1
|
Wang JH, Zhan W, Gallagher TL, Gao G. Recombinant adeno-associated virus as a delivery platform for ocular gene therapy: A comprehensive review. Mol Ther 2024; 32:4185-4207. [PMID: 39489915 PMCID: PMC11638839 DOI: 10.1016/j.ymthe.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Adeno-associated virus (AAV) has emerged as a leading platform for in vivo gene therapy, particularly in ocular diseases. AAV-based therapies are characterized by low pathogenicity and broad tissue tropism and have demonstrated clinical success, as exemplified by voretigene neparvovec-rzyl (Luxturna) being the first gene therapy to be approved by the U.S. Food and Drug Administration to treat RPE65-associated Leber congenital amaurosis (LCA). However, several challenges remain in the development of AAV-based gene therapies, including immune responses, limited cargo capacity, and the need for enhanced transduction efficiency, especially for intravitreal delivery to photoreceptors and retinal pigment epithelium cells. This review explores the biology of AAVs in the context of gene therapy, innovations in capsid engineering, and clinical advancements in AAV-based ocular gene therapy. We highlight ongoing clinical trials targeting inherited retinal diseases and acquired conditions, discuss immune-related limitations, and examine novel strategies for enhancing AAV vector performance to address current barriers.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Wei Zhan
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Thomas L Gallagher
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
2
|
Liu D, Li T, Liu L, Che X, Li X, Liu C, Wu G. Adeno-associated virus therapies: Pioneering solutions for human genetic diseases. Cytokine Growth Factor Rev 2024; 80:109-120. [PMID: 39322487 DOI: 10.1016/j.cytogfr.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
Adeno-associated virus (AAV) has emerged as a fundamental component in the gene therapy landscape, widely acknowledged for its effectiveness in therapeutic gene delivery. The success of AAV-based therapies, such as Luxturna and Zolgensma, underscores their potential as a leading vector in gene therapy. This article provides an in-depth review of the development and mechanisms of AAV vector-based therapies, offering a comprehensive analysis of the latest clinical trial outcomes in central nervous system (CNS) diseases, ocular conditions, and hemophilia, where AAV therapies have shown promising results. Additionally, we discusse the selection of administration methods and serotypes tailored to specific diseases. Our objective is to showcase the innovative applications and future potential of AAV-based gene therapy, laying the groundwork for continued clinical advancements.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Lei Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaorui Li
- Department of oncology, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China.
| | - Chang Liu
- Department of thoracic surgery, Shenyang Tenth People's Hospital, Shenyang 110042, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
3
|
Poli FE, MacLaren RE, Cehajic-Kapetanovic J. Retinal Patterns and the Role of Autofluorescence in Choroideremia. Genes (Basel) 2024; 15:1471. [PMID: 39596671 PMCID: PMC11593989 DOI: 10.3390/genes15111471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Choroideremia is a monogenic inherited retinal dystrophy that manifests in males with night blindness, progressive loss of peripheral vision, and ultimately profound sight loss, commonly by middle age. It is caused by genetic defects of the CHM gene, which result in a deficiency in Rab-escort protein-1, a key element for intracellular trafficking of vesicles, including those carrying melanin. As choroideremia primarily affects the retinal pigment epithelium, fundus autofluorescence, which focuses on the fluorescent properties of pigments within the retina, is an established imaging modality used for the assessment and monitoring of affected patients. METHODS AND RESULTS In this manuscript, we demonstrate the use of both short-wavelength blue and near-infrared autofluorescence and how these imaging modalities reveal distinct disease patterns in choroideremia. In addition, we show how these structural measurements relate to retinal functional measures, namely microperimetry, and discuss the potential role of these retinal imaging modalities in clinical practice and research studies. Moreover, we discuss the mechanisms underlying retinal autofluorescence patterns by imaging with a particular focus on melanin pigment. CONCLUSIONS This could be of particular significance given the current progress in therapeutic options, including gene replacement therapy.
