparticles as their fundamental component, with the outside modified with engineered macrophage exosomes and the aptamer S11e to specifically target NSCLC. Ultrasound could effectively eliminate tumors in NSCLC cells by destroying lysosomes via targeted nanoparticles. Simultaneously, fragmented tumor antigens could effectively activate dendritic cell cells to recruit T cells. This method has significant efficacy in suppressing the development of NSCLC and exhibits potential for therapeutic application.
Collapse
Affiliation(s)
- Wei Ping
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoxin Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Hao Zeng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Taomin Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qi Yan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| |
Collapse
|
43
|
Lojo-Rodríguez I, Botana-Rial M, González-Montaos A, Leiro-Fernández V, González-Piñeiro A, Ramos-Hernández C, Fernández-Villar A. Clinical and Molecular Features of Malignant Pleural Effusion in Non-Small Cell Lung Cancer (NSCLC) of a Caucasian Population. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1804. [PMID: 39596989 PMCID: PMC11596445 DOI: 10.3390/medicina60111804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Background and Objectives: The diversity of patients with malignant pleural effusion (MPE) due to non-small cell lung cancer (NSCLC) as well as the variability in mutations makes it essential to improve molecular characterization. Objective: Describe clinical, pathological, and molecular characteristics MPE in a Caucasian population. Materials andMethods: Retrospective study of patients with NSCLC diagnosis who had undergone a molecular study from 1 January 2018-31 December 2022. Univariate analysis was performed to compare patient characteristics between the group with and without MPE and molecular biomarkers. Results: A total of 400 patients were included; 53% presented any biomarker and 29% had MPE.PDL1, which was the most frequent. EGFR mutation was associated with women (OR:3.873) and lack of smoking (OR:5.105), but not with MPE. Patients with pleural effusion were older and had lower ECOG. There was no significant difference in the presence of any biomarker. We also did not find an association between the presence of specific mutations and MPE (22.4% vs. 18%, p = 0.2), or PDL1 expression (31.9% vs. 35.9%, p = 0.3). Being younger constituted a protective factor for the presence of MPE (OR:0.962; 95% CI 0.939-0.985, p = 0.002), as well as ECOG ≤ 1 (OR:0.539; 95% CI 0.322-0.902, p = 0.01). Conclusions: This is the first study that describes the clinical, pathological, and molecular characteristics of MPE patients due to NSCLC in a Caucasian population. Although overall we did not find significant differences in the molecular profile between patients with MPE and without effusion, EGFR mutation was associated with a tendency towards pleural progression.
Collapse
Affiliation(s)
- Irene Lojo-Rodríguez
- Pulmonary Department, Alvaro Cunqueiro Hospital, PneumoVigoI+i Research Group, Sanitary Research Institute Galicia Sur (IISGS), 36312 Vigo, Spain; (I.L.-R.); (A.G.-M.); (C.R.-H.)
| | - Maribel Botana-Rial
- Pulmonary Department, Alvaro Cunqueiro Hospital, PneumoVigoI+i Research Group, Sanitary Research Institute Galicia Sur (IISGS), CIBERES-ISCIII, 36312 Vigo, Spain; (V.L.-F.); (A.F.-V.)
| | - Almudena González-Montaos
- Pulmonary Department, Alvaro Cunqueiro Hospital, PneumoVigoI+i Research Group, Sanitary Research Institute Galicia Sur (IISGS), 36312 Vigo, Spain; (I.L.-R.); (A.G.-M.); (C.R.-H.)
| | - Virginia Leiro-Fernández
- Pulmonary Department, Alvaro Cunqueiro Hospital, PneumoVigoI+i Research Group, Sanitary Research Institute Galicia Sur (IISGS), CIBERES-ISCIII, 36312 Vigo, Spain; (V.L.-F.); (A.F.-V.)
| | - Ana González-Piñeiro
- Pathology Department, Alvaro Cunqueiro Hospital, Spain PneumoVigoI+i Research Group, Sanitary Research Institute Galicia Sur (IISGS), 36312 Vigo, Spain;
| | - Cristina Ramos-Hernández
- Pulmonary Department, Alvaro Cunqueiro Hospital, PneumoVigoI+i Research Group, Sanitary Research Institute Galicia Sur (IISGS), 36312 Vigo, Spain; (I.L.-R.); (A.G.-M.); (C.R.-H.)
