1
|
Sag OM, Li X, Åman B, Thor A, Brantnell A. Qualitative exploration of 3D printing in Swedish healthcare: perceived effects and barriers. BMC Health Serv Res 2024; 24:1455. [PMID: 39580425 PMCID: PMC11585134 DOI: 10.1186/s12913-024-11975-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Three-dimensional (3D) printing produces objects by adding layers of material rather than mechanically reducing material. This production technology has several advantages and has been used in various medical fields to, for instance, improve the planning of complicated operations, customize medical devices, and enhance medical education. However, few existing studies focus on the adoption and the aspects that could influence or hinder the adoption of 3D printing. OBJECTIVE To describe the state of 3D printing in Sweden, explore the perceived effects of using 3D printing, and identify barriers to its adoption. METHODS A qualitative study with respondents from seven life science regions (i.e., healthcare regions with university hospitals) in Sweden. Semi-structured interviews were employed, involving 19 interviews, including one group interview. The respondents were key informants in terms of 3D printing adoption. Data collection occurred between April and May 2022 and then between February and May 2023. Thematic analysis was applied to identify patterns and themes. RESULTS All seven regions in Sweden used 3D printing, but none had an official adoption strategy. The most common applications were surgical planning and guides in clinical areas such as dentistry, orthopedics, and oral and maxillofacial surgery. Perceived effects of 3D printing included improved surgery, innovation, resource efficiency, and educational benefits. Barriers to adoption were categorized into organization, environment, and technology. Organizational barriers, such as high costs and lack of central decisions, were most prominent. Environmental barriers included a complex regulatory framework, uncertainty, and difficulty in interpreting regulations. Technological barriers were less frequent. CONCLUSIONS The study highlights the widespread use of 3D printing in Swedish healthcare, primarily in surgical planning. Perceived benefits included improved surgical precision, innovation, resource efficiency, and educational enhancements. Barriers, especially organizational and regulatory challenges, play a significant role in hindering widespread adoption. Policymakers need comprehensive guidance on 3D printing adoption, considering the expensive nature of technology investments. Future studies could explore adoption in specific clinical fields and investigate adoption in non-life science regions within and outside Sweden.
Collapse
Affiliation(s)
- Olivya Marben Sag
- Department of Surgical Sciences, Plastic & Oral and Maxillofacial Surgery, Uppsala University, Uppsala, 751 85, Sweden
| | - Xiang Li
- Department of Civil and Industrial Engineering, Industrial Engineering and Management, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 752 37, Sweden
| | - Beatrice Åman
- Department of Civil and Industrial Engineering, Industrial Engineering and Management, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 752 37, Sweden
| | - Andreas Thor
- Department of Surgical Sciences, Plastic & Oral and Maxillofacial Surgery, Uppsala University, Uppsala, 751 85, Sweden
| | - Anders Brantnell
- Department of Civil and Industrial Engineering, Industrial Engineering and Management, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 752 37, Sweden.
- Department of Women's and Children's Health, Healthcare Sciences and E-Health, Uppsala University, MTC-Huset, Dag Hammarskjölds Väg 14B, 1 Tr, Uppsala, 752 37, Sweden.
| |
Collapse
|
2
|
Eisfeldt J, Ameur A, Lenner F, Ten Berk de Boer E, Ek M, Wincent J, Vaz R, Ottosson J, Jonson T, Ivarsson S, Thunström S, Topa A, Stenberg S, Rohlin A, Sandestig A, Nordling M, Palmebäck P, Burstedt M, Nordin F, Stattin EL, Sobol M, Baliakas P, Bondeson ML, Höijer I, Saether KB, Lovmar L, Ehrencrona H, Melin M, Feuk L, Lindstrand A. A national long-read sequencing study on chromosomal rearrangements uncovers hidden complexities. Genome Res 2024; 34:1774-1784. [PMID: 39472022 DOI: 10.1101/gr.279510.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/25/2024] [Indexed: 11/22/2024]
Abstract
Clinical genetic laboratories often require a comprehensive analysis of chromosomal rearrangements/structural variants (SVs), from large events like translocations and inversions to supernumerary ring/marker chromosomes and small deletions or duplications. Understanding the complexity of these events and their clinical consequences requires pinpointing breakpoint junctions and resolving the derivative chromosome structure. This task often surpasses the capabilities of short-read sequencing technologies. In contrast, long-read sequencing techniques present a compelling alternative for clinical diagnostics. Here, Genomic Medicine Sweden-Rare Diseases has explored the utility of HiFi Revio long-read genome sequencing (lrGS) for digital karyotyping of SVs nationwide. The 16 samples from 13 families were collected from all Swedish healthcare regions. Prior investigations had identified 16 SVs, ranging from simple to complex rearrangements, including inversions, translocations, and copy number variants. We have established a national pipeline and a shared variant database for variant calling and filtering. Using lrGS, 14 of the 16 known SVs are detected. Of these, 13 are mapped at nucleotide resolution, and one complex rearrangement is only visible by read depth. Two Chromosome 21 rearrangements, one mosaic, remain undetected. Average read lengths are 8.3-18.8 kb with coverage exceeding 20× for all samples. De novo assembly results in a limited number of phased contigs per individual (N50 6-86 Mb), enabling direct characterization of the chromosomal rearrangements. In a national pilot study, we demonstrate the utility of HiFi Revio lrGS for analyzing chromosomal rearrangements. Based on our results, we propose a 5-year plan to expand lrGS use for rare disease diagnostics in Sweden.