Collapse
Affiliation(s)
- Federica E. Poli
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Royal Berkshire NHS Foundation Trust, Reading RG1 5AN, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
4
|
Josan AS, Taylor LJ, Xue K, Cehajic-Kapetanovic J, MacLaren RE. Ranked Importance of Visual Function Outcome Measures in Choroideremia Clinical Trials. Invest Ophthalmol Vis Sci 2024; 65:58. [PMID: 39601638 PMCID: PMC11605660 DOI: 10.1167/iovs.65.13.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Purpose Clinical trials of novel therapies for choroideremia require robust and clinically meaningful visual function outcome measures. Best-corrected visual acuity (BCVA) is mostly insensitive to changes in disease state, until late stages, and hence also to potential therapeutic gains after gene therapies. While the insensitivity of BCVA as an effective outcome measure is common wisdom, its low importance has not been rigorously demonstrated in the literature. This work uses statistical techniques to rank the relative importance of potential functional outcome measures in choroideremia. Methods Retrospective dominance analysis was performed on data from a longitudinal interventional clinical trial performed at the Oxford Eye Hospital. Functional data from the untreated eye were analyzed and correlated with an anatomic measure of disease progression in the form of blue fundus autofluorescence area of the surviving outer retinal island. Each functional measure was then ranked in terms of variable importance. Results Microperimetry was the functional measure ranking first in terms of variable importance, followed by time since baseline visit, Pelli-Robson contrast sensitivity, high spatial frequency contrast sensitivity function, and low luminance visual acuity. Early Treatment Diabetic Screening chart BCVA under standard lighting conditions was ranked lowest among the panel of test modalities. Conclusions Clinical trials in choroideremia for early and mid-stage disease would be justified in moving away from using standard BCVA as a clinical trial outcome measure as we have shown its sensitivity to be relatively low compared to microperimetry. We have also demonstrated how functional measures rank in terms of importance.
Collapse
Affiliation(s)
- Amandeep Singh Josan
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford & NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Laura Jayne Taylor
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford & NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford & NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford & NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Robert Edward MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford & NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
5
|
Shamsnajafabadi H, Soheili ZS, Sadeghi M, Samiee S, Ghasemi P, Zibaii MI, Gholami Pourbadie H, Ahmadieh H, Ranaei Pirmardan E, Salehi N, Samiee D, Kashanian A. Engineered red Opto-mGluR6 Opsins, a red-shifted optogenetic excitation tool, an in vitro study. PLoS One 2024; 19:e0311102. [PMID: 39446870 PMCID: PMC11500960 DOI: 10.1371/journal.pone.0311102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/12/2024] [Indexed: 10/26/2024] Open
Abstract
Degenerative eye diseases cause partial or complete blindness due to photoreceptor degeneration. Optogenetic gene therapy is a revolutionary technique combining genetics and optical methods to control the function of neurons. Due to the inherent risk of photochemical damage, the light intensity necessary to activate Opto-mGluR6 surpasses the safe threshold for retinal illumination. Conversely, red-shifted lights pose a significantly lower risk of inducing such damage compared to blue lights. We designed red-shifted Opto-mGluR6 photopigments with a wide, red-shifted working spectrum compared to Opto-mGluR6 and examined their excitation capability in vitro. ROM19, ROM18 and ROM17, red-shifted variants of Opto-mGluR6, were designed by careful bioinformatics/computational studies. The predicted molecules with the best scores were selected, synthesised and cloned into the pAAV-CMV-IRES-EGFP vector. Expression of constructs was confirmed by functional assessment in engineered HEK-GIRK cells. Spectrophotometry and patch clamp experiments demonstrated that the candidate molecules were sensitive to the desired wavelengths of the light and directly coupled light stimuli to G-protein signalling. Herein, we introduce ROM17, ROM18 and ROM19 as newly generated, red-shifted variants with maximum excitation red-shifted of ~ 40nm, 70 nm and 126 nm compared to Opto-mGluR6.