| | - Alberto Fernández-Villar
- Pulmonary Department, Alvaro Cunqueiro Hospital, PneumoVigoI+i Research Group, Sanitary Research Institute Galicia Sur (IISGS), CIBERES-ISCIII, 36312 Vigo, Spain; (V.L.-F.); (A.F.-V.)
| |
Collapse
|
44
|
Rana JN, Mumtaz S, Han I, Choi EH. Formation of reactive species via high power microwave induced DNA damage and promoted intrinsic pathway-mediated apoptosis in lung cancer cells: An in vitro investigation. FUNDAMENTAL RESEARCH 2024; 4:1542-1556. [PMID: 39734544 PMCID: PMC11670698 DOI: 10.1016/j.fmre.2024.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 12/31/2024] Open
Abstract
Lung cancer continues to be the second most common cancer diagnosed and the main cause of cancer-related death globally, which requires novel and effective treatment strategies. When considering treatment options, non-small cell lung cancer (NSCLC) remained a challenge, seeking new therapeutic strategies. High-power microwave (HPM) progressions have facilitated the advancement of new technologies as well as improvements to those already in use. The impact of HPM on NSCLC has not been investigated before. In this work, we uncovered the effect of pulsed HPM on NSCLC (H460 and A549) for the first time and the most likely underlying mechanisms. Two NSCLC (H460 and A549) cells and lung normal MRC5 were exposed to HPM (15, 30, 45, and 60) pulses (2.1 mJ/pulse). After exposure, the effects were observed at 12, 24, 48, and 72 h. HPM primarily increases the level of intracellular reactive species by a strong electric field of ∼27 kV/cm, which altered NSCLC viability, mitochondrial activity, and death rates. A model for the production of intracellular reactive species by HPM was also presented. NSCLC is found to be affected by HPM through DNA damage (upregulation of ATR/ATM, Chk1/Chk2, and P53) and increased expression of apoptotic markers. NAC scavenger and CPTIO-inhibitor confirm that the reactive species are mainly accountable for cellular effects. In order to ensure suitability for real-world usage, the skin depth was calculated as 30 mm. ROS played a main role in inducing cellular effects, with NO species possibly playing a contributing role. These findings clarify the cellular mechanisms underlying HPM-induced cell death, potentially advancing therapeutic approaches for treating NSCLC, and a useful first step for future investigations in this area. Moreover, this technique has the potential to serve as an adjunct to non-surgical methods in cancer therapy.
Collapse
Affiliation(s)
- Juie Nahushkumar Rana
- Department of Plasma Bio Display, Kwangwoon University, Seoul 139701, South Korea
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 139701, South Korea
| | - Sohail Mumtaz
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 139701, South Korea
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139701, South Korea
| | - Ihn Han
- Department of Plasma Bio Display, Kwangwoon University, Seoul 139701, South Korea
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 139701, South Korea
| | - Eun Ha Choi
- Department of Plasma Bio Display, Kwangwoon University, Seoul 139701, South Korea
- Plasma Bioscience Research Center (PBRC), Kwangwoon University, Seoul 139701, South Korea
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139701, South Korea
| |
Collapse
|
45
|
Suetsugu T, Masada Y, Kozono T, Morita K, Yonezawa H, Tabata K, Seki N, Mizuno K, Tanaka K, Inoue H. Therapeutic effects of an ALK inhibitor, brigatinib, on lung large cell neuroendocrine carcinoma with EML4-ALK fusion. Respir Investig 2024; 62:1157-1160. [PMID: 39395329 DOI: 10.1016/j.resinv.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024]
Abstract
A 64-year-old light-smoking woman was clinically diagnosed with lung large-cell neuroendocrine carcinoma (LCNEC) with a metastatic brain tumor. An Oncomine Dx Targeted Test using metastatic brain tissue revealed that the patient's lung cancer cells had an EML4-ALK rearrangement. Patients with LCNEC and anaplastic lymphoma kinase (ALK) gene rearrangements are rare, and there is currently no standard treatment. Based on the genomic analysis, we treated the patient with brigatinib, an ALK inhibitor. We describe here a patient with LCNEC who responded significantly to brigatinib without serious adverse events.
