1
|
Gotthard G, Flores-Ibarra A, Carrillo M, Kepa MW, Mason TJ, Stegmann DP, Olasz B, Pachota M, Dworkowski F, Ozerov D, Pedrini BF, Padeste C, Beale JH, Nogly P. Fixed-target pump-probe SFX: eliminating the scourge of light contamination. IUCRJ 2024; 11:749-761. [PMID: 38980142 PMCID: PMC11364036 DOI: 10.1107/s2052252524005591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
X-ray free-electron laser (XFEL) light sources have enabled the rapid growth of time-resolved structural experiments, which provide crucial information on the function of macromolecules and their mechanisms. Here, the aim was to commission the SwissMX fixed-target sample-delivery system at the SwissFEL Cristallina experimental station using the PSI-developed micro-structured polymer (MISP) chip for pump-probe time-resolved experiments. To characterize the system, crystals of the light-sensitive protein light-oxygen-voltage domain 1 (LOV1) from Chlamydomonas reinhardtii were used. Using different experimental settings, the accidental illumination, referred to as light contamination, of crystals mounted in wells adjacent to those illuminated by the pump laser was examined. It was crucial to control the light scattering from and through the solid supports otherwise significant contamination occurred. However, the results here show that the opaque MISP chips are suitable for defined pump-probe studies of a light-sensitive protein. The experiment also probed the sub-millisecond structural dynamics of LOV1 and indicated that at Δt = 10 µs a covalent thioether bond is established between reactive Cys57 and its flavin mononucleotide cofactor. This experiment validates the crystals to be suitable for in-depth follow-up studies of this still poorly understood signal-transduction mechanism. Importantly, the fixed-target delivery system also permitted a tenfold reduction in protein sample consumption compared with the more common high-viscosity extrusion-based delivery system. This development creates the prospect of an increase in XFEL project throughput for the field.
Collapse
Affiliation(s)
- Guillaume Gotthard
- Institute of Molecular Biology and BiophysicsETH ZurichRämistrasse 1018092ZürichSwitzerland
- Laboratory of Biomolecular ResearchPaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
- Swiss Light SourcePaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
| | - Andrea Flores-Ibarra
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityGronostajowa 730-380KrakowPoland
| | - Melissa Carrillo
- Laboratory of Nanoscale BiologyPaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
| | - Michal W. Kepa
- Laboratory of Biomolecular ResearchPaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
| | - Thomas J. Mason
- Laboratory of Biomolecular ResearchPaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
- Swiss Light SourcePaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
| | - Dennis P. Stegmann
- Swiss Light SourcePaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
| | - Bence Olasz
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityGronostajowa 730-380KrakowPoland
| | - Magdalena Pachota
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityGronostajowa 730-380KrakowPoland
| | - Florian Dworkowski
- Laboratory for Synchrotron Radiation and FemtochemistryPaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
| | - Dmitry Ozerov
- Science IT Infrastructure and ServicesPaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
| | - Bill F. Pedrini
- Laboratory for X-ray Nanoscience and TechnologiesPaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
| | - Celestino Padeste
- Laboratory of Nanoscale BiologyPaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
| | - John H. Beale
- Swiss Light SourcePaul Scherrer InstitutForschungsstrasse 1115232VilligenSwitzerland
| | - Przemyslaw Nogly
- Institute of Molecular Biology and BiophysicsETH ZurichRämistrasse 1018092ZürichSwitzerland
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityGronostajowa 730-380KrakowPoland
| |
Collapse
|
2
|
Henkel A, Oberthür D. A snapshot love story: what serial crystallography has done and will do for us. Acta Crystallogr D Struct Biol 2024; 80:563-579. [PMID: 38984902 PMCID: PMC11301758 DOI: 10.1107/s2059798324005588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Serial crystallography, born from groundbreaking experiments at the Linac Coherent Light Source in 2009, has evolved into a pivotal technique in structural biology. Initially pioneered at X-ray free-electron laser facilities, it has now expanded to synchrotron-radiation facilities globally, with dedicated experimental stations enhancing its accessibility. This review gives an overview of current developments in serial crystallography, emphasizing recent results in time-resolved crystallography, and discussing challenges and shortcomings.
Collapse
Affiliation(s)
- Alessandra Henkel
- Center for Free-Electron Laser Science CFELDeutsches Elektronen-Synchrotron DESYNotkestr. 8522607HamburgGermany
| | - Dominik Oberthür
- Center for Free-Electron Laser Science CFELDeutsches Elektronen-Synchrotron DESYNotkestr. 8522607HamburgGermany
| |
Collapse
|
3
|
Vallejos A, Katona G, Neutze R. Appraising protein conformational changes by resampling time-resolved serial x-ray crystallography data. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:044302. [PMID: 39056073 PMCID: PMC11272219 DOI: 10.1063/4.0000258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
With the development of serial crystallography at both x-ray free electron laser and synchrotron radiation sources, time-resolved x-ray crystallography is increasingly being applied to study conformational changes in macromolecules. A successful time-resolved serial crystallography study requires the growth of microcrystals, a mechanism for synchronized and homogeneous excitation of the reaction of interest within microcrystals, and tools for structural interpretation. Here, we utilize time-resolved serial femtosecond crystallography data collected from microcrystals of bacteriorhodopsin to compare results from partial occupancy structural refinement and refinement against extrapolated data. We illustrate the domain wherein the amplitude of refined conformational changes is inversely proportional to the activated state occupancy. We illustrate how resampling strategies allow coordinate uncertainty to be estimated and demonstrate that these two approaches to structural refinement agree within coordinate errors. We illustrate how singular value decomposition of a set of difference Fourier electron density maps calculated from resampled data can minimize phase bias in these maps, and we quantify residual densities for transient water molecules by analyzing difference Fourier and Polder omit maps from resampled data. We suggest that these tools may assist others in judging the confidence with which observed electron density differences may be interpreted as functionally important conformational changes.
Collapse
Affiliation(s)
- Adams Vallejos
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| |
Collapse
|
4
|
Cai M, Sun S, Bao J. Synchrotron Radiation Based X-ray Absorption Spectroscopy: Fundamentals and Applications in Photocatalysis. Chemphyschem 2024; 25:e202300939. [PMID: 38374799 DOI: 10.1002/cphc.202300939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Photocatalysis is one of the most promising green technologies to utilize solar energy for clean energy achievement and environmental governance. There is a knotty problem to rational designing high-performance photocatalyst, which largely depends on an in-depth insight into their structure-activity relationships and complex photocatalytic reaction mechanisms. Synchrotron radiation based X-ray absorption spectroscopy (XAS) is an important characterization method for photocatlayst to offer the element-specific key geometric and electronic structural information at the atomic level, on this basis, time-resolved XAS technique has a huge impact on mechanistic understanding of photochemical reaction owing to their powerful ability to probe, in real-time, the electronic and geometric structures evolution within photocatalysis reactions. This review will focus on the fundamentals of XAS and their applications in photocatalysis. The detailed applications obtained from XAS is described through the following aspects: 1) identifying local structure of photocatalyst; 2) uncovering in situ structure and chemical state evolution during photocatalysis; 3) revealing the photoexcited process. We will provide an in depth understanding on how the XAS method can guide the rational design of highly efficient photocatalyst. Finally, a systematic summary of XAS and related significance is made and the research perspectives are suggested.
Collapse
Affiliation(s)
- Mengdie Cai
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Song Sun
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Jun Bao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| |
Collapse
|
5
|
Chretien A, Nagel MF, Botha S, de Wijn R, Brings L, Dörner K, Han H, Koliyadu JCP, Letrun R, Round A, Sato T, Schmidt C, Secareanu RC, von Stetten D, Vakili M, Wrona A, Bean R, Mancuso A, Schulz J, Pearson AR, Kottke T, Lorenzen K, Schubert R. Light-induced Trp in/Met out Switching During BLUF Domain Activation in ATP-bound Photoactivatable Adenylate Cyclase OaPAC. J Mol Biol 2024; 436:168439. [PMID: 38185322 DOI: 10.1016/j.jmb.2024.168439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/28/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
The understanding of signal transduction mechanisms in photoreceptor proteins is essential for elucidating how living organisms respond to light as environmental stimuli. In this study, we investigated the ATP binding, photoactivation and signal transduction process in the photoactivatable adenylate cyclase from Oscillatoria acuminata (OaPAC) upon blue light excitation. Structural models with ATP bound in the active site of native OaPAC at cryogenic as well as room temperature are presented. ATP is found in one conformation at cryogenic- and in two conformations at ambient-temperature, and is bound in an energetically unfavorable conformation for the conversion to cAMP. However, FTIR spectroscopic experiments confirm that this conformation is the native binding mode in dark state OaPAC and that transition to a productive conformation for ATP turnover only occurs after light activation. A combination of time-resolved crystallography experiments at synchrotron and X-ray Free Electron Lasers sheds light on the early events around the Flavin Adenine Dinucleotide (FAD) chromophore in the light-sensitive BLUF domain of OaPAC. Early changes involve the highly conserved amino acids Tyr6, Gln48 and Met92. Crucially, the Gln48 side chain performs a 180° rotation during activation, leading to the stabilization of the FAD chromophore. Cryo-trapping experiments allowed us to investigate a late light-activated state of the reaction and revealed significant conformational changes in the BLUF domain around the FAD chromophore. In particular, a Trpin/Metout transition upon illumination is observed for the first time in the BLUF domain and its role in signal transmission via α-helix 3 and 4 in the linker region between sensor and effector domain is discussed.
