1
|
Benhamouda N, Besbes A, Bauer R, Mabrouk N, Gadouas G, Desaint C, Chevrier L, Lefebvre M, Radenne A, Roelens M, Parfait B, Weiskopf D, Sette A, Gruel N, Courbebaisse M, Appay V, Paul S, Gorochov G, Ropers J, Lebbah S, Lelievre JD, Johannes L, Ulmer J, Lebeaux D, Friedlander G, De Lamballerie X, Ravel P, Kieny MP, Batteux F, Durier C, Launay O, Tartour E. Cytokine profile of anti-spike CD4 +T cells predicts humoral and CD8 +T cell responses after anti-SARS-CoV-2 mRNA vaccination. iScience 2024; 27:110441. [PMID: 39104410 PMCID: PMC11298648 DOI: 10.1016/j.isci.2024.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Coordinating immune responses - humoral and cellular - is vital for protection against severe Covid-19. Our study evaluates a multicytokine CD4+T cell signature's predictive for post-vaccinal serological and CD8+T cell responses. A cytokine signature composed of four cytokines (IL-2, TNF-α, IP10, IL-9) excluding IFN-γ, and generated through machine learning, effectively predicted the CD8+T cell response following mRNA-1273 or BNT162b2 vaccine administration. Its applicability extends to murine vaccination models, encompassing diverse immunization routes (such as intranasal) and vaccine platforms (including adjuvanted proteins). Notably, we found correlation between CD4+T lymphocyte-produced IL-21 and the humoral response. Consequently, we propose a test that offers a rapid overview of integrated immune responses. This approach holds particular relevance for scenarios involving immunocompromised patients because they often have low cell counts (lymphopenia) or pandemics. This study also underscores the pivotal role of CD4+T cells during a vaccine response and highlights their value in vaccine immunomonitoring.
Collapse
Affiliation(s)
- Nadine Benhamouda
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | - Anissa Besbes
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | | | - Nesrine Mabrouk
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | - Gauthier Gadouas
- Bioinformatics and Cancer System Biology Team, IRCM-INSERM U1194, Institut de Recherche en Cancerologie de Montpellier, Montpellier, France
| | - Corinne Desaint
- INSERM SC10-US019, Villejuif, France
- Université Paris Cité, INSERM, CIC 1417, F-CRIN, Innovative Clinical Research Network in Vaccinology (I-REIVAC), APHP, CIC Cochin Pasteur, Hôpital Cochin, Paris, France
| | - Lucie Chevrier
- Université Paris Cité, INSERM U1016 Insitut Cochin, Hôpital Cochin, APHP, Centre Service d’immunologie Biologique, Paris, France
| | - Maeva Lefebvre
- Service de maladies infectieuses et tropicales, Centre de prévention des maladies infectieuses et transmissibles CHU de Nantes, Nantes, France
| | - Anne Radenne
- Unité de Recherche Clinique des Hôpitaux Universitaires Pitié Salpêtrière-Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, APHP, Paris, France
| | - Marie Roelens
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| | - Béatrice Parfait
- Centre de ressources Biologiques, Hôpital Cochin, APHP, Paris, France
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, School of Medicine in Health Sciences, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Nadège Gruel
- INSERM U830, Équipe Labellisée Ligue Nationale Contre le Cancer, Diversity and Plasticity of Childhood Tumors Lab, Centre de Recherche, Institut Curie, Université PSL, Paris, France
- Department of Translational Research, Centre de Recherche, Institut Curie, Université PSL, Paris, France
| | - Marie Courbebaisse
- Faculté de Médecine, Université Paris Cité, Paris, France
- Explorations fonctionnelles rénales, Physiologie, Hôpital Européen Georges-Pompidou, APHP, Paris, France
| | - Victor Appay
- Université de Bordeaux, CNRS UMR 5164, INSERM ERL 1303, ImmunoConcEpT, 33000 Bordeaux, France
- International Research Center of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Stephane Paul
- Centre International de Recherche en Infectiologie, Team GIMAP, Université Jean Monnet, Université Claude Bernard Lyon, INSERM, CIC 1408 INSERM Vaccinology, Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Guy Gorochov
- Sorbonne Université, INSERM, Centre d'Immunologie et des Maladies Infectieuses, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jacques Ropers