Collapse
Affiliation(s)
- Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, 171 65 Solna, Sweden
| | - Adam Ameur
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Felix Lenner
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Esmee Ten Berk de Boer
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, 171 65 Solna, Sweden
| | - Marlene Ek
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Josephine Wincent
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Raquel Vaz
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Jesper Ottosson
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
| | - Tord Jonson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 223 62 Lund, Sweden
| | - Sofie Ivarsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 223 62 Lund, Sweden
| | - Sofia Thunström
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
| | - Alexandra Topa
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
| | - Simon Stenberg
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
| | - Anna Rohlin
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
- Department of Laboratory Medicine, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Anna Sandestig
- Department of Clinical Genetics, Linköping University Hospital, 581 85 Linköping, Sweden
| | - Margareta Nordling
- Department of Clinical Genetics, Linköping University Hospital, 581 85 Linköping, Sweden
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Pia Palmebäck
- Department of Clinical Genetics, Linköping University Hospital, 581 85 Linköping, Sweden
| | - Magnus Burstedt
- Department of Medical Bioscience, Medical and Clinical Genetics, Umeå University, 901 87 Umeå, Sweden
| | - Frida Nordin
- Department of Pharmacology and Clinical Neurosciences, Umeå University, 901 87 Umeå, Sweden
| | - Eva-Lena Stattin
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Maria Sobol
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Marie-Louise Bondeson
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Ida Höijer
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Kristine Bilgrav Saether
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, 171 65 Solna, Sweden
| | - Lovisa Lovmar
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 90 Gothenburg, Sweden
| | - Hans Ehrencrona
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 84 Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, 223 62 Lund, Sweden
| | - Malin Melin
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Lars Feuk
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden;
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
3
|
Germuskova Z, Sosa E, Lagos AC, Aamot HV, Beale MA, Bertelli C, Björkmann J, Couto N, Feige L, Greub G, Hallbäck ET, Hodcroft EB, Harmsen D, Jacob L, Jolley KA, Kahles A, Mather AE, Neher RA, Neves A, Niemann S, Nolte O, Peacock SJ, Razavi M, Roloff T, Schrenzel J, Sikora P, Sundqvist M, Mölling P, Egli A. Conference report: the first bacterial genome sequencing pan-European network conference. Microbes Infect 2024; 26:105410. [PMID: 39218348 DOI: 10.1016/j.micinf.2024.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Zoja Germuskova
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Elisa Sosa
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Amaya Campillay Lagos
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Hege Vangstein Aamot
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway; Department of Nursing, Health, and Laboratory Science, Østfold University College, Fredrikstad, Norway
| | - Mathew A Beale
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Claire Bertelli
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jonas Björkmann
- Center for Molecular Diagnostics, Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Natacha Couto
- Centre for Genomic Pathogen Surveillance, Pandemic Sciences Institute, University of Oxford, United Kingdom
| | - Lena Feige
- Federal State Agency for Consumer and Health Protection Rhineland-Palatinate, Germany
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Erika Tång Hallbäck
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emma B Hodcroft
- Swiss Tropical and Public Health Institute, University of Basel, Allschwil, Switzerland; Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Dag Harmsen
- Department of Periodontology and Operative Dentistry, University Hospital Münster, Münster, Germany
| | | | - Keith A Jolley
- Department of Biology, University of Oxford, United Kingdom
| | - Andre Kahles
- Institute for Machine Learning, Department of Computer Science, ETH Zurich, Switzerland
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich, United Kingdom; University of East Anglia, Norwich, United Kingdom
| | - Richard A Neher
- Swiss Institute of Bioinformatics, Geneva, Switzerland; Biozentrum, University of Basel, Basel, Switzerland
| | - Aitana Neves
- Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Stefan Niemann
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Germany
| | - Oliver Nolte
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | | | - Mohammad Razavi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tim Roloff
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | | | - Per Sikora
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Bioinformatics Data Center, Core Facilities, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martin Sundqvist
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Paula Mölling
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Adrian Egli
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Orsmark-Pietras C, Lyander A, Ladenvall C, Hallström B, Staffas A, Awier H, Krstic A, Baliakas P, Barbany G, Håkansson CB, Gellerbring A, Hagström A, Hellström-Lindberg E, Juliusson G, Lazarevic V, Munters A, Pandzic T, Wadelius M, Ås J, Fogelstrand L, Wirta V, Rosenquist R, Cavelier L, Fioretos T. Precision Diagnostics in Myeloid Malignancies: Development and Validation of a National Capture-Based Gene Panel. Genes Chromosomes Cancer 2024; 63:e23257. [PMID: 39031442 DOI: 10.1002/gcc.23257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/23/2024] [Indexed: 07/22/2024] Open
Abstract
Gene panel sequencing has become a common diagnostic tool for detecting somatically acquired mutations in myeloid neoplasms. However, many panels have restricted content, provide insufficient sensitivity levels, or lack clinically validated workflows. We here describe the development and validation of the Genomic Medicine Sweden myeloid gene panel (GMS-MGP), a capture-based 191 gene panel including mandatory genes in contemporary guidelines as well as emerging candidates. The GMS-MGP displayed uniform coverage across all targets, including recognized difficult GC-rich areas. The validation of 117 previously described somatic variants showed a 100% concordance with a limit-of-detection of a 0.5% variant allele frequency (VAF), achieved by utilizing error correction and filtering against a panel-of-normals. A national interlaboratory comparison investigating 56 somatic variants demonstrated highly concordant results in both detection rate and reported VAFs. In addition, prospective analysis of 323 patients analyzed with the GMS-MGP as part of standard-of-care identified clinically significant genes as well as recurrent mutations in less well-studied genes. In conclusion, the GMS-MGP workflow supports sensitive detection of all clinically relevant genes, facilitates novel findings, and is, based on the capture-based design, easy to update once new guidelines become available. The GMS-MGP provides an important step toward nationally harmonized precision diagnostics of myeloid malignancies.
Collapse
Affiliation(s)
- Christina Orsmark-Pietras
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Anna Lyander
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Clinical Genomics Stockholm, Science Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Clinical Genomics Stockholm, Science Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Claes Ladenvall
- Department of Immunology, Genetics and Pathology, Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Björn Hallström
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Anna Staffas
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Hero Awier
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Aleksandra Krstic
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Gisela Barbany
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Brunhoff Håkansson
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Anna Gellerbring
- Department of Microbiology, Tumor and Cell Biology, Clinical Genomics Stockholm, Science Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Anna Hagström
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Eva Hellström-Lindberg
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Gunnar Juliusson
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Vladimir Lazarevic
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Arielle Munters
- Department of Immunology, Genetics and Pathology, Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Mia Wadelius
- Department of Medical Sciences, Clinical Pharmacogenomics, Uppsala University, Uppsala, Sweden
| | - Joel Ås
- Department of Medical Sciences, Clinical Pharmacogenomics, Uppsala University, Uppsala, Sweden
| | - Linda Fogelstrand
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Valtteri Wirta
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Clinical Genomics Stockholm, Science Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Clinical Genomics Stockholm, Science Life Laboratory, Karolinska Institutet, Solna, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Clinical Genomics Uppsala, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Kernohan KD, Boycott KM. The expanding diagnostic toolbox for rare genetic diseases. Nat Rev Genet 2024; 25:401-415. [PMID: 38238519 DOI: 10.1038/s41576-023-00683-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 05/23/2024]
Abstract
Genomic technologies, such as targeted, exome and short-read genome sequencing approaches, have revolutionized the care of patients with rare genetic diseases. However, more than half of patients remain without a diagnosis. Emerging approaches from research-based settings such as long-read genome sequencing and optical genome mapping hold promise for improving the identification of disease-causal genetic variants. In addition, new omic technologies that measure the transcriptome, epigenome, proteome or metabolome are showing great potential for variant interpretation. As genetic testing options rapidly expand, the clinical community needs to be mindful of their individual strengths and limitations, as well as remaining challenges, to select the appropriate diagnostic test, correctly interpret results and drive innovation to address insufficiencies. If used effectively - through truly integrative multi-omics approaches and data sharing - the resulting large quantities of data from these established and emerging technologies will greatly improve the interpretative power of genetic and genomic diagnostics for rare diseases.
Collapse
Affiliation(s)
- Kristin D Kernohan
- CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
- Newborn Screening Ontario, CHEO, Ottawa, ON, Canada
| | - Kym M Boycott
- CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada.