Collapse
Affiliation(s)
- Hoda Shamsnajafabadi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mehdi Sadeghi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Shahram Samiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Pouria Ghasemi
- Laser & Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | | | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Ranaei Pirmardan
- Molecular Biomarkers Nano-imaging Laboratory, Brigham & Women’s Hospital, Department of Radiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Najmeh Salehi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Dorsa Samiee
- Department of Computer Science, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Ali Kashanian
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
6
|
Igoe JM, Lam BL, Gregori NZ. Update on Clinical Trial Endpoints in Gene Therapy Trials for Inherited Retinal Diseases. J Clin Med 2024; 13:5512. [PMID: 39336999 PMCID: PMC11431936 DOI: 10.3390/jcm13185512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Inherited retinal diseases (IRDs) encompass a wide spectrum of rare conditions characterized by diverse phenotypes associated with hundreds of genetic variations, often leading to progressive visual impairment and profound vision loss. Multiple natural history studies and clinical trials exploring gene therapy for various IRDs are ongoing. Outcomes for ophthalmic trials measure visual changes in three main categories-structural, functional, and patient-focused outcomes. Since IRDs may range from congenital with poor central vision from birth to affecting the peripheral retina initially and progressing insidiously with visual acuity affected late in the disease course, typical outcome measures such as central visual acuity and ocular coherence tomography (OCT) imaging of the macula may not provide adequate representation of therapeutic outcomes including alterations in disease course. Thus, alternative unique outcome measures are necessary to assess loss of peripheral vision, color vision, night vision, and contrast sensitivity in IRDs. These differences have complicated the assessment of clinical outcomes for IRD therapies, and the clinical trials for IRDs have had to design novel specialized endpoints to demonstrate treatment efficacy. As genetic engineering and gene therapy techniques continue to advance with growing investment from industry and accelerated approval tracks for orphan conditions, the clinical trials must continue to improve their assessments to demonstrate safety and efficacy of new gene therapies that aim to come to market. Here, we will provide an overview of the current gene therapy approaches, review various endpoints for measuring visual function, highlight those that are utilized in recent gene therapy trials, and provide an overview of stage 2 and 3 IRD trials through the second quarter of 2024.
Collapse
Affiliation(s)
- Jane M Igoe
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Byron L Lam
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ninel Z Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Miami Veterans Administration Medical Center, Miami, FL 33125, USA
| |
Collapse
|
7
|
Leroy BP, Daly A, Héon E, Sahel JA, Dollfus H. Therapies for Inherited Retinal Dystrophies: What is Enough? Drug Discov Today 2024; 29:104095. [PMID: 38992419 DOI: 10.1016/j.drudis.2024.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital & Department of Head & Skin, Ghent University, ERN-EYE, Ghent, Belgium; Division of Ophthalmology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Elise Héon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - José-Alain Sahel
- CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, ERN-EYE and Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France; Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hélène Dollfus
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique (CRMR CARGO), Institut de Génétique Médicale d'Alsace (IGMA), FSMR SENSGENE, ERN-EYE, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, UMRS_1112, Strasbourg, France.
| |
Collapse
|
8
|
Ng BW, Kaukonen MK, McClements ME, Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Genetic therapies and potential therapeutic applications of CRISPR activators in the eye. Prog Retin Eye Res 2024; 102:101289. [PMID: 39127142 DOI: 10.1016/j.preteyeres.2024.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Conventional gene therapy involving supplementation only treats loss-of-function diseases and is limited by viral packaging sizes, precluding therapy of large genes. The discovery of CRISPR/Cas has led to a paradigm shift in the field of genetic therapy, with the promise of precise gene editing, thus broadening the range of diseases that can be treated. The initial uses of CRISPR/Cas have focused mainly on gene editing or silencing of abnormal variants via utilising Cas endonuclease to trigger the target cell endogenous non-homologous end joining. Subsequently, the technology has evolved to modify the Cas enzyme and even its guide RNA, leading to more efficient editing tools in the form of base and prime editing. Further advancements of this CRISPR/Cas technology itself have expanded its functional repertoire from targeted editing to programmable transactivation, shifting the therapeutic focus to precise endogenous gene activation or upregulation with the potential for epigenetic modifications. In vivo experiments using this platform have demonstrated the potential of CRISPR-activators (CRISPRa) to treat various loss-of-function diseases, as well as in regenerative medicine, highlighting their versatility to overcome limitations associated with conventional strategies. This review summarises the molecular mechanisms of CRISPRa platforms, the current applications of this technology in vivo, and discusses potential solutions to translational hurdles for this therapy, with a focus on ophthalmic diseases.
