1
|
Moutsoglou D, Ramakrishnan P, Vaughn BP. Microbiota transplant therapy in inflammatory bowel disease: advances and mechanistic insights. Gut Microbes 2025; 17:2477255. [PMID: 40062406 PMCID: PMC11901402 DOI: 10.1080/19490976.2025.2477255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Microbiota transplant therapy is an emerging therapy for inflammatory bowel disease, but factors influencing its efficacy and mechanism remain poorly understood. In this narrative review, we outline key elements affecting therapeutic outcomes, including donor factors (such as age and patient relationship), recipient factors, control selection, and elements impacting engraftment and its correlation with clinical response. We also examine potential mechanisms through inflammatory bowel disease trials, focusing on the interplay between the microbiota, host, and immune system. Finally, we briefly explore potential future directions for microbiota transplant therapy and promising emerging treatments.
Collapse
Affiliation(s)
- Daphne Moutsoglou
- Gastroenterology Section, Minneapolis VA Health Care System, Minneapolis, MN, USA
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Byron P. Vaughn
- Division of Gastroenterology, Hepatology, and Nutrition, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Nagayama M, Gogokhia L, Longman RS. Precision microbiota therapy for IBD: premise and promise. Gut Microbes 2025; 17:2489067. [PMID: 40190259 DOI: 10.1080/19490976.2025.2489067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/19/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Inflammatory Bowel Disease (IBD) is a spectrum of chronic inflammatory diseases of the intestine that includes subtypes of ulcerative colitis (UC) and Crohn's Disease (CD) and currently has no cure. While IBD results from a complex interplay between genetic, environmental, and immunological factors, sequencing advances over the last 10-15 years revealed signature changes in gut microbiota that contribute to the pathogenesis of IBD. These findings highlight IBD as a disease target for microbiome-based therapies, with the potential to treat the underlying microbial pathogenesis and provide adjuvant therapy to the emerging spectrum of advanced therapies for IBD. Building on the success of fecal microbiota transplantation (FMT) for Clostridioides difficile infection, therapies targeting gut microbiota have emerged as promising approaches for treating IBD; however, unique aspects of IBD pathogenesis highlight the need for more precision in the approach to microbiome therapeutics that leverage aspects of recipient and donor selection, diet and xenobiotics, and strain-specific interactions to enhance the efficacy and safety of IBD therapy. This review focuses on both pre-clinical and clinical studies that support the premise for microbial therapeutics for IBD and aims to provide a framework for the development of precision microbiome therapeutics to optimize clinical outcomes for patients with IBD.
Collapse
Affiliation(s)
- Manabu Nagayama
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Jill Roberts Center for Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lasha Gogokhia
- Jill Roberts Center for Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Randy S Longman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Jill Roberts Center for Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Boulund U, Thorsen J, Trivedi U, Tranæs K, Jiang J, Shah SA, Stokholm J. The role of the early-life gut microbiome in childhood asthma. Gut Microbes 2025; 17:2457489. [PMID: 39882630 PMCID: PMC11784655 DOI: 10.1080/19490976.2025.2457489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/05/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Asthma is a chronic disease affecting millions of children worldwide, and in severe cases requires hospitalization. The etiology of asthma is multifactorial, caused by both genetic and environmental factors. In recent years, the role of the early-life gut microbiome in relation to asthma has become apparent, supported by an increasing number of population studies, in vivo research, and intervention trials. Numerous early-life factors, which for decades have been associated with the risk of developing childhood asthma, are now being linked to the disease through alterations of the gut microbiome. These factors include cesarean birth, antibiotic use, breastfeeding, and having siblings or pets, among others. Association studies have highlighted several specific microbes that are altered in children developing asthma, but these can vary between studies and disease phenotype. This demonstrates the importance of the gut microbial ecosystem in asthma, and the necessity of well-designed studies to validate the underlying mechanisms and guide future clinical applications. In this review, we examine the current literature on the role of the gut microbiome in childhood asthma and identify research gaps to allow for future microbial-focused therapeutic applications in asthma.
Collapse
Affiliation(s)
- Ulrika Boulund
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Urvish Trivedi
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Tranæs
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Jie Jiang
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | - Shiraz A. Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Barrios Steed D, Koundakjian D, Harris AD, Rosato AE, Konstantinidis KT, Woodworth MH. Leveraging strain competition to address antimicrobial resistance with microbiota therapies. Gut Microbes 2025; 17:2488046. [PMID: 40195644 DOI: 10.1080/19490976.2025.2488046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/28/2024] [Accepted: 03/28/2025] [Indexed: 04/09/2025] Open
Abstract
The enteric microbiota is an established reservoir for multidrug-resistant organisms that present urgent clinical and public health threats. Observational data and small interventional studies suggest that microbiome interventions, such as fecal microbiota products and characterized live biotherapeutic bacterial strains, could be an effective antibiotic-sparing prevention approach to address these threats. However, bacterial colonization is a complex ecological phenomenon that remains understudied in the context of the human gut. Antibiotic resistance is one among many adaptative strategies that impact long-term colonization. Here we review and synthesize evidence of how bacterial competition and differential fitness in the context of the gut present opportunities to improve mechanistic understanding of colonization resistance, therapeutic development, patient care, and ultimately public health.
Collapse
Affiliation(s)
- Danielle Barrios Steed
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Anthony D Harris
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Institute for Healthcare Computing, University of Maryland, Baltimore, MD, USA
| | - Adriana E Rosato
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
| | | | - Michael H Woodworth
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
5
|
Faith JJ. Assessing live microbial therapeutic transmission. Gut Microbes 2025; 17:2447836. [PMID: 39746875 DOI: 10.1080/19490976.2024.2447836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
The development of fecal microbiota transplantation and defined live biotherapeutic products for the treatment of human disease has been an empirically driven process yielding a notable success of approved drugs for the treatment of recurrent Clostridioides difficile infection. Assessing the potential of this therapeutic modality in other indications with mixed clinical results would benefit from consistent quantitative frameworks to characterize drug potency and composition and to assess the impact of dose and composition on the frequency and duration of strain engraftment. Monitoring these drug properties and engraftment outcomes would help identify minimally sufficient sets of microbial strains to treat disease and provide insights into the intersection between microbial function and host physiology. Broad and correct usage of strain detection methods is essential to this advancement. This article describes strain detection approaches, where they are best applied, what data they require, and clinical trial designs that are best suited to their application.
Collapse
Affiliation(s)
- Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Hou S, Yu J, Li Y, Zhao D, Zhang Z. Advances in Fecal Microbiota Transplantation for Gut Dysbiosis-Related Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413197. [PMID: 40013938 PMCID: PMC11967859 DOI: 10.1002/advs.202413197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Indexed: 02/28/2025]
Abstract
This article provides an overview of the advancements in the application of fecal microbiota transplantation (FMT) in treating diseases related to intestinal dysbiosis. FMT involves the transfer of healthy donor fecal microbiota into the patient's body, aiming to restore the balance of intestinal microbiota and thereby treat a variety of intestinal diseases such as recurrent Clostridioides difficile infection (rCDI), inflammatory bowel disease (IBD), constipation, short bowel syndrome (SBS), and irritable bowel syndrome (IBS). While FMT has shown high efficacy in the treatment of rCDI, further research is needed for its application in other chronic conditions. This article elaborates on the application of FMT in intestinal diseases and the mechanisms of intestinal dysbiosis, as well as discusses key factors influencing the effectiveness of FMT, including donor selection, recipient characteristics, treatment protocols, and methods for assessing microbiota. Additionally, it emphasizes the key to successful FMT. Future research should focus on optimizing the FMT process to ensure long-term safety and explore the potential application of FMT in a broader range of medical conditions.
Collapse
Affiliation(s)
- Shuna Hou
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Jiachen Yu
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Yongshuang Li
- Department of general surgeryThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Duoyi Zhao
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| | - Zhiyu Zhang
- Department of OrthopedicsThe Fourth Affiliated Hospital of China Medical UniversityChina Medical UniversityLiao NingShen Yang110032P. R. China
| |
Collapse
|
7
|
Wang X, Zhao D, Bi D, Li L, Tian H, Yin F, Zuo T, Ianiro G, Li N, Chen Q, Qin H. Fecal microbiota transplantation: transitioning from chaos and controversial realm to scientific precision era. Sci Bull (Beijing) 2025; 70:970-985. [PMID: 39855927 DOI: 10.1016/j.scib.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025]
Abstract
With the popularization of modern lifestyles, the spectrum of intestinal diseases has become increasingly diverse, presenting significant challenges in its management. Traditional pharmaceutical interventions have struggled to keep pace with these changes, leaving many patients refractory to conventional pharmaceutical treatments. Fecal microbiota transplantation (FMT) has emerged as a promising therapeutic approach for enterogenic diseases. Still, controversies persist regarding its active constituents, mechanism of action, scheme of treatment evaluation, indications, and contraindications. In this review, we investigated the efficacy of FMT in addressing gastrointestinal and extraintestinal conditions, drawing from follow-up data on over 8000 patients. We systematically addressed the controversies surrounding FMT's clinical application. We delved into key issues such as its technical nature, evaluation methods, microbial restoration mechanisms, and impact on the host-microbiota interactions. Additionally, we explored the potential colonization patterns of FMT-engrafted new microbiota throughout the entire intestine and elucidated the specific pathways through which the new microbiota modulates host immunity, metabolism, and genome.
Collapse
Affiliation(s)
- Xinjun Wang
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China.
| | - Di Zhao
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Dexi Bi
- Department of Pathology, Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Long Li
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Hongliang Tian
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Fang Yin
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510655, China
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, 00168, Italy; Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy; Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato, Rome, 00168, Italy
| | - Ning Li
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China
| | - Qiyi Chen
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Shanghai Gastrointestinal Microecology Research Center, Shanghai 200072, China; Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai 200072, China; Clinical Research Center for Digestive Diseases, Tongji University School of Medicine, Shanghai 200072, China.
| | - Huanlong Qin
- Tenth People's Hospital of Tongji University, Shanghai 200072, China; Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China.
| |
Collapse
|
8
|
Yang Z, Zhang Z, Jiang S, Li A, Song H, Zhang J. Diet shapes and maintains the personalized native gut microbiomes in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2987-3000. [PMID: 39692041 DOI: 10.1002/jsfa.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND The gut microbiome plays a critical role in human health and disease. Different dietary backgrounds play an important role in the uniqueness and diversity of the gut microbiota in different individuals, which promotes heterogeneity in disease phenotypes and treatment responses. Here, we explored how diet affects the composition and function of the native gut microbiome of model mice, based on the shotgun metagenomic and metabolomic, by analyzing the gut microbiome of C57B/6J mice in different dietary backgrounds. RESULTS The gut microbiomes of mice receiving different diets consistently exhibit distinct compositions across bacterial species, strains, fungi and phages. This implies that native microbial communities cannot 'homogenize' rapidly becaise of priority effects and unchanging diets. Notably, hotspot bacteria such as Limosilactobacillus reuteri, Parabacteroides distasonis and Akkermansia muciniphila were significantly different among the groups. These species harbor diverse adaptive mutations, reflecting genomic evolutionary diversity. The functional profiles of the gut microbiota also exhibit selective differences, involving the capacity for carbohydrate, branched-chain amino acid and fatty acid synthesis, as well as virulence factors, carbohydrate-active enzymes and antibiotic resistance. Furthermore, the differences in the gut microbiota also propagate to the host's serum, where structural and specific metabolite differences were observed. Metabolites that directly impact host health, such as d-glucosamine 6-phosphate and testolic acid, also show significant differences between the different dietary groups. CONCLUSION Our findings underscore the profound influence of different dietary the composition and functionality of the gut microbiome, offering valuable insights into optimizing health outcomes through personalized nutritional interventions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhihan Yang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Zeng Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Shuaiming Jiang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Ao Li
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Hainan Song
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Jiachao Zhang
- School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
- One Health Institute, Hainan University, Haikou, China
| |
Collapse
|
9
|
Liu Y, Li X, Chen Y, Yao Q, Zhou J, Wang X, Meng Q, Ji J, Yu Z, Chen X. Fecal microbiota transplantation: application scenarios, efficacy prediction, and factors impacting donor-recipient interplay. Front Microbiol 2025; 16:1556827. [PMID: 40201444 PMCID: PMC11975908 DOI: 10.3389/fmicb.2025.1556827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Fecal microbiota transplantation (FMT) represents a therapeutic approach that directly regulates the gut microbiota of recipients, normalizes its composition and reaping therapeutic rewards. Currently, in addition to its general application in treating Clostridium difficile (C. difficile) infection (CDI), FMT treatment has also been extended to the fields of other gastrointestinal diseases, infections, gut-liver or gut-brain axis disorders, metabolic diseases and cancer, etc. Prior to FMT, rigorous donor screening is essential to reduce the occurrence of adverse events. In addition, it is imperative to evaluate whether the recipient can safely and effectively undergo FMT treatment. However, the efficacy of FMT is influenced by the complex interactions between the gut microbiota of donor and recipient, the degree of donor microbiota engraftment is not necessarily positively related with the success rate of FMT. Furthermore, an increasing number of novel factors affecting FMT outcomes are being identified in recent clinical trials and animal experiments, broadening our understanding of FMT treatment. This article provides a comprehensive review of the application scenarios of FMT, the factors influencing the safety and efficacy of FMT from the aspects of both the donors and the recipients, and summarizes how these emerging novel regulatory factors can be combined to predict the clinical outcomes of patients undergoing FMT.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinru Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuchao Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinyan Yao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinjie Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoxuan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingguo Meng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaxuan Ji
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
10
|
Heidrich V, Valles-Colomer M, Segata N. Human microbiome acquisition and transmission. Nat Rev Microbiol 2025:10.1038/s41579-025-01166-x. [PMID: 40119155 DOI: 10.1038/s41579-025-01166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2025] [Indexed: 03/24/2025]
Abstract
As humans, we host personal microbiomes intricately connected to our biology and health. Far from being isolated entities, our microbiomes are dynamically shaped by microbial exchange with the surroundings, in lifelong microbiome acquisition and transmission processes. In this Review, we explore recent studies on how our microbiomes are transmitted, beginning at birth and during interactions with other humans and the environment. We also describe the key methodological aspects of transmission inference, based on the uniqueness of the building blocks of the microbiome - single microbial strains. A better understanding of human microbiome transmission will have implications for studies of microbial host regulation, of microbiome-associated diseases, and for effective microbiome-targeting strategies. Besides exchanging strains with other humans, there is also preliminary evidence we acquire microorganisms from animals and food, and thus a complete understanding of microbiome acquisition and transmission can only be attained by adopting a One Health perspective.