- Unité de Recherche Clinique des Hôpitaux Universitaires Pitié Salpêtrière –Hôpitaux Universitaires Pitié Salpêtrière- Charles Foix, APHP, Paris, France
| | - Said Lebbah
- Unité de Recherche Clinique des Hôpitaux Universitaires Pitié Salpêtrière –Hôpitaux Universitaires Pitié Salpêtrière- Charles Foix, APHP, Paris, France
| | - Jean-Daniel Lelievre
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
- Groupe Henri-Mondor Albert-Chenevier, APHP, Créteil, France
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, U1143 INSERM, UMR3666 CNRS, Institut Curie, Centre de Recherche, Université PSL, Paris, France
| | - Jonathan Ulmer
- Cellular and Chemical Biology Unit, U1143 INSERM, UMR3666 CNRS, Institut Curie, Centre de Recherche, Université PSL, Paris, France
| | - David Lebeaux
- Université Paris Cité, Service de maladies infectieuses Hôpital Saint Louis/Lariboisère APHP, INSERM, Paris, France
| | - Gerard Friedlander
- Department of « Croissance et Signalisation », Institut Necker Enfants Malades, INSERM U1151, CNRS UMR 8253, Université de Paris Cité, Paris, France
| | - Xavier De Lamballerie
- Unité des Virus Émergents, UVE: Aix-Marseille Université, IRD 190, INSERM 1207 Marseille, France
| | - Patrice Ravel
- Bioinformatics and Cancer System Biology Team, IRCM-INSERM U1194, Institut de Recherche en Cancerologie de Montpellier, Montpellier, France
| | - Marie Paule Kieny
- Institut National de la Santé et de la Recherche Médicale, INSERM, Paris, France
| | - Fréderic Batteux
- Université Paris Cité, INSERM U1016 Insitut Cochin, Hôpital Cochin, APHP, Centre Service d’immunologie Biologique, Paris, France
| | | | - Odile Launay
- Université Paris Cité, INSERM, CIC 1417, F-CRIN, Innovative Clinical Research Network in Vaccinology (I-REIVAC), APHP, CIC Cochin Pasteur, Hôpital Cochin, Paris, France
| | - Eric Tartour
- Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
- Université Paris Cité, INSERM U970, PARCC, Department of Immunology, Hôpital Européen Georges-Pompidou, Hôpital Necker Department of Immunology, Paris, France
| |
Collapse
|
2
|
Durier C, Ninove L, van der Werf S, Lefebvre M, Desaint C, Bauer R, Attia M, Lecompte AS, Lachatre M, Maakaroun-Vermesse Z, Nicolas JF, Verdon R, Kiladjian JJ, Loubet P, Schmidt-Mutter C, Corbin V, Ansart S, Melica G, Resch M, Netzer E, Kherabi Y, Tardieu R, Lelièvre JD, Tartour E, Meyer L, de Lamballerie X, Launay O. Incidence of COVID-19 mRNA vaccine symptomatic breakthrough infections during Omicron circulation in adults with or without infection prior to vaccination. Infect Dis Now 2024; 54:104886. [PMID: 38494117 DOI: 10.1016/j.idnow.2024.104886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES COVID-19 vaccine breakthrough infections were frequently reported during circulation of the Omicron variant. The ANRS|MIE CoviCompareP study investigated these infections in adults vaccinated and boosted with BNT162b2 [Pfizer-BioNTech] and with/without SARS-CoV-2 infection before vaccination. METHODS In the first half of 2021, healthy adults (aged 18-45, 65-74 and 75 or older) received either one dose of BNT162b2 (n = 120) if they had a documented history of SARS-CoV-2 infection at least five months previously, or two doses (n = 147) if they had no history confirmed by negative serological tests. A first booster dose was administered at least 6 months after the primary vaccination, and a second booster dose, if any, was reported in the database. Neutralizing antibodies (NAbs) against the European (D614G) strain and the Omicron BA.1 variant were assessed up to 28 days after the first booster dose. A case-control analysis was performed for the 252 participants who were followed up in 2022, during the Omicron waves. RESULTS From January to October 2022, 78/252 (31%) had a documented symptomatic breakthrough infection after full vaccination: 21/117 (18%) in those who had been infected before vaccination vs. 57/135 (42%) in those who had not. In a multivariate logistic regression model, factors associated with a lower risk of breakthrough infection were older age, a higher number of booster doses, and higher levels of Omicron BA.1 NAb titers in adults with infection before vaccination, but not in those without prior infection. CONCLUSION Our results highlight the need to consider immune markers of protection in association with infection and vaccination history.