- Department of Genetics, CHEO, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Masucci M, Karlsson C, Blomqvist L, Ernberg I. Bridging the Divide: A Review on the Implementation of Personalized Cancer Medicine. J Pers Med 2024; 14:561. [PMID: 38929782 PMCID: PMC11204735 DOI: 10.3390/jpm14060561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
The shift towards personalized cancer medicine (PCM) represents a significant transformation in cancer care, emphasizing tailored treatments based on the genetic understanding of cancer at the cellular level. This review draws on recent literature to explore key factors influencing PCM implementation, highlighting the role of innovative leadership, interdisciplinary collaboration, and coordinated funding and regulatory strategies. Success in PCM relies on overcoming challenges such as integrating diverse medical disciplines, securing sustainable investment for shared infrastructures, and navigating complex regulatory landscapes. Effective leadership is crucial for fostering a culture of innovation and teamwork, essential for translating complex biological insights into personalized treatment strategies. The transition to PCM necessitates not only organizational adaptation but also the development of new professional roles and training programs, underscoring the need for a multidisciplinary approach and the importance of team science in overcoming the limitations of traditional medical paradigms. The conclusion underscores that PCM's success hinges on creating collaborative environments that support innovation, adaptability, and shared vision among all stakeholders involved in cancer care.
Collapse
Affiliation(s)
- Michele Masucci
- Department of Learning, Informatics, Management and Ethics (LIME), Karolinska Institutet, Tomtebodavägen 18B, 171 65 Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| | - Claes Karlsson
- Department of Oncology-Pathology (Onc-Pat), Karolinska Institutet, Anna Steckséns gata 30A, D2:04, 171 65 Solna, Sweden;
| | - Lennart Blomqvist
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Anna Steckséns gata 53, 171 65 Solna, Sweden;
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
| |
Collapse
|
7
|
Anjum M, Min H, Ahmed Z. Trivial State Fuzzy Processing for Error Reduction in Healthcare Big Data Analysis towards Precision Diagnosis. Bioengineering (Basel) 2024; 11:539. [PMID: 38927776 PMCID: PMC11200935 DOI: 10.3390/bioengineering11060539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
There is a significant public health concern regarding medical diagnosis errors, which are a major cause of mortality. Identifying the root cause of these errors is challenging, and even if one is identified, implementing an effective treatment to prevent their recurrence is difficult. Optimization-based analysis in healthcare data management is a reliable method for improving diagnostic precision. Analyzing healthcare data requires pre-classification and the identification of precise information for precision-oriented outcomes. This article introduces a Cooperative-Trivial State Fuzzy Processing method for significant data analysis with possible derivatives. Trivial State Fuzzy Processing operates on the principle of fuzzy logic-based processing applied to structured healthcare data, focusing on mitigating errors and uncertainties inherent in the data. The derivatives are aided by identifying and grouping diagnosis-related and irrelevant data. The proposed method mitigates invertible derivative analysis issues in similar data grouping and irrelevance estimation. In the grouping and detection process, recent knowledge of the diagnosis progression is exploited to identify the functional data for analysis. Such analysis improves the impact of trivial diagnosis data compared to a voluminous diagnosis history. The cooperative derivative states under different data irrelevance factors reduce trivial state errors in healthcare big data analysis.
Collapse
Affiliation(s)
- Mohd Anjum
- Department of Computer Engineering, Aligarh Muslim University, Aligarh 202002, India;
| | - Hong Min
- School of Computing, Gachon University, Seongnam 13120, Republic of Korea
| | - Zubair Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Tesi B, Robinson KL, Abel F, Díaz de Ståhl T, Orrsjö S, Poluha A, Hellberg M, Wessman S, Samuelsson S, Frisk T, Vogt H, Henning K, Sabel M, Ek T, Pal N, Nyman P, Giraud G, Wille J, Pronk CJ, Norén-Nyström U, Borssén M, Fili M, Stålhammar G, Herold N, Tettamanti G, Maya-Gonzalez C, Arvidsson L, Rosén A, Ekholm K, Kuchinskaya E, Hallbeck AL, Nordling M, Palmebäck P, Kogner P, Smoler GK, Lähteenmäki P, Fransson S, Martinsson T, Shamik A, Mertens F, Rosenquist R, Wirta V, Tham E, Grillner P, Sandgren J, Ljungman G, Gisselsson D, Taylan F, Nordgren A. Diagnostic yield and clinical impact of germline sequencing in children with CNS and extracranial solid tumors-a nationwide, prospective Swedish study. THE LANCET REGIONAL HEALTH. EUROPE 2024; 39:100881. [PMID: 38803632 PMCID: PMC11129334 DOI: 10.1016/j.lanepe.2024.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Accepted: 02/23/2024] [Indexed: 05/29/2024]
Abstract
Background Childhood cancer predisposition (ChiCaP) syndromes are increasingly recognized as contributing factors to childhood cancer development. Yet, due to variable availability of germline testing, many children with ChiCaP might go undetected today. We report results from the nationwide and prospective ChiCaP study that investigated diagnostic yield and clinical impact of integrating germline whole-genome sequencing (gWGS) with tumor sequencing and systematic phenotyping in children with solid tumors. Methods gWGS was performed in 309 children at diagnosis of CNS (n = 123, 40%) or extracranial (n = 186, 60%) solid tumors and analyzed for disease-causing variants in 189 known cancer predisposing genes. Tumor sequencing data were available for 74% (227/309) of patients. In addition, a standardized clinical assessment for underlying predisposition was performed in 95% (293/309) of patients. Findings The prevalence of ChiCaP diagnoses was 11% (35/309), of which 69% (24/35) were unknown at inclusion (diagnostic yield 8%, 24/298). A second-hit and/or relevant mutational signature was observed in 19/21 (90%) tumors with informative data. ChiCaP diagnoses were more prevalent among patients with retinoblastomas (50%, 6/12) and high-grade astrocytomas (37%, 6/16), and in those with non-cancer related features (23%, 20/88), and ≥2 positive ChiCaP criteria (28%, 22/79). ChiCaP diagnoses were autosomal dominant in 80% (28/35) of patients, yet confirmed de novo in 64% (18/28). The 35 ChiCaP findings resulted in tailored surveillance (86%, 30/35) and treatment recommendations (31%, 11/35). Interpretation Overall, our results demonstrate that systematic phenotyping, combined with genomics-based diagnostics of ChiCaP in children with solid tumors is feasible in large-scale clinical practice and critically guides personalized care in a sizable proportion of patients. Funding The study was supported by the Swedish Childhood Cancer Fund and the Ministry of Health and Social Affairs.