Collapse
Affiliation(s)
| | | | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy.
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
11
|
Goldman DA, Xue KS, Parrott AB, Lopez JA, Vila JCC, Jeeda RR, Franzese LR, Porter RL, Gray IJ, DeFelice BC, Petrov DA, Good BH, Relman DA, Huang KC. Competition for shared resources increases dependence on initial population size during coalescence of gut microbial communities. Proc Natl Acad Sci U S A 2025; 122:e2322440122. [PMID: 40063808 PMCID: PMC11929384 DOI: 10.1073/pnas.2322440122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 12/30/2024] [Indexed: 03/19/2025] Open
Abstract
The long-term success of introduced populations depends on both their initial size and ability to compete against existing residents, but it remains unclear how these factors collectively shape colonization dynamics. Here, we investigate how initial population (propagule) size shapes the outcome of community coalescence by systematically mixing eight pairs of in vitro microbial communities at ratios that vary over six orders of magnitude, and we compare our results to neutral ecological theory. Although the composition of the resulting cocultures deviated substantially from neutral expectations, each coculture contained species whose relative abundance depended on propagule size even after ~40 generations of growth. Using a consumer-resource model, we show that this dose-dependent colonization can arise when resident and introduced species have high niche overlap and consume shared resources at similar rates. Strain isolates displayed longer-lasting dose dependence when introduced into diverse communities than in pairwise cocultures, consistent with our model's prediction that propagule size should have larger, more persistent effects in diverse communities. Our model also successfully predicted that species with similar resource-utilization profiles, as inferred from growth in spent media and untargeted metabolomics, would show stronger dose dependence in pairwise coculture. This work demonstrates that transient, dose-dependent colonization dynamics can emerge from resource competition and exert long-term effects on the outcomes of community coalescence.
Collapse
Affiliation(s)
- Doran A. Goldman
- Department of Biology, Stanford University, Stanford, CA94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Katherine S. Xue
- Department of Biology, Stanford University, Stanford, CA94305
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
| | - Autumn B. Parrott
- Department of Bioengineering, Stanford University, Stanford, CA94305
| | - Jamie A. Lopez
- Department of Bioengineering, Stanford University, Stanford, CA94305
- Department of Applied Physics, Stanford University, Stanford, CA94305
| | - Jean C. C. Vila
- Department of Biology, Stanford University, Stanford, CA94305
| | - Rashi R. Jeeda
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | | | - Rachel L. Porter
- Biophysics Program, Stanford University School of Medicine, Stanford, CA94305
| | - Ira J. Gray
- Chan Zuckerberg Biohub, San Francisco, CA94158
| | | | - Dmitri A. Petrov
- Department of Biology, Stanford University, Stanford, CA94305
- Chan Zuckerberg Biohub, San Francisco, CA94158
| | - Benjamin H. Good
- Department of Biology, Stanford University, Stanford, CA94305
- Department of Applied Physics, Stanford University, Stanford, CA94305
- Chan Zuckerberg Biohub, San Francisco, CA94158
| | - David A. Relman
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Department of Medicine, Stanford University School of Medicine, Stanford, CA94305
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA94304
| | - Kerwyn Casey Huang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA94305
- Department of Bioengineering, Stanford University, Stanford, CA94305
- Chan Zuckerberg Biohub, San Francisco, CA94158
| |
Collapse
|
12
|
Cheng WT, Pei SY, Wu J, Wang YJ, Yang YW, Xiao MF, Chen J, Wang YY, Wu L, Huang ZB. Cannabinoid-2 receptor depletion promotes non-alcoholic fatty liver disease in mice via disturbing gut microbiota and tryptophan metabolism. Acta Pharmacol Sin 2025:10.1038/s41401-025-01495-w. [PMID: 39979552 DOI: 10.1038/s41401-025-01495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. NAFLD encompasses a spectrum of liver damage starting with liver steatosis and lipid disorders presented as the hallmark. Cannabinoid-2 receptor (CB2R) is the receptor of endocannabinoids mainly expressed in immune cells. Our preliminary study revealed the preventative role of CB2R in liver injury related to lipid metabolism. In this study, we aimed to explore the role of CB2R in NAFLD and the underlying mechanism related to microbial community. High-fat diet-induced NAFLD model was established in mice. We found that hepatic CB2R expression was significantly reduced in NAFLD mice and CB2R-/- mice fed with normal chow. Interestingly, cohousing with or transplanted with microbiota from WT mice, or treatment with an antibiotic cocktail ameliorated the NAFLD phenotype of CB2R-/- mice. The gut dysbiosis in CB2R-/- mice including increased Actinobacteriota and decreased Bacteroidota was similar to that of NAFLD patients and NAFLD mice. Microbial functional analysis and metabolomics profiling revealed obviously disturbed tryptophan metabolism in NAFLD patients and NAFLD mice, which were also seen in CB2R-/- mice. Correlation network showed that the disordered tryptophan metabolites such as indolelactic acid (ILA) and xanthurenic acid in CB2R-/- mice were mediated by gut dysbiosis and related to NAFLD severity indicators. In vitro and in vivo validation experiments showed that the enriched tryptophan metabolites ILA aggravated NAFLD phenotypes. These results demonstrate the involvement of CB2R in NAFLD, which is related to gut microbiota-mediated tryptophan metabolites. Our findings highlight CB2R and the associated microbes and tryptophan metabolites as promising targets for the treatment of NAFLD.
Collapse
Affiliation(s)
- Wei-Ting Cheng
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Si-Ya Pei
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, 410007, China
| | - Jie Wu
- Shantou University Medical College, Shantou, 515041, China
| | - Yan-Jie Wang
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, 410007, China
| | - Yong-Wen Yang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Mei-Fang Xiao
- Department of Health Management Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jun Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuan-Yuan Wang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Li Wu
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Ze-Bing Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Nation Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
13
|
Rågård N, Baumwall SMD, Paaske SE, Hansen MM, Høyer KL, Mikkelsen S, Erikstrup C, Dahlerup JF, Hvas CL. Validation methods for encapsulated faecal microbiota transplantation: a scoping review. Therap Adv Gastroenterol 2025; 18:17562848251314820. [PMID: 39926318 PMCID: PMC11806493 DOI: 10.1177/17562848251314820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
Faecal microbiota transplantation (FMT) is increasingly used for diseases associated with a disrupted intestinal microbiome, mainly Clostridioides difficile infection. Encapsulated FMT is a patient-friendly application method that improves accessibility and convenience. Capsule processing may be standardised, but validation protocols are warranted. This review aimed to describe published validation methods for encapsulated FMT. Original studies reporting using encapsulated faecal formulations were included, regardless of indication. Studies were excluded if they did not address processing and validation or used non-donor-derived content. We conducted a comprehensive scoping review, implementing a systematic search strategy in PubMed, Embase and Web of Science. Processing data and validation methods were registered during full-text analysis and combined to create an overview of approaches for assessing quality in encapsulated FMT processing. The searches identified 324 unique studies, of which 44 were included for data extraction and analysis. We identified eight validation covariables: donor selection, pre-processing, preservation, oxygen-sparing processing, microbial count, viability, engraftment and clinical effect outcomes, from which we constructed a model for quality assessment of encapsulated FMT that exhaustively categorised processing details and validation measures. Our model comprised three domains: (1) Processing (donor selection and processing protocol), (2) Content analysis (microbiota measures and dose measures) and (3) Clinical effect (engraftment and clinical outcomes). No studies presented a reproducible capsule protocol; their validation strategies were sparse and divergent. The validation of FMT capsules is heterogeneous, and processing requires relevant standardisation protocols, mainly focusing on capsule content. Future studies should report validation covariables to enable accurate comparative assessments of clinical effects.
Collapse
Affiliation(s)
- Nina Rågård
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Sara Ellegaard Paaske
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mette Mejlby Hansen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Katrine Lundby Høyer
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Susan Mikkelsen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Erikstrup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Frederik Dahlerup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Christian Lodberg Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, DK-8200 Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Pinto S, Šajbenová D, Benincà E, Nooij S, Terveer EM, Keller JJ, van der Meulen–de Jong AE, Bogaards JA, Steyerberg EW. Dynamics of Gut Microbiota After Fecal Microbiota Transplantation in Ulcerative Colitis: Success Linked to Control of Prevotellaceae. J Crohns Colitis 2025; 19:jjae137. [PMID: 39225490 PMCID: PMC11836888 DOI: 10.1093/ecco-jcc/jjae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/21/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) is an experimental treatment for ulcerative colitis (UC). We aimed to study microbial families associated with FMT treatment success. METHODS We analyzed stools from 24 UC patients treated with 4 FMTs weekly after randomization for pretreatment during 3 weeks with budesonide (n = 12) or placebo (n = 12). Stool samples were collected 9 times pre-, during, and post-FMT. Clinical and endoscopic response was assessed 14 weeks after initiation of the study using the full Mayo score. Early withdrawal due to worsening of UC symptoms was classified as non-response. RESULTS Nine patients (38%) reached remission at week 14, and 15 patients had a partial response or non-response at or before week 14. With a Dirichlet multinomial mixture model, we identified 5 distinct clusters based on the microbiota composition of 180 longitudinally collected patient samples and 27 donor samples. A Prevotellaceae-dominant cluster was associated with poor response to FMT treatment. Conversely, the families Ruminococcaceae and Lachnospiraceae were associated with a successful clinical response. These associations were already visible at the start of the treatment for a subgroup of patients and were retained in repeated measures analyses of family-specific abundance over time. Responders were also characterized by a significantly lower Simpson dominance compared to non-responders. CONCLUSIONS The success of FMT treatment of UC patients appears to be associated with specific gut microbiota families, such as control of Prevotellaceae. Monitoring the dynamics of these microbial families could potentially be used to inform treatment success early during FMT. CLINICAL TRIAL REGISTRATION NUMBER The study was registered in the Netherlands Trial Register, with reference number NL9858.