Collapse
Affiliation(s)
- Benjamin Wj Ng
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria K Kaukonen
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK.
| |
Collapse
|
9
|
McClements ME, Elsayed MEAA, Major L, de la Camara CMF, MacLaren RE. Gene Therapies in Clinical Development to Treat Retinal Disorders. Mol Diagn Ther 2024; 28:575-591. [PMID: 38955952 PMCID: PMC11349810 DOI: 10.1007/s40291-024-00722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Gene therapies have emerged as promising treatments in clinical development for various retinal disorders, offering hope to patients with inherited degenerative eye conditions. Several gene therapies have already shown remarkable success in clinical trials, with significant improvements observed in visual acuity and the preservation of retinal function. A multitude of gene therapies have now been delivered safely in human clinical trials for a wide range of inherited retinal disorders but there are some gaps in the reported trial data. Some of the most exciting treatment options are not under peer review and information is only available in press release form. Whilst many trials appear to have delivered good outcomes of safety, others have failed to meet primary endpoints and therefore not proceeded to phase III. Despite this, such trials have enabled researchers to learn how best to assess and monitor patient outcomes, which will guide future trials to greater success. In this review, we consider recent and ongoing clinical trials for a variety of potential retinal gene therapy treatments and discuss the positive and negative issues related to these trials. We discuss the treatment potential following clinical trials as well as the potential risks of some treatments under investigation. As these therapies continue to advance through rigorous testing and regulatory approval processes, they hold the potential to revolutionise the landscape of retinal disorder treatments, providing renewed vision and enhancing the quality of life for countless individuals worldwide.
Collapse
Affiliation(s)
- Michelle E McClements
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Wellington Square, Oxford, OX1 2JD, UK.
- Oxford University Hospital NIHR Biomedical Research Centre, Oxford, UK.
| | - Maram E A Abdalla Elsayed
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Wellington Square, Oxford, OX1 2JD, UK
- Oxford University Hospital NIHR Biomedical Research Centre, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Lauren Major
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Wellington Square, Oxford, OX1 2JD, UK
- Oxford University Hospital NIHR Biomedical Research Centre, Oxford, UK
| | - Cristina Martinez-Fernandez de la Camara
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Wellington Square, Oxford, OX1 2JD, UK
- Oxford University Hospital NIHR Biomedical Research Centre, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Wellington Square, Oxford, OX1 2JD, UK
- Oxford University Hospital NIHR Biomedical Research Centre, Oxford, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
10
|
MacLaren RE, Audo I, Fischer MD, Huckfeldt RM, Lam BL, Pennesi ME, Sisk R, Gow JA, Li J, Zhu K, Tsang SF. An Open-Label Phase II Study Assessing the Safety of Bilateral, Sequential Administration of Retinal Gene Therapy in Participants with Choroideremia: The GEMINI Study. Hum Gene Ther 2024; 35:564-575. [PMID: 38970425 DOI: 10.1089/hum.2024.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024] Open
Abstract
Choroideremia, an incurable, progressive retinal degeneration primarily affecting young men, leads to sight loss. GEMINI was a multicenter, open-label, prospective, two-period, interventional Phase II study assessing the safety of bilateral sequential administration of timrepigene emparvovec, a gene therapy, in adult males with genetically confirmed choroideremia (NCT03507686, ClinicalTrials.gov). Timrepigene emparvovec is an adeno-associated virus serotype 2 vector encoding the cDNA of Rab escort protein 1, augmented by a downstream woodchuck hepatitis virus post-transcriptional regulatory element. Up to 0.1 mL of timrepigene emparvovec, containing 1 × 1011 vector genomes, was administered by subretinal injection following vitrectomy and retinal detachment. The second eye was treated after an intrasurgery window of <6, 6-12, or >12 months. Each eye was followed at up to nine visits over 12 months. Overall, 66 participants received timrepigene emparvovec, and 53 