Collapse
Affiliation(s)
| | - Laetitia Ninove
- Unité des Virus Émergents (UVE), Aix Marseille Univ, IRD 190, INSERM 1207, Marseille, France
| | - Sylvie van der Werf
- Institut Pasteur, Université Paris Cité, UMR 3569 CNRS, Unité de Génétique Moléculaire des Virus à ARN, Centre National de Référence Virus des Infections Respiratoires, Paris, France
| | - Maeva Lefebvre
- Service de maladies infectieuses et tropicales, Centre de prévention des maladies infectieuses et transmissibles CHU de Nantes - CIC1413 Nantes, Nantes, France
| | - Corinne Desaint
- INSERM US19, Villejuif, France; INSERM CIC 1417 Cochin Pasteur, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Innovative Clinical Research Network in Vaccinology, Université de Paris, Sorbonne Paris Cité, Paris, France
| | | | - Mikael Attia
- Institut Pasteur, Université Paris Cité, UMR 3569 CNRS, Unité de Génétique Moléculaire des Virus à ARN, Centre National de Référence Virus des Infections Respiratoires, Paris, France
| | - Anne-Sophie Lecompte
- Service de maladies infectieuses et tropicales, Centre de prévention des maladies infectieuses et transmissibles CHU de Nantes - CIC1413 Nantes, Nantes, France
| | - Marie Lachatre
- INSERM CIC 1417 Cochin Pasteur, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Innovative Clinical Research Network in Vaccinology, Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Zoha Maakaroun-Vermesse
- Centre de Vaccination CHU de Tours, Centre d'Investigation Clinique CIC 1415, INSERM, CHRU de Tours, Tours, France
| | - Jean-François Nicolas
- Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Université Claude Bernard Lyon I, Lyon, France; CHU Lyon-Sud, Pierre-Bénite, France
| | - Renaud Verdon
- Service de Maladies Infectieuses, CHU de Caen, Dynamicure INSERM, UMR 1311, Normandie Univ, UNICAEN, Caen, France
| | - Jean-Jacques Kiladjian
- AP-HP, Hôpital Saint-Louis, Centre d'Investigations Cliniques, INSERM, CIC1427, Université Paris Cité, Paris, France
| | - Paul Loubet
- VBMI, INSERM U1047, Department of Infectious and Tropical Diseases, Université de Montpellier, CHU Nîmes, Montpellier, France
| | | | - Violaine Corbin
- CHU Clermont-Ferrand, INSERM CIC1405, Clermont-Ferrand, France
| | | | - Giovanna Melica
- Service d'Immunologie Clinique et Maladies Infectieuses, APHP, Hôpital Henri Mondor, INSERM CIC 1430, Créteil, France
| | | | | | - Yousra Kherabi
- INSERM CIC 1417 Cochin Pasteur, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Innovative Clinical Research Network in Vaccinology, Université de Paris, Sorbonne Paris Cité, Paris, France
| | | | | | - Eric Tartour
- APHP, Hôpital Européen Georges Pompidou, INSERM U970, PARCC, Université de Paris, Paris, France
| | - Laurence Meyer
- INSERM US19, Villejuif, France; INSERM, CESP U1018, Université Paris Saclay, APHP, Le Kremlin-Bicêtre, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE), Aix Marseille Univ, IRD 190, INSERM 1207, Marseille, France
| | - Odile Launay
- INSERM CIC 1417 Cochin Pasteur, Assistance Publique Hôpitaux de Paris, Hôpital Cochin, Innovative Clinical Research Network in Vaccinology, Université de Paris, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
3
|