Collapse
Affiliation(s)
- Susanne Pinto
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Dominika Šajbenová
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisa Benincà
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Sam Nooij
- Leiden University Center for Infectious Diseases (LUCID) Research, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth M Terveer
- Leiden University Center for Infectious Diseases (LUCID) Research, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Donor Feces Bank, LUCID Medical Microbiology & Infection Control, Leiden University Medical Center, Leiden, The Netherlands
| | - Josbert J Keller
- Netherlands Donor Feces Bank, LUCID Medical Microbiology & Infection Control, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gastroenterology, Haaglanden Medisch Centrum, The Hague, The Netherlands
| | | | - Johannes A Bogaards
- Department of Epidemiology and Data Science, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity (AI&I), Amsterdam UMC, Amsterdam, The Netherlands
| | - Ewout W Steyerberg
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
15
|
Pucci N, Ujčič-Voortman J, Verhoeff AP, Mende DR. Priority effects, nutrition and milk glycan-metabolic potential drive Bifidobacterium longum subspecies dynamics in the infant gut microbiome. PeerJ 2025; 13:e18602. [PMID: 39866568 PMCID: PMC11758915 DOI: 10.7717/peerj.18602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/06/2024] [Indexed: 01/28/2025] Open
Abstract
Background The initial colonization of the infant gut is a complex process that defines the foundation for a healthy microbiome development. Bifidobacterium longum is one of the first colonizers of newborns' gut, playing a crucial role in the healthy development of both the host and its microbiome. However, B. longum exhibits significant genomic diversity, with subspecies (e.g., Bifidobacterium longum subsp. infantis and subsp. longum) displaying distinct ecological and metabolic strategies including differential capabilities to break down human milk glycans (HMGs). To promote healthy infant microbiome development, a good understanding of the factors governing infant microbiome dynamics is required. Methodology We analyzed newly sequenced gut microbiome samples of mother-infant pairs from the Amsterdam Infant Microbiome Study (AIMS) and four publicly available datasets to identify important environmental and bifidobacterial features associated with the colonization success and succession outcomes of B. longum subspecies. Metagenome-assembled genomes (MAGs) were generated and assessed to identify characteristics of B. longum subspecies in relation to early-life gut colonization. We further implemented machine learning tools to identify significant features associated with B. longum subspecies abundance. Results B. longum subsp. longum was the most abundant and prevalent gut Bifidobacterium at one month, being replaced by B. longum subsp. infantis at six months of age. By utilizing metagenome-assembled genomes (MAGs), we reveal significant differences between and within B. longum subspecies in their potential to break down HMGs. We further combined strain-tracking, meta-pangenomics and machine learning to understand these abundance dynamics and found an interplay of priority effects, milk-feeding type and HMG-utilization potential to govern them across the first six months of life. We find higher abundances of B. longum subsp. longum in the maternal gut microbiome, vertical transmission, breast milk and a broader range of HMG-utilizing genes to promote its abundance at one month of age. Eventually, we find B. longum subsp. longum to be replaced by B. longum subsp. infantis at six months of age due to a combination of nutritional intake, HMG-utilization potential and a diminishment of priority effects. Discussion Our results establish a strain-level ecological framework explaining early-life abundance dynamics of B. longum subspecies. We highlight the role of priority effects, nutrition and significant variability in HMG-utilization potential in determining the predictable colonization and succession trajectories of B. longum subspecies, with potential implications for promoting infant health and well-being.
Collapse
Affiliation(s)
- Nicholas Pucci
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Joanne Ujčič-Voortman
- Sarphati Amsterdam, Department of Public Health Service Amsterdam, Amsterdam, Netherlands
| | - Arnoud P. Verhoeff
- Sarphati Amsterdam, Department of Public Health Service Amsterdam, Amsterdam, Netherlands
- Department of Sociology, University of Amsterdam, Amsterdam, Netherlands
| | - Daniel R. Mende
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
16
|
Hou W, Cao Y, Wang J, Yin F, Wang J, Guo N, Wang Z, Lv X, Ma C, Chen Q, Yang R, Wei H, Li J, Wang R, Qin H. Single-cell nanocapsules of gut microbiota facilitate fecal microbiota transplantation. Theranostics 2025; 15:2069-2084. [PMID: 39897545 PMCID: PMC11780513 DOI: 10.7150/thno.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025] Open
Abstract
Rationale: Fecal microbiota transplantation (FMT) is advantageous for treating intractable diseases via the microbiota-gut-organ axis. However, invasive administration of gut microbiota via nasal feeding tubes limits the widespread application of FMT. Here, we attempted to develop a novel strategy to deliver gut microbiota using nanocapsules. Methods: Single-cell nanocapsules were fabricated within 1 h by layer-by-layer assembly of silk fibroin and phosphatidylcholine to generate a protective nanoshell on the cell surface of complicated microbiota. The physical properties of the microbiota nanocapsules were analyzed. The protective effects of nanocapsules on the gastrointestinal tract were analyzed both in vitro and in vivo. The efficacy of FMT assisted by single-cell nanocapsules (NanoFMT) was evaluated using the inflammatory response, gut microbiota balance, and histopathological analysis in animal model. Results: The nanocapsules achieved a good coating ratio for a single type of microbe and complex microbiota, resulting in a remarkable increase in the survival rate of microbes in the gastrointestinal tract. NanoFMT improved the diversity and abundance of the gut microbiota better than common FMT in germ-free mice. Moreover, NanoFMT alleviated intestinal inflammation and positively reversed the microbiota balance in a mouse model of colitis compared with common FMT, assisted by the inherent anti-inflammatory effects of silk fibroin and phosphatidylcholine. Conclusions: Considering its rapid preparation, convenient delivery, and perfect therapeutic effect, we anticipate that NanoFMT may be a promising clinical candidate for next-generation FMT treatment.
Collapse
Affiliation(s)
- Weiliang Hou
- Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072 Shanghai, China
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, Changhai Hospital; National Key Laboratory of Immunity and Inflammation, Naval Medical University, 200433 Shanghai, China
- Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, 200030 Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, SAR 999078 Taipa Macau, China
| | - Yuan Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072 Shanghai, China
| | - Jifeng Wang
- Department of Pathology, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072 Shanghai, China
| | - Fang Yin
- Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072 Shanghai, China
| | - Jiahui Wang
- Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072 Shanghai, China
| | - Ning Guo
- Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072 Shanghai, China
| | - Ziyi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, SAR 999078 Taipa Macau, China
| | - Xiaoqiong Lv
- Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072 Shanghai, China
| | - Chunlian Ma
- Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072 Shanghai, China
| | - Qiyi Chen
- Intestinal Microenvironment Treatment Center, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072 Shanghai, China
| | - Rong Yang
- Department of Pediatrics, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072 Shanghai, China
| | - Hong Wei
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200435 Shanghai, China
| | - Juanjuan Li
- School of Life Sciences, Hainan University, 570228 Haikou, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, SAR 999078 Taipa Macau, China
| | - Huanlong Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital Affiliated to Tongji University, 200072 Shanghai, China
| |
Collapse
|
17
|
Chen-Liaw A, Aggarwala V, Mogno I, Haifer C, Li Z, Eggers J, Helmus D, Hart A, Wehkamp J, Lamousé-Smith ESN, Kerby RL, Rey FE, Colombel JF, Kamm MA, Olle B, Norman JM, Menon R, Watson AR, Crossette E, Terveer EM, Keller JJ, Borody TJ, Grinspan A, Paramsothy S, Kaakoush NO, Dubinsky MC, Faith JJ. Gut microbiota strain richness is species specific and affects engraftment. Nature 2025; 637:422-429. [PMID: 39604726 DOI: 10.1038/s41586-024-08242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 10/17/2024] [Indexed: 11/29/2024]
Abstract
Despite the fundamental role of bacterial strain variation in gut microbiota function1-6, the number of unique strains of a species that can stably colonize the human intestine is still unknown for almost all species. Here we determine the strain richness (SR) of common gut species using thousands of sequenced bacterial isolates with paired metagenomes. We show that SR varies across species, is transferable by faecal microbiota transplantation, and is uniquely low in the gut compared with soil and lake environments. Active therapeutic administration of supraphysiologic numbers of strains per species increases recipient SR, which then converges back to the population average after dosing is ceased. Stratifying engraftment outcomes by high or low SR shows that SR predicts microbial addition or replacement in faecal transplants. Together, these results indicate that properties of the gut ecosystem govern the number of strains of each species colonizing the gut and thereby influence strain addition and replacement in faecal microbiota transplantation and defined live biotherapeutic products.
Collapse
Affiliation(s)
- Alice Chen-Liaw
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Varun Aggarwala
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Reliance Foundation Institution of Education and Research, Jio Institute, Navi Mumbai, India
| | - Ilaria Mogno
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Craig Haifer
- Concord Clinical School, University of Sydney, Sydney, New South Wales, Australia
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Zhihua Li
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph Eggers
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Drew Helmus
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amy Hart
- Janssen R&D, Spring House, PA, USA
| | | | | | - Robert L Kerby
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jean Frédéric Colombel
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael A Kamm
- Department of Gastroenterology and Medicine, St. Vincent's Hospital, Melbourne, Victoria, Australia
| | | | | | | | | | | | - Elisabeth M Terveer
- Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Josbert J Keller
- Netherlands Donor Feces Bank, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gastroenterology, Haaglanden Medical Center, The Hague, The Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas J Borody
- Centre for Digestive Diseases, Sydney, New South Wales, Australia
| | - Ari Grinspan
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sudarshan Paramsothy
- Concord Clinical School, University of Sydney, Sydney, New South Wales, Australia
- Department of Gastroenterology and Hepatology, Macquarie University Hospital, Sydney, New South Wales, Australia
| | - Nadeem O Kaakoush
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Marla C Dubinsky
- Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
18
|
Pinto Y, Bhatt AS. Sequencing-based analysis of microbiomes. Nat Rev Genet 2024; 25:829-845. [PMID: 38918544 DOI: 10.1038/s41576-024-00746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 06/27/2024]
Abstract
Microbiomes occupy a range of niches and, in addition to having diverse compositions, they have varied functional roles that have an impact on agriculture, environmental sciences, and human health and disease. The study of microbiomes has been facilitated by recent technological and analytical advances, such as cheaper and higher-throughput DNA and RNA sequencing, improved long-read sequencing and innovative computational analysis methods. These advances are providing a deeper understanding of microbiomes at the genomic, transcriptional and translational level, generating insights into their function and composition at resolutions beyond the species level.
Collapse
Affiliation(s)
- Yishay Pinto
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Divisions of Hematology and Blood & Marrow Transplantation, Stanford University, Stanford, CA, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Medicine, Divisions of Hematology and Blood & Marrow Transplantation, Stanford University, Stanford, CA, USA.
| |
Collapse
|
19
|
Finnegan YE, Neill HR, Prpa EJ, Pot B. "Gut" to grips with the science of the microbiome - a symposium report. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2024; 5:e11. [PMID: 39703540 PMCID: PMC11658944 DOI: 10.1017/gmb.2024.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/18/2024] [Indexed: 12/21/2024]
Abstract
The latest Yakult Science Study Day was held virtually on 2 November 2023. Aimed at healthcare professionals, researchers, and students, a variety of experts explored the latest gut microbiome research and what it means in practice. The morning sessions discussed the role of the microbiome in health and disease, the rapid advancements in DNA sequencing and implications for personalised nutrition, the current state of evidence on health benefits associated with fermented foods, prebiotics and probiotics and the challenges involved in interpreting research in this area. The afternoon session considered the emerging research on the microbiota-gut-brain axis in mediating effects of food on mood, the bidirectional impact of menopause on the gut microbiota, and the interplay between the gut and skin with implications for the treatment of rare and common skin disorders. The session ended with an update on the use of faecal microbiota transplant in both research and clinical practice. Undoubtedly, the gut microbiome is emerging as a key conductor of human health, both in relation to gastrointestinal and non-gastrointestinal outcomes. As research continues to elucidate mechanisms of action and confirm their effects in human trials, the gut microbiome should be a key consideration within a holistic approach to health moving forward.