completed the study. Visual acuity (VA) was generally maintained in both eyes, independent of intrasurgery window duration, even after bilateral retinal detachment and subretinal injection. Bilateral treatment was well tolerated, with predominantly mild or moderate treatment-emergent adverse events (TEAEs) and a low rate of serious surgical complications (7.6%). Retinal inflammation TEAEs were reported in 45.5% of participants, with similar rates in both eyes; post hoc analyses found that these were not associated with clinically significant vision loss at month 12 versus baseline. Two participants (3.0%) reported serious noninfective retinitis. Prior timrepigene emparvovec exposure did not increase the risk of serious TEAEs or serious ocular TEAEs upon injection of the second eye; furthermore, no systemic immune reaction or inoculation effect was observed. Presence of antivector neutralizing antibodies at baseline was potentially associated with a higher percentage of TEAEs related to ocular inflammation or reduced VA after injection of the first eye. The GEMINI study results may inform decisions regarding bilateral sequential administration of other gene therapies for retinal diseases.
Collapse
Affiliation(s)
- Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, Paris, France
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Rachel M Huckfeldt
- MEE Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert Sisk
- Cincinnati Eye Institute, Blue Ash, Ohio, USA
| | | | - Jiang Li
- Biogen Inc., Cambridge, Massachusetts, USA
| | - Kan Zhu
- Biogen Inc., Cambridge, Massachusetts, USA
| | | |
Collapse
|
11
|
Cerolini S, Bennett J, Leroy BP, Durham T, Coates C, Pletcher MT, Lacey S, Aleman TS. Report From the Second Global Scientific Conference on Clinical Trial Design and Outcome Measures for RDH12-Associated Inherited Retinal Degeneration. Transl Vis Sci Technol 2024; 13:17. [PMID: 39120885 PMCID: PMC11318357 DOI: 10.1167/tvst.13.8.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/22/2024] [Indexed: 08/10/2024] Open
Abstract
Translational Relevance A multi-stakeholder, patient centric approach will be critical to the design of future successful clinical trials with outcome measures relevant to the RDH12-IRD population.
Collapse
Affiliation(s)
| | - Jean Bennett
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bart P. Leroy
- Department of Ophthalmology and Center for Medical Genetics, Ghent University Hospital and Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Todd Durham
- Foundation Fighting Blindness, Columbia, MD, USA
| | | | | | - Sue Lacey
- Astraea Medical Consulting, Hindhead, UK
| | - Tomas S. Aleman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Ashok S, Ramachandra Rao S. Updates on protein-prenylation and associated inherited retinopathies. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1410874. [PMID: 39026984 PMCID: PMC11254824 DOI: 10.3389/fopht.2024.1410874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Membrane-anchored proteins play critical roles in cell signaling, cellular architecture, and membrane biology. Hydrophilic proteins are post-translationally modified by a diverse range of lipid molecules such as phospholipids, glycosylphosphatidylinositol, and isoprenes, which allows their partition and anchorage to the cell membrane. In this review article, we discuss the biochemical basis of isoprenoid synthesis, the mechanisms of isoprene conjugation to proteins, and the functions of prenylated proteins in the neural retina. Recent discovery of novel prenyltransferases, prenylated protein chaperones, non-canonical prenylation-target motifs, and reversible prenylation is expected to increase the number of inherited systemic and blinding diseases with aberrant protein prenylation. Recent important investigations have also demonstrated the role of several unexpected regulators (such as protein charge, sequence/protein-chaperone interaction, light exposure history) in the photoreceptor trafficking of prenylated proteins. Technical advances in the investigation of the prenylated proteome and its application in vision research are discussed. Clinical updates and technical insights into known and putative prenylation-associated retinopathies are provided herein. Characterization of non-canonical prenylation mechanisms in the retina and retina-specific prenylated proteome is fundamental to the understanding of the pathogenesis of protein prenylation-associated inherited blinding disorders.