Collapse
Affiliation(s)
- Bianca Tesi
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Solna, Sweden
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristina Lagerstedt Robinson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Solna, Sweden
| | - Frida Abel
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Teresita Díaz de Ståhl
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Orrsjö
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Poluha
- Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria Hellberg
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office of Medical Services, Region Skåne, Lund, Sweden
| | - Sandra Wessman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Sofie Samuelsson
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office of Medical Services, Region Skåne, Lund, Sweden
| | - Tony Frisk
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Hartmut Vogt
- Crown Princess Victoria Children’s Hospital, and Division of Children’s and Women’s Health, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Karin Henning
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Sabel
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
- Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Torben Ek
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
- Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Niklas Pal
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Per Nyman
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Geraldine Giraud
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Pediatric Oncology, Uppsala University Children’s Hospital, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Sweden
| | - Joakim Wille
- Childhood Cancer Center, Skåne University Hospital, Lund, Sweden
| | - Cornelis Jan Pronk
- Childhood Cancer Center, Skåne University Hospital, Lund, Sweden
- Division of Molecular Hematology/Wallenberg Center for Molecular Medicine, Lund University, Sweden
| | | | - Magnus Borssén
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Maria Fili
- Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- St. Erik Eye Hospital, Stockholm, Sweden
| | - Gustav Stålhammar
- Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- St. Erik Eye Hospital, Stockholm, Sweden
| | - Nikolas Herold
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Giorgio Tettamanti
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Unit of Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Linda Arvidsson
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office of Medical Services, Region Skåne, Lund, Sweden
| | - Anna Rosén
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Katja Ekholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Solna, Sweden
| | | | - Anna-Lotta Hallbeck
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Margareta Nordling
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Pia Palmebäck
- Department of Clinical Genetics, Linköping University Hospital, Linköping, Sweden
| | - Per Kogner
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Gunilla Kanter Smoler
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Päivi Lähteenmäki
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Fransson
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alia Shamik
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Fredrik Mertens
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office of Medical Services, Region Skåne, Lund, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Solna, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Valtteri Wirta
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institutet of Technology, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Solna, Sweden
| | - Pernilla Grillner
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Sandgren
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Gustaf Ljungman
- Pediatric Oncology, Uppsala University Children’s Hospital, Uppsala, Sweden
- Department of Women’s and Children’s Health, Uppsala University, Sweden
| | - David Gisselsson
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office of Medical Services, Region Skåne, Lund, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Solna, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Solna, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Edsjö A, Gisselsson D, Staaf J, Holmquist L, Fioretos T, Cavelier L, Rosenquist R. Current and emerging sequencing-based tools for precision cancer medicine. Mol Aspects Med 2024; 96:101250. [PMID: 38330674 DOI: 10.1016/j.mam.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Current precision cancer medicine is dependent on the analyses of a plethora of clinically relevant genomic aberrations. During the last decade, next-generation sequencing (NGS) has gradually replaced most other methods for precision cancer diagnostics, spanning from targeted tumor-informed assays and gene panel sequencing to global whole-genome and whole-transcriptome sequencing analyses. The shift has been impelled by a clinical need to assess an increasing number of genomic alterations with diagnostic, prognostic and predictive impact, including more complex biomarkers (e.g. microsatellite instability, MSI, and homologous recombination deficiency, HRD), driven by the parallel development of novel targeted therapies and enabled by the rapid reduction in sequencing costs. This review focuses on these sequencing-based methods, puts their emergence in a historic perspective, highlights their clinical utility in diagnostics and decision-making in pediatric and adult cancer, as well as raises challenges for their clinical implementation. Finally, the importance of applying sensitive tools for longitudinal monitoring of treatment response and detection of measurable residual disease, as well as future avenues in the rapidly evolving field of sequencing-based methods are discussed.
Collapse
Affiliation(s)
- Anders Edsjö
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden; Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - David Gisselsson
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden; Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Johan Staaf
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, Lund, Sweden
| | - Louise Holmquist
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden; Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden; Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden; Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Thangavelu T, Wirta V, Orsmark-Pietras C, Cavelier L, Fioretos T, Barbany G, Olsson-Arvidsson L, Pandzic T, Staffas A, Rosenquist R, Levin LÅ. Micro-costing of genetic diagnostics in acute leukemia in Sweden: from standard-of-care to whole-genome sequencing. J Med Econ 2024; 27:1053-1060. [PMID: 39101813 DOI: 10.1080/13696998.2024.2387515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
AIMS AND BACKGROUND Whole-genome sequencing (WGS) is increasingly applied in clinical practice and expected to replace standard-of-care (SoC) genetic diagnostics in hematological malignancies. This study aims to assess and compare the fully burdened cost ('micro-costing') per patient for Swedish laboratories using WGS and SoC, respectively, in pediatric and adult patients with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). METHODS The resource use and cost details associated with SoC, e.g. chromosome banding analysis, fluorescent in situ hybridization, and targeted sequencing analysis, were collected via activity-based costing methods from four diagnostic laboratories. For WGS, corresponding data was collected from two of the centers. A simulation-based scenario model was developed for analyzing the WGS cost based on different annual sample throughput to evaluate economy of scale. RESULTS The average SoC total cost per patient was €2,465 for pediatric AML and €2,201 for pediatric ALL, while in adults, the corresponding cost was €2,458 for AML and €1,207 for ALL. The average WGS cost (90x tumor/30x normal; sequenced on the Illumina NovaSeq 6000 platform) was estimated to €3,472 based on an annual throughput of 2,500 analyses, however, with an annual volume of 7,500 analyses the average cost would decrease by 23% to €2,671. CONCLUSION In summary, WGS is currently more costly than SoC, however the cost can be reduced by utilizing laboratories with higher throughput and by the expected decline in cost of reagents. Our data provides guidance to decision-makers for the resource allocation needed when implementing WGS in diagnostics of hematological malignancies.
Collapse
Affiliation(s)
- Tharshini Thangavelu
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Register and Statistics, The National Board of Health and Welfare, Stockholm, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Instititute of Technology, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Christina Orsmark-Pietras
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Lund, Sweden
| | - Lucia Cavelier
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Lund, Sweden
| | - Gisela Barbany
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Linda Olsson-Arvidsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology, and Molecular Diagnostics, Office for Medical Services, Lund, Sweden
| | - Tatjana Pandzic
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anna Staffas
- Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Richard Rosenquist
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Åke Levin
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
11
|
Johansson Å, Andreassen OA, Brunak S, Franks PW, Hedman H, Loos RJ, Meder B, Melén E, Wheelock CE, Jacobsson B. Precision medicine in complex diseases-Molecular subgrouping for improved prediction and treatment stratification. J Intern Med 2023; 294:378-396. [PMID: 37093654 PMCID: PMC10523928 DOI: 10.1111/joim.13640] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Complex diseases are caused by a combination of genetic, lifestyle, and environmental factors and comprise common noncommunicable diseases, including allergies, cardiovascular disease, and psychiatric and metabolic disorders. More than 25% of Europeans suffer from a complex disease, and together these diseases account for 70% of all deaths. The use of genomic, molecular, or imaging data to develop accurate diagnostic tools for treatment recommendations and preventive strategies, and for disease prognosis and prediction, is an important step toward precision medicine. However, for complex diseases, precision medicine is associated with several challenges. There is a significant heterogeneity between patients of a specific disease-both with regards to symptoms and underlying causal mechanisms-and the number of underlying genetic and nongenetic risk factors is often high. Here, we summarize precision medicine approaches for complex diseases and highlight the current breakthroughs as well as the challenges. We conclude that genomic-based precision medicine has been used mainly for patients with highly penetrant monogenic disease forms, such as cardiomyopathies. However, for most complex diseases-including psychiatric disorders and allergies-available polygenic risk scores are more probabilistic than deterministic and have not yet been validated for clinical utility. However, subclassifying patients of a specific disease into discrete homogenous subtypes based on molecular or phenotypic data is a promising strategy for improving diagnosis, prediction, treatment, prevention, and prognosis. The availability of high-throughput molecular technologies, together with large collections of health data and novel data-driven approaches, offers promise toward improved individual health through precision medicine.