Collapse
Affiliation(s)
- Yvonne E. Finnegan
- Yvonne Finnegan FINNE Nutrition & Regulatory Consultancy, Kilkenny, Ireland
| | | | | | - Bruno Pot
- Yakult Europe BV, Science Department, Almere, The Netherlands
| |
Collapse
|
20
|
Urtecho G, Moody T, Huang Y, Sheth RU, Richardson M, Descamps HC, Kaufman A, Lekan O, Zhang Z, Velez-Cortes F, Qu Y, Cohen L, Ricaurte D, Gibson TE, Gerber GK, Thaiss CA, Wang HH. Spatiotemporal dynamics during niche remodeling by super-colonizing microbiota in the mammalian gut. Cell Syst 2024; 15:1002-1017.e4. [PMID: 39541983 DOI: 10.1016/j.cels.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
While fecal microbiota transplantation (FMT) has been shown to be effective in reversing gut dysbiosis, we lack an understanding of the fundamental processes underlying microbial engraftment in the mammalian gut. Here, we explored a murine gut colonization model leveraging natural inter-individual variations in gut microbiomes to elucidate the spatiotemporal dynamics of FMT. We identified a natural "super-donor" consortium that robustly engrafts into diverse recipients and resists reciprocal colonization. Temporal profiling of the gut microbiome showed an ordered succession of rapid engraftment by early colonizers within 72 h, followed by a slower emergence of late colonizers over 15-30 days. Moreover, engraftment was localized to distinct compartments of the gastrointestinal tract in a species-specific manner. Spatial metagenomic characterization suggested engraftment was mediated by simultaneous transfer of spatially co-localizing species from the super-donor consortia. These results offer a mechanism of super-donor colonization by which nutritional niches are expanded in a spatiotemporally dependent manner. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Guillaume Urtecho
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Thomas Moody
- Department of Systems Biology, Columbia University, New York, NY, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Yiming Huang
- Department of Systems Biology, Columbia University, New York, NY, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Ravi U Sheth
- Department of Systems Biology, Columbia University, New York, NY, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Miles Richardson
- Department of Systems Biology, Columbia University, New York, NY, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Hélène C Descamps
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Kaufman
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Opeyemi Lekan
- Department of Systems Biology, Columbia University, New York, NY, USA; Columbia College, Columbia University, New York, NY 10027, USA
| | - Zetian Zhang
- Department of Systems Biology, Columbia University, New York, NY, USA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Florencia Velez-Cortes
- Department of Systems Biology, Columbia University, New York, NY, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Yiming Qu
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Lucas Cohen
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Deirdre Ricaurte
- Department of Systems Biology, Columbia University, New York, NY, USA; Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Travis E Gibson
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA; Computer Science and AI Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Georg K Gerber
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; MIT-Harvard Health Sciences and Technology, Cambridge, MA, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY, USA; Columbia University Digestive and Liver Disease Research Center, New York, NY 10032, USA.
| |
Collapse
|
21
|
Ebrahimi R, Farsi Y, Nejadghaderi SA. Fecal microbiota transplantation for glaucoma; a potential emerging treatment strategy. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100314. [PMID: 39726974 PMCID: PMC11670420 DOI: 10.1016/j.crmicr.2024.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Glaucoma is the primary cause of irreversible blindness globally. Different glaucoma subtypes are identified by their underlying mechanisms, and treatment options differ by its pathogenesis. Current management includes topical medications to lower intraocular pressure and surgical procedures like trabeculoplasty and glaucoma drainage implants. Fecal microbiota transplantation (FMT) is an almost effective and safe treatment option for recurrent Clostridium difficile infection. The relationship between bacterial populations, metabolites, and inflammatory pathways in retinal diseases indicates possible therapeutic strategies. Thus, incorporating host microbiota-based therapies could offer an additional treatment option for glaucoma patients. Here, we propose that combining FMT with standard glaucoma treatments may benefit those affected by this condition. Also, the potential safety, efficacy, cost-effectiveness and clinical applications are discussed.
Collapse
Affiliation(s)
- Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yeganeh Farsi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Aria Nejadghaderi
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
22
|
Kousgaard SJ, Cold F, Halkjær SI, Petersen AM, Kjeldsen J, Hansen JM, Dall SM, Albertsen M, Nielsen HL, Kirk KF, Duch K, Sønderkær M, Thorlacius-Ussing O. The Effect of Non-pooled Multidonor Faecal Microbiota Transplantation for Inducing Clinical Remission in Patients with Chronic Pouchitis: Results from a Multicentre, Randomised, Double-blinded, Placebo-controlled Trial [MicroPouch]. J Crohns Colitis 2024; 18:1753-1766. [PMID: 38708959 DOI: 10.1093/ecco-jcc/jjae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/10/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND AND AIMS To investigate if treatment with non-pooled, multidonor faecal microbiota transplantation [FMT] for 4 weeks was superior to placebo to induce clinical remission in patients with chronic pouchitis. METHODS The study was a randomised, double-blinded, placebo-controlled study with a 4-week intervention period and 12-month follow-up. Eligible patients with chronic pouchitis were recruited from five Danish hospitals. Participants were randomised to non-pooled, multidonor FMT derived from four faecal donors, or placebo. Treatment was delivered daily by enema for 2 weeks, followed by every second day for 2 weeks. Disease severity was accessed at inclusion and 30-day follow-up, using the Pouchitis Disease Activity Index [PDAI]; PDAI <7 was considered equivalent to clinical remission. Faecal samples from participants and donors were analysed by shotgun metagenomic sequencing. RESULTS Inclusion was stopped after inclusion of 30 participants who were randomised 1:1 for treatment with FMT or placebo. There was no difference in participants achieving clinical remission between the two groups at 30-day follow-up, relative risk 1.0 (95% CI [0.55; 1.81]). Treatment with FMT resulted in a clinically relevant increase in adverse events compared with placebo, incidence rate ratio 1.67 (95% CI [1.10; 2.52]); no serious adverse events within either group. Faecal microbiota transplantation statistically significantly increased the similarity of participant faecal microbiome to the faecal donor microbiome at 30-day follow-up [p = 0.01], which was not seen after placebo. CONCLUSIONS Non-pooled, multidonor FMT was comparable to placebo in inducing clinical remission in patients with chronic pouchitis, but showed a clinically relevant increase in adverse events compared with placebo. ClincialTrials.gov number, NCT04100291.
Collapse
Affiliation(s)
- Sabrina Just Kousgaard
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Frederik Cold
- Gastrounit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Sofie Ingdam Halkjær
- Gastrounit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Andreas Munk Petersen
- Gastrounit, Medical Division, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jens Kjeldsen
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Jane Møller Hansen
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | | | - Mads Albertsen
- Center for Microbial Communities, Aalborg University, Aalborg, Denmark
| | - Hans Linde Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - Karina Frahm Kirk
- Department of Infectious Disease, Aalborg University Hospital, Aalborg, Denmark
| | - Kirsten Duch
- Research Data and Biostatistics, Aalborg University Hospital, Aalborg, Denmark
| | - Mads Sønderkær
- Department of Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
23
|
Ronkainen A, Khan I, Satokari R. Pathogen exclusion from intestinal mucus and antimicrobial susceptibility of Bifidobacterium spp. strains from fecal donors. MICROBIOME RESEARCH REPORTS 2024; 4:5. [PMID: 40207286 PMCID: PMC11977350 DOI: 10.20517/mrr.2024.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 04/11/2025]
Abstract
Aim: To study the ability of bifidobacterial strains isolated from fecal donors to prevent pathogens from adhering to intestinal mucus, along with their antimicrobial susceptibility. Methods: Pathogen prevention was assessed through an in vitro adhesion assay using immobilized porcine mucus. Subsequently, bifidobacterial RNA-Seq data were analyzed to pinpoint glycoside hydrolases and glycosyltransferases possibly involved in mucus degradation affecting pathogen adhesion. The antimicrobial susceptibility of bifidobacterial strains was evaluated using in vitro susceptibility testing, followed by analysis of whole-genome sequencing data to reveal antimicrobial resistance genes. Results: Bifidobacterial strains inhibited pathogen adhesion to intestinal mucus, with most strains reducing the adhesion levels of pathogens like Escherichia coli, Listeria monocytogenes, Salmonella Typhimurium, and Staphylococcus aureus by at least 70%. None of the strains significantly affected Pseudomonas aeruginosa, but they moderately reduced the adhesion of Yersinia enterocolitica. Gene expression analysis indicated that the more effective strains expressed higher levels of glycoside hydrolases, correlating with their pathogen exclusion capabilities. Antimicrobial susceptibility testing revealed that most strains were sensitive to several antibiotics, though some exhibited resistance to tobramycin, trimethoprim, and ciprofloxacin. Notably, one strain carried the tetW gene, conferring resistance to tetracycline. Conclusion: The bifidobacterial strains characterized in this study show potential for bacteriotherapeutic applications due to their strong ability to interfere with the adhesion of pathogenic bacteria and their lack of alarming antimicrobial resistance patterns.
Collapse
Affiliation(s)
| | | | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| |
Collapse
|
24
|
Zhang R, Perekatt A, Chen L. Metabolic regulation of intestinal homeostasis: molecular and cellular mechanisms and diseases. MedComm (Beijing) 2024; 5:e776. [PMID: 39465140 PMCID: PMC11502721 DOI: 10.1002/mco2.776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolism serves not only as the organism's energy source but also yields metabolites crucial for maintaining tissue homeostasis and overall health. Intestinal stem cells (ISCs) maintain intestinal homeostasis through continuous self-renewal and differentiation divisions. The intricate relationship between metabolic pathways and intestinal homeostasis underscores their crucial interplay. Metabolic pathways have been shown to directly regulate ISC self-renewal and influence ISC fate decisions under homeostatic conditions, but the cellular and molecular mechanisms remain incompletely understood. Understanding the intricate involvement of various pathways in maintaining intestinal homeostasis holds promise for devising innovative strategies to address intestinal diseases. Here, we provide a comprehensive review of recent advances in the regulation of intestinal homeostasis. We describe the regulation of intestinal homeostasis from multiple perspectives, including the regulation of intestinal epithelial cells, the regulation of the tissue microenvironment, and the key role of nutrient metabolism. We highlight the regulation of intestinal homeostasis and ISC by nutrient metabolism. This review provides a multifaceted perspective on how intestinal homeostasis is regulated and provides ideas for intestinal diseases and repair of intestinal damage.
Collapse
Affiliation(s)
- Ruolan Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
| | - Ansu Perekatt
- Department of Chemistry and Chemical BiologyStevens Institute of TechnologyHobokenNew JerseyUSA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjingChina
- Institute of Microphysiological SystemsSoutheast UniversityNanjingChina
| |
Collapse
|
25
|
Claytor JD, Faith JJ. Fecal Microbiota Transplantation (FMT) in Ulcerative Colitis: Holding Out for a Superdonor? Clin Gastroenterol Hepatol 2024:S1542-3565(24)00909-1. [PMID: 39442742 DOI: 10.1016/j.cgh.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 10/25/2024]
Affiliation(s)
- Jennifer D Claytor
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Jeremiah J Faith
- Precision Immunology Institute, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
26
|
Bénard MV, de Goffau MC, Blonk J, Hugenholtz F, van Buuren J, Paramsothy S, Kaakoush NO, D'Haens GRAM, Borody TJ, Kamm MA, Ponsioen CY. Gut Microbiota Features in Relation to Fecal Microbiota Transplantation Outcome in Ulcerative Colitis: A Systematic Review and Meta-Analysis. Clin Gastroenterol Hepatol 2024:S1542-3565(24)00907-8. [PMID: 39442743 DOI: 10.1016/j.cgh.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND & AIMS Fecal microbiota transplantation (FMT) can induce remission in patients with ulcerative colitis, yet its efficacy needs improvement. We conducted a comprehensive evaluation of the current literature on microbial factors affecting outcome, as well as a meta-analysis on some of the largest datasets regarding composition. METHODS MEDLINE, Embase, and Cochrane were systematically searched through August 2024 for relevant studies. The quality of studies was analyzed with JBI tools and a composite critical appraisal score. Additionally, species-level data from 2 landmark FMT trials (the Transplantation of Feces in Ulcerative Colitis; Returning Nature's Homeostasis [TURN] and Fecal Microbiota Transplantation for Chronic Active Ulcerative Colitis [FOCUS] trials) were reanalyzed from a compositional perspective. RESULTS Out of 3755 citations identified, 56 met the inclusion criteria, of which 29 fulfilled quality standards. Higher microbial α-diversity, either in donors or recipients (at baseline or following FMT treatment), was associated with better clinical response rates. Engraftment of the donors' microbiota could not be clearly linked with clinical response, possibly because not every donor has an ideal microbiome. Butyrate-producing species from the Lachnospiraceae and Oscillospiraceae families were often related with response, whereas the reverse was true for Fusobacteria, many Proteobacteria, and Ruminococcus gnavus. Compositional analyses showed that clinical response is associated with a shift from a low-diversity, often Bacteroides-dominant composition to one with higher diversity, either dominated by various butyrate producers, the Christensenellaceae-Methanobrevibacter trophic network, or a moderate/high-diversity composition with abundant but not excessive levels of Prevotella copri. CONCLUSIONS This systematic review/meta-analysis yielded a coherent picture from a compositional perspective, which may help identify beneficial donor profiles and guide personalized FMT approaches.