Collapse
Affiliation(s)
- Sudhat Ashok
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
| | - Sriganesh Ramachandra Rao
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
- Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, State University of New York, University at Buffalo, Buffalo, NY, United States
- Research Service, VA Western New York Healthcare System, Buffalo, NY, United States
| |
Collapse
|
13
|
Maclaren RE, Lam BL, Fischer MD, Holz FG, Pennesi ME, Birch DG, Sankila EM, Meunier IA, Stepien KE, Sallum JMF, Li J, Yoon D, Panda S, Gow JA. A Prospective, Observational, Non-interventional Clinical Study of Participants With Choroideremia: The NIGHT Study. Am J Ophthalmol 2024; 263:35-49. [PMID: 38311152 DOI: 10.1016/j.ajo.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE The NIGHT study aimed to assess the natural history of choroideremia (CHM), an X-linked inherited chorioretinal degenerative disease leading to blindness, and determine which outcomes would be the most sensitive for monitoring disease progression. DESIGN A prospective, observational, multicenter cohort study. METHODS Males aged ≥18 years with genetically confirmed CHM, visible active disease within the macular region, and best-corrected visual acuity (BCVA) ≥34 Early Treatment Diabetic Retinopathy Study (ETDRS) letters at baseline were assessed for 20 months. The primary outcome was the change in BCVA over time at Months 4, 8, 12, 16, and 20. A range of functional and anatomical secondary outcome measures were assessed up to Month 12, including retinal sensitivity, central ellipsoid zone (EZ) area, and total area of fundus autofluorescence (FAF). Additional ocular assessments for safety were performed. RESULTS A total of 220 participants completed the study. The mean BCVA was stable over 20 months. Most participants (81.4% in the worse eye and 77.8% in the better eye) had change from baseline > -5 ETDRS letters at Month 20. Interocular symmetry was low overall. Reductions from baseline to Month 12 were observed (worse eye, better eye) for retinal sensitivity (functional outcome; -0.68 dB, -0.48 dB), central EZ area (anatomical outcome; -0.276 mm2, -0.290 mm2), and total area of FAF (anatomical outcome; -0.605 mm2, -0.533 mm2). No assessment-related serious adverse events occurred. CONCLUSIONS Retinal sensitivity, central EZ area, and total area of FAF are more sensitive than BCVA in measuring the natural progression of CHM.