Collapse
Affiliation(s)
- Takayuki Suetsugu
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima-shi, Kagoshima, 890-8520, Japan.
| | - Yutaka Masada
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima-shi, Kagoshima, 890-8520, Japan
| | - Tomoki Kozono
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima-shi, Kagoshima, 890-8520, Japan
| | - Kahoru Morita
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima-shi, Kagoshima, 890-8520, Japan
| | - Hajime Yonezawa
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Kazuhiro Tabata
- Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Japan
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima-shi, Kagoshima, 890-8520, Japan
| | - Kentaro Tanaka
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima-shi, Kagoshima, 890-8520, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima-shi, Kagoshima, 890-8520, Japan
| |
Collapse
|
46
|
Du J, Zhang J, Liu D, Gao L, Liao H, Chu L, Lin J, Li W, Meng X, Zou F, Cai S, Zou M, Dong H. 1G6-D7 Inhibits Homologous Recombination Repair by Targeting Extracellular HSP90α to Promote Apoptosis in Non-Small Cell Lung Cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:4884-4898. [PMID: 38899512 DOI: 10.1002/tox.24356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Despite recent advances in treatment, non-small cell lung cancer (NSCLC) continues to have a high mortality rate. Currently, NSCLC pathogenesis requires further investigation, and therapeutic drugs are still under development. Homologous recombination repair (HRR) repairs severe DNA double-strand breaks. Homologous recombination repair deficiency (HRD) occurs when HRR is impaired and causes irreparable double-strand DNA damage, leading to genomic instability and increasing the risk of cancer development. Poly(ADP-ribose) polymerase (PARP) inhibitors can effectively treat HRD-positive tumors. Extracellular heat shock protein 90α (eHSP90α) is highly expressed in hypoxic environments and inhibits apoptosis, thereby increasing cellular tolerance. Here, we investigated the relationship between eHSP90α and HRR in NSCLC. DNA damage models were established in NSCLC cell lines (A549 and H1299). The activation of DNA damage and HRR markers, apoptosis, proliferation, and migration were investigated. In vivo tumor models were established using BALB/c nude mice and A549 cells. We found that human recombinant HSP90α stimulation further activated HRR and reduced DNA damage extent; however, eHSP90α monoclonal antibody, 1G6-D7, effectively inhibited HRR. HRR inhibition and increased apoptosis were observed after LRP1 knockdown; this effect could not be reversed with hrHSP90α addition. The combined use of 1G6-D7 and olaparib caused significant apoptosis and HRR inhibition in vitro and demonstrated promising anti-tumor effects in vivo. Extracellular HSP90α may be involved in HRR in NSCLC through LRP1. The combined use of 1G6-D7 and PARP inhibitors may exert anti-tumor effects by inhibiting DNA repair and further inducing apoptosis of NSCLC cells.
Collapse
Affiliation(s)
- Jiangzhou Du
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinming Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Gao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Liao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lanhe Chu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Li
- Department of Dermatology, The USC-Norris Comprehensive Cancer Center, University of Southern California Keck Medical Center, California, Los Angeles, USA
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengchen Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
47
|
Zhou T, Chen Z, Chen Y, Li C, Xiao Z, Duan J, Yang Z, Xu F. Chronic stress promotes non-small cell lung cancer (NSCLC) progression through circMBOAT2 upregulation mediated by CTCF. Cancer Gene Ther 2024; 31:1721-1733. [PMID: 39300219 PMCID: PMC11567882 DOI: 10.1038/s41417-024-00830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
Circular RNA (circRNA) has been demonstrated to play a pivotal role in tumor development. This study aimed to investigate the regulatory mechanism of circMBOAT2 in non-small cell lung cancer (NSCLC) and its association with tumor growth induced by chronic stress. We constructed stably transfected A549 and H1299 cell lines with circMBOAT2 overexpression and knockdown. Colony formation, scratch healing, Transwell and CCK-8 assays were conducted to evaluate the effects of circMBOAT2 in the presence or absence of norepinephrine (NE) treatment on the proliferation, migration, and invasion of NSCLC cells, respectively. Additionally, A chronic unpredictable mild stress (CUMS)-induced depression with heterotopic transplantation LLC and injection of antisense oligonucleotides (ASOs) targeting circMBOAT2 mouse model was established to evaluate the effect of chronic stress on tumorigenesis via circMBOAT2. Moreover, we investigated the regulatory effect of CCCTC binding factor (CTCF) on circMBOAT2 expression through in vivo and in vitro silencing of CTCF. Our results revealed a significant upregulation of circMBOAT2 in NSCLC cell lines and tumor tissues. circMBOAT2 knockdown inhibited the proliferation, migration, and invasion of NSCLC cells, while NE treatment reversed the cell suppression effect caused by circMBOAT2 knockdown. Notably, CUMS promoted tumor growth, while silencing circMBOAT2 inhibited tumor growth in vivo. Furthermore, we identified CTCF as the upstream regulator of circMBOAT2, which exhibited upregulation in NSCLC cells and tissues. Knockdown of CTCF reversed the promotional effect of CUMS on circMBOAT2 expression and tumor growth. Our findings provide evidence that CTCF mediates chronic stress in promoting of NSCLC progression through circMBOAT2. circMBOAT2 may serve as a potential biomarker and therapeutic target for NSCLC as well as the treatment of comorbid depression in NSCLC patients.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Zhicong Chen
- Fengxian Hospital and School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Yitian Chen
- Department of Pharmacy, Heyou International Hospital, Foshan, Guangdong, China
| | - Canye Li
- Fengxian Hospital and School of Pharmaceutical Sciences, Southern Medical University, Shanghai, China
| | - Zhijun Xiao
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Jingjing Duan
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China
| | - Zhen Yang
- Department of Central Laboratory, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China.