Collapse
Affiliation(s)
- Mèlanie V Bénard
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Inflammatory Bowel Disease Centre, Amsterdam UMC, Amsterdam, the Netherlands
| | | | - Justine Blonk
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Floor Hugenholtz
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Amsterdam Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joep van Buuren
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Sudarshan Paramsothy
- Faculty of Medicine and Health, Concord Clinical School, University of Sydney, Sydney, New South Wales, Australia; Department of Gastroenterology, Concord Repatriation General Hospital, Concord, New South Wales, Australia; Department of Gastroenterology, Macquarie University Hospital, Sydney, New South Wales, Australia
| | - Nadeem O Kaakoush
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Geert R A M D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Inflammatory Bowel Disease Centre, Amsterdam UMC, Amsterdam, the Netherlands
| | - Thomas J Borody
- Centre for Digestive Diseases, Sydney, New South Wales, Australia
| | - Michael A Kamm
- Department of Gastroenterology, St Vincent's Hospital, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Cyriel Y Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Inflammatory Bowel Disease Centre, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
27
|
Wang L, Xu Y, Li L, Yang B, Zhao D, Ye C, Lin Z, Cui J, Liu Y, Zhu W, Li N, Tian H, Chen Q. The impact of small intestinal bacterial overgrowth on the efficacy of fecal microbiota transplantation in patients with chronic constipation. mBio 2024; 15:e0202324. [PMID: 39194187 PMCID: PMC11481539 DOI: 10.1128/mbio.02023-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
To investigate the impact of Small Intestinal Bacterial Overgrowth (SIBO) on the efficacy of Fecal Microbiota Transplantation (FMT) in patients with chronic constipation, our research team included 218 patients with chronic constipation treated with FMT. Based on the results of the SIBO breath test, the patients were divided into two groups: the constipation with SIBO group (SIBO) and the constipation without SIBO group (non-SIBO). The efficacy of the two groups was evaluated using constipation-related scoring scales. At the same time, feces and small intestinal fluid samples were collected from both groups before and after FMT to compare the changes in the intestinal microbiota through 16S rRNA sequencing. In this study, it was found that the clinical efficacy of FMT in the SIBO group was superior to that in the non-SIBO group. After FMT treatment, both groups showed a significant increase in bowel frequency and improvement in stool characteristics. Abdominal symptoms, rectal symptoms, and defecation symptoms were significantly alleviated (P < 0.05), and patients' quality of life was significantly enhanced (P < 0.05). After FMT, except for the Constipation Assessment Scale scores, other scale scores showed significant differences between the two groups, the SIBO group scoring significantly better than the non-SIBO group (P < 0.05). After FMT, there were minor changes in the colonic microbiota but more substantial changes in the small intestinal microbiota. At baseline, the SIBO group had a higher abundance of Veillonella, and lower abundances of Escherichia-Shigella and Acinetobacter compared to the non-SIBO group. Chronic constipation patients with SIBO have a better response to FMT than those without SIBO. IMPORTANCE Existing studies have rarely considered the impact of the small intestine's microbial state on the efficacy of fecal microbiota transplantation (FMT), nor have they extensively explored the effect of the small intestine's microbial state on the recovery of colonic motility. Therefore, this study investigates the influence of small intestinal bacterial overgrowth (SIBO) on the efficacy of FMT in treating constipation, specifically the impact of the microbial state of the small intestine on the restoration of colonic homeostasis, and consequently on the recovery of colonic motility.
Collapse
Affiliation(s)
- Le Wang
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
| | - Yue Xu
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
| | - Long Li
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
| | - Bo Yang
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
| | - Di Zhao
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
| | - Chen Ye
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
| | - Zhiliang Lin
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
| | - Jiaqu Cui
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
| | - Yunkun Liu
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
| | - Wanyong Zhu
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
| | - Ning Li
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
| | - Hongliang Tian
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
- Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai, China
| | - Qiyi Chen
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
- Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai, China
| |
Collapse
|
28
|
Karwowska Z, Szczerbiak P, Kosciolek T. Microbiome time series data reveal predictable patterns of change. Microbiol Spectr 2024; 12:e0410923. [PMID: 39162505 PMCID: PMC11448390 DOI: 10.1128/spectrum.04109-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/05/2024] [Indexed: 08/21/2024] Open
Abstract
The human gut microbiome is crucial in health and disease. Longitudinal studies are becoming increasingly important compared to traditional cross-sectional approaches, as precision medicine and individualized interventions are coming to the forefront. Investigating the temporal dynamics of the microbiome is essential for comprehending its function and impact on health. This knowledge has implications for targeted therapeutic strategies, such as personalized diets or probiotic therapy. In this study, we focused on developing and implementing methods specifically designed for analyzing gut microbiome time series. Our statistical framework provides researchers with tools to examine the temporal behavior of the gut microbiome. Key features of our framework include statistical tests for time series properties, predictive modeling, classification of bacterial species based on stability and noise, and clustering analyses to identify groups of bacteria with similar temporal patterns. We analyzed dense amplicon sequencing time series from four generally healthy subjects. Using our developed statistical framework, we analyzed both the overall community dynamics and the behavior of individual bacterial species. We showed six longitudinal regimes within the gut microbiome and discussed their features. Additionally, we explored whether specific bacterial clusters undergo similar fluctuations, suggesting potential functional relationships and interactions within the microbiome. Our development of specialized methods for analyzing human gut microbiome time series significantly enhances the understanding of its dynamic nature and implications for human health. The guidelines and tools provided by our framework support scientists in studying the complex dynamics of the gut microbiome, fostering further research and advancements in microbiome analysis. The gut microbiome is integral to human health, influencing various diseases. Longitudinal studies offer deeper insights into its temporal dynamics compared to cross-sectional approaches. In this study, we developed a statistical framework for analyzing the time series of the human gut microbiome. This framework provides robust tools for examining microbial community dynamics over time. It includes statistical tests for time series properties, predictive modeling, classification of bacterial species based on stability and noise, and clustering analyses. Our approach significantly enhances the methodologies available to researchers, promoting further exploration and innovation in microbiome analysis. IMPORTANCE This project developed innovative methods to analyze gut microbiome time series data, offering fresh insights into its dynamic nature. Unlike many studies that focus on static snapshots, we found that the healthy gut microbiome is predictably stable over time, with only a small subset of bacteria showing significant changes. By identifying groups of bacteria with diverse temporal behaviors and clusters that change together, we pave the way for more effective probiotic therapies and dietary interventions, addressing the overlooked dynamic aspects of gut microbiome changes.
Collapse
Affiliation(s)
- Zuzanna Karwowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Paweł Szczerbiak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
29
|
Karimi M, Shirsalimi N, Hashempour Z, Salehi Omran H, Sedighi E, Beigi F, Mortezazadeh M. Safety and efficacy of fecal microbiota transplantation (FMT) as a modern adjuvant therapy in various diseases and disorders: a comprehensive literature review. Front Immunol 2024; 15:1439176. [PMID: 39391303 PMCID: PMC11464302 DOI: 10.3389/fimmu.2024.1439176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
The human gastrointestinal (GI) tract microbiome is a complex and all-encompassing ecological system of trillions of microorganisms. It plays a vital role in digestion, disease prevention, and overall health. When this delicate balance is disrupted, it can lead to various health issues. Fecal microbiota transplantation (FMT) is an emerging therapeutic intervention used as an adjuvant therapy for many diseases, particularly those with dysbiosis as their underlying cause. Its goal is to restore this balance by transferring fecal material from healthy donors to the recipients. FMT has an impressive reported cure rate between 80% and 90% and has become a favored treatment for many diseases. While FMT may have generally mild to moderate transient adverse effects, rare severe complications underscore the importance of rigorous donor screening and standardized administration. FMT has enormous potential as a practical therapeutic approach; however, additional research is required to further determine its potential for clinical utilization, as well as its safety and efficiency in different patient populations. This comprehensive literature review offers increased confidence in the safety and effectiveness of FMT for several diseases affecting the intestines and other systems, including diabetes, obesity, inflammatory and autoimmune illness, and other conditions.
Collapse
Affiliation(s)
- Mehdi Karimi
- Bogomolets National Medical University (NMU), Kyiv, Ukraine
| | - Niyousha Shirsalimi
- Faculty of Medicine, Hamadan University of Medical Science (UMSHA), Hamadan, Iran
| | - Zahra Hashempour
- School of Medicine, Shiraz University of Medical Sciences (SUMS), Shiraz, Iran
| | - Hossein Salehi Omran
- School of Medicine, Shahid Beheshti University of Medical Sciences (SBMUS), Tehran, Iran
| | - Eshagh Sedighi
- Department of Veterinary Medicine, Islamic Azad University Branch of Urmia, Urmia, Iran
| | - Farzan Beigi
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Masoud Mortezazadeh
- Department of Internal Medicine, Sina Hospital, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
30
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
31
|
Tan X, Xue F, Zhang C, Wang T. mbDriver: identifying driver microbes in microbial communities based on time-series microbiome data. Brief Bioinform 2024; 25:bbae580. [PMID: 39526854 PMCID: PMC11551971 DOI: 10.1093/bib/bbae580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Alterations in human microbial communities are intricately linked to the onset and progression of diseases. Identifying the key microbes driving these community changes is crucial, as they may serve as valuable biomarkers for disease prevention, diagnosis, and treatment. However, there remains a need for further research to develop effective methods for addressing this critical task. This is primarily because defining the driver microbe requires consideration not only of each microbe's individual contributions but also their interactions. This paper introduces a novel framework, called mbDriver, for identifying driver microbes based on microbiome abundance data collected at discrete time points. mbDriver comprises three main components: (i) data preprocessing of time-series abundance data using smoothing splines based on the negative binomial distribution, (ii) parameter estimation for the generalized Lotka-Volterra (gLV) model using regularized least squares, and (iii) quantification of each microbe's contribution to the community's steady state by manipulating the causal graph implied by gLV equations. The performance of nonparametric spline-based denoising and regularized least squares estimation is comprehensively evaluated on simulated datasets, demonstrating superiority over existing methods. Furthermore, the practical applicability and effectiveness of mbDriver are showcased using a dietary fiber intervention dataset and an ulcerative colitis dataset. Notably, driver microbes identified in the dietary fiber intervention dataset exhibit significant effects on the abundances of short-chain fatty acids, while those identified in the ulcerative colitis dataset show a significant correlation with metabolism-related pathways.
Collapse
Affiliation(s)
- Xiaoxiu Tan
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Feng Xue
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Tao Wang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- SJTU-Yale Joint Center of Biostatistics and Data Science, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
- MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| |
Collapse
|
32
|
Larsen OFA, Brummer RJM. Perspective: on the future of fecal microbiota transplantation. Front Microbiol 2024; 15:1449133. [PMID: 39314882 PMCID: PMC11418603 DOI: 10.3389/fmicb.2024.1449133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Fecal Microbiota Transplantation (FMT) has shown to possess impressive potential benefit for a wide range of clinical indications. Due to its inherent safety issues and efficacy constraints, the use of personalized FMT analogs could be a promising avenue. The development of such analogs will require a detailed understanding of their functionality, encompassing not only microbe-host interactions of the microbial taxa that are involved, but also of the ecological dimensions of the analogs and an overview of the gastrointestinal sites where these relevant microbial interactions take place. Moreover, characterization of taxa that have been lost due to diminished exposure to beneficial microbes, as a consequence of Western lifestyle, may lead to creation of future FMT analogs with the capacity to restore functionalities that we have lost.
Collapse
Affiliation(s)
- Olaf F. A. Larsen
- Athena Institute, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Robert J. M. Brummer
- Faculty of Medicine and Health, School of Medical Sciences, Nutrition-Gut-Brain Interactions Research Centre, Örebro University, Örebro, Sweden
| |
Collapse
|
33
|
van Lingen E, Nooij S, Terveer EM, Crossette E, Prince AL, Bhattarai SK, Watson A, Galazzo G, Menon R, Szabady RL, Bucci V, Norman JM, van der Woude CJ, van der Marel S, Verspaget HW, van der Meulen-de Jong AE, Keller JJ. Faecal Microbiota Transplantation Engraftment After Budesonide or Placebo in Patients With Active Ulcerative Colitis Using Pre-selected Donors: A Randomized Pilot Study. J Crohns Colitis 2024; 18:1381-1393. [PMID: 38572716 PMCID: PMC11369067 DOI: 10.1093/ecco-jcc/jjae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/30/2023] [Indexed: 04/05/2024]
Abstract
BACKGROUND Faecal microbiota transplantation [FMT] shows some efficacy in treating patients with ulcerative colitis [UC], although variability has been observed among donors and treatment regimens. We investigated the effect of FMT using rationally selected donors after pretreatment with budesonide or placebo in active UC. METHODS Patients ≥18 years old with mild to moderate active UC were randomly assigned to 3 weeks of budesonide [9 mg] or placebo followed by 4-weekly infusions of a donor faeces suspension. Two donors were selected based on microbiota composition, regulatory T cell induction and short-chain fatty acid production in mice. The primary endpoint was engraftment of donor microbiota after FMT. In addition, clinical efficacy was assessed. RESULTS In total, 24 patients were enrolled. Pretreatment with budesonide did not increase donor microbiota engraftment [p = 0.56] nor clinical response, and engraftment was not associated with clinical response. At week 14, 10/24 [42%] patients achieved [partial] remission. Remarkably, patients treated with FMT suspensions from one donor were associated with clinical response [80% of responders, p < 0.05] but had lower overall engraftment of donor microbiota. Furthermore, differences in the taxonomic composition of the donors and the engraftment of certain taxa were associated with clinical response. CONCLUSION In this small study, pretreatment with budesonide did not significantly influence engraftment or clinical response after FMT. However, clinical response appeared to be donor-dependent. Response to FMT may be related to transfer of specific strains instead of overall engraftment, demonstrating the need to characterize mechanisms of actions of strains that maximize therapeutic benefit in UC.