Collapse
Affiliation(s)
- Anaïs Chretien
- European XFEL GmbH, Schenefeld, Germany; Department of Chemistry, Universität Hamburg, Hamburg, Germany
| | - Marius F Nagel
- Department of Chemistry and Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Sabine Botha
- Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA; Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA
| | | | | | | | | | | | | | | | | | | | | | - David von Stetten
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | | | | | | | | | | | - Arwen R Pearson
- Institute for Nanostructure and Solid-State Physics, Universität Hamburg, Hamburg, Germany
| | - Tilman Kottke
- Department of Chemistry and Medical School OWL, Bielefeld University, Bielefeld, Germany
| | | | | |
Collapse
|
6
|
Barends TRM, Gorel A, Bhattacharyya S, Schirò G, Bacellar C, Cirelli C, Colletier JP, Foucar L, Grünbein ML, Hartmann E, Hilpert M, Holton JM, Johnson PJM, Kloos M, Knopp G, Marekha B, Nass K, Nass Kovacs G, Ozerov D, Stricker M, Weik M, Doak RB, Shoeman RL, Milne CJ, Huix-Rotllant M, Cammarata M, Schlichting I. Influence of pump laser fluence on ultrafast myoglobin structural dynamics. Nature 2024; 626:905-911. [PMID: 38355794 PMCID: PMC10881388 DOI: 10.1038/s41586-024-07032-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
High-intensity femtosecond pulses from an X-ray free-electron laser enable pump-probe experiments for the investigation of electronic and nuclear changes during light-induced reactions. On timescales ranging from femtoseconds to milliseconds and for a variety of biological systems, time-resolved serial femtosecond crystallography (TR-SFX) has provided detailed structural data for light-induced isomerization, breakage or formation of chemical bonds and electron transfer1,2. However, all ultrafast TR-SFX studies to date have employed such high pump laser energies that nominally several photons were absorbed per chromophore3-17. As multiphoton absorption may force the protein response into non-physiological pathways, it is of great concern18,19 whether this experimental approach20 allows valid conclusions to be drawn vis-à-vis biologically relevant single-photon-induced reactions18,19. Here we describe ultrafast pump-probe SFX experiments on the photodissociation of carboxymyoglobin, showing that different pump laser fluences yield markedly different results. In particular, the dynamics of structural changes and observed indicators of the mechanistically important coherent oscillations of the Fe-CO bond distance (predicted by recent quantum wavepacket dynamics21) are seen to depend strongly on pump laser energy, in line with quantum chemical analysis. Our results confirm both the feasibility and necessity of performing ultrafast TR-SFX pump-probe experiments in the linear photoexcitation regime. We consider this to be a starting point for reassessing both the design and the interpretation of ultrafast TR-SFX pump-probe experiments20 such that mechanistically relevant insight emerges.
Collapse
Affiliation(s)
| | - Alexander Gorel
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | - Giorgio Schirò
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | | | | | | | - Lutz Foucar
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | - Mario Hilpert
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - James M Holton
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | | | - Bogdan Marekha
- ENSL, CNRS, Laboratoire de Chimie UMR 5182, Lyon, France
| | - Karol Nass
- Paul Scherrer Institute, Villigen, Switzerland
| | | | | | | | - Martin Weik
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - R Bruce Doak
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Caramello N, Royant A. From femtoseconds to minutes: time-resolved macromolecular crystallography at XFELs and synchrotrons. Acta Crystallogr D Struct Biol 2024; 80:60-79. [PMID: 38265875 PMCID: PMC10836399 DOI: 10.1107/s2059798323011002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Over the last decade, the development of time-resolved serial crystallography (TR-SX) at X-ray free-electron lasers (XFELs) and synchrotrons has allowed researchers to study phenomena occurring in proteins on the femtosecond-to-minute timescale, taking advantage of many technical and methodological breakthroughs. Protein crystals of various sizes are presented to the X-ray beam in either a static or a moving medium. Photoactive proteins were naturally the initial systems to be studied in TR-SX experiments using pump-probe schemes, where the pump is a pulse of visible light. Other reaction initiations through small-molecule diffusion are gaining momentum. Here, selected examples of XFEL and synchrotron time-resolved crystallography studies will be used to highlight the specificities of the various instruments and methods with respect to time resolution, and are compared with cryo-trapping studies.
Collapse
Affiliation(s)
- Nicolas Caramello
- Structural Biology Group, European Synchrotron Radiation Facility, 1 Avenue des Martyrs, CS 40220, 38043 Grenoble CEDEX 9, France
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Antoine Royant
- Structural Biology Group, European Synchrotron Radiation Facility, 1 Avenue des Martyrs, CS 40220, 38043 Grenoble CEDEX 9, France
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71 Avenue des Martyrs, CS 10090, 38044 Grenoble CEDEX 9, France
| |
Collapse
|
8
|
Maestre-Reyna M, Wang PH, Nango E, Hosokawa Y, Saft M, Furrer A, Yang CH, Gusti Ngurah Putu EP, Wu WJ, Emmerich HJ, Caramello N, Franz-Badur S, Yang C, Engilberge S, Wranik M, Glover HL, Weinert T, Wu HY, Lee CC, Huang WC, Huang KF, Chang YK, Liao JH, Weng JH, Gad W, Chang CW, Pang AH, Yang KC, Lin WT, Chang YC, Gashi D, Beale E, Ozerov D, Nass K, Knopp G, Johnson PJM, Cirelli C, Milne C, Bacellar C, Sugahara M, Owada S, Joti Y, Yamashita A, Tanaka R, Tanaka T, Luo F, Tono K, Zarzycka W, Müller P, Alahmad MA, Bezold F, Fuchs V, Gnau P, Kiontke S, Korf L, Reithofer V, Rosner CJ, Seiler EM, Watad M, Werel L, Spadaccini R, Yamamoto J, Iwata S, Zhong D, Standfuss J, Royant A, Bessho Y, Essen LO, Tsai MD. Visualizing the DNA repair process by a photolyase at atomic resolution. Science 2023; 382:eadd7795. [PMID: 38033054 DOI: 10.1126/science.add7795] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
Photolyases, a ubiquitous class of flavoproteins, use blue light to repair DNA photolesions. In this work, we determined the structural mechanism of the photolyase-catalyzed repair of a cyclobutane pyrimidine dimer (CPD) lesion using time-resolved serial femtosecond crystallography (TR-SFX). We obtained 18 snapshots that show time-dependent changes in four reaction loci. We used these results to create a movie that depicts the repair of CPD lesions in the picosecond-to-nanosecond range, followed by the recovery of the enzymatic moieties involved in catalysis, completing the formation of the fully reduced enzyme-product complex at 500 nanoseconds. Finally, back-flip intermediates of the thymine bases to reanneal the DNA were captured at 25 to 200 microseconds. Our data cover the complete molecular mechanism of a photolyase and, importantly, its chemistry and enzymatic catalysis at work across a wide timescale and at atomic resolution.
Collapse
Affiliation(s)
- Manuel Maestre-Reyna
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
| | - Po-Hsun Wang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yuhei Hosokawa
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Martin Saft
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Antonia Furrer
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | | | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Hans-Joachim Emmerich
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Nicolas Caramello
- European Synchrotron Radiation Facility, 38043 Grenoble, France
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22761 Hamburg, Germany
| | - Sophie Franz-Badur
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Chao Yang
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Sylvain Engilberge
- European Synchrotron Radiation Facility, 38043 Grenoble, France
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38044 Grenoble, France
| | - Maximilian Wranik
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | | | - Tobias Weinert
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Hsiang-Yi Wu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Cheng-Chung Lee
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Wei-Cheng Huang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Yao-Kai Chang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Jui-Hung Weng
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Wael Gad
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Chiung-Wen Chang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Allan H Pang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
| | - Kai-Chun Yang
- Department of Chemistry, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
| | - Wei-Ting Lin
- Department of Chemistry, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
| | - Yu-Chen Chang
- Department of Chemistry, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
| | - Dardan Gashi
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Emma Beale
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Dmitry Ozerov
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Karol Nass
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Gregor Knopp
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Philip J M Johnson
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Claudio Cirelli
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Chris Milne
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Camila Bacellar
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | | | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Ayumi Yamashita
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fangjia Luo
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Wiktoria Zarzycka
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Pavel Müller
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Maisa Alkheder Alahmad
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Filipp Bezold
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Valerie Fuchs
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Petra Gnau
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Stephan Kiontke
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Lukas Korf
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Viktoria Reithofer
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Christian Joshua Rosner
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Elisa Marie Seiler
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Mohamed Watad
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Laura Werel
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Roberta Spadaccini
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
- Dipartimento di Scienze e tecnologie, Universita degli studi del Sannio, Benevento, Italy
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Dongping Zhong
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Center for Ultrafast Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jörg Standfuss
- Paul Scherrer Institute, Forschungstrasse 111, 5232 Villigen PSI, Switzerland
| | - Antoine Royant
- European Synchrotron Radiation Facility, 38043 Grenoble, France
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38044 Grenoble, France
| | - Yoshitaka Bessho
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Lars-Oliver Essen
- Department of Chemistry, Philipps University Marburg, Hans-Meerwein Strasse 4, Marburg 35032, Germany
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Rd. Sec. 2, Nankang, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, 1, Roosevelt Rd. Sec. 4, Taipei 106, Taiwan
| |
Collapse
|
9
|
Vos MH. Filming DNA repair at the atomic level. Science 2023; 382:996-997. [PMID: 38033077 DOI: 10.1126/science.adl3002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Dissection of multistep catalysis by a photoenzyme could inspire green chemistry applications.