Gorochov G, Ropers J, Launay O, Dorgham K, da Mata-Jardin O, Lebbah S, Durier C, Bauer R, Radenne A, Desaint C, Vieillard LV, Rekacewicz C, Lachatre M, Parfait B, Batteux F, Hupé P, Ninove L, Lefebvre M, Conrad A, Dussol B, Maakaroun-Vermesse Z, Melica G, Nicolas JF, Verdon R, Kiladjian JJ, Loubet P, Schmidt-Mutter C, Dualé C, Ansart S, Botelho-Nevers E, Lelièvre JD, de Lamballerie X, Kieny MP, Tartour E, Paul S. Serum and Salivary IgG and IgA Response After COVID-19 Messenger RNA Vaccination. JAMA Netw Open 2024; 7:e248051. [PMID: 38652471 PMCID: PMC11040412 DOI: 10.1001/jamanetworkopen.2024.8051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/26/2024] [Indexed: 04/25/2024] Open
Abstract
Importance There is still considerable controversy in the literature regarding the capacity of intramuscular messenger RNA (mRNA) vaccination to induce a mucosal immune response. Objective To compare serum and salivary IgG and IgA levels among mRNA-vaccinated individuals with or without previous SARS-CoV-2 infection. Design, Setting, and Participants In this cohort study, SARS-CoV-2-naive participants and those with previous infection were consecutively included in the CoviCompare P and CoviCompare M mRNA vaccination trials and followed up to day 180 after vaccination with either the BNT162b2 (Pfizer-BioNTech) vaccine or the mRNA-1273 (Moderna) vaccine at the beginning of the COVID-19 vaccination campaign (from February 19 to June 8, 2021) in France. Data were analyzed from October 25, 2022, to July 13, 2023. Main Outcomes and Measures An ultrasensitive digital enzyme-linked immunosorbent assay was used for the comparison of SARS-CoV-2 spike-specific serum and salivary IgG and IgA levels. Spike-specific secretory IgA level was also quantified at selected times. Results A total of 427 individuals were included in 3 groups: participants with SARS-CoV-2 prior to vaccination who received 1 single dose of BNT162b2 (Pfizer-BioNTech) (n = 120) and SARS-CoV-2-naive individuals who received 2 doses of mRNA-1273 (Moderna) (n = 172) or 2 doses of BNT162b2 (Pfizer-BioNTech) (n = 135). The median age was 68 (IQR, 39-75) years, and 228 (53.4%) were men. SARS-CoV-2 spike-specific IgG saliva levels increased after 1 or 2 vaccine injections in individuals with previous infection and SARS-CoV-2-naive individuals. After vaccination, SARS-CoV-2-specific saliva IgA levels, normalized with respect to total IgA levels, were significantly higher in participants with previous infection, as compared with the most responsive mRNA-1273 (Moderna) recipients (median normalized levels, 155 × 10-5 vs 37 × 10-5 at day 29; 107 × 10-5 vs 54 × 10-5 at day 57; and 104 × 10-5 vs 70 × 10-5 at day 180 [P < .001]). In contrast, compared with day 1, spike-specific IgA levels in the BNT162b2-vaccinated SARS-CoV-2-naive group increased only at day 57 (36 × 10-5 vs 49 × 10-5 [P = .01]). Bona fide multimeric secretory IgA levels were significantly higher in individuals with previous infection compared with SARS-CoV-2-naive individuals after 2 antigenic stimulations (median optical density, 0.36 [IQR, 0.16-0.63] vs 0.16 [IQR, 0.10-0.22]; P < .001). Conclusions and Relevance The findings of this cohort study suggest that mRNA vaccination was associated with mucosal immunity in individuals without prior SARS-CoV-2 infection, but at much lower levels than in previously infected individuals. Further studies are needed to determine the association between specific saliva IgA levels and prevention of infection or transmission.