Collapse
Affiliation(s)
- Emilie van Lingen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sam Nooij
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth M Terveer
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Shakti K Bhattarai
- University of Massachusetts Chan Medical School, Department of Microbiology and Physiological Systems, Worcester, MA, USA
| | | | | | | | - Rose L Szabady
- Vedanta Biosciences, Cambridge, MA, USA
- Ferring Pharmaceuticals, San Diego, CA, USA
| | - Vanni Bucci
- University of Massachusetts Chan Medical School, Department of Microbiology and Physiological Systems, Worcester, MA, USA
| | | | - C Janneke van der Woude
- Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sander van der Marel
- Department of Gastroenterology and Hepatology, Haaglanden Medisch Centrum, den Haag, The Netherlands
| | - Hein W Verspaget
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Josbert J Keller
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Gastroenterology and Hepatology, Haaglanden Medisch Centrum, den Haag, The Netherlands
| |
Collapse
|
34
|
Byndloss M, Devkota S, Duca F, Hendrik Niess J, Nieuwdorp M, Orho-Melander M, Sanz Y, Tremaroli V, Zhao L. The Gut Microbiota and Diabetes: Research, Translation, and Clinical Applications-2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum. Diabetes Care 2024; 47:1491-1508. [PMID: 38996003 PMCID: PMC11362125 DOI: 10.2337/dci24-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 07/14/2024]
Abstract
This article summarizes the state of the science on the role of the gut microbiota (GM) in diabetes from a recent international expert forum organized by Diabetes, Diabetes Care, and Diabetologia, which was held at the European Association for the Study of Diabetes 2023 Annual Meeting in Hamburg, Germany. Forum participants included clinicians and basic scientists who are leading investigators in the field of the intestinal microbiome and metabolism. Their conclusions were as follows: 1) the GM may be involved in the pathophysiology of type 2 diabetes, as microbially produced metabolites associate both positively and negatively with the disease, and mechanistic links of GM functions (e.g., genes for butyrate production) with glucose metabolism have recently emerged through the use of Mendelian randomization in humans; 2) the highly individualized nature of the GM poses a major research obstacle, and large cohorts and a deep-sequencing metagenomic approach are required for robust assessments of associations and causation; 3) because single-time point sampling misses intraindividual GM dynamics, future studies with repeated measures within individuals are needed; and 4) much future research will be required to determine the applicability of this expanding knowledge to diabetes diagnosis and treatment, and novel technologies and improved computational tools will be important to achieve this goal.
Collapse
Affiliation(s)
- Mariana Byndloss
- Vanderbilt University Medical Center, Nashville, TN
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Suzanne Devkota
- Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, University Digestive Healthcare Center, Clarunis, Basel, Switzerland
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Diabeter Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
35
|
Byndloss M, Devkota S, Duca F, Niess JH, Nieuwdorp M, Orho-Melander M, Sanz Y, Tremaroli V, Zhao L. The gut microbiota and diabetes: research, translation, and clinical applications - 2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum. Diabetologia 2024; 67:1760-1782. [PMID: 38910152 PMCID: PMC11410996 DOI: 10.1007/s00125-024-06198-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
This article summarises the state of the science on the role of the gut microbiota (GM) in diabetes from a recent international expert forum organised by Diabetes, Diabetes Care, and Diabetologia, which was held at the European Association for the Study of Diabetes 2023 Annual Meeting in Hamburg, Germany. Forum participants included clinicians and basic scientists who are leading investigators in the field of the intestinal microbiome and metabolism. Their conclusions were as follows: (1) the GM may be involved in the pathophysiology of type 2 diabetes, as microbially produced metabolites associate both positively and negatively with the disease, and mechanistic links of GM functions (e.g. genes for butyrate production) with glucose metabolism have recently emerged through the use of Mendelian randomisation in humans; (2) the highly individualised nature of the GM poses a major research obstacle, and large cohorts and a deep-sequencing metagenomic approach are required for robust assessments of associations and causation; (3) because single time point sampling misses intraindividual GM dynamics, future studies with repeated measures within individuals are needed; and (4) much future research will be required to determine the applicability of this expanding knowledge to diabetes diagnosis and treatment, and novel technologies and improved computational tools will be important to achieve this goal.
Collapse
Affiliation(s)
- Mariana Byndloss
- Vanderbilt University Medical Center, Nashville, TN, USA
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Suzanne Devkota
- Cedars-Sinai Medical Center, Human Microbiome Research Institute, Los Angeles, CA, USA
| | | | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, University Digestive Healthcare Center, Clarunis, Basel, Switzerland
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Diabeter Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain.
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
36
|
Byndloss M, Devkota S, Duca F, Niess JH, Nieuwdorp M, Orho-Melander M, Sanz Y, Tremaroli V, Zhao L. The Gut Microbiota and Diabetes: Research, Translation, and Clinical Applications-2023 Diabetes, Diabetes Care, and Diabetologia Expert Forum. Diabetes 2024; 73:1391-1410. [PMID: 38912690 PMCID: PMC11333376 DOI: 10.2337/dbi24-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
This article summarizes the state of the science on the role of the gut microbiota (GM) in diabetes from a recent international expert forum organized by Diabetes, Diabetes Care, and Diabetologia, which was held at the European Association for the Study of Diabetes 2023 Annual Meeting in Hamburg, Germany. Forum participants included clinicians and basic scientists who are leading investigators in the field of the intestinal microbiome and metabolism. Their conclusions were as follows: 1) the GM may be involved in the pathophysiology of type 2 diabetes, as microbially produced metabolites associate both positively and negatively with the disease, and mechanistic links of GM functions (e.g., genes for butyrate production) with glucose metabolism have recently emerged through the use of Mendelian randomization in humans; 2) the highly individualized nature of the GM poses a major research obstacle, and large cohorts and a deep-sequencing metagenomic approach are required for robust assessments of associations and causation; 3) because single-time point sampling misses intraindividual GM dynamics, future studies with repeated measures within individuals are needed; and 4) much future research will be required to determine the applicability of this expanding knowledge to diabetes diagnosis and treatment, and novel technologies and improved computational tools will be important to achieve this goal.
Collapse
Affiliation(s)
- Mariana Byndloss
- Vanderbilt University Medical Center, Nashville, TN
- Howard Hughes Medical Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Suzanne Devkota
- Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Department of Gastroenterology and Hepatology, University Digestive Healthcare Center, Clarunis, Basel, Switzerland
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Diabeter Center, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Marju Orho-Melander
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Yolanda Sanz
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
37
|
Hartikainen AK, Jalanka J, Lahtinen P, Ponsero AJ, Mertsalmi T, Finnegan L, Crispie F, Cotter PD, Arkkila P, Satokari R. Fecal microbiota transplantation influences microbiota without connection to symptom relief in irritable bowel syndrome patients. NPJ Biofilms Microbiomes 2024; 10:73. [PMID: 39191760 PMCID: PMC11349920 DOI: 10.1038/s41522-024-00549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Imbalanced microbiota may contribute to the pathophysiology of irritable bowel syndrome (IBS), thus fecal microbiota transplantation (FMT) has been suggested as a potential treatment. Previous studies on the relationship between clinical improvement and microbiota after FMT have been inconclusive. In this study, we used 16S rRNA gene amplicon and shotgun metagenomics data from a randomized, placebo controlled FMT trial on 49 IBS patients to analyze changes after FMT in microbiota composition and its functional potential, and to identify connections between microbiota and patients' clinical outcome. As a result, we found that the successful modulation of microbiota composition and functional profiles by FMT from a healthy donor was not associated with the resolution of symptoms in IBS patients. Notably, a donor derived strain of Prevotella copri dominated the microbiota in those patients in the FMT group who had a low relative abundance of P. copri pre-FMT. The results highlight the multifactorial nature of IBS and the role of recipient's microbiota in the colonization of donor's strains.
Collapse
Affiliation(s)
- Anna K Hartikainen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Jonna Jalanka
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Perttu Lahtinen
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Gastroenterology, Päijät-Häme Central Hospital, Lahti, Finland
| | - Alise J Ponsero
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- BIO5 Institute and Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA
| | - Tuomas Mertsalmi
- Department of Neurology, Helsinki University Hospital HUS, Helsinki, Finland
- Department of Clinical Neurosciences, University of Helsinki, HUS, PO Box 800, FI-00029, Helsinki, Finland
| | - Laura Finnegan
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- APC Microbiome, Ireland, Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- APC Microbiome, Ireland, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- APC Microbiome, Ireland, Cork, Ireland
| | - Perttu Arkkila
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Gastroenterology, Helsinki University Hospital, Helsinki, Finland
| | - Reetta Satokari
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
38
|
Attaye I, Witjes JJ, Koopen AM, van der Vossen EW, Zwirs D, Wortelboer K, Collard D, Kemper EM, Winkelmeijer M, Holst JJ, Hazen SL, Kuipers F, Stroes ES, Groen AK, de Vos WM, Nieuwdorp M, Herrema H. Oral Anaerobutyricum soehngenii augments glycemic control in type 2 diabetes. iScience 2024; 27:110455. [PMID: 39139405 PMCID: PMC11321313 DOI: 10.1016/j.isci.2024.110455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/21/2023] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
This randomized, double-blind, placebo-controlled trial investigated the impact of 14-day Anaerobutyricum soehngenii L2-7 supplementation on postprandial glucose levels in 25 White Dutch males with type 2 diabetes (T2D) on stable metformin therapy. The primary endpoint was the effect of A. soehngenii versus placebo on glucose excursions and variability as determined by continuous glucose monitoring. Secondary endpoints were changes in ambulatory 24-h blood pressure, incretins, circulating metabolites and excursions of plasma short-chain fatty acids (SCFAs) and bile acids upon a standardized meal. Results showed that A. soehngenii supplementation for 14 days significantly improved glycemic variability and mean arterial blood pressure, without notable changes in SCFAs, bile acids, incretin levels, or anthropometric parameters as compared to placebo-treated controls. Although well-tolerated and effective in improving glycemic control in the intervention group, further research in larger and more diverse populations is needed to generalize these findings.
Collapse
Affiliation(s)
- Ilias Attaye
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands
| | - Julia J. Witjes
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands
| | - Annefleur M. Koopen
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands
| | | | - Diona Zwirs
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Koen Wortelboer
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands
| | - Didier Collard
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Elles Marleen Kemper
- Department of Pharmacy and Clinical Pharmacology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Maaike Winkelmeijer
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jens J. Holst
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Stanley L. Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Folkert Kuipers
- Department of Pediatrics and European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erik S.G. Stroes
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Albert K. Groen
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Willem M. de Vos
- Wageningen University, Wageningen, the Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Hilde Herrema
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| |
Collapse
|
39
|
Zhang YJ, Bousvaros A, Docktor M, Kaplan AL, Rufo PA, Leier M, Weatherly M, Zimmerman L, Nguyen LTT, Barton B, Russell G, Alm EJ, Kahn SA. Higher alpha diversity and Lactobacillus blooms are associated with better engraftment after fecal microbiota transplant in inflammatory bowel disease. Sci Rep 2024; 14:18188. [PMID: 39107366 PMCID: PMC11303812 DOI: 10.1038/s41598-024-68619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Fecal Microbiota Transplant (FMT) has shown some success in treating inflammatory bowel diseases (IBD). There is emerging evidence that host engraftment of donor taxa is a tenet of successful FMT. We undertook a double-blind, randomized, placebo-controlled pilot study to characterize the response to FMT in children and young adults with mild to moderate active Crohn's disease (CD) and ulcerative colitis (UC). Subjects with CD or UC were randomized to receive antibiotics and weekly FMT or placebo in addition to baseline medications. We enrolled 15 subjects aged 14-29 years. Four subjects had CD, and 11 had UC. Subjects exhibited a wide range of microbial diversity and donor engraftment. Specifically, engraftment ranged from 26 to 90% at week 2 and 3-92% at 2 months. Consistent with the current literature, increases over time of both alpha diversity (p < 0.05) and donor engraftment (p < 0.05) correlated with improved clinical response. We discovered that the post-antibiotic but pre-FMT time point was rich in microbial correlates of eventual engraftment. Greater residual alpha diversity after antibiotic treatment was positively correlated with engraftment and subsequent clinical response. Interestingly, a transient rise in the relative abundance of Lactobacillus was also positively correlated with engraftment, a finding that we recapitulated with our analysis of another FMT trial.