Collapse
Affiliation(s)
- Marten H Vos
- Laboratoire d'Optique et Biosciences, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, École Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
10
|
Christou NE, Apostolopoulou V, Melo DVM, Ruppert M, Fadini A, Henkel A, Sprenger J, Oberthuer D, Günther S, Pateras A, Rahmani Mashhour A, Yefanov OM, Galchenkova M, Reinke PYA, Kremling V, Scheer TES, Lange ER, Middendorf P, Schubert R, De Zitter E, Lumbao-Conradson K, Herrmann J, Rahighi S, Kunavar A, Beale EV, Beale JH, Cirelli C, Johnson PJM, Dworkowski F, Ozerov D, Bertrand Q, Wranik M, Bacellar C, Bajt S, Wakatsuki S, Sellberg JA, Huse N, Turk D, Chapman HN, Lane TJ. Time-resolved crystallography captures light-driven DNA repair. Science 2023; 382:1015-1020. [PMID: 38033070 DOI: 10.1126/science.adj4270] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023]
Abstract
Photolyase is an enzyme that uses light to catalyze DNA repair. To capture the reaction intermediates involved in the enzyme's catalytic cycle, we conducted a time-resolved crystallography experiment. We found that photolyase traps the excited state of the active cofactor, flavin adenine dinucleotide (FAD), in a highly bent geometry. This excited state performs electron transfer to damaged DNA, inducing repair. We show that the repair reaction, which involves the lysis of two covalent bonds, occurs through a single-bond intermediate. The transformation of the substrate into product crowds the active site and disrupts hydrogen bonds with the enzyme, resulting in stepwise product release, with the 3' thymine ejected first, followed by the 5' base.
Collapse
Affiliation(s)
- Nina-Eleni Christou
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Virginia Apostolopoulou
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Diogo V M Melo
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Matthias Ruppert
- Institute for Nanostructure and Solid-State Physics, CFEL Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Alisia Fadini
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alessandra Henkel
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Janina Sprenger
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Dominik Oberthuer
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Sebastian Günther
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Anastasios Pateras
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Aida Rahmani Mashhour
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Oleksandr M Yefanov
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Marina Galchenkova
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Patrick Y A Reinke
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Viviane Kremling
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - T Emilie S Scheer
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Esther R Lange
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Philipp Middendorf
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Robin Schubert
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Elke De Zitter
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Koya Lumbao-Conradson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA
| | - Jonathan Herrmann
- Department of Structural Biology, Stanford University, 318 Campus Drive West, Stanford, CA 94305-5151, USA
| | - Simin Rahighi
- Department of Structural Biology, Stanford University, 318 Campus Drive West, Stanford, CA 94305-5151, USA
| | - Ajda Kunavar
- Laboratory for Fluid Dynamics and Thermodynamics, Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
| | - Emma V Beale
- Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - John H Beale
- Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | | | | | | | - Dmitry Ozerov
- Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | | | | | | | - Saša Bajt
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Soichi Wakatsuki
- Department of Structural Biology, Stanford University, 318 Campus Drive West, Stanford, CA 94305-5151, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA 94025, USA
| | - Jonas A Sellberg
- Biomedical and X-ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden
| | - Nils Huse
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Institute for Nanostructure and Solid-State Physics, CFEL Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dušan Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Jamova 39, 1000 Ljubljana, Slovenia
| | - Henry N Chapman
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Thomas J Lane
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
11
|
Carrillo M, Mason TJ, Karpik A, Martiel I, Kepa MW, McAuley KE, Beale JH, Padeste C. Micro-structured polymer fixed targets for serial crystallography at synchrotrons and XFELs. IUCRJ 2023; 10:678-693. [PMID: 37727961 PMCID: PMC10619457 DOI: 10.1107/s2052252523007595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
Fixed targets are a popular form of sample-delivery system used in serial crystallography at synchrotron and X-ray free-electron laser sources. They offer a wide range of sample-preparation options and are generally easy to use. The supports are typically made from silicon, quartz or polymer. Of these, currently, only silicon offers the ability to perform an aperture-aligned data collection where crystals are loaded into cavities in precise locations and sequentially rastered through, in step with the X-ray pulses. The polymer-based fixed targets have lacked the precision fabrication to enable this data-collection strategy and have been limited to directed-raster scans with crystals randomly distributed across the polymer surface. Here, the fabrication and first results from a new polymer-based fixed target, the micro-structured polymer fixed targets (MISP chips), are presented. MISP chips, like those made from silicon, have a precise array of cavities and fiducial markers. They consist of a structured polymer membrane and a stabilization frame. Crystals can be loaded into the cavities and the excess crystallization solution removed through apertures at their base. The fiducial markers allow for a rapid calculation of the aperture locations. The chips have a low X-ray background and, since they are optically transparent, also allow for an a priori analysis of crystal locations. This location mapping could, ultimately, optimize hit rates towards 100%. A black version of the MISP chip was produced to reduce light contamination for optical-pump/X-ray probe experiments. A study of the loading properties of the chips reveals that these types of fixed targets are best optimized for crystals of the order of 25 µm, but quality data can be collected from crystals as small as 5 µm. With the development of these chips, it has been proved that polymer-based fixed targets can be made with the precision required for aperture-alignment-based data-collection strategies. Further work can now be directed towards more cost-effective mass fabrication to make their use more sustainable for serial crystallography facilities and users.
Collapse
Affiliation(s)
- Melissa Carrillo
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
- Swiss Nanoscience Institute, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Thomas J. Mason
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Agnieszka Karpik
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
- Institute of Polymer Nanotechnology (INKA), FHNW University of Applied Sciences and Arts Northwestern Switzerland, School of Engineering, Klosterzelgstrasse 2, 5210 Windisch, Switzerland
| | - Isabelle Martiel
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Michal W. Kepa
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | | | - John H. Beale
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Celestino Padeste
- Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| |
Collapse
|
12
|
Birch J, Kwan TOC, Judge PJ, Axford D, Aller P, Butryn A, Reis RI, Bada Juarez JF, Vinals J, Owen RL, Nango E, Tanaka R, Tono K, Joti Y, Tanaka T, Owada S, Sugahara M, Iwata S, Orville AM, Watts A, Moraes I. A versatile approach to high-density microcrystals in lipidic cubic phase for room-temperature serial crystallography. J Appl Crystallogr 2023; 56:1361-1370. [PMID: 37791355 PMCID: PMC10543674 DOI: 10.1107/s1600576723006428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/24/2023] [Indexed: 10/05/2023] Open
Abstract
Serial crystallography has emerged as an important tool for structural studies of integral membrane proteins. The ability to collect data from micrometre-sized weakly diffracting crystals at room temperature with minimal radiation damage has opened many new opportunities in time-resolved studies and drug discovery. However, the production of integral membrane protein microcrystals in lipidic cubic phase at the desired crystal density and quantity is challenging. This paper introduces VIALS (versatile approach to high-density microcrystals in lipidic cubic phase for serial crystallography), a simple, fast and efficient method for preparing hundreds of microlitres of high-density microcrystals suitable for serial X-ray diffraction experiments at both synchrotron and free-electron laser sources. The method is also of great benefit for rational structure-based drug design as it facilitates in situ crystal soaking and rapid determination of many co-crystal structures. Using the VIALS approach, room-temperature structures are reported of (i) the archaerhodopsin-3 protein in its dark-adapted state and 110 ns photocycle intermediate, determined to 2.2 and 1.7 Å, respectively, and (ii) the human A2A adenosine receptor in complex with two different ligands determined to a resolution of 3.5 Å.
Collapse
Affiliation(s)
- James Birch
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom
| | - Tristan O. C. Kwan
- ChemBio, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Peter J. Judge
- Biochemistry Department, Oxford University, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Pierre Aller
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Agata Butryn
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Rosana I. Reis
- ChemBio, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - Juan F. Bada Juarez
- Biochemistry Department, Oxford University, South Parks Road, Oxford OX1 3QU, United Kingdom
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, Lausanne, CH-1015, Switzerland
| | - Javier Vinals
- Biochemistry Department, Oxford University, South Parks Road, Oxford OX1 3QU, United Kingdom
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Yasumasa Joti
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Michihiro Sugahara
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Allen M. Orville
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0FA, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Anthony Watts
- Biochemistry Department, Oxford University, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Isabel Moraes
- ChemBio, National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| |
Collapse
|
13
|
Besaw JE, Miller RJD. Addressing high excitation conditions in time-resolved X-ray diffraction experiments and issues of biological relevance. Curr Opin Struct Biol 2023; 81:102624. [PMID: 37331203 DOI: 10.1016/j.sbi.2023.102624] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023]
Abstract
One of the most important fundamental questions connecting chemistry to biology is how chemistry scales in complexity up to biological systems where there are innumerable possible pathways and competing processes. With the development of ultrabright electron and x-ray sources, it has been possible to literally light up atomic motions to directly observe the reduction in dimensionality in the barrier crossing region to a few key reaction modes. How do these chemical processes further couple to the surrounding protein or macromolecular assembly to drive biological functions? Optical methods to trigger photoactive biological processes are needed to probe this issue on the relevant timescales. However, the excitation conditions have been in the highly nonlinear regime, which questions the biological relevance of the observed structural dynamics.
Collapse
Affiliation(s)
- Jessica E Besaw
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - R J Dwayne Miller
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
14
|
Shoeman RL, Hartmann E, Schlichting I. Growing and making nano- and microcrystals. Nat Protoc 2023; 18:854-882. [PMID: 36451055 DOI: 10.1038/s41596-022-00777-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 08/22/2022] [Indexed: 12/02/2022]
Abstract
Thanks to recent technological advances in X-ray and micro-electron diffraction and solid-state NMR, structural information can be obtained by using much smaller crystals. Thus, microcrystals have become a valuable commodity rather than a mere stepping stone toward obtaining macroscopic crystals. Microcrystals are particularly useful for structure determination using serial data collection approaches at synchrotrons and X-ray free-electron lasers. The latter's enormous peak brilliance and short X-ray pulse duration mean that structural information can be obtained before the effects of radiation damage are seen; these properties also facilitate time-resolved crystallography. To establish defined reaction initiation conditions, microcrystals with a desired and narrow size distribution are critical. Here, we describe milling and seeding techniques as well as filtration approaches for the reproducible and size-adjustable preparation of homogeneous nano- and microcrystals. Nanocrystals and crystal seeds can be obtained by milling using zirconium beads and the BeadBug homogenizer; fragmentation of large crystals yields micro- or nanocrystals by flowing crystals through stainless steel filters by using an HPLC pump. The approaches can be scaled to generate micro- to milliliter quantities of microcrystals, starting from macroscopic crystals. The procedure typically takes 3-5 d, including the time required to grow the microcrystals.