Collapse
Affiliation(s)
- Guy Gorochov
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d’Immunologie et des Maladies Infectieuses (CIMI), Département d’Immunologie, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
| | - Jacques Ropers
- INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Département de Santé Publique, Unité de Recherche Clinique Paris Sciences et Lettres (PSL)–CFX, Sorbonne Université, Paris, France
| | - Odile Launay
- Université Paris Cité, INSERM, Centre d’Investigation Clinique (CIC) 1417 Cochin Pasteur, French Clinical Research Infrastructure Network, Innovative Clinical Research Network in Vaccinology, APHP, Hôpital Cochin, Paris, France
| | - Karim Dorgham
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d’Immunologie et des Maladies Infectieuses (CIMI), Département d’Immunologie, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
| | - Omaira da Mata-Jardin
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d’Immunologie et des Maladies Infectieuses (CIMI), Département d’Immunologie, Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Paris, France
| | - Said Lebbah
- INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, Département de Santé Publique, Unité de Recherche Clinique Paris Sciences et Lettres (PSL)–CFX, Sorbonne Université, Paris, France
| | | | | | - Anne Radenne
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière–Charles Foix, Unité de Recherche Clinique des Hôpitaux Universitaires Pitié-Salpêtrière, Paris, France
| | - Corinne Desaint
- Université Paris Cité, INSERM, Centre d’Investigation Clinique (CIC) 1417 Cochin Pasteur, French Clinical Research Infrastructure Network, Innovative Clinical Research Network in Vaccinology, APHP, Hôpital Cochin, Paris, France
| | - Louis-Victorien Vieillard
- Université Paris Cité, INSERM, Centre d’Investigation Clinique (CIC) 1417 Cochin Pasteur, French Clinical Research Infrastructure Network, Innovative Clinical Research Network in Vaccinology, APHP, Hôpital Cochin, Paris, France
| | - Claire Rekacewicz
- Université Paris Cité, INSERM, Centre d’Investigation Clinique (CIC) 1417 Cochin Pasteur, French Clinical Research Infrastructure Network, Innovative Clinical Research Network in Vaccinology, APHP, Hôpital Cochin, Paris, France
| | - Marie Lachatre
- Université Paris Cité, INSERM, Centre d’Investigation Clinique (CIC) 1417 Cochin Pasteur, French Clinical Research Infrastructure Network, Innovative Clinical Research Network in Vaccinology, APHP, Hôpital Cochin, Paris, France
| | - Béatrice Parfait
- AP-HP, Hôpital Cochin, Fédération des Centres de Ressources Biologiques–Plateforme de Ressources Biologiques Centre de Ressources Biologique Cochin, Paris, France
| | - Frédéric Batteux
- AP-HP, Hôpital Cochin, Service d’Immunologie Biologique et Plateforme d’Immunomonitoring Vaccinal, Paris, France
| | - Philippe Hupé
- Institut Curie, PSL Research University, INSERM U900, MINES ParisTech, PSL, Paris, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 144, Paris, France
| | - Läétitia Ninove
- Research Institute for Sustainable Development 190, INSERM 1207, Institut Hospitalier Universitaire Méditerranée Infection, Unité des Virus Émergents, Aix Marseille Université, Marseille, France
| | - Maeva Lefebvre
- Centre Hospitalier Universitaire (CHU) de Nantes, INSERM CIC 1413, Maladies Infectieuses et Tropicales, Centre de Prévention des Maladies Infectieuses et Transmissibles, Nantes, France
| | - Anne Conrad
- Département des Maladies Infectieuses et Tropicales, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, Université Claude Bernard Lyon I, CNRS, UMR5308, École Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Bertrand Dussol
- CIC 1409, INSERM–Hôpitaux Universitaires de Marseille–Aix Marseille Université, Hôpital de la Conception, Marseille, France
| | - Zoha Maakaroun-Vermesse
- Centre de Vaccination CHU de Tours, CIC 1415, INSERM, Centre Hospitalier Régional et Universitaire de Tours, Tours, France