Collapse
Affiliation(s)
- Yanjia Jason Zhang
- Gastroenterology/Nutrition, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St., Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Athos Bousvaros
- Gastroenterology/Nutrition, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Docktor
- Gastroenterology/Nutrition, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
- IBD Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
| | - Abby L Kaplan
- Gastroenterology/Nutrition, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
- IBD Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
| | - Paul A Rufo
- Gastroenterology/Nutrition, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
- IBD Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
| | - McKenzie Leier
- Gastroenterology/Nutrition, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
- IBD Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
| | - Madison Weatherly
- Gastroenterology/Nutrition, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
- IBD Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
| | - Lori Zimmerman
- Gastroenterology/Nutrition, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
- IBD Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
| | - Le Thanh Tu Nguyen
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St., Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brenda Barton
- Gastroenterology/Nutrition, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA
| | - George Russell
- Gastroenterology/Nutrition, Maine Medical Center, 22 Bramhall St., Portland, ME, USA
| | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, 21 Ames St., Cambridge, MA, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stacy A Kahn
- Gastroenterology/Nutrition, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA.
- IBD Center, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, USA.
| |
Collapse
|
40
|
Fuhri Snethlage CM, de Wit D, Wortelboer K, Rampanelli E, Hanssen NMJ, Nieuwdorp M. Can fecal microbiota transplantations modulate autoimmune responses in type 1 diabetes? Immunol Rev 2024; 325:46-63. [PMID: 38752578 DOI: 10.1111/imr.13345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease targeting insulin-producing pancreatic beta cells. T1D is a multifactorial disease incorporating genetic and environmental factors. In recent years, the advances in high-throughput sequencing have allowed researchers to elucidate the changes in the gut microbiota taxonomy and functional capacity that accompany T1D development. An increasing number of studies have shown a role of the gut microbiota in mediating immune responses in health and disease, including autoimmunity. Fecal microbiota transplantations (FMT) have been largely used in murine models to prove a causal role of the gut microbiome in disease progression and have been shown to be a safe and effective treatment in inflammatory human diseases. In this review, we summarize and discuss recent research regarding the gut microbiota-host interactions in T1D, the current advancement in therapies for T1D, and the usefulness of FMT studies to explore microbiota-host immunity encounters in murine models and to shape the course of human type 1 diabetes.
Collapse
Affiliation(s)
- Coco M Fuhri Snethlage
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Douwe de Wit
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Koen Wortelboer
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
| | - Elena Rampanelli
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity (AII), Amsterdam, The Netherlands
| | - Nordin M J Hanssen
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Amsterdam Diabeter Center, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Taghizadeh Ghassab F, Shamlou Mahmoudi F, Taheri Tinjani R, Emami Meibodi A, Zali MR, Yadegar A. Probiotics and the microbiota-gut-brain axis in neurodegeneration: Beneficial effects and mechanistic insights. Life Sci 2024; 350:122748. [PMID: 38843992 DOI: 10.1016/j.lfs.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/21/2024] [Accepted: 05/23/2024] [Indexed: 06/10/2024]
Abstract
Neurodegenerative diseases (NDs) are a group of heterogeneous disorders with a high socioeconomic burden. Although pharmacotherapy is currently the principal therapeutic approach for the management of NDs, mounting evidence supports the notion that the protracted application of available drugs would abate their dopaminergic outcomes in the long run. The therapeutic application of microbiome-based modalities has received escalating attention in biomedical works. In-depth investigations of the bidirectional communication between the microbiome in the gut and the brain offer a multitude of targets for the treatment of NDs or maximizing the patient's quality of life. Probiotic administration is a well-known microbial-oriented approach to modulate the gut microbiota and potentially influence the process of neurodegeneration. Of note, there is a strong need for further investigation to map out the mechanistic prospects for the gut-brain axis and the clinical efficacy of probiotics. In this review, we discuss the importance of microbiome modulation and hemostasis via probiotics, prebiotics, postbiotics and synbiotics in ameliorating pathological neurodegenerative events. Also, we meticulously describe the underlying mechanism of action of probiotics and their metabolites on the gut-brain axis in different NDs. We suppose that the present work will provide a functional direction for the use of probiotic-based modalities in promoting current practical treatments for the management of neurodegenerative-related diseases.
Collapse
Affiliation(s)
- Fatemeh Taghizadeh Ghassab
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shamlou Mahmoudi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Taheri Tinjani
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armitasadat Emami Meibodi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Shiroma H, Darzi Y, Terajima E, Nakagawa Z, Tsuchikura H, Tsukuda N, Moriya Y, Okuda S, Goto S, Yamada T. Enteropathway: the metabolic pathway database for the human gut microbiota. Brief Bioinform 2024; 25:bbae419. [PMID: 39222063 PMCID: PMC11367760 DOI: 10.1093/bib/bbae419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The human gut microbiota produces diverse, extensive metabolites that have the potential to affect host physiology. Despite significant efforts to identify metabolic pathways for producing these microbial metabolites, a comprehensive metabolic pathway database for the human gut microbiota is still lacking. Here, we present Enteropathway, a metabolic pathway database that integrates 3269 compounds, 3677 reactions, and 876 modules that were obtained from 1012 manually curated scientific literature. Notably, 698 modules of these modules are new entries and cannot be found in any other databases. The database is accessible from a web application (https://enteropathway.org) that offers a metabolic diagram for graphical visualization of metabolic pathways, a customization interface, and an enrichment analysis feature for highlighting enriched modules on the metabolic diagram. Overall, Enteropathway is a comprehensive reference database that can complement widely used databases, and a tool for visual and statistical analysis in human gut microbiota studies and was designed to help researchers pinpoint new insights into the complex interplay between microbiota and host metabolism.
Collapse
Affiliation(s)
- Hirotsugu Shiroma
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 M6-3 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Youssef Darzi
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 M6-3 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Omixer solutions, 4-7-15, Zaimokuza, Kamakura-shi, Kanagawa 248-0013, Japan
| | - Etsuko Terajima
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 M6-3 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Zenichi Nakagawa
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 M6-3 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hirotaka Tsuchikura
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 M6-3 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Naoki Tsukuda
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 M6-3 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuki Moriya
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 178-4-4 Wakashiba, Kashiwa-shi, Chiba 277-0871, Japan
| | - Shujiro Okuda
- Graduate School of Medical and Dental Sciences, Niigata University, 2-5274, Gakkocho-dori, Chuo-ku, Niigata City, Niigata 951-8514, Japan
| | - Susumu Goto
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, 178-4-4 Wakashiba, Kashiwa-shi, Chiba 277-0871, Japan
| | - Takuji Yamada
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 M6-3 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Metagen, Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Metagen Theurapeutics, Inc., 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
- Digzyme, Inc., 2-2-1 Toranomon, Minato-ku, Tokyo 105-0001, Japan
| |
Collapse
|
43
|
Santos-Júnior CD, Torres MDT, Duan Y, Rodríguez Del Río Á, Schmidt TSB, Chong H, Fullam A, Kuhn M, Zhu C, Houseman A, Somborski J, Vines A, Zhao XM, Bork P, Huerta-Cepas J, de la Fuente-Nunez C, Coelho LP. Discovery of antimicrobial peptides in the global microbiome with machine learning. Cell 2024; 187:3761-3778.e16. [PMID: 38843834 PMCID: PMC11666328 DOI: 10.1016/j.cell.2024.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 04/11/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024]
Abstract
Novel antibiotics are urgently needed to combat the antibiotic-resistance crisis. We present a machine-learning-based approach to predict antimicrobial peptides (AMPs) within the global microbiome and leverage a vast dataset of 63,410 metagenomes and 87,920 prokaryotic genomes from environmental and host-associated habitats to create the AMPSphere, a comprehensive catalog comprising 863,498 non-redundant peptides, few of which match existing databases. AMPSphere provides insights into the evolutionary origins of peptides, including by duplication or gene truncation of longer sequences, and we observed that AMP production varies by habitat. To validate our predictions, we synthesized and tested 100 AMPs against clinically relevant drug-resistant pathogens and human gut commensals both in vitro and in vivo. A total of 79 peptides were active, with 63 targeting pathogens. These active AMPs exhibited antibacterial activity by disrupting bacterial membranes. In conclusion, our approach identified nearly one million prokaryotic AMP sequences, an open-access resource for antibiotic discovery.
Collapse
Affiliation(s)
- Célio Dias Santos-Júnior
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China; Laboratory of Microbial Processes & Biodiversity - LMPB, Department of Hydrobiology, Universidade Federal de São Carlos - UFSCar, São Carlos, São Paulo 13565-905, Brazil
| | - Marcelo D T Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Yiqian Duan
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Álvaro Rodríguez Del Río
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Thomas S B Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; APC Microbiome & School of Medicine, University College Cork, Cork, Ireland
| | - Hui Chong
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Anthony Fullam
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Chengkai Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Amy Houseman
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Jelena Somborski
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Anna Vines
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China
| | - Xing-Ming Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China; Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Max Delbrück Centre for Molecular Medicine, Berlin, Germany; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA.
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai 200433, China; Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia.
| |
Collapse
|
44
|
Zuppi M, Vatanen T, Wilson BC, Golovina E, Portlock T, Cutfield WS, Vickers MH, O'Sullivan JM. Fecal microbiota transplantation alters gut phage communities in a clinical trial for obesity. MICROBIOME 2024; 12:122. [PMID: 38970126 PMCID: PMC11227244 DOI: 10.1186/s40168-024-01833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/08/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Fecal microbiota transplantation (FMT) is a therapeutic intervention used to treat diseases associated with the gut microbiome. In the human gut microbiome, phages have been implicated in influencing human health, with successful engraftment of donor phages correlated with FMT treatment efficacy. The impact that gastrointestinal phages exert on human health has primarily been connected to their ability to modulate the bacterial communities in the gut. Nonetheless, how FMT affects recipients' phage populations, and in turn, how this influences the gut environment, is not yet fully understood. In this study, we investigated the effects of FMT on the phageome composition of participants within the Gut Bugs Trial (GBT), a double-blind, randomized, placebo-controlled trial that investigated the efficacy of FMT in treating obesity and comorbidities in adolescents. Stool samples collected from donors at the time of treatment and recipients at four time points (i.e., baseline and 6 weeks, 12 weeks, and 26 weeks post-intervention), underwent shotgun metagenomic sequencing. Phage sequences were identified and characterized in silico to examine evidence of phage engraftment and to assess the extent of FMT-induced alterations in the recipients' phageome composition. RESULTS Donor phages engrafted stably in recipients following FMT, composing a significant proportion of their phageome for the entire course of the study (33.8 ± 1.2% in females and 33.9 ± 3.7% in males). Phage engraftment varied between donors and donor engraftment efficacy was positively correlated with their phageome alpha diversity. FMT caused a shift in recipients' phageome toward the donors' composition and increased phageome alpha diversity and variability over time. CONCLUSIONS FMT significantly altered recipients' phage and, overall, microbial populations. The increase in microbial diversity and variability is consistent with a shift in microbial population dynamics. This proposes that phages play a critical role in modulating the gut environment and suggests novel approaches to understanding the efficacy of FMT in altering the recipient's microbiome. TRIAL REGISTRATION The Gut Bugs Trial was registered with the Australian New Zealand Clinical Trials Registry (ACTR N12615001351505). Trial protocol: the trial protocol is available at https://bmjopen.bmj.com/content/9/4/e026174 . Video Abstract.
Collapse
Affiliation(s)
- Michele Zuppi
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Tommi Vatanen
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Brooke C Wilson
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Evgeniia Golovina
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Theo Portlock
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Wayne S Cutfield
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- A Better Start - National Science Challenge, University of Auckland, Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- A Better Start - National Science Challenge, University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Justin M O'Sullivan
- Liggins Institute, The University of Auckland, Auckland, New Zealand.
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand.
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK.
- Australian Parkinson's Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia.
- A*STAR Singapore Institute for Clinical Sciences, Singapore, Singapore.