Collapse
Affiliation(s)
- Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala university, Sweden
| | - Ole A. Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopment Research, University of Oslo, Oslo, Norway
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2200 Copenhagen, Denmark
| | - Paul W. Franks
- Genetic and Molecular Epidemiology Unit, Lund University Diabetes Centre, Department of Clinical Science, Lund University, Sweden
- Novo Nordisk Foundation, Denmark
| | - Harald Hedman
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - Ruth J.F. Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Charles Bronfman Institute for Personalized Medicine at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Meder
- Precision Digital Health, Cardiogenetics Center Heidelberg, Department of Cardiology, University Of Heidelberg, Germany
| | - Erik Melén
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Stockholm
- Sachś Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynaecology, Sahlgrenska University Hospital, Göteborg, Sweden
- Department of Genetics and Bioinformatics, Domain of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| |
Collapse
|
12
|
Tesi B, Boileau C, Boycott KM, Canaud G, Caulfield M, Choukair D, Hill S, Spielmann M, Wedell A, Wirta V, Nordgren A, Lindstrand A. Precision medicine in rare diseases: What is next? J Intern Med 2023; 294:397-412. [PMID: 37211972 DOI: 10.1111/joim.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Molecular diagnostics is a cornerstone of modern precision medicine, broadly understood as tailoring an individual's treatment, follow-up, and care based on molecular data. In rare diseases (RDs), molecular diagnoses reveal valuable information about the cause of symptoms, disease progression, familial risk, and in certain cases, unlock access to targeted therapies. Due to decreasing DNA sequencing costs, genome sequencing (GS) is emerging as the primary method for precision diagnostics in RDs. Several ongoing European initiatives for precision medicine have chosen GS as their method of choice. Recent research supports the role for GS as first-line genetic investigation in individuals with suspected RD, due to its improved diagnostic yield compared to other methods. Moreover, GS can detect a broad range of genetic aberrations including those in noncoding regions, producing comprehensive data that can be periodically reanalyzed for years to come when further evidence emerges. Indeed, targeted drug development and repurposing of medicines can be accelerated as more individuals with RDs receive a molecular diagnosis. Multidisciplinary teams in which clinical specialists collaborate with geneticists, genomics education of professionals and the public, and dialogue with patient advocacy groups are essential elements for the integration of precision medicine into clinical practice worldwide. It is also paramount that large research projects share genetic data and leverage novel technologies to fully diagnose individuals with RDs. In conclusion, GS increases diagnostic yields and is a crucial step toward precision medicine for RDs. Its clinical implementation will enable better patient management, unlock targeted therapies, and guide the development of innovative treatments.
Collapse
Affiliation(s)
- Bianca Tesi
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Catherine Boileau
- Département de Génétique, APHP, Hôpital Bichat-Claude Bernard, Université Paris Cité, Paris, France
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Guillaume Canaud
- INSERM U1151, Unité de médecine translationnelle et thérapies ciblées, Hôpital Necker-Enfants Malades, Université Paris Cité, AP-HP, Paris, France
| | - Mark Caulfield
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Daniela Choukair
- Division of Pediatric Endocrinology and Diabetes, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany and Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sue Hill
- Chief Scientific Officer, NHS England, London, UK
| | - Malte Spielmann
- Institute of Human Genetics, University Hospitals Schleswig-Holstein, University of Lübeck and Kiel University, Lübeck, Kiel, Germany
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Valtteri Wirta
- Science for Life Laboratory, Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institutet of Technology, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Centre of Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Stenzinger A, Moltzen EK, Winkler E, Molnar-Gabor F, Malek N, Costescu A, Jensen BN, Nowak F, Pinto C, Ottersen OP, Schirmacher P, Nordborg J, Seufferlein T, Fröhling S, Edsjö A, Garcia-Foncillas J, Normanno N, Lundgren B, Friedman M, Bolanos N, Tatton-Brown K, Hill S, Rosenquist R. Implementation of precision medicine in healthcare-A European perspective. J Intern Med 2023; 294:437-454. [PMID: 37455247 DOI: 10.1111/joim.13698] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The technical development of high-throughput sequencing technologies and the parallel development of targeted therapies in the last decade have enabled a transition from traditional medicine to personalized treatment and care. In this way, by using comprehensive genomic testing, more effective treatments with fewer side effects are provided to each patient-that is, precision or personalized medicine (PM). In several European countries-such as in England, France, Denmark, and Spain-the governments have adopted national strategies and taken "top-down" decisions to invest in national infrastructure for PM. In other countries-such as Sweden, Germany, and Italy with regionally organized healthcare systems-the profession has instead taken "bottom-up" initiatives to build competence networks and infrastructure to enable equal access to PM. In this review, we summarize key learnings at the European level on the implementation process to establish sustainable governance and organization for PM at the regional, national, and EU/international levels. We also discuss critical ethical and legal aspects of implementing PM, and the importance of access to real-world data and performing clinical trials for evidence generation, as well as the need for improved reimbursement models, increased cross-disciplinary education and patient involvement. In summary, PM represents a paradigm shift, and modernization of healthcare and all relevant stakeholders-that is, healthcare, academia, policymakers, industry, and patients-must be involved in this system transformation to create a sustainable, non-siloed ecosystem for precision healthcare that benefits our patients and society at large.
Collapse
Affiliation(s)
- Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Centers for Personalized Medicine (ZPM), Germany
| | - Ejner K Moltzen
- Innovation Fund Denmark, International Consortium for Personalised Medicine (IC PerMed), Aarhus, Denmark
| | - Eva Winkler
- Section of Translational Medical Ethics, National Center for Tumour Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Nisar Malek
- Centers for Personalized Medicine (ZPM), Germany
- Department for Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | | | | | | | - Carmine Pinto
- Medical Oncology, Comprehensive Cancer Centre, AUSL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Centers for Personalized Medicine (ZPM), Germany
| | - Jenni Nordborg
- Lif - The Research-Based Pharmaceutical Industry, Stockholm, Sweden
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Anders Edsjö
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Genomic Medicine Sweden (GMS), Sweden
| | - Jesus Garcia-Foncillas
- Department of Oncology and Cancer Institute, Fundacion Jimenez Diaz University Hospital, Autonomous University, Madrid, Spain
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale, Napoli, Italy
| | | | - Mikaela Friedman
- Genomic Medicine Sweden (GMS), Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Katrina Tatton-Brown
- National Genomics Education, NHS England, London, UK
- St George's University Hospitals NHS Foundation Trust, London, UK
- St George's University of London, London, UK
| | - Sue Hill
- Office of Chief Scientific Officer and the Genomics Unit, NHS England, London, UK
| | - Richard Rosenquist
- Genomic Medicine Sweden (GMS), Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Fehr A, Arvidsson G, Nordlund J, Lönnerholm G, Stenman G, Andersson MK. Increased MYB alternative promoter usage is associated with relapse in acute lymphoblastic leukemia. Genes Chromosomes Cancer 2023; 62:597-606. [PMID: 37218648 DOI: 10.1002/gcc.23151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Therapy-resistant disease is a major cause of death in patients with acute lymphoblastic leukemia (ALL). Activation of the MYB oncogene is associated with ALL and leads to uncontrolled neoplastic cell proliferation and blocked differentiation. Here, we used RNA-seq to study the clinical significance of MYB expression and MYB alternative promoter (TSS2) usage in 133 pediatric ALLs. RNA-seq revealed that all cases analyzed overexpressed MYB and demonstrated MYB TSS2 activity. qPCR analyses confirmed the expression of the alternative MYB promoter also in seven ALL cell lines. Notably, high MYB TSS2 activity was significantly associated with relapse (p = 0.007). Moreover, cases with high MYB TSS2 usage showed evidence of therapy-resistant disease with increased expression of ABC multidrug resistance transporter genes (e.g., ABCA2, ABCB5, and ABCC10) and enzymes catalyzing drug degradation (e.g., CYP1A2, CYP2C9, and CYP3A5). Elevated MYB TSS2 activity was further associated with augmented KRAS signaling (p < 0.05) and decreased methylation of the conventional MYB promoter (p < 0.01). Taken together, our results suggest that MYB alternative promoter usage is a novel potential prognostic biomarker for relapse and therapy resistance in pediatric ALL.