| | - Giovanna Melica
- Service d’Immunologie Clinique et Maladies Infectieuses, AP-HP, Hôpital Henri Mondor, Créteil, Centre d’Investigation Clinique 1430 INSERM, AP-HP, Hôpital Henri Mondor, Créteil, France
| | - Jean-François Nicolas
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, Lyon, CHU Lyon-Sud, Pierre-Bénite, France
| | - Renaud Verdon
- Service de Maladies Infectieuses, CHU de Caen, Dynamicure INSERM UMR 1311, Normandie Université, University of Caen Normandy, Caen, France
| | - Jean-Jacques Kiladjian
- Université Paris Cité, AP-HP, Hôpital Saint-Louis, Centre d’Investigations Cliniques, INSERM, CIC 1427, Paris, France
| | - Paul Loubet
- Virulence Bactérienne et Maladies Infectieuses, INSERM U1047, Department of Infectious and Tropical Diseases, CHU 37 Nîmes, Université de Montpellier, Nîmes, France
| | | | - Christian Dualé
- CIC, INSERM CIC1405, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Elisabeth Botelho-Nevers
- INSERM CIC 1408, Axe Vaccinologie, CHU de Saint-Étienne, Service d’Infectiologie, Saint-Étienne, France
| | | | - Xavier de Lamballerie
- Research Institute for Sustainable Development 190, INSERM 1207, Institut Hospitalier Universitaire Méditerranée Infection, Unité des Virus Émergents, Aix Marseille Université, Marseille, France
| | | | - Eric Tartour
- AP-HP, Hôpital Européen Georges Pompidou, INSERM U970, Paris Cardiovascular Research Center, Université Paris Cité, Paris, France
| | - Stéphane Paul
- INSERM, U1111, CNRS, UMR 5308, CIRI-GIMAP, Université Claude Bernard Lyon 1, Université Jean Monnet, Immunology and Immunomonitoring Laboratory, iBiothera, CIC 1408, Saint-Étienne, France
| |
Collapse
|
4
|
Wang J, Fu J, Zhou Y, Gao D, Qing J, Yang G. Global research trends in cutaneous neurofibromas: A bibliometric analysis from 2003 to 2022. Skin Res Technol 2024; 30:e13595. [PMID: 38279591 PMCID: PMC10818123 DOI: 10.1111/srt.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a common inherited disorder characterized by cutaneous neurofibromas and other features. It is still a challenge in managing inoperable patients and the complex nature of the disease. Bibliometric analyses for cutaneous neurofibromas (cNF) could offer insights into impactful research and collaborations, guiding future efforts to improve patient care and outcomes. METHODS We conducted a comprehensive literature search of the Web of Science Core Collection database for the period 2003-2022. Data processing and analysis were performed using bibliometric tools including VOSviewer, CiteSpace, and "Bibliometrix" package. Our analysis assessed the publication or collaboration of countries, institutions, authors, and journals, as well as the co-citation and burst of references and keywords. RESULTS The analysis included 927 articles from 465 journals and 1402 institutions in 67 countries. Research on cNF has been increasing in recent years. The United States leads the field. Pierre Wolkenstein was the top author, while The University of Hamburg was the most productive institution. The American Journal of Medical Genetics Part A published the most articles in cNF. Co-citation analysis revealed major research topics and trends over time, showing growing interest in evaluating quality of life and genotype-phenotype correlation for cNF patients. Emerging topical MEK inhibitors show potential as a promising therapy. CONCLUSION In conclusion, our bibliometric analysis of cNF research over the past two decades highlights the growing interest in this complex genetic disorder. Leading countries, authors, institutions, and journals have played significant roles in shaping the field. Notably, recent trends emphasize the importance of evaluating quality of life and genotype-phenotype correlations in cNF patients. Furthermore, the emergence of promising topical therapy marks an exciting development in the quest to improve patient care and outcomes for those affected by cNF, paving the way for future research and collaboration.