Collapse
Affiliation(s)
- Robert E Maclaren
- From the Oxford Eye Hospital (R.E.M.), Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Byron L Lam
- Bascom Palmer Eye Institute (B.L.L.), University of Miami, Miami, Florida, USA
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology (M.D.F.), University Hospital Tübingen, Tübingen, Germany
| | - Frank G Holz
- Department of Ophthalmology (F.-G.H.), University of Bonn, Bonn, Germany
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute (M.E.P.), Oregon Health & Science University, Portland, Oregon, USA
| | - David G Birch
- Retina Foundation of the Southwest (D.G.B.), Dallas, Texas, USA
| | - Eeva-Marja Sankila
- Department of Ophthalmology (E.-M.S.), University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Isabelle Anne Meunier
- National Reference Centre for Inherited Sensory Diseases (I.A.M.), University of Montpellier, Montpellier University Hospital, Montpellier, France
| | - Kimberly E Stepien
- Department of Ophthalmology and Visual Sciences (K.E.S.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Juliana Maria Ferraz Sallum
- Department of Ophthalmology and Visual Sciences (J.M.F.S.), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Jiang Li
- Biogen Inc. (J.L., D.Y., S.P., J.A.G.), Cambridge, Massachusetts, USA
| | - Dan Yoon
- Biogen Inc. (J.L., D.Y., S.P., J.A.G.), Cambridge, Massachusetts, USA
| | - Sushil Panda
- Biogen Inc. (J.L., D.Y., S.P., J.A.G.), Cambridge, Massachusetts, USA
| | - James A Gow
- Biogen Inc. (J.L., D.Y., S.P., J.A.G.), Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Xu P, Cooper RF, Jiang YY, Morgan JIW. Parafoveal cone function in choroideremia assessed with adaptive optics optoretinography. Sci Rep 2024; 14:8339. [PMID: 38594294 PMCID: PMC11004114 DOI: 10.1038/s41598-024-58059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
Choroideremia (CHM) is an X-linked retinal degeneration leading to loss of the photoreceptors, retinal pigment epithelium (RPE), and choroid. Adaptive optics optoretinography is an emerging technique for noninvasive, objective assessment of photoreceptor function. Here, we investigate parafoveal cone function in CHM using adaptive optics optoretinography and compare with cone structure and clinical assessments of vision. Parafoveal cone mosaics of 10 CHM and four normal-sighted participants were imaged with an adaptive optics scanning light ophthalmoscope. While acquiring video sequences, a 2 s 550Δ10 nm, 450 nW/deg2 stimulus was presented. Videos were registered and the intensity of each cone in each frame was extracted, normalized, standardized, and aggregated to generate the population optoretinogram (ORG) over time. A gamma-pdf was fit to the ORG and the peak was extracted as ORG amplitude. CHM ORG amplitudes were compared to normal and were correlated with bound cone density, ellipsoid zone to RPE/Bruch's membrane (EZ-to-RPE/BrM) distance, and foveal sensitivity using Pearson correlation analysis. ORG amplitude was significantly reduced in CHM compared to normal (0.22 ± 0.15 vs. 1.34 ± 0.31). In addition, CHM ORG amplitude was positively correlated with cone density, EZ-to-RPE/BrM distance, and foveal sensitivity. Our results demonstrate promise for using ORG as a biomarker of photoreceptor function.
Collapse
Affiliation(s)
- Peiluo Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Robert F Cooper
- Department of Ophthalmology, Joint Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University and Medical College of Wisconsin, Milwaukee, WI, 53233, USA
| | - Yu You Jiang
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jessica I W Morgan
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
15
|
Corradetti G, Verma A, Tojjar J, Almidani L, Oncel D, Emamverdi M, Bradley A, Lindenberg S, Nittala MG, Sadda SR. Retinal Imaging Findings in Inherited Retinal Diseases. J Clin Med 2024; 13:2079. [PMID: 38610844 PMCID: PMC11012835 DOI: 10.3390/jcm13072079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent one of the major causes of progressive and irreversible vision loss in the working-age population. Over the last few decades, advances in retinal imaging have allowed for an improvement in the phenotypic characterization of this group of diseases and have facilitated phenotype-to-genotype correlation studies. As a result, the number of clinical trials targeting IRDs has steadily increased, and commensurate to this, the need for novel reproducible outcome measures and endpoints has grown. This review aims to summarize and describe the clinical presentation, characteristic imaging findings, and imaging endpoint measures that are being used in clinical research on IRDs. For the purpose of this review, IRDs have been divided into four categories: (1) panretinal pigmentary retinopathies affecting rods or cones; (2) macular dystrophies; (3) stationary conditions; (4) hereditary vitreoretinopathies.