Collapse
Affiliation(s)
- André Fehr
- Sahlgrenska Center for Cancer Research, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Gustav Arvidsson
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gudmar Lönnerholm
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Göran Stenman
- Sahlgrenska Center for Cancer Research, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Mattias K Andersson
- Sahlgrenska Center for Cancer Research, Department of Pathology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Illert AL, Stenzinger A, Bitzer M, Horak P, Gaidzik VI, Möller Y, Beha J, Öner Ö, Schmitt F, Laßmann S, Ossowski S, Schaaf CP, Hallek M, Brümmendorf TH, Albers P, Fehm T, Brossart P, Glimm H, Schadendorf D, Bleckmann A, Brandts CH, Esposito I, Mack E, Peters C, Bokemeyer C, Fröhling S, Kindler T, Algül H, Heinemann V, Döhner H, Bargou R, Ellenrieder V, Hillemanns P, Lordick F, Hochhaus A, Beckmann MW, Pukrop T, Trepel M, Sundmacher L, Wesselmann S, Nettekoven G, Kohlhuber F, Heinze O, Budczies J, Werner M, Nikolaou K, Beer AJ, Tabatabai G, Weichert W, Keilholz U, Boerries M, Kohlbacher O, Duyster J, Thimme R, Seufferlein T, Schirmacher P, Malek NP. The German Network for Personalized Medicine to enhance patient care and translational research. Nat Med 2023:10.1038/s41591-023-02354-z. [PMID: 37280276 DOI: 10.1038/s41591-023-02354-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- A L Illert
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Medicine III, Faculty of Medicine, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
- Center for Personalized Medicine (ZPM), Freiburg, Germany
- Center for Personalized Medicine (ZPM), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Partner Site TU Munich, Munich, Germany
| | - A Stenzinger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - M Bitzer
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- Center for Personalized Medicine (ZPM), Tübingen, Germany
| | - P Horak
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - V I Gaidzik
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
- Center for Personalized Medicine (ZPM), Ulm, Germany
| | - Y Möller
- Center for Personalized Medicine (ZPM), Tübingen, Germany
- M3 Research Institute University Hospital Tübingen, Tübingen, Germany
| | - J Beha
- Center for Personalized Medicine (ZPM), Tübingen, Germany
| | - Ö Öner
- Center for Personalized Medicine (ZPM), Tübingen, Germany
| | - F Schmitt
- Center for Personalized Medicine (ZPM), Tübingen, Germany
| | - S Laßmann
- Center for Personalized Medicine (ZPM), Freiburg, Germany
- Institute for Surgical Pathology, Medical Center, University of Freiburg, Freiburg, Germany
| | - S Ossowski
- Center for Personalized Medicine (ZPM), Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - C P Schaaf
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - M Hallek
- Department I of Internal Medicine, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for integrated Oncology (CIO-ABCD), Aachen-Bonn-Cologne-Düsseldorf, Germany
| | - T H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Center for integrated Oncology (CIO-ABCD), Aachen-Bonn-Cologne-Düsseldorf, Germany
| | - P Albers
- Department of Urology, Heinrich-Heine University, Medical Faculty, Düsseldorf, Germany
- Center for integrated Oncology (CIO-ABCD), Aachen-Bonn-Cologne-Düsseldorf, Germany
| | - T Fehm
- Department of Gynecology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for integrated Oncology (CIO-ABCD), Aachen-Bonn-Cologne-Düsseldorf, Germany
| | - P Brossart
- Department of Oncology, Hematology, Stem Cell Transplantation, Cell- and Immunotherapies, Clinical Immunology and Rheumatology, University Hospital Bonn, Bonn, Germany
- Center for integrated Oncology (CIO-ABCD), Aachen-Bonn-Cologne-Düsseldorf, Germany
| | - H Glimm
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
| | - D Schadendorf
- Department of Dermatology, University Duisburg-Essen, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, Essen, Germany
- National Center for Tumor Diseases (NCT), NCT-West, Campus Essen, Essen, Germany
- Westdeutsches Tumorzentrum (WTZ), Essen, Germany
- Research Alliance Ruhr - Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - A Bleckmann
- Department of Medicine A: Hematology, Oncology, and Pneumology, University Hospital Münster (UKM), Münster, Germany
- West German Cancer Center, University Hospital Münster, Münster, Germany
| | - C H Brandts
- University Cancer Center (UCT) Frankfurt-Marburg, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK) Partner Site, Frankfurt, Germany
| | - I Esposito
- Institute of Pathology, Heinrich-Heine University and University Hospital, Düsseldorf, Germany
- Center for Personalized Medicine (ZPM), Düsseldorf, Germany
| | - E Mack
- Department of Hematology, Oncology and Immunology, University Hospital Marburg and Philipps-University, Marburg, Germany
| | - C Peters
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Freiburg, Germany
| | - C Bokemeyer
- Department of Oncology, Hematology and BMT with section of Pneumology, University of Hamburg, Hamburg, Germany
| | - S Fröhling
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - T Kindler
- University Cancer Center, University Medical Center Mainz, Johannes Gutenberg-University, Mainz, Germany
- German Cancer Consortium (DKTK) Partner Site Mainz, Mainz, Germany
| | - H Algül
- Institute for Tumor Metabolism, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Comprehensive Cancer Center Munich TUM, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - V Heinemann
- Comprehensive Cancer Center Munich, Klinikum Großhadern, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Medicine III, Klinikum Großhadern, Ludwig Maximilian University of Munich, Munich, Germany
| | - H Döhner
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - R Bargou
- Comprehensive Cancer Center Mainfranken, Uniklinikum Würzburg, Würzburg, Germany
- Bavarian Cancer Research Center (BZKF), Partner Site Würzburg, Würzburg, Germany
| | - V Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, Göttingen, Germany
| | - P Hillemanns
- Department of Gynecology and Obstetrics, Hannover Medical School, Hannover, Germany
| | - F Lordick
- Comprehensive Cancer Center Central Germany and University Cancer Center Leipzig,, University Medicine Leipzig, Leipzig, Germany
| | - A Hochhaus
- Comprehensive Cancer Center Central Germany and Department of Hematology and Internal Oncology, Universitätsklinikum Jena, Jena, Germany