| | - Feng Xu
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Sixth People's Hospital South Campus, Shanghai, China.
| |
Collapse
|
48
|
Feng YY, Liu JF, Xue Y, Liu D, Wu XZ. Network Pharmacology Based Elucidation of Molecular Mechanisms of Laoke Formula for Treatment of Advanced Non-Small Cell Lung Cancer. Chin J Integr Med 2024; 30:984-992. [PMID: 38941043 DOI: 10.1007/s11655-024-3717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 06/29/2024]
Abstract
OBJECTIVE To explore the specific pharmacological molecular mechanisms of Laoke Formula (LK) on treating advanced non-small cell lung cancer (NSCLC) based on clinical application, network pharmacology and experimental validation. METHODS Kaplan-Meier method and Cox regression analysis were used to evaluate the survival benefit of Chinese medicine (CM) treatment in 296 patients with NSCLC in Tianjin Medical University Cancer Institute and Hospital from January 2011 to December 2015. The compounds of LK were screened using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, and the corresponding targets were performed from Swiss Target Prediction. NSCLC-related targets were obtained from Therapeutic Target Database and Comparative Toxicogenomics Database. Key compounds and targets were identified from the compound-target-disease network and protein-protein interaction (PPI) network analysis, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis were used to predict the potential signaling pathways involved in the treatment of advanced NSCLC with LK. The binding affinities between key ingredients and targets were further verified using molecular docking. Finally, A549 cell proliferation and migration assay were used to evaluate the antitumor activity of LK. Western blot was used to further verify the expression of key target proteins related to the predicted pathways. RESULTS Kaplan-Meier survival analysis showed that the overall survival of the CM group was longer than that of the non-CM group (36 months vs. 26 months), and COX regression analysis showed that LK treatment was an independent favorable prognostic factor (P=0.027). Next, 97 components and 86 potential targets were included in the network pharmacology, KEGG and GO analyses, and the results indicated that LK was associated with proliferation and apoptosis. Moreover, molecular docking revealed a good binding affinity between the key ingredients and targets. In vitro, A549 cell proliferation and migration assay showed that the biological inhibition effect was more obvious with the increase of LK concentration (P<0.05). And decreased expressions of nuclear factor κB1 (NF-κB1), epidermal growth factor receptor (EGFR) and AKT serine/threonine kinase 1 (AKT1) and increased expression of p53 (P<0.05) indicated the inhibitory effect of LK on NSCLC by Western blot. CONCLUSION LK inhibits NSCLC by inhibiting EGFR/phosphoinositide 3-kinase (PI3K)/AKT signaling pathway, NFκB signaling pathway and inducing apoptosis, which provides evidence for the therapeutic mechanism of LK to increase overall survival in NSCLC patients.