Collapse
Affiliation(s)
- Jiani Wang
- Department of Plastic SurgeryThe Third Affiliated Hospital of Anhui Medical University (the First People's Hospital of Hefei)HefeiChina
| | - Jie Fu
- Department of Medical Cosmetology and Plastic SurgeryWuhan Third Hospital (Tongren Hospital of WuHan University)WuhanChina
| | - Yu Zhou
- Department of Plastic SurgeryThe Third Affiliated Hospital of Anhui Medical University (the First People's Hospital of Hefei)HefeiChina
| | - Dongmei Gao
- Department of Clinical LaboratoryThe Third Affiliated Hospital of Anhui Medical University (the First People's Hospital of Hefei)HefeiChina
| | - Jihong Qing
- Department of Plastic SurgeryThe Third Affiliated Hospital of Anhui Medical University (the First People's Hospital of Hefei)HefeiChina
| | - Guoke Yang
- Department of OphthalmologyThe Third Affiliated Hospital of Anhui Medical University (the First People's Hospital of Hefei)HefeiChina
| |
Collapse
|
5
|
Goryaynov S, Gurova O. Effect of Platform Type on Clinical Efficacy of SARS-CoV-2 Vaccines in Prime Vaccination Settings: A Systematic Review and Meta-Regression of Randomized Controlled Trials. Vaccines (Basel) 2024; 12:130. [PMID: 38400114 PMCID: PMC10892687 DOI: 10.3390/vaccines12020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/14/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
This systematic review investigated the association between platform type and the clinical efficacy of SARS-CoV-2 vaccines using the meta-regression of randomized controlled trials to compare the rates of the first appearance of symptomatic COVID-19 on the platforms. The trial search was conducted using PubMed, ClinicalTrials.gov, and the EU Clinical Trials Register. The main selection criteria included: non-active control, immunocompetent individuals without previous vaccination, and a low risk of bias. The platform effect was summarized with an incidence rate ratio (IRR) and a 95% confidence interval for every platform category against the reference. IRR was obtained by random-effect meta-regression with adjustment for confounding by effect modifiers. The analysis was conducted in per-protocol (PP) and modified intention-to-treat (mITT) sets. Six vaccine types with 35 trials were included. Vector vaccines were a reference category. In the PP set, rates of symptomatic COVID-19 on mRNA and protein subunit vaccines were significantly lower than on the vector: IRR = 0.30 [0.19; 0.46], p = 0.001 and 0.63 [0.46; 0.86], p = 0.012, respectively. There was no difference for inactivated and virus-like particle vaccines compared to the vector: IRR = 0.98 [0.71; 1.36], p = 0.913 and 0.70 [0.41; 1.20], p = 0.197, respectively. The rate of cases on DNA vaccines was significantly higher than that on the vector: IRR = 2.58 [1.17; 5.68], p = 0.034. Results for the mITT set were consistent. Platform type is an effect modifier of the clinical efficacy of SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
| | - Olesya Gurova
- Department of Endocrinology No. 1, N.V. Sklifosovsky Institute of Clinical Medicine, Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
| |
Collapse
|
6
|
Dormeshkin D, Katsin M, Stegantseva M, Golenchenko S, Shapira M, Dubovik S, Lutskovich D, Kavaleuski A, Meleshko A. Design and Immunogenicity of SARS-CoV-2 DNA Vaccine Encoding RBD-PVXCP Fusion Protein. Vaccines (Basel) 2023; 11:1014. [PMID: 37376403 DOI: 10.3390/vaccines11061014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 06/29/2023] Open
Abstract
The potential of immune-evasive mutation accumulation in the SARS-CoV-2 virus has led to its rapid spread, causing over 600 million confirmed cases and more than 6.5 million confirmed deaths. The huge demand for the rapid development and deployment of low-cost and effective vaccines against emerging variants has renewed interest in DNA vaccine technology. Here, we report the rapid generation and immunological evaluation of novel DNA vaccine candidates against the Wuhan-Hu-1 and Omicron variants based on the RBD protein fused with the Potato virus X coat protein (PVXCP). The delivery of DNA vaccines using electroporation in a two-dose regimen induced high-antibody titers and profound cellular responses in mice. The antibody titers induced against the Omicron variant of the vaccine were sufficient for effective protection against both Omicron and Wuhan-Hu-1 virus infections. The PVXCP protein in the vaccine construct shifted the immune response to the favorable Th1-like type and provided the oligomerization of RBD-PVXCP protein. Naked DNA delivery by needle-free injection allowed us to achieve antibody titers comparable with mRNA-LNP delivery in rabbits. These data identify the RBD-PVXCP DNA vaccine platform as a promising solution for robust and effective SARS-CoV-2 protection, supporting further translational study.