| | - M W Beckmann
- University Hospital Erlangen, Department of Obstetrics and Gynecology, Friedrich-Alexander-Universität Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-Europäische Metropolregion Nuremberg, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Partner Site Erlangen, Erlangen, Germany
| | - T Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
- Comprehensive Cancer Center Ostbayern, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), Partner Site Regensburg, Regensburg, Germany
| | - M Trepel
- Department of Hematology and Medical Oncology, Augsburg University Hospital, Augsburg, Germany
- Comprehensive Cancer Center Augsburg, CCC Alliance WERA, Augsburg, Germany
- Bavarian Cancer Research Center (BZKF), Partner Site Augsburg, Augsburg, Germany
| | - L Sundmacher
- Department of Health Services Management, Ludwig-Maximilians-Universität, Munich, Germany
| | - S Wesselmann
- Deutsche Krebsgesellschaft (DKG), Berlin, Germany
| | | | | | - O Heinze
- Department Medical Information Systems, University Hospital Heidelberg, Heidelberg, Germany
| | - J Budczies
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - M Werner
- Center for Personalized Medicine (ZPM), Freiburg, Germany
- Institute for Surgical Pathology, Medical Center, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Freiburg, Germany
| | - K Nikolaou
- Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - A J Beer
- Department of Nuclear Medicine, Ulm University Hospital, Ulm, Germany
| | - G Tabatabai
- Department of Neurology and Interdisciplinary Neuro-Oncology, Center for Neuro-Oncology, University Hospital Tübingen, Tübingen, Germany
- Comprehensive Cancer Center Tübingen-Stuttgart, Stuttgart, Germany
| | - W Weichert
- Center for Personalized Medicine (ZPM), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Pathology, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK) Partner Site Munich, and German Cancer Research Center (DKFZ), Heidelberg, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Partner Site TU Munich, Munich, Germany
| | - U Keilholz
- Charité Comprehensive Cancer Center, Charité, Berlin, Germany
| | - M Boerries
- Center for Personalized Medicine (ZPM), Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Freiburg, Germany
- Institute of Medical Bioinformatics and Systems Medicine (IBSM), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Freiburg, Germany
| | - O Kohlbacher
- Center for Personalized Medicine (ZPM), Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
- Institute for Translational Bioinformatics, University Medical Center, Tübingen, Germany
- Department of Computer Science, Applied Bioinformatics, University of Tübingen, Tübingen, Germany
| | - J Duyster
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Personalized Medicine (ZPM), Freiburg, Germany
- German Cancer Consortium (DKTK) Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Freiburg, Germany
| | - R Thimme
- Center for Personalized Medicine (ZPM), Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Freiburg, Germany
- Department of Medicine II, Freiburg, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - T Seufferlein
- Center for Personalized Medicine (ZPM), Ulm, Germany
- Department of Internal Medicine I, University Hospital, University of Ulm, Ulm, Germany
| | - P Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - N P Malek
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany.
- Center for Personalized Medicine (ZPM), Tübingen, Germany.
- M3 Research Institute University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
16
|
Wadensten E, Wessman S, Abel F, Diaz De Ståhl T, Tesi B, Orsmark Pietras C, Arvidsson L, Taylan F, Fransson S, Vogt H, Poluha A, Pradhananga S, Hellberg M, Lagerstedt-Robinson K, Raj Somarajan P, Samuelsson S, Orrsjö S, Maqbool K, Henning K, Strid T, Ek T, Fagman H, Olsson Bontell T, Martinsson T, Puls F, Kogner P, Wirta V, Pronk CJ, Wille J, Rosenquist R, Nistér M, Mertens F, Sabel M, Norén-Nyström U, Grillner P, Nordgren A, Ljungman G, Sandgren J, Gisselsson D. Diagnostic Yield From a Nationwide Implementation of Precision Medicine for all Children With Cancer. JCO Precis Oncol 2023; 7:e2300039. [PMID: 37384868 PMCID: PMC10581599 DOI: 10.1200/po.23.00039] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/20/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023] Open
Abstract
PURPOSE Several studies have indicated that broad genomic characterization of childhood cancer provides diagnostically and/or therapeutically relevant information in selected high-risk cases. However, the extent to which such characterization offers clinically actionable data in a prospective broadly inclusive setting remains largely unexplored. METHODS We implemented prospective whole-genome sequencing (WGS) of tumor and germline, complemented by whole-transcriptome sequencing (RNA-Seq) for all children diagnosed with a primary or relapsed solid malignancy in Sweden. Multidisciplinary molecular tumor boards were set up to integrate genomic data in the clinical decision process along with a medicolegal framework enabling secondary use of sequencing data for research purposes. RESULTS During the study's first 14 months, 118 solid tumors from 117 patients were subjected to WGS, with complementary RNA-Seq for fusion gene detection in 52 tumors. There was no significant geographic bias in patient enrollment, and the included tumor types reflected the annual national incidence of pediatric solid tumor types. Of the 112 tumors with somatic mutations, 106 (95%) exhibited alterations with a clear clinical correlation. In 46 of 118 tumors (39%), sequencing only corroborated histopathological diagnoses, while in 59 cases (50%), it contributed to additional subclassification or detection of prognostic markers. Potential treatment targets were found in 31 patients (26%), most commonly ALK mutations/fusions (n = 4), RAS/RAF/MEK/ERK pathway mutations (n = 14), FGFR1 mutations/fusions (n = 5), IDH1 mutations (n = 2), and NTRK2 gene fusions (n = 2). In one patient, the tumor diagnosis was revised based on sequencing. Clinically relevant germline variants were detected in 8 of 94 patients (8.5%). CONCLUSION Up-front, large-scale genomic characterization of pediatric solid malignancies provides diagnostically valuable data in the majority of patients also in a largely unselected cohort.