Collapse
|
15
|
Gruhl T, Weinert T, Rodrigues MJ, Milne CJ, Ortolani G, Nass K, Nango E, Sen S, Johnson PJM, Cirelli C, Furrer A, Mous S, Skopintsev P, James D, Dworkowski F, Båth P, Kekilli D, Ozerov D, Tanaka R, Glover H, Bacellar C, Brünle S, Casadei CM, Diethelm AD, Gashi D, Gotthard G, Guixà-González R, Joti Y, Kabanova V, Knopp G, Lesca E, Ma P, Martiel I, Mühle J, Owada S, Pamula F, Sarabi D, Tejero O, Tsai CJ, Varma N, Wach A, Boutet S, Tono K, Nogly P, Deupi X, Iwata S, Neutze R, Standfuss J, Schertler G, Panneels V. Ultrafast structural changes direct the first molecular events of vision. Nature 2023; 615:939-944. [PMID: 36949205 PMCID: PMC10060157 DOI: 10.1038/s41586-023-05863-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 02/17/2023] [Indexed: 03/24/2023]
Abstract
Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs)1. A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation2, thereby initiating the cellular signal transduction processes that ultimately lead to vision. However, the intramolecular mechanism by which the photoactivated retinal induces the activation events inside rhodopsin remains experimentally unclear. Here we use ultrafast time-resolved crystallography at room temperature3 to determine how an isomerized twisted all-trans retinal stores the photon energy that is required to initiate the protein conformational changes associated with the formation of the G protein-binding signalling state. The distorted retinal at a 1-ps time delay after photoactivation has pulled away from half of its numerous interactions with its binding pocket, and the excess of the photon energy is released through an anisotropic protein breathing motion in the direction of the extracellular space. Notably, the very early structural motions in the protein side chains of rhodopsin appear in regions that are involved in later stages of the conserved class A GPCR activation mechanism. Our study sheds light on the earliest stages of vision in vertebrates and points to fundamental aspects of the molecular mechanisms of agonist-mediated GPCR activation.
Collapse
Affiliation(s)
- Thomas Gruhl
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Tobias Weinert
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Matthew J Rodrigues
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Christopher J Milne
- Photon Science Division, Laboratory for Femtochemistry, Paul Scherrer Institute, Villigen PSI, Switzerland
- European XFEL, Schenefeld, Germany
| | - Giorgia Ortolani
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Karol Nass
- Photon Science Division, Laboratory for Femtochemistry, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Eriko Nango
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
- RIKEN SPring-8 Center, Hyogo, Japan
| | - Saumik Sen
- Condensed Matter Theory Group, Laboratory for Theoretical and Computational Physics, Division of Scientific Computing, Theory and Data, Paul Scherrer Institute, Villigen PSI, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Philip J M Johnson
- Photon Science Division, Laboratory for Nonlinear Optics, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Claudio Cirelli
- Photon Science Division, Laboratory for Femtochemistry, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Antonia Furrer
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
- Biologics Center, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Sandra Mous
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Petr Skopintsev
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Daniel James
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
- Department of Physics, Utah Valley University, Orem, UT, USA
| | - Florian Dworkowski
- Photon Science Division, Laboratory for Macromolecules and Bioimaging, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Demet Kekilli
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Dmitry Ozerov
- Division Scientific Computing, Theory and Data, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Rie Tanaka
- RIKEN SPring-8 Center, Hyogo, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hannah Glover
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Camila Bacellar
- Photon Science Division, Laboratory for Femtochemistry, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Steffen Brünle
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Azeglio D Diethelm
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Dardan Gashi
- Photon Science Division, Laboratory for Femtochemistry, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Guillaume Gotthard
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ramon Guixà-González
- Condensed Matter Theory Group, Laboratory for Theoretical and Computational Physics, Division of Scientific Computing, Theory and Data, Paul Scherrer Institute, Villigen PSI, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Yasumasa Joti
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Victoria Kabanova
- Photon Science Division, Laboratory for Femtochemistry, Paul Scherrer Institute, Villigen PSI, Switzerland
- Laboratory for Ultrafast X-ray Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gregor Knopp
- Photon Science Division, Laboratory for Femtochemistry, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Elena Lesca
- Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Pikyee Ma
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Isabelle Martiel
- Photon Science Division, Laboratory for Macromolecules and Bioimaging, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Jonas Mühle
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Shigeki Owada
- RIKEN SPring-8 Center, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Filip Pamula
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Daniel Sarabi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Oliver Tejero
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Ching-Ju Tsai
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Niranjan Varma
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Anna Wach
- Institute of Nuclear Physics Polish Academy of Sciences, Kraców, Poland
- Operando X-ray Spectroscopy, Energy and Environment Division, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Przemyslaw Nogly
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
- Dioscuri Center For Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Xavier Deupi
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
- Condensed Matter Theory Group, Laboratory for Theoretical and Computational Physics, Division of Scientific Computing, Theory and Data, Paul Scherrer Institute, Villigen PSI, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - So Iwata
- RIKEN SPring-8 Center, Hyogo, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Jörg Standfuss
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Gebhard Schertler
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland.
- Department of Biology, ETH Zurich, Zurich, Switzerland.
| | - Valerie Panneels
- Division of Biology and Chemistry, Laboratory for Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland.
| |
Collapse
|
16
|
Mehrabi P, Schulz EC. Sample Preparation for Time-Resolved Serial Crystallography: Practical Considerations. Methods Mol Biol 2023; 2652:361-379. [PMID: 37093487 DOI: 10.1007/978-1-0716-3147-8_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Time-resolved serial crystallography is an emerging method to elucidate the structure-function relationship of biomolecular systems at up to atomic resolution. However, to make this demanding method a success, a number of experimental requirements have to be met. In this chapter, we summarize general guidelines and protocols towards performing time-resolved crystallography experiments, with a particular emphasis on sample requirements and preparation but also a brief excursion into reaction initiation.
Collapse
Affiliation(s)
- Pedram Mehrabi
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, Hamburg, Germany.
- Max Planck Institute for Structure and Dynamics of Matter, Hamburg, Germany.
| | - Eike C Schulz
- Max Planck Institute for Structure and Dynamics of Matter, Hamburg, Germany.
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
17
|
Schmidt M. Biological function investigated by time-resolved structure determination. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:010901. [PMID: 36846099 PMCID: PMC9946696 DOI: 10.1063/4.0000177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Inspired by recent progress in time-resolved x-ray crystallography and the adoption of time-resolution by cryo-electronmicroscopy, this article enumerates several approaches developed to become bigger/smaller, faster, and better to gain new insight into the molecular mechanisms of life. This is illustrated by examples where chemical and physical stimuli spawn biological responses on various length and time-scales, from fractions of Ångströms to micro-meters and from femtoseconds to hours.
Collapse
Affiliation(s)
- Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
18
|
Worrall JAR, Hough MA. Serial femtosecond crystallography approaches to understanding catalysis in iron enzymes. Curr Opin Struct Biol 2022; 77:102486. [PMID: 36274419 DOI: 10.1016/j.sbi.2022.102486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
Enzymes with iron-containing active sites play crucial roles in catalysing a myriad of oxidative reactions essential to aerobic life. Defining the three-dimensional structures of iron enzymes in resting, oxy-bound intermediate and substrate-bound states is particularly challenging, not least because of the extreme susceptibility of the Fe(III) and Fe(IV) redox states to radiation-induced chemistry caused by intense X-ray or electron beams. The availability of novel sources such as X-ray free electron lasers has enabled structures that are effectively free of the effects of radiation-induced chemistry and allows time-resolved structures to be determined. Important to both applications is the ability to obtain in crystallo spectroscopic data to identify the redox state of the iron in any particular structure or timepoint.
Collapse
Affiliation(s)
- Jonathan A R Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK; Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK.
| |
Collapse
|
19
|
Weik M, Domratcheva T. Insight into the structural dynamics of light sensitive proteins from time-resolved crystallography and quantum chemical calculations. Curr Opin Struct Biol 2022; 77:102496. [PMID: 36462226 DOI: 10.1016/j.sbi.2022.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
The structural dynamics underlying molecular mechanisms of light-sensitive proteins can be studied by a variety of experimental and computational biophysical techniques. Here we review recent progress in combining time-resolved crystallography at X-ray free electron lasers and quantum chemical calculations to study structural changes in photoenzymes, photosynthetic proteins, photoreceptors, and photoswitchable fluorescent proteins following photoexcitation.