- Garvan Institute of Medical Research, Sydney, NSW, Australia.
| |
Collapse
|
45
|
Kim N, Ma J, Kim W, Kim J, Belenky P, Lee I. Genome-resolved metagenomics: a game changer for microbiome medicine. Exp Mol Med 2024; 56:1501-1512. [PMID: 38945961 PMCID: PMC11297344 DOI: 10.1038/s12276-024-01262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 07/02/2024] Open
Abstract
Recent substantial evidence implicating commensal bacteria in human diseases has given rise to a new domain in biomedical research: microbiome medicine. This emerging field aims to understand and leverage the human microbiota and derivative molecules for disease prevention and treatment. Despite the complex and hierarchical organization of this ecosystem, most research over the years has relied on 16S amplicon sequencing, a legacy of bacterial phylogeny and taxonomy. Although advanced sequencing technologies have enabled cost-effective analysis of entire microbiota, translating the relatively short nucleotide information into the functional and taxonomic organization of the microbiome has posed challenges until recently. In the last decade, genome-resolved metagenomics, which aims to reconstruct microbial genomes directly from whole-metagenome sequencing data, has made significant strides and continues to unveil the mysteries of various human-associated microbial communities. There has been a rapid increase in the volume of whole metagenome sequencing data and in the compilation of novel metagenome-assembled genomes and protein sequences in public depositories. This review provides an overview of the capabilities and methods of genome-resolved metagenomics for studying the human microbiome, with a focus on investigating the prokaryotic microbiota of the human gut. Just as decoding the human genome and its variations marked the beginning of the genomic medicine era, unraveling the genomes of commensal microbes and their sequence variations is ushering us into the era of microbiome medicine. Genome-resolved metagenomics stands as a pivotal tool in this transition and can accelerate our journey toward achieving these scientific and medical milestones.
Collapse
Affiliation(s)
- Nayeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Junyeong Ma
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Wonjong Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jungyeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912, USA.
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| |
Collapse
|
46
|
Montrose JA, Kurada S, Fischer M. Current and future microbiome-based therapies in inflammatory bowel disease. Curr Opin Gastroenterol 2024; 40:258-267. [PMID: 38841848 DOI: 10.1097/mog.0000000000001027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW The role of the microbiome and dysbiosis is increasingly recognized in the pathogenesis of inflammatory bowel disease (IBD). Intestinal microbiota transplant (IMT), previously termed fecal microbiota transplant has demonstrated efficacy in restoring a healthy microbiome and promoting gut health in recurrent Clostridioides difficile infection. Several randomized trials (RCTs) highlighted IMT's potential in treating ulcerative colitis, while smaller studies reported on its application in managing Crohn's disease and pouchitis. RECENT FINDINGS This review delves into the current understanding of dysbiosis in IBD, highlighting the distinctions in the microbiota of patients with IBD compared to healthy controls. It explores the mechanisms by which IMT can restore a healthy microbiome and provides a focused analysis of recent RCTs using IMT for inducing and maintaining remission in IBD. Lastly, we discuss the current knowledge gaps that limit its widespread use. SUMMARY The body of evidence supporting the use of IMT in IBD is growing. The lack of a standardized protocol impedes its application beyond clinical trials. Further research is needed to identify patient profile and disease phenotypes that benefit from IMT, to delineate key donor characteristics, optimize the delivery route, dosage, and frequency.
Collapse
Affiliation(s)
| | - Satya Kurada
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Monika Fischer
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
47
|
Yadegar A, Bar-Yoseph H, Monaghan TM, Pakpour S, Severino A, Kuijper EJ, Smits WK, Terveer EM, Neupane S, Nabavi-Rad A, Sadeghi J, Cammarota G, Ianiro G, Nap-Hill E, Leung D, Wong K, Kao D. Fecal microbiota transplantation: current challenges and future landscapes. Clin Microbiol Rev 2024; 37:e0006022. [PMID: 38717124 PMCID: PMC11325845 DOI: 10.1128/cmr.00060-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYGiven the importance of gut microbial homeostasis in maintaining health, there has been considerable interest in developing innovative therapeutic strategies for restoring gut microbiota. One such approach, fecal microbiota transplantation (FMT), is the main "whole gut microbiome replacement" strategy and has been integrated into clinical practice guidelines for treating recurrent Clostridioides difficile infection (rCDI). Furthermore, the potential application of FMT in other indications such as inflammatory bowel disease (IBD), metabolic syndrome, and solid tumor malignancies is an area of intense interest and active research. However, the complex and variable nature of FMT makes it challenging to address its precise functionality and to assess clinical efficacy and safety in different disease contexts. In this review, we outline clinical applications, efficacy, durability, and safety of FMT and provide a comprehensive assessment of its procedural and administration aspects. The clinical applications of FMT in children and cancer immunotherapy are also described. We focus on data from human studies in IBD in contrast with rCDI to delineate the putative mechanisms of this treatment in IBD as a model, including colonization resistance and functional restoration through bacterial engraftment, modulating effects of virome/phageome, gut metabolome and host interactions, and immunoregulatory actions of FMT. Furthermore, we comprehensively review omics technologies, metagenomic approaches, and bioinformatics pipelines to characterize complex microbial communities and discuss their limitations. FMT regulatory challenges, ethical considerations, and pharmacomicrobiomics are also highlighted to shed light on future development of tailored microbiome-based therapeutics.
Collapse
Affiliation(s)
- Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haggai Bar-Yoseph
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tanya Marie Monaghan
- National Institute for Health Research Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Sepideh Pakpour
- School of Engineering, Faculty of Applied Sciences, UBC, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Andrea Severino
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ed J Kuijper
- Center for Microbiota Analysis and Therapeutics (CMAT), Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Wiep Klaas Smits
- Center for Microbiota Analysis and Therapeutics (CMAT), Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Elisabeth M Terveer
- Center for Microbiota Analysis and Therapeutics (CMAT), Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Sukanya Neupane
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Sadeghi
- School of Engineering, Faculty of Applied Sciences, UBC, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Estello Nap-Hill
- Department of Medicine, Division of Gastroenterology, St Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dickson Leung
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Karen Wong
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Dina Kao
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
48
|
Dubois L, Valles-Colomer M, Ponsero A, Helve O, Andersson S, Kolho KL, Asnicar F, Korpela K, Salonen A, Segata N, de Vos WM. Paternal and induced gut microbiota seeding complement mother-to-infant transmission. Cell Host Microbe 2024; 32:1011-1024.e4. [PMID: 38870892 DOI: 10.1016/j.chom.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/03/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Microbial colonization of the neonatal gut involves maternal seeding, which is partially disrupted in cesarean-born infants and after intrapartum antibiotic prophylaxis. However, other physically close individuals could complement such seeding. To assess the role of both parents and of induced seeding, we analyzed two longitudinal metagenomic datasets (health and early life microbiota [HELMi]: N = 74 infants, 398 samples, and SECFLOR: N = 7 infants, 35 samples) with cesarean-born infants who received maternal fecal microbiota transplantation (FMT). We found that the father constitutes a stable source of strains for the infant independently of the delivery mode, with the cumulative contribution becoming comparable to that of the mother after 1 year. Maternal FMT increased mother-infant strain sharing in cesarean-born infants, raising the average bacterial empirical growth rate while reducing pathogen colonization. Overall, our results indicate that maternal seeding is partly complemented by that of the father and support the potential of induced seeding to restore potential deviations in this process.
Collapse
Affiliation(s)
- Léonard Dubois
- Department CIBIO, University of Trento, 38123 Trento, Italy
| | - Mireia Valles-Colomer
- Department CIBIO, University of Trento, 38123 Trento, Italy; MELIS Department, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Alise Ponsero
- Human Microbiota Research Program, Faculty of Medicine, University of Helsinki, 0014 Helsinki, Finland
| | - Otto Helve
- Children's Hospital, Pediatric Research Center, University of Helsinki, and Helsinki University Hospital, 00014 Helsinki, Finland; Department of Health Security, Finnish Institute for Health and Welfare, 0014 Helsinki, Finland
| | - Sture Andersson
- Children's Hospital, Pediatric Research Center, University of Helsinki, and Helsinki University Hospital, 00014 Helsinki, Finland
| | - Kaija-Leena Kolho
- Human Microbiota Research Program, Faculty of Medicine, University of Helsinki, 0014 Helsinki, Finland
| | | | - Katri Korpela
- Human Microbiota Research Program, Faculty of Medicine, University of Helsinki, 0014 Helsinki, Finland
| | - Anne Salonen
- Human Microbiota Research Program, Faculty of Medicine, University of Helsinki, 0014 Helsinki, Finland
| | - Nicola Segata
- Department CIBIO, University of Trento, 38123 Trento, Italy; Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy.
| | - Willem M de Vos
- Human Microbiota Research Program, Faculty of Medicine, University of Helsinki, 0014 Helsinki, Finland; Laboratory of Microbiology, University of Wageningen, 6703 WE Wageningen, the Netherlands.
| |
Collapse
|
49
|
Woelfel S, Silva MS, Stecher B. Intestinal colonization resistance in the context of environmental, host, and microbial determinants. Cell Host Microbe 2024; 32:820-836. [PMID: 38870899 DOI: 10.1016/j.chom.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Microbial communities that colonize the human gastrointestinal (GI) tract defend against pathogens through a mechanism known as colonization resistance (CR). Advances in technologies such as next-generation sequencing, gnotobiotic mouse models, and bacterial cultivation have enhanced our understanding of the underlying mechanisms and the intricate microbial interactions involved in CR. Rather than being attributed to specific microbial clades, CR is now understood to arise from a dynamic interplay between microbes and the host and is shaped by metabolic, immune, and environmental factors. This evolving perspective underscores the significance of contextual factors, encompassing microbiome composition and host conditions, in determining CR. This review highlights recent research that has shifted its focus toward elucidating how these factors interact to either promote or impede enteric infections. It further discusses future research directions to unravel the complex relationship between host, microbiota, and environmental determinants in safeguarding against GI infections to promote human health.
Collapse
Affiliation(s)
- Simon Woelfel
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Marta Salvado Silva
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany.
| |
Collapse
|
50
|
Mullish BH, Merrick B, Quraishi MN, Bak A, Green CA, Moore DJ, Porter RJ, Elumogo NT, Segal JP, Sharma N, Marsh B, Kontkowski G, Manzoor SE, Hart AL, Settle C, Keller JJ, Hawkey P, Iqbal TH, Goldenberg SD, Williams HRT. The use of faecal microbiota transplant as treatment for recurrent or refractory Clostridioides difficile infection and other potential indications: second edition of joint British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS) guidelines. Gut 2024; 73:1052-1075. [PMID: 38609165 DOI: 10.1136/gutjnl-2023-331550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/03/2024] [Indexed: 04/14/2024]
Abstract
The first British Society of Gastroenterology (BSG) and Healthcare Infection Society (HIS)-endorsed faecal microbiota transplant (FMT) guidelines were published in 2018. Over the past 5 years, there has been considerable growth in the evidence base (including publication of outcomes from large national FMT registries), necessitating an updated critical review of the literature and a second edition of the BSG/HIS FMT guidelines. These have been produced in accordance with National Institute for Health and Care Excellence-accredited methodology, thus have particular relevance for UK-based clinicians, but are intended to be of pertinence internationally. This second edition of the guidelines have been divided into recommendations, good practice points and recommendations against certain practices. With respect to FMT for Clostridioides difficile infection (CDI), key focus areas centred around timing of administration, increasing clinical experience of encapsulated FMT preparations and optimising donor screening. The latter topic is of particular relevance given the COVID-19 pandemic, and cases of patient morbidity and mortality resulting from FMT-related pathogen transmission. The guidelines also considered emergent literature on the use of FMT in non-CDI settings (including both gastrointestinal and non-gastrointestinal indications), reviewing relevant randomised controlled trials. Recommendations are provided regarding special areas (including compassionate FMT use), and considerations regarding the evolving landscape of FMT and microbiome therapeutics.
Collapse
Affiliation(s)
- Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Blair Merrick
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Mohammed Nabil Quraishi
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Aggie Bak
- Healthcare Infection Society, London, UK
| | - Christopher A Green
- Department of Infectious Diseases & Tropical Medicine, University Hospitals NHS Foundation Trust, Birmingham Heartlands Hospital, Birmingham, UK
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - David J Moore
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Robert J Porter
- Department of Microbiology, Royal Devon and Exeter Hospitals, Barrack Road, UK
| | - Ngozi T Elumogo
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| | - Jonathan P Segal
- Department of Gastroenterology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Naveen Sharma
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Belinda Marsh
- Lay representative for FMT Working Party, Healthcare Infection Society, London, UK
| | - Graziella Kontkowski
- Lay representative for FMT Working Party, Healthcare Infection Society, London, UK
- C.diff support, London, UK
| | - Susan E Manzoor
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
| | - Ailsa L Hart
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Department of Gastroenterology and Inflammatory Bowel Disease Unit, St Mark's Hospital and Academic Institute, Middlesex, UK
| | | | - Josbert J Keller
- Department of Gastroenterology, Haaglanden Medisch Centrum, The Hague, The Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Hawkey
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Public Health Laboratory, Faculty of Medicine, University of Birmingham, Birmingham, UK
| | - Tariq H Iqbal
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Microbiome Treatment Centre, University of Birmingham, Edgbaston, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, London, UK
| | - Simon D Goldenberg
- Centre for Clinical Infection and Diagnostics Research, Guy's and St Thomas' NHS Foundation Trust, King's College London, London, UK
| | - Horace R T Williams
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Departments of Gastroenterology and Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|