Collapse
Affiliation(s)
- Giulia Corradetti
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Aditya Verma
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Jasaman Tojjar
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Louay Almidani
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deniz Oncel
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60153, USA
| | - Mehdi Emamverdi
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
| | - Alec Bradley
- Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | | | | | - SriniVas R. Sadda
- Doheny Eye Institute, Pasadena, CA 91103, USA (J.T.); (L.A.)
- Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Antas P, Carvalho C, Cabral-Teixeira J, de Lemos L, Seabra MC. Toward low-cost gene therapy: mRNA-based therapeutics for treatment of inherited retinal diseases. Trends Mol Med 2024; 30:136-146. [PMID: 38044158 DOI: 10.1016/j.molmed.2023.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023]
Abstract
Inherited retinal diseases (IRDs) stem from genetic mutations that result in vision impairment. Gene therapy shows promising therapeutic potential, exemplified by the encouraging initial results with voretigene neparvovec. Nevertheless, the associated costs impede widespread access, particularly in low-to-middle income countries. The primary challenge remains: how can we make these therapies globally affordable? Leveraging advancements in mRNA therapies might offer a more economically viable alternative. Furthermore, transitioning to nonviral delivery systems could provide a dual benefit of reduced costs and increased scalability. Relevant stakeholders must collaboratively devise and implement a research agenda to realize the potential of mRNA strategies in equitable access to treatments to prevent vision loss.
Collapse
Affiliation(s)
- Pedro Antas
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal; iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| | - Cláudia Carvalho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | | | - Luísa de Lemos
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Miguel C Seabra
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal; iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| |
Collapse
|
17
|
Toualbi L, Toms M, Almeida PV, Harbottle R, Moosajee M. Gene Augmentation of CHM Using Non-Viral Episomal Vectors in Models of Choroideremia. Int J Mol Sci 2023; 24:15225. [PMID: 37894906 PMCID: PMC10607001 DOI: 10.3390/ijms242015225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Choroideremia (CHM) is an X-linked chorioretinal dystrophy leading to progressive retinal degeneration that results in blindness by late adulthood. It is caused by mutations in the CHM gene encoding the Rab Escort Protein 1 (REP1), which plays a crucial role in the prenylation of Rab proteins ensuring correct intracellular trafficking. Gene augmentation is a promising therapeutic strategy, and there are several completed and ongoing clinical trials for treating CHM using adeno-associated virus (AAV) vectors. However, late-phase trials have failed to show significant functional improvements and have raised safety concerns about inflammatory events potentially caused by the use of viruses. Therefore, alternative non-viral therapies are desirable. Episomal scaffold/matrix attachment region (S/MAR)-based plasmid vectors were generated containing the human CHM coding sequence, a GFP reporter gene, and ubiquitous promoters (pS/MAR-CHM). The vectors were assessed in two choroideremia disease model systems: (1) CHM patient-derived fibroblasts and (2) chmru848 zebrafish, using Western blotting to detect REP1 protein expression and in vitro prenylation assays to assess the rescue of prenylation function. Retinal immunohistochemistry was used to investigate vector expression and photoreceptor morphology in injected zebrafish retinas. The pS/MAR-CHM vectors generated persistent REP1 expression in CHM patient fibroblasts and showed a significant rescue of prenylation function by 75%, indicating correction of the underlying biochemical defect associated with CHM. In addition, GFP and human REP1 expression were detected in zebrafish microinjected with the pS/MAR-CHM at the one-cell stage. Injected chmru848 zebrafish showed increased survival, prenylation function, and improved retinal photoreceptor morphology. Non-viral S/MAR vectors show promise as a potential gene-augmentation strategy without the use of immunogenic viral components, which could be applicable to many inherited retinal disease genes.
Collapse
Affiliation(s)
- Lyes Toualbi
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | - Maria Toms
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Richard Harbottle
- cDNA Vector Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (P.V.A.)
| | - Mariya Moosajee
- Development, Ageing and Disease, UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Ocular Genomics and Therapeutics, The Francis Crick Institute, London NW1 1AT, UK
- Department of Genetics, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
| |
Collapse
|