Collapse
Affiliation(s)
- Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France.
| | - Tatiana Domratcheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia; Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
20
|
Hadjidemetriou K, Coquelle N, Barends TRM, De Zitter E, Schlichting I, Colletier JP, Weik M. Time-resolved serial femtosecond crystallography on fatty-acid photodecarboxylase: lessons learned. Acta Crystallogr D Struct Biol 2022; 78:1131-1142. [PMID: 36048153 PMCID: PMC9435596 DOI: 10.1107/s2059798322007525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/22/2022] [Indexed: 11/11/2022] Open
Abstract
Upon absorption of a blue-light photon, fatty-acid photodecarboxylase catalyzes the decarboxylation of free fatty acids to form hydrocarbons (for example alkanes or alkenes). The major components of the catalytic mechanism have recently been elucidated by combining static and time-resolved serial femtosecond crystallography (TR-SFX), time-resolved vibrational and electronic spectroscopies, quantum-chemical calculations and site-directed mutagenesis [Sorigué et al. (2021), Science, 372, eabd5687]. The TR-SFX experiments, which were carried out at four different picosecond to microsecond pump-probe delays, yielded input for the calculation of Fourier difference maps that demonstrated light-induced decarboxylation. Here, some of the difficulties encountered during the experiment as well as during data processing are highlighted, in particular regarding space-group assignment, a pump-laser power titration is described and data analysis is extended by structure-factor extrapolation of the TR-SFX data. Structure refinement against extrapolated structure factors reveals a reorientation of the generated hydrocarbon and the formation of a photoproduct close to Cys432 and Arg451. Identification of its chemical nature, CO2 or bicarbonate, was not possible because of the limited data quality, which was assigned to specificities of the crystalline system. Further TR-SFX experiments on a different crystal form are required to identify the photoproducts and their movements during the catalytic cycle.
Collapse
Affiliation(s)
| | - Nicolas Coquelle
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Thomas R. M. Barends
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Elke De Zitter
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | - Martin Weik
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| |
Collapse
|
21
|
Sarabi D, Ostojić L, Bosman R, Vallejos A, Linse JB, Wulff M, Levantino M, Neutze R. Modeling difference x-ray scattering observations from an integral membrane protein within a detergent micelle. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:054102. [PMID: 36329868 PMCID: PMC9625836 DOI: 10.1063/4.0000157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Time-resolved x-ray solution scattering (TR-XSS) is a sub-field of structural biology, which observes secondary structural changes in proteins as they evolve along their functional pathways. While the number of distinct conformational states and their rise and decay can be extracted directly from TR-XSS experimental data recorded from light-sensitive systems, structural modeling is more challenging. This step often builds from complementary structural information, including secondary structural changes extracted from crystallographic studies or molecular dynamics simulations. When working with integral membrane proteins, another challenge arises because x-ray scattering from the protein and the surrounding detergent micelle interfere and these effects should be considered during structural modeling. Here, we utilize molecular dynamics simulations to explicitly incorporate the x-ray scattering cross term between a membrane protein and its surrounding detergent micelle when modeling TR-XSS data from photoactivated samples of detergent solubilized bacteriorhodopsin. This analysis provides theoretical foundations in support of our earlier approach to structural modeling that did not explicitly incorporate this cross term and improves agreement between experimental data and theoretical predictions at lower x-ray scattering angles.
Collapse
Affiliation(s)
- Daniel Sarabi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Lucija Ostojić
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Adams Vallejos
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Johanna-Barbara Linse
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Michael Wulff
- European Synchrotron Radiation Facility, 38043 Grenoble Cedex 9, France
| | - Matteo Levantino
- European Synchrotron Radiation Facility, 38043 Grenoble Cedex 9, France
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| |
Collapse
|
22
|
Barends TR, Stauch B, Cherezov V, Schlichting I. Serial femtosecond crystallography. NATURE REVIEWS. METHODS PRIMERS 2022; 2:59. [PMID: 36643971 PMCID: PMC9833121 DOI: 10.1038/s43586-022-00141-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the advent of X-ray Free Electron Lasers (XFELs), new, high-throughput serial crystallography techniques for macromolecular structure determination have emerged. Serial femtosecond crystallography (SFX) and related methods provide possibilities beyond canonical, single-crystal rotation crystallography by mitigating radiation damage and allowing time-resolved studies with unprecedented temporal resolution. This primer aims to assist structural biology groups with little or no experience in serial crystallography planning and carrying out a successful SFX experiment. It discusses the background of serial crystallography and its possibilities. Microcrystal growth and characterization methods are discussed, alongside techniques for sample delivery and data processing. Moreover, it gives practical tips for preparing an experiment, what to consider and do during a beamtime and how to conduct the final data analysis. Finally, the Primer looks at various applications of SFX, including structure determination of membrane proteins, investigation of radiation damage-prone systems and time-resolved studies.
Collapse
Affiliation(s)
- Thomas R.M. Barends
- Department for Biological Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Benjamin Stauch
- Department of Chemistry, The Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Vadim Cherezov
- Department of Chemistry, The Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Ilme Schlichting
- Department for Biological Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany,
| |
Collapse
|
23
|
Malla TN, Schmidt M. Transient state measurements on proteins by time-resolved crystallography. Curr Opin Struct Biol 2022; 74:102376. [DOI: 10.1016/j.sbi.2022.102376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022]
|
24
|
Potential of Time-Resolved Serial Femtosecond Crystallography Using High Repetition Rate XFEL Sources. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This perspective review describes emerging techniques and future opportunities for time-resolved serial femtosecond crystallography (TR-SFX) experiments using high repetition rate XFEL sources. High repetition rate sources are becoming more available with the European XFEL in operation and the recently upgraded LCLS-II will be available in the near future. One efficient use of these facilities for TR-SFX relies on pump–probe experiments using a laser to trigger a reaction of light-responsive proteins or mix-and-inject experiments for light-unresponsive proteins. With the view to widen the application of TR-SFX, the promising field of photocaged compounds is under development, which allows the very fast laser triggering of reactions that is no longer limited to naturally light-responsive samples. In addition to reaction triggering, a key concern when performing an SFX experiment is efficient sample usage, which is a main focus of new high repetition rate-compatible sample delivery methods.
Collapse
|
25
|
Schulz EC, Yorke BA, Pearson AR, Mehrabi P. Best practices for time-resolved serial synchrotron crystallography. Acta Crystallogr D Struct Biol 2022; 78:14-29. [PMID: 34981758 PMCID: PMC8725164 DOI: 10.1107/s2059798321011621] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
With recent developments in X-ray sources, instrumentation and data-analysis tools, time-resolved crystallographic experiments, which were originally the preserve of a few expert groups, are becoming simpler and can be carried out at more radiation sources, and are thus increasingly accessible to a growing user base. However, these experiments are just that: discrete experiments, not just `data collections'. As such, careful planning and consideration of potential pitfalls is required to enable a successful experiment. Here, some of the key factors that should be considered during the planning and execution of a time-resolved structural study are outlined, with a particular focus on synchrotron-based experiments.
Collapse
Affiliation(s)
- Eike C. Schulz
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Briony A. Yorke
- School of Chemistry and Bioscience, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Arwen R. Pearson
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Pedram Mehrabi
- Institute for Nanostructure and Solid State Physics, Universität Hamburg, HARBOR, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
26
|
Grünbein ML, Kovacs GN, Kloos M, Gorel A, Doak RB, Shoeman RL, Barends TRM, Schlichting I. Crystallographic Studies of Rhodopsins: Structure and Dynamics. Methods Mol Biol 2022; 2501:147-168. [PMID: 35857227 DOI: 10.1007/978-1-0716-2329-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Crystal structures have provided detailed insight in the architecture of rhodopsin photoreceptors. Of particular interest are the protein-chromophore interactions that govern the light-induced retinal isomerization and ultimately induce the large structural changes important for the various biological functions of the family. The reaction intermediates occurring along the rhodopsin photocycle have vastly differing lifetimes, from hundreds of femtoseconds to milliseconds. Detailed insight at high spatial and temporal resolution can be obtained by time-resolved crystallography using pump-probe approaches at X-ray free-electron lasers. Alternatively, cryotrapping approaches can be used. Both the approaches are described, including illumination and sample delivery. The importance of appropriate photoexcitation avoiding multiphoton absorption is stressed.
Collapse
Affiliation(s)
| | | | - Marco Kloos
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Alexander Gorel
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - R Bruce Doak
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | | |
Collapse
|
27
|
Wilson MA. Mapping Enzyme Landscapes by Time-Resolved Crystallography with Synchrotron and X-Ray Free Electron Laser Light. Annu Rev Biophys 2021; 51:79-98. [PMID: 34932909 PMCID: PMC9132212 DOI: 10.1146/annurev-biophys-100421-110959] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Directly observing enzyme catalysis in real time at the molecular level has been a long-standing goal of structural enzymology. Time-resolved serial crystallography methods at synchrotron and X-ray free electron laser (XFEL) sources have enabled researchers to follow enzyme catalysis and other nonequilibrium events at ambient conditions with unprecedented time resolution. X-ray crystallography provides detailed information about conformational heterogeneity and protein dynamics, which is enhanced when time-resolved approaches are used. This review outlines the ways in which information about the underlying energy landscape of a protein can be extracted from X-ray crystallographic data, with an emphasis on new developments in XFEL and synchrotron time-resolved crystallography. The emerging view of enzyme catalysis afforded by these techniques can be interpreted as enzymes moving on a time-dependent energy landscape. Some consequences of this view are discussed, including the proposal that irreversible enzymes or enzymes that use covalent catalytic mechanisms may commonly exhibit catalysis-activated motions. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mark A Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, USA;
| |
Collapse
|
28
|
Few-fs resolution of a photoactive protein traversing a conical intersection. Nature 2021; 599:697-701. [PMID: 34732893 DOI: 10.1038/s41586-021-04050-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 09/23/2021] [Indexed: 11/08/2022]
Abstract
The structural dynamics of a molecule are determined by the underlying potential energy landscape. Conical intersections are funnels connecting otherwise separate potential energy surfaces. Posited almost a century ago1, conical intersections remain the subject of intense scientific interest2-5. In biology, they have a pivotal role in vision, photosynthesis and DNA stability6. Accurate theoretical methods for examining conical intersections are at present limited to small molecules. Experimental investigations are challenged by the required time resolution and sensitivity. Current structure-dynamical understanding of conical intersections is thus limited to simple molecules with around ten atoms, on timescales of about 100 fs or longer7. Spectroscopy can achieve better time resolutions8, but provides indirect structural information. Here we present few-femtosecond, atomic-resolution videos of photoactive yellow protein, a 2,000-atom protein, passing through a conical intersection. These videos, extracted from experimental data by machine learning, reveal the dynamical trajectories of de-excitation via a conical intersection, yield the key parameters of the conical intersection controlling the de-excitation process and elucidate the topography of the electronic potential energy surfaces involved.