Collapse
Affiliation(s)
- Elisabeth Wadensten
- Section of Clinical Genetics, Pathology and Molecular Diagnostics, Medical Services, Region Skåne, University Hospital, SE-22185, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, BMC C13, SE-221 84, Lund, Sweden
| | - Sandra Wessman
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Frida Abel
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Bianca Tesi
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Christina Orsmark Pietras
- Section of Clinical Genetics, Pathology and Molecular Diagnostics, Medical Services, Region Skåne, University Hospital, SE-22185, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, BMC C13, SE-221 84, Lund, Sweden
| | - Linda Arvidsson
- Section of Clinical Genetics, Pathology and Molecular Diagnostics, Medical Services, Region Skåne, University Hospital, SE-22185, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, BMC C13, SE-221 84, Lund, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Susanne Fransson
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hartmut Vogt
- Crown Princess Victoria's Child and Youth Hospital in Linköping, and Division of Children's and Women's Health, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna Poluha
- Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sailendra Pradhananga
- Section of Clinical Genetics, Pathology and Molecular Diagnostics, Medical Services, Region Skåne, University Hospital, SE-22185, Lund, Sweden
| | - Maria Hellberg
- Section of Clinical Genetics, Pathology and Molecular Diagnostics, Medical Services, Region Skåne, University Hospital, SE-22185, Lund, Sweden
| | - Kristina Lagerstedt-Robinson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | | | - Sofie Samuelsson
- Section of Clinical Genetics, Pathology and Molecular Diagnostics, Medical Services, Region Skåne, University Hospital, SE-22185, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, BMC C13, SE-221 84, Lund, Sweden
| | - Sara Orrsjö
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Khurram Maqbool
- Department of Microbiology, Tumor and Cell Biology, Clinical Genomics Stockholm, Science Life Laboratory, Karolinska Institutet, Solna, Sweden
| | - Karin Henning
- Section for Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
- Childhood Cancer Research Unit, Department for Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Strid
- Department of Clinical Pathology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Torben Ek
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg
- Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Fagman
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Thomas Olsson Bontell
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tommy Martinsson
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Florian Puls
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Kogner
- Section for Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Valtteri Wirta
- Department of Microbiology, Tumor and Cell Biology, Clinical Genomics Stockholm, Science Life Laboratory, Karolinska Institutet, Solna, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Clinical Genomics Stockholm, Science Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Joakim Wille
- Childhood Cancer Centre, Skåne University Hospital, Lund, Sweden
| | - Richard Rosenquist
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Monica Nistér
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Mertens
- Section of Clinical Genetics, Pathology and Molecular Diagnostics, Medical Services, Region Skåne, University Hospital, SE-22185, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, BMC C13, SE-221 84, Lund, Sweden
| | - Magnus Sabel
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg
- Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Pernilla Grillner
- Section for Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Gustaf Ljungman
- Department of Women's and Children's Health, Uppsala University, Sweden
- Department of Pediatric Oncology, Uppsala University Children's Hospital, 751 35 Uppsala, Sweden
| | - Johanna Sandgren
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - David Gisselsson
- Section of Clinical Genetics, Pathology and Molecular Diagnostics, Medical Services, Region Skåne, University Hospital, SE-22185, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, BMC C13, SE-221 84, Lund, Sweden
| |
Collapse
|
17
|
Haferlach T, Walter W. Challenging gold standard hematology diagnostics through the introduction of whole genome sequencing and artificial intelligence. Int J Lab Hematol 2023; 45:156-162. [PMID: 36737231 DOI: 10.1111/ijlh.14033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The diagnosis of hematological malignancies is rather complex and requires the application of a plethora of different assays, techniques and methodologies. Some of the methods, like cytomorphology, have been in use for decades, while other methods, such as next-generation sequencing or even whole genome sequencing (WGS), are relatively new. The application of the methods and the evaluation of the results require distinct skills and knowledge and place different demands on the practitioner. However, even with experienced hematologists, diagnostic ambiguity remains a regular occurrence and the comprehensive analysis of high-dimensional WGS data soon exceeds any human's capacity. Hence, in order to reduce inter-observer variability and to improve the timeliness and accuracy of diagnoses, machine learning based approaches have been developed to assist in the decision making process. Moreover, to achieve the goal of precision oncology, comprehensive genomic profiling is increasingly being incorporated into routine standard of care.
Collapse
|
18
|
Arthur C, Jylhä C, de Ståhl TD, Shamikh A, Sandgren J, Rosenquist R, Nordenskjöld M, Harila A, Barbany G, Sandvik U, Tham E. Simultaneous Ultra-Sensitive Detection of Structural and Single Nucleotide Variants Using Multiplex Droplet Digital PCR in Liquid Biopsies from Children with Medulloblastoma. Cancers (Basel) 2023; 15:cancers15071972. [PMID: 37046633 PMCID: PMC10092983 DOI: 10.3390/cancers15071972] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/10/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Medulloblastoma is a malignant embryonal tumor of the central nervous system (CNS) that mainly affects infants and children. Prognosis is highly variable, and molecular biomarkers for measurable residual disease (MRD) detection are lacking. Analysis of cell-free DNA (cfDNA) in cerebrospinal fluid (CSF) using broad genomic approaches, such as low-coverage whole-genome sequencing, has shown promising prognostic value. However, more sensitive methods are needed for MRD analysis. Here, we show the technical feasibility of capturing medulloblastoma-associated structural variants and point mutations simultaneously in cfDNA using multiplexed droplet digital PCR (ddPCR). Assay sensitivity was assessed with a dilution series of tumor in normal genomic DNA, and the limit of detection was below 100 pg of input DNA for all assays. False positive rates were zero for structural variant assays. Liquid biopsies (CSF and plasma, n = 47) were analyzed from 12 children with medulloblastoma, all with negative CSF cytology. MRD was detected in 75% (9/12) of patients overall. In CSF samples taken before or within 21 days of surgery, MRD was detected in 88% (7/8) of patients with localized disease and in one patient with the metastasized disease. Our results suggest that this approach could expand the utility of ddPCR and complement broader analyses of cfDNA for MRD detection.
Collapse
|
19
|
Edsjö A, Lindstrand A, Gisselsson D, Mölling P, Friedman M, Cavelier L, Johansson M, Ehrencrona H, Fagerqvist T, Strid T, Lovmar L, Jacobsson B, Johansson Å, Engstrand L, Wheelock CE, Sikora P, Wirta V, Fioretos T, Rosenquist R. Building a precision medicine infrastructure at a national level: The Swedish experience. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e15. [PMID: 38550923 PMCID: PMC10953755 DOI: 10.1017/pcm.2023.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/25/2023] [Indexed: 06/28/2024]
Abstract
Precision medicine has the potential to transform healthcare by moving from one-size-fits-all to personalised treatment and care. This transition has been greatly facilitated through new high-throughput sequencing technologies that can provide the unique molecular profile of each individual patient, along with the rapid development of targeted therapies directed to the Achilles heels of each disease. To implement precision medicine approaches in healthcare, many countries have adopted national strategies and initiated genomic/precision medicine initiatives to provide equal access to all citizens. In other countries, such as Sweden, this has proven more difficult due to regionally organised healthcare. Using a bottom-up approach, key stakeholders from academia, healthcare, industry and patient organisations joined forces and formed Genomic Medicine Sweden (GMS), a national infrastructure for the implementation of precision medicine across the country. To achieve this, Genomic Medicine Centres have been established to provide regionally distributed genomic services, and a national informatics infrastructure has been built to allow secure data handling and sharing. GMS has a broad scope focusing on rare diseases, cancer, pharmacogenomics, infectious diseases and complex diseases, while also providing expertise in informatics, ethical and legal issues, health economy, industry collaboration and education. In this review, we summarise our experience in building a national infrastructure for precision medicine. We also provide key examples how precision medicine already has been successfully implemented within our focus areas. Finally, we bring up challenges and opportunities associated with precision medicine implementation, the importance of international collaboration, as well as the future perspective in the field of precision medicine.
Collapse
Affiliation(s)
- Anders Edsjö
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - David Gisselsson
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Paula Mölling
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Mikaela Friedman
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| | - Maria Johansson
- Lund University Collaboration Office, Lund University, Lund, Sweden
| | - Hans Ehrencrona
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Tobias Strid
- Department of Clinical Pathology, Biological and Clinical Sciences, Linköping University, Linköping, Sweden
- Clinical Genomics Linköping, Linköping University, Linköping, Sweden
| | - Lovisa Lovmar
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Solna, Sweden
| | - Craig E. Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Per Sikora
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Clinical Genomics Gothenburg, Science for Life Laboratory, University of Gothenburg, Gothenburg, Sweden
- Bioinformatics Data Center, Core Facilities, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Valtteri Wirta
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Clinical Genomics Stockholm, Science Life Laboratory, Karolinska Institutet, Solna, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Clinical Genomics Stockholm, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
- Genomic Medicine Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|