Collapse
Affiliation(s)
- Dmitri Dormeshkin
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, 220084 Minsk, Belarus
| | - Mikalai Katsin
- Immunofusion, LLC, 210004 Vitebsk, Belarus
- Imunovakcina, UAB, LT-08102 Vilnius, Lithuania
| | | | | | - Michail Shapira
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, 220084 Minsk, Belarus
| | - Simon Dubovik
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, 220084 Minsk, Belarus
| | | | - Anton Kavaleuski
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Alexander Meleshko
- Immunofusion, LLC, 210004 Vitebsk, Belarus
- Imunovakcina, UAB, LT-08102 Vilnius, Lithuania
| |
Collapse
|
7
|
Neutralizing antibodies against SARS-CoV-2 variants following mRNA booster vaccination in adults older than 65 years. Sci Rep 2022; 12:20373. [PMID: 36437298 PMCID: PMC9701678 DOI: 10.1038/s41598-022-24409-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Immune response induced by COVID-19 vaccine booster against delta and omicron variants was assessed in 65 adults (65-84 years old) early aftesr a first booster dose. An increase in SARS-CoV-2 neutralizing antibodies was shown in individuals not previously infected without evidence of an age-related effect, with lower increase in those infected before a single dose of primary vaccination. Of note, humoral response was observed only starting from the 5th day after the boost.
Collapse
|
8
|
Taibe NS, Kord MA, Badawy MA, Shytaj IL, Elhefnawi MM. Progress, pitfalls, and path forward of drug repurposing for COVID-19 treatment. Ther Adv Respir Dis 2022; 16:17534666221132736. [PMID: 36282077 PMCID: PMC9597285 DOI: 10.1177/17534666221132736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
On 30 January 2020, the World Health Organization (WHO) declared the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic a public health emergency of international concern. The viral outbreak led in turn to an exponential growth of coronavirus disease 2019 (COVID-19) cases, that is, a multiorgan disease that has led to more than 6.3 million deaths worldwide, as of June 2022. There are currently few effective drugs approved for treatment of SARS-CoV-2/COVID-19 patients. Many of the compounds tested so far have been selected through a drug repurposing approach, that is, by identifying novel indications for drugs already approved for other conditions. We here present an up-to-date review of the main Food and Drug Administration (FDA)-approved drugs repurposed against SARS-CoV-2 infection, discussing their mechanism of action and their most important preclinical and clinical results. Reviewed compounds were chosen to privilege those that have been approved for use in SARS-CoV-2 patients or that have completed phase III clinical trials. Moreover, we also summarize the evidence on some novel and promising repurposed drugs in the pipeline. Finally, we discuss the current stage and possible steps toward the development of broadly effective drug combinations to suppress the onset or progression of COVID-19.
Collapse
Affiliation(s)
- Noha Samir Taibe
- Biotechnology-Biomolecular Chemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Maimona A. Kord
- Department of Botany, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | | |
Collapse
|