Collapse
|
29
|
Nass K, Bacellar C, Cirelli C, Dworkowski F, Gevorkov Y, James D, Johnson PJM, Kekilli D, Knopp G, Martiel I, Ozerov D, Tolstikova A, Vera L, Weinert T, Yefanov O, Standfuss J, Reiche S, Milne CJ. Pink-beam serial femtosecond crystallography for accurate structure-factor determination at an X-ray free-electron laser. IUCRJ 2021; 8:905-920. [PMID: 34804544 PMCID: PMC8562661 DOI: 10.1107/s2052252521008046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 05/25/2023]
Abstract
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) enables essentially radiation-damage-free macromolecular structure determination using microcrystals that are too small for synchrotron studies. However, SFX experiments often require large amounts of sample in order to collect highly redundant data where some of the many stochastic errors can be averaged out to determine accurate structure-factor amplitudes. In this work, the capability of the Swiss X-ray free-electron laser (SwissFEL) was used to generate large-bandwidth X-ray pulses [Δλ/λ = 2.2% full width at half-maximum (FWHM)], which were applied in SFX with the aim of improving the partiality of Bragg spots and thus decreasing sample consumption while maintaining the data quality. Sensitive data-quality indicators such as anomalous signal from native thaumatin micro-crystals and de novo phasing results were used to quantify the benefits of using pink X-ray pulses to obtain accurate structure-factor amplitudes. Compared with data measured using the same setup but using X-ray pulses with typical quasi-monochromatic XFEL bandwidth (Δλ/λ = 0.17% FWHM), up to fourfold reduction in the number of indexed diffraction patterns required to obtain similar data quality was achieved. This novel approach, pink-beam SFX, facilitates the yet underutilized de novo structure determination of challenging proteins at XFELs, thereby opening the door to more scientific breakthroughs.
Collapse
Affiliation(s)
- Karol Nass
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Camila Bacellar
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Claudio Cirelli
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Florian Dworkowski
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Yaroslav Gevorkov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Daniel James
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | | | - Demet Kekilli
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Gregor Knopp
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Isabelle Martiel
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Dmitry Ozerov
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Alexandra Tolstikova
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Laura Vera
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Tobias Weinert
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Oleksandr Yefanov
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Jörg Standfuss
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Sven Reiche
- Paul Scherrer Institut, Forschungstrasse 111, Villigen 5232, Switzerland
| | | |
Collapse
|
30
|
Monteiro DCF, Amoah E, Rogers C, Pearson AR. Using photocaging for fast time-resolved structural biology studies. Acta Crystallogr D Struct Biol 2021; 77:1218-1232. [PMID: 34605426 PMCID: PMC8489231 DOI: 10.1107/s2059798321008809] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/23/2021] [Indexed: 12/02/2022] Open
Abstract
Careful selection of photocaging approaches is critical to achieve fast and well synchronized reaction initiation and perform successful time-resolved structural biology experiments. This review summarizes the best characterized and most relevant photocaging groups previously described in the literature. It also provides a walkthrough of the essential factors to consider in designing a suitable photocaged molecule to address specific biological questions, focusing on photocaging groups with well characterized spectroscopic properties. The relationships between decay rates (k in s-1), quantum yields (ϕ) and molar extinction coefficients (ϵmax in M-1 cm-1) are highlighted for different groups. The effects of the nature of the photocaged group on these properties is also discussed. Four main photocaging scaffolds are presented in detail, o-nitrobenzyls, p-hydroxyphenyls, coumarinyls and nitrodibenzofuranyls, along with three examples of the use of this technology. Furthermore, a subset of specialty photocages are highlighted: photoacids, molecular photoswitches and metal-containing photocages. These extend the range of photocaging approaches by, for example, controlling pH or generating conformationally locked molecules.
Collapse
Affiliation(s)
- Diana C. F. Monteiro
- Hauptman–Woodward Medical Research Institute, 700 Ellicot Street, Buffalo, NY 14203, USA
| | - Emmanuel Amoah
- Hauptman–Woodward Medical Research Institute, 700 Ellicot Street, Buffalo, NY 14203, USA
| | - Cromarte Rogers
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Arwen R. Pearson
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
31
|
Hough MA, Owen RL. Serial synchrotron and XFEL crystallography for studies of metalloprotein catalysis. Curr Opin Struct Biol 2021; 71:232-238. [PMID: 34455163 PMCID: PMC8667872 DOI: 10.1016/j.sbi.2021.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/24/2022]
Abstract
An estimated half of all proteins contain a metal, with these being essential for a tremendous variety of biological functions. X-ray crystallography is the major method for obtaining structures at high resolution of these metalloproteins, but there are considerable challenges to obtain intact structures due to the effects of radiation damage. Serial crystallography offers the prospect of determining low-dose synchrotron or effectively damage free XFEL structures at room temperature and enables time-resolved or dose-resolved approaches. Complementary spectroscopic data can validate redox and or ligand states within metalloprotein crystals. In this opinion, we discuss developments in the application of serial crystallographic approaches to metalloproteins and comment on future directions.
Collapse
Affiliation(s)
- Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| | - Robin L Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| |
Collapse
|
32
|
Brändén G, Neutze R. Advances and challenges in time-resolved macromolecular crystallography. Science 2021; 373:373/6558/eaba0954. [PMID: 34446579 DOI: 10.1126/science.aba0954] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conformational changes within biological macromolecules control a vast array of chemical reactions in living cells. Time-resolved crystallography can reveal time-dependent structural changes that occur within protein crystals, yielding chemical insights in unparalleled detail. Serial crystallography approaches developed at x-ray free-electron lasers are now routinely used for time-resolved diffraction studies of macromolecules. These techniques are increasingly being applied at synchrotron radiation sources and to a growing diversity of macromolecules. Here, we review recent progress in the field, including visualizing ultrafast structural changes that guide the initial trajectories of light-driven reactions as well as capturing biologically important conformational changes on slower time scales, for which bacteriorhodopsin and photosystem II are presented as illustrative case studies.
Collapse
Affiliation(s)
- Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
33
|
Filming ultrafast roaming-mediated isomerization of bismuth triiodide in solution. Nat Commun 2021; 12:4732. [PMID: 34354075 PMCID: PMC8342516 DOI: 10.1038/s41467-021-25070-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022] Open
Abstract
Roaming reaction, defined as a reaction yielding products via reorientational motion in the long-range region (3 - 8 Å) of the potential, is a relatively recently proposed reaction pathway and is now regarded as a universal mechanism that can explain the unimolecular dissociation and isomerization of various molecules. The structural movements of the partially dissociated fragments originating from the frustrated bond fission at the onset of roaming, however, have been explored mostly via theoretical simulations and rarely observed experimentally. Here, we report an investigation of the structural dynamics during a roaming-mediated isomerization reaction of bismuth triiodide (BiI3) in acetonitrile solution using femtosecond time-resolved x-ray liquidography. Structural analysis of the data visualizes the atomic movements during the roaming-mediated isomerization process including the opening of the Bi-Ib-Ic angle and the closing of Ia-Bi-Ib-Ic dihedral angle, each by ~40°, as well as the shortening of the Ib···Ic distance, following the frustrated bond fission.
Collapse
|
34
|
Gorel A, Schlichting I, Barends TRM. Discerning best practices in XFEL-based biological crystallography - standards for nonstandard experiments. IUCRJ 2021; 8:532-543. [PMID: 34258002 PMCID: PMC8256713 DOI: 10.1107/s205225252100467x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) is a novel tool in structural biology. In contrast to conventional crystallography, SFX relies on merging partial intensities acquired with X-ray beams of often randomly fluctuating properties from a very large number of still diffraction images of generally randomly oriented microcrystals. For this reason, and possibly due to limitations of the still evolving data-analysis programs, XFEL-derived SFX data are typically of a lower quality than 'standard' crystallographic data. In contrast with this, the studies performed at XFELs often aim to investigate issues that require precise high-resolution data, for example to determine structures of intermediates at low occupancy, which often display very small conformational changes. This is a potentially dangerous combination and underscores the need for a critical evaluation of procedures including data-quality standards in XFEL-based structural biology. Here, such concerns are addressed.
Collapse
Affiliation(s)
- Alexander Gorel
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstr. 29, Heidelberg, 69120, Germany
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstr. 29, Heidelberg, 69120, Germany
| | - Thomas R. M. Barends
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstr. 29, Heidelberg, 69120, Germany
| |
Collapse
|
35
|
Li H, Nakajima Y, Nomura T, Sugahara M, Yonekura S, Chan SK, Nakane T, Yamane T, Umena Y, Suzuki M, Masuda T, Motomura T, Naitow H, Matsuura Y, Kimura T, Tono K, Owada S, Joti Y, Tanaka R, Nango E, Akita F, Kubo M, Iwata S, Shen JR, Suga M. Capturing structural changes of the S 1 to S 2 transition of photosystem II using time-resolved serial femtosecond crystallography. IUCRJ 2021; 8:431-443. [PMID: 33953929 PMCID: PMC8086164 DOI: 10.1107/s2052252521002177] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/24/2021] [Indexed: 05/21/2023]
Abstract
Photosystem II (PSII) catalyzes light-induced water oxidation through an S i -state cycle, leading to the generation of di-oxygen, protons and electrons. Pump-probe time-resolved serial femtosecond crystallography (TR-SFX) has been used to capture structural dynamics of light-sensitive proteins. In this approach, it is crucial to avoid light contamination in the samples when analyzing a particular reaction intermediate. Here, a method for determining a condition that avoids light contamination of the PSII microcrystals while minimizing sample consumption in TR-SFX is described. By swapping the pump and probe pulses with a very short delay between them, the structural changes that occur during the S1-to-S2 transition were examined and a boundary of the excitation region was accurately determined. With the sample flow rate and concomitant illumination conditions determined, the S2-state structure of PSII could be analyzed at room temperature, revealing the structural changes that occur during the S1-to-S2 transition at ambient temperature. Though the structure of the manganese cluster was similar to previous studies, the behaviors of the water molecules in the two channels (O1 and O4 channels) were found to be different. By comparing with the previous studies performed at low temperature or with a different delay time, the possible channels for water inlet and structural changes important for the water-splitting reaction were revealed.