Collapse
Affiliation(s)
- Yu-Yu Feng
- Department of Nursing, Tangshan Vocational and Technical College, Tangshan, Hebei Province, 063000, China
| | - Jin-Feng Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yang Xue
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, 300020, China
| | - Dan Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin, 300060, China
| | - Xiong-Zhi Wu
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China.
| |
Collapse
|
49
|
Foresi B, Shah A, Meade S, Krishnaney A. Tumor markers in non-small cell lung cancer spine metastasis: an assessment of prognosis and overall survival. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:4346-4352. [PMID: 39223432 DOI: 10.1007/s00586-024-08447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE The identification of gene mutations in the modern medical workup of metastatic spine tumors has become more common but has not been highly utilized in surgical planning. Potential utility of these genetic markers as surrogates for cancer behavior in current prognosis scoring systems and overall survival (OS) remains underexplored in existing literature. This study seeks to investigate the association of frequently identified tumor markers, EGFR, ALK, and PD-L1, in metastatic non-small cell lung cancer (NSCLC) to the spine with Tokuhashi prognosis scoring and OS. METHODS Patients with NSCLC metastasis to spine were identified through chart review. EGFR, ALK, and PD-L1 wild type vs. mutant type were identified from targeted chemotherapy genetic testing. Multiple linear regression was performed to assess gene profile contributions to Tokuhashi score. Cox Proportional Hazards models were generated for each tumor marker to assess the relationship between each marker and OS. RESULTS A total of 119 patients with NSCLC spine metastasis were identified. We employed a multiple linear regression analysis to investigate the influence of EGFR, ALK, and PD-L1 genotypes on the Tokuhashi score, revealing statistically significant relationships overall (p = 0.002). Individual genotype contributions include EGFR as a non-significant contributor (p = 0.269) and ALK and PD-L1 as significant contributors (p = 0.037 and p = 0.001 respectively). Overall survival was not significantly associated with tumor marker profiles through Kaplan-Meier analysis (p = 0.46) or by multivariable analysis (p = 0.108). CONCLUSION ALK and PD-L1 were significantly associated with Tokuhashi score while EGFR was not. Tumor markers alone were not predictive of OS. These findings indicate that genetic markers found in NSCLC metastases to the spine may demonstrate prognostic value. Therefore, employing standard tumor markers could enhance the identification of appropriate surgical candidates, although they demonstrate limited effectiveness in predicting overall survival.
Collapse
Affiliation(s)
- Brian Foresi
- College of Medicine, Northeast Ohio Medical University (NEOMED), Rootstown, OH, USA.
| | - Aakash Shah
- College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Seth Meade
- College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ajit Krishnaney
- Department of Neurosurgery, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
50
|
Zhang T, Lei J, Zheng M, Wen Z, Zhou J. Nitric oxide facilitates the S-nitrosylation and deubiquitination of Notch1 protein to maintain cancer stem cells in human NSCLC. J Cell Mol Med 2024; 28:e70203. [PMID: 39523215 PMCID: PMC11550923 DOI: 10.1111/jcmm.70203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality, with tumour heterogeneity, fueled by cancer stem cells (CSCs), intricately linked to treatment resistance. Therefore, it is imperative to advance therapeutic strategies targeting CSCs in NSCLC. In this study, we utilized RNA sequencing to investigate metabolic pathway alterations in NSCLC CSCs and identified a crucial role of nitric oxide (NO) metabolism in governing CSC stemness, primarily through modulation of the Notch1 protein. Mechanistically, NO-induced S-nitrosylation of Notch1 facilitated its interaction with the deubiquitylase UCHL1, leading to increased Notch1 protein stability and enhanced CSC stemness. By inhibiting NO synthesis and downregulating UCHL1 expression, we validated the impact of NO on the Notch signalling pathway and CSC stemness. Importantly, targeting NO effectively reduced CSC populations within patient-derived organoids (PDOs) during radiotherapy. This mechanism presents a promising therapeutic target to surmount radiotherapy resistance in NSCLC treatment.
Collapse
Affiliation(s)
- Tenglong Zhang
- Department of Radiation OncologyThe First Affiliated Hospital of Soochow University, Soochow UniversitySuzhouChina
- Department of OncologyQingdao Municipal HospitalQingdaoChina
| | - Jiaxin Lei
- The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow UniversitySoochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow UniversitySoochow UniversitySuzhouChina
| | - Ming Zheng
- The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow UniversitySoochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow UniversitySoochow UniversitySuzhouChina
| | - Zhenke Wen
- The Fourth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow UniversitySoochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow UniversitySoochow UniversitySuzhouChina
| | - Juying Zhou
- Department of Radiation OncologyThe First Affiliated Hospital of Soochow University, Soochow UniversitySuzhouChina
| |
Collapse
|