Collapse
Affiliation(s)
- Hongjie Li
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
| | - Takashi Nomura
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Michihiro Sugahara
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shinichiro Yonekura
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
| | - Siu Kit Chan
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
| | - Takanori Nakane
- Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Yamane
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
| | - Yasufumi Umena
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
| | - Mamoru Suzuki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuya Masuda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Taiki Motomura
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | - Hisashi Naitow
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshinori Matsuura
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tetsunari Kimura
- Department of Chemistry, Graduate School of Science, Kobe University, -1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Yasumasa Joti
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
- Japan Science and Technology Agency, PRESTO, Saitama 332-0012, Japan
| | - Minoru Kubo
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
| | - Michihiro Suga
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kitaku, Okayama, Okayama 700-8530, Japan
- Japan Science and Technology Agency, PRESTO, Saitama 332-0012, Japan
| |
Collapse
|
36
|
Sorigué D, Hadjidemetriou K, Blangy S, Gotthard G, Bonvalet A, Coquelle N, Samire P, Aleksandrov A, Antonucci L, Benachir A, Boutet S, Byrdin M, Cammarata M, Carbajo S, Cuiné S, Doak RB, Foucar L, Gorel A, Grünbein M, Hartmann E, Hienerwadel R, Hilpert M, Kloos M, Lane TJ, Légeret B, Legrand P, Li-Beisson Y, Moulin SLY, Nurizzo D, Peltier G, Schirò G, Shoeman RL, Sliwa M, Solinas X, Zhuang B, Barends TRM, Colletier JP, Joffre M, Royant A, Berthomieu C, Weik M, Domratcheva T, Brettel K, Vos MH, Schlichting I, Arnoux P, Müller P, Beisson F. Mechanism and dynamics of fatty acid photodecarboxylase. Science 2021; 372:372/6538/eabd5687. [PMID: 33833098 DOI: 10.1126/science.abd5687] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/17/2021] [Indexed: 12/21/2022]
Abstract
Fatty acid photodecarboxylase (FAP) is a photoenzyme with potential green chemistry applications. By combining static, time-resolved, and cryotrapping spectroscopy and crystallography as well as computation, we characterized Chlorella variabilis FAP reaction intermediates on time scales from subpicoseconds to milliseconds. High-resolution crystal structures from synchrotron and free electron laser x-ray sources highlighted an unusual bent shape of the oxidized flavin chromophore. We demonstrate that decarboxylation occurs directly upon reduction of the excited flavin by the fatty acid substrate. Along with flavin reoxidation by the alkyl radical intermediate, a major fraction of the cleaved carbon dioxide unexpectedly transformed in 100 nanoseconds, most likely into bicarbonate. This reaction is orders of magnitude faster than in solution. Two strictly conserved residues, R451 and C432, are essential for substrate stabilization and functional charge transfer.
Collapse
Affiliation(s)
- D Sorigué
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - K Hadjidemetriou
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - S Blangy
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - G Gotthard
- European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - A Bonvalet
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - N Coquelle
- Large-Scale Structures Group, Institut Laue Langevin, 38042 Grenoble Cedex 9, France
| | - P Samire
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - A Aleksandrov
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - L Antonucci
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - A Benachir
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - S Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M Byrdin
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - M Cammarata
- Department of Physics, UMR UR1-CNRS 6251, University of Rennes 1, F-Rennes, France.
| | - S Carbajo
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - S Cuiné
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - R B Doak
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - L Foucar
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - A Gorel
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - M Grünbein
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - E Hartmann
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - R Hienerwadel
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - M Hilpert
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - M Kloos
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | - T J Lane
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - B Légeret
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - P Legrand
- Synchrotron SOLEIL. L'Orme des Merisiers Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - Y Li-Beisson
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - S L Y Moulin
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - D Nurizzo
- European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - G Peltier
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - G Schirò
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - R L Shoeman
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - M Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, 59000 Lille, France
| | - X Solinas
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - B Zhuang
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - T R M Barends
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - J-P Colletier
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - M Joffre
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - A Royant
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France.,European Synchrotron Radiation Facility, 38043 Grenoble, France
| | - C Berthomieu
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France.
| | - M Weik
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France.
| | - T Domratcheva
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany. .,Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - K Brettel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - M H Vos
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France.
| | - I Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany.
| | - P Arnoux
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France.
| | - P Müller
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - F Beisson
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
37
|
Poddar H, Heyes DJ, Schirò G, Weik M, Leys D, Scrutton NS. A guide to time-resolved structural analysis of light-activated proteins. FEBS J 2021; 289:576-595. [PMID: 33864718 DOI: 10.1111/febs.15880] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023]
Abstract
Dynamical changes in protein structures are essential for protein function and occur over femtoseconds to seconds timescales. X-ray free electron lasers have facilitated investigations of structural dynamics in proteins with unprecedented temporal and spatial resolution. Light-activated proteins are attractive targets for time-resolved structural studies, as the reaction chemistry and associated protein structural changes can be triggered by short laser pulses. Proteins with different light-absorbing centres have evolved to detect light and harness photon energy to bring about downstream chemical and biological output responses. Following light absorption, rapid chemical/small-scale structural changes are typically localised around the chromophore. These localised changes are followed by larger structural changes propagated throughout the photoreceptor/photocatalyst that enables the desired chemical and/or biological output response. Time-resolved serial femtosecond crystallography (SFX) and solution scattering techniques enable direct visualisation of early chemical change in light-activated proteins on timescales previously inaccessible, whereas scattering gives access to slower timescales associated with more global structural change. Here, we review how advances in time-resolved SFX and solution scattering techniques have uncovered mechanisms of photochemistry and its coupling to output responses. We also provide a prospective on how these time-resolved structural approaches might impact on other photoreceptors/photoenzymes that have not yet been studied by these methods.
Collapse
Affiliation(s)
- Harshwardhan Poddar
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Giorgio Schirò
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Martin Weik
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - David Leys
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, UK
| |
Collapse
|
38
|
Carrillo M, Pandey S, Sanchez J, Noda M, Poudyal I, Aldama L, Malla TN, Claesson E, Wahlgren WY, Feliz D, Šrajer V, Maj M, Castillon L, Iwata S, Nango E, Tanaka R, Tanaka T, Fangjia L, Tono K, Owada S, Westenhoff S, Stojković EA, Schmidt M. High-resolution crystal structures of transient intermediates in the phytochrome photocycle. Structure 2021; 29:743-754.e4. [PMID: 33756101 DOI: 10.1016/j.str.2021.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/31/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022]
Abstract
Phytochromes are red/far-red light photoreceptors in bacteria to plants, which elicit a variety of important physiological responses. They display a reversible photocycle between the resting Pr state and the light-activated Pfr state. Light signals are transduced as structural change through the entire protein to modulate its activity. It is unknown how the Pr-to-Pfr interconversion occurs, as the structure of intermediates remains notoriously elusive. Here, we present short-lived crystal structures of the photosensory core modules of the bacteriophytochrome from myxobacterium Stigmatella aurantiaca captured by an X-ray free electron laser 5 ns and 33 ms after light illumination of the Pr state. We observe large structural displacements of the covalently bound bilin chromophore, which trigger a bifurcated signaling pathway that extends through the entire protein. The snapshots show with atomic precision how the signal progresses from the chromophore, explaining how plants, bacteria, and fungi sense red light.
Collapse
Affiliation(s)
- Melissa Carrillo
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Suraj Pandey
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Juan Sanchez
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Moraima Noda
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Ishwor Poudyal
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Luis Aldama
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Tek Narsingh Malla
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Elin Claesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Denisse Feliz
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA
| | - Vukica Šrajer
- The University of Chicago, Center for Advanced Radiation Sources, 9700 South Cass Avenue, Bldg 434B, Argonne, IL 60439, USA
| | - Michał Maj
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Leticia Castillon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Rie Tanaka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomoyuki Tanaka
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Luo Fangjia
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan; Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Emina A Stojković
- Department of Biology, Northeastern Illinois University, 5500 North St. Louis Avenue, Chicago, IL 60625, USA.
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA.
| |
Collapse
|
39
|
Mehrabi P, Bücker R, Bourenkov G, Ginn HM, von Stetten D, Müller-Werkmeister HM, Kuo A, Morizumi T, Eger BT, Ou WL, Oghbaey S, Sarracini A, Besaw JE, Pare-Labrosse O, Meier S, Schikora H, Tellkamp F, Marx A, Sherrell DA, Axford D, Owen RL, Ernst OP, Pai EF, Schulz EC, Miller RJD. Serial femtosecond and serial synchrotron crystallography can yield data of equivalent quality: A systematic comparison. SCIENCE ADVANCES 2021; 7:7/12/eabf1380. [PMID: 33731353 PMCID: PMC7968842 DOI: 10.1126/sciadv.abf1380] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/28/2021] [Indexed: 05/09/2023]
Abstract
For the two proteins myoglobin and fluoroacetate dehalogenase, we present a systematic comparison of crystallographic diffraction data collected by serial femtosecond (SFX) and serial synchrotron crystallography (SSX). To maximize comparability, we used the same batch of micron-sized crystals, the same sample delivery device, and the same data analysis software. Overall figures of merit indicate that the data of both radiation sources are of equivalent quality. For both proteins, reasonable data statistics can be obtained with approximately 5000 room-temperature diffraction images irrespective of the radiation source. The direct comparability of SSX and SFX data indicates that the quality of diffraction data obtained from these samples is linked to the properties of the crystals rather than to the radiation source. Therefore, for other systems with similar properties, time-resolved experiments can be conducted at the radiation source that best matches the desired time resolution.
Collapse
Affiliation(s)
- P Mehrabi
- Department for Atomically Resolved Dynamics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany.
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R Bücker
- Department for Atomically Resolved Dynamics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Centre for Structural Systems Biology, Department of Chemistry, University of Hamburg, Notkestraße 85, 22607 Hamburg, Germany
| | - G Bourenkov
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22603 Hamburg, Germany
| | - H M Ginn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - D von Stetten
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22603 Hamburg, Germany
| | - H M Müller-Werkmeister
- Institute of Chemistry-Physical Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - A Kuo
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - T Morizumi
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - B T Eger
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - W-L Ou
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - S Oghbaey
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - A Sarracini
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - J E Besaw
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - O Pare-Labrosse
- Department for Atomically Resolved Dynamics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - S Meier
- Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| | - H Schikora
- Scientific Support Unit Machine Physics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - F Tellkamp
- Scientific Support Unit Machine Physics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - A Marx
- Department for Atomically Resolved Dynamics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - D A Sherrell
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - D Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - R L Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - O P Ernst
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - E F Pai
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - E C Schulz
- Department for Atomically Resolved Dynamics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany.
- Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R J D Miller
- Department for Atomically Resolved Dynamics, Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
- Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Department of Physics, Universität Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany
| |
Collapse
|
40
|
Stohrer C, Horrell S, Meier S, Sans M, von Stetten D, Hough M, Goldman A, Monteiro DCF, Pearson AR. Homogeneous batch micro-crystallization of proteins from ammonium sulfate. Acta Crystallogr D Struct Biol 2021; 77:194-204. [PMID: 33559608 PMCID: PMC7869895 DOI: 10.1107/s2059798320015454] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/21/2020] [Indexed: 01/19/2023] Open
Abstract
The emergence of X-ray free-electron lasers has led to the development of serial macromolecular crystallography techniques, making it possible to study smaller and more challenging crystal systems and to perform time-resolved studies on fast time scales. For most of these studies the desired crystal size is limited to a few micrometres, and the generation of large amounts of nanocrystals or microcrystals of defined size has become a bottleneck for the wider implementation of these techniques. Despite this, methods to reliably generate microcrystals and fine-tune their size have been poorly explored. Working with three different enzymes, L-aspartate α-decarboxylase, copper nitrite reductase and copper amine oxidase, the precipitating properties of ammonium sulfate were exploited to quickly transition from known vapour-diffusion conditions to reproducible, large-scale batch crystallization, circumventing the tedious determination of phase diagrams. Furthermore, the specific ammonium sulfate concentration was used to fine-tune the crystal size and size distribution. Ammonium sulfate is a common precipitant in protein crystallography, making these findings applicable to many crystallization systems to facilitate the production of large amounts of microcrystals for serial macromolecular crystallography experiments.
Collapse
Affiliation(s)
- Claudia Stohrer
- Biomedical Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
| | - Sam Horrell
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Building 99, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Susanne Meier
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Building 99, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Marta Sans
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Building 99, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - David von Stetten
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Michael Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Adrian Goldman
- Biomedical Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, United Kingdom
- Biological and Environmental Sciences, University of Helsinki, Viikinkaari 5, FIN-00014 Helsinki, Finland
| | - Diana C. F. Monteiro
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Building 99, Luruper Chaussee 149, 22761 Hamburg, Germany
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Arwen R. Pearson
- Hamburg Centre for Ultrafast Imaging, Institute for Nanostructure and Solid State Physics, Universität Hamburg, CFEL, Building 99, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
41
|
Han H, Round E, Schubert R, Gül Y, Makroczyová J, Meza D, Heuser P, Aepfelbacher M, Barák I, Betzel C, Fromme P, Kursula I, Nissen P, Tereschenko E, Schulz J, Uetrecht C, Ulicný J, Wilmanns M, Hajdu J, Lamzin VS, Lorenzen K. The XBI BioLab for life science experiments at the European XFEL. J Appl Crystallogr 2021; 54:7-21. [PMID: 33833637 PMCID: PMC7941304 DOI: 10.1107/s1600576720013989] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 11/26/2022] Open
Abstract
The science of X-ray free-electron lasers (XFELs) critically depends on the performance of the X-ray laser and on the quality of the samples placed into the X-ray beam. The stability of biological samples is limited and key biomolecular transformations occur on short timescales. Experiments in biology require a support laboratory in the immediate vicinity of the beamlines. The XBI BioLab of the European XFEL (XBI denotes XFEL Biology Infrastructure) is an integrated user facility connected to the beamlines for supporting a wide range of biological experiments. The laboratory was financed and built by a collaboration between the European XFEL and the XBI User Consortium, whose members come from Finland, Germany, the Slovak Republic, Sweden and the USA, with observers from Denmark and the Russian Federation. Arranged around a central wet laboratory, the XBI BioLab provides facilities for sample preparation and scoring, laboratories for growing prokaryotic and eukaryotic cells, a Bio Safety Level 2 laboratory, sample purification and characterization facilities, a crystallization laboratory, an anaerobic laboratory, an aerosol laboratory, a vacuum laboratory for injector tests, and laboratories for optical microscopy, atomic force microscopy and electron microscopy. Here, an overview of the XBI facility is given and some of the results of the first user experiments are highlighted.
Collapse
Affiliation(s)
- Huijong Han
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Ekaterina Round
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Robin Schubert
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Yasmin Gül
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jana Makroczyová
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovak Republic
| | - Domingo Meza
- Biodesign Center for Applied Structural Discovery and School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Philipp Heuser
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovak Republic
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery and School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Inari Kursula
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Poul Nissen
- DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK – 8000 Aarhus C, Denmark
| | - Elena Tereschenko
- Institute of Crystallography, Russian Academy of Sciences, 59 Leninsky prospekt, Moscow, 117333, Russian Federation
| | - Joachim Schulz
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Charlotte Uetrecht
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Jozef Ulicný
- Department of Biophysics, Institute of Physics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 04154 Košice, Slovak Republic
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | - Janos Hajdu
- The European Extreme Light Infrastructure, Institute of Physics, Academy of Sciences of the Czech Republic, Za Radnici 835, 25241 Dolní Břežany, Czech Republic
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Victor S. Lamzin
- European Molecular Biology Laboratory, Notkestrasse 85, 22607 Hamburg, Germany
| | | |
Collapse
|
42
|
Dynamic Structural Biology Experiments at XFEL or Synchrotron Sources. Methods Mol Biol 2021; 2305:203-228. [PMID: 33950392 DOI: 10.1007/978-1-0716-1406-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Macromolecular crystallography (MX) leverages the methods of physics and the language of chemistry to reveal fundamental insights into biology. Often beautifully artistic images present MX results to support profound functional hypotheses that are vital to entire life science research community. Over the past several decades, synchrotrons around the world have been the workhorses for X-ray diffraction data collection at many highly automated beamlines. The newest tools include X-ray-free electron lasers (XFELs) located at facilities in the USA, Japan, Korea, Switzerland, and Germany that deliver about nine orders of magnitude higher brightness in discrete femtosecond long pulses. At each of these facilities, new serial femtosecond crystallography (SFX) strategies exploit slurries of micron-size crystals by rapidly delivering individual crystals into the XFEL X-ray interaction region, from which one diffraction pattern is collected per crystal before it is destroyed by the intense X-ray pulse. Relatively simple adaptions to SFX methods produce time-resolved data collection strategies wherein reactions are triggered by visible light illumination or by chemical diffusion/mixing. Thus, XFELs provide new opportunities for high temporal and spatial resolution studies of systems engaged in function at physiological temperature. In this chapter, we summarize various issues related to microcrystal slurry preparation, sample delivery into the X-ray interaction region, and some emerging strategies for time-resolved SFX data collection.
Collapse
|
43
|
Orville AM. Recent results in time resolved serial femtosecond crystallography at XFELs. Curr Opin Struct Biol 2020; 65:193-208. [PMID: 33049498 DOI: 10.1016/j.sbi.2020.08.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 11/30/2022]
Abstract
Time-resolved serial femtosecond crystallography (tr-SFX) methods exploit slurries of crystalline samples that range in size from hundreds of nanometers to a few tens of micrometers, at near-physiological temperature and pressure, to generate atomic resolution models and probe authentic function with the same experiment. 'Dynamic structural biology' is often used to encompass the research philosophy and techniques. Reaction cycles for tr-SFX studies are initiated by photons or ligand addition/mixing strategies, wherein the latter are potentially generalizable across enzymology. Thus, dynamic structural biology often creates stop-motion molecular movies of macromolecular function. In metal-dependent systems, complementary spectroscopic information can also be collected from the same samples and X-ray pulses, which provides even more detailed mechanistic insights. These types of experimental data also complement quantum mechanical and classical dynamics numerical calculations. Correlated structural-functional results will yield more detailed mechanistic insights and will likely translate into better drugs and treatments impacting human health, and better catalysis for clean energy and agriculture.
Collapse
Affiliation(s)
- Allen M Orville
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0DE, United Kingdom; Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, United Kingdom.
| |
Collapse
|