1
|
Ramirez M, Bastien E, Chae H, Gianello P, Gilon P, Bouzin C. 3D evaluation of the extracellular matrix of hypoxic pancreatic islets using light sheet fluorescence microscopy. Islets 2024; 16:2298518. [PMID: 38267218 PMCID: PMC10810165 DOI: 10.1080/19382014.2023.2298518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
Pancreatic islet transplantation is a promising treatment for type 1 diabetes, but the survival and function of transplanted islets are hindered by the loss of extracellular matrix (ECM) during islet isolation and by low oxygenation upon implantation. This study aimed to evaluate the impact of hypoxia on ECM using a cutting-edge imaging approach based on tissue clearing and 3D microscopy. Human and rat islets were cultured under normoxic (O2 21%) or hypoxic (O2 1%) conditions. Immunofluorescence staining targeting insulin, glucagon, CA9 (a hypoxia marker), ECM proteins (collagen 4, fibronectin, laminin), and E-cadherin (intercellular adhesion protein) was performed on fixed whole islets. The cleared islets were imaged using Light Sheet Fluorescence Microscopy (LSFM) and digitally analyzed. The volumetric analysis of target proteins did not show significant differences in abundance between the experimental groups. However, 3D projections revealed distinct morphological features that differentiated normoxic and hypoxic islets. Under normoxic conditions, ECM could be found throughout the islets. Hypoxic islets exhibited areas of scattered nuclei and central clusters of ECM proteins, indicating central necrosis. E-cadherin was absent in these areas. Our results, demonstrating a diminution of islets' functional mass in hypoxia, align with the functional decline observed in transplanted islets experiencing low oxygenation after grafting. This study provides a methodology combining tissue clearing, multiplex immunofluorescence, Light Sheet Fluorescence Microscopy, and digital image analysis to investigate pancreatic islet morphology. This 3D approach allowed us to highlight ECM organizational changes during hypoxia from a morphological perspective.
Collapse
Affiliation(s)
- Matias Ramirez
- Pole of Experimental Surgery and Transplantation, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Estelle Bastien
- Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Heeyoung Chae
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Pierre Gianello
- Laboratory of Experimental Surgery and Transplantation, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Patrick Gilon
- Pole of Endocrinology, Diabetes and Nutrition, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Caroline Bouzin
- Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Brussels, Belgium
| |
Collapse
|
2
|
Hildebrand T, Ma Q, Loca D, Rubenis K, Locs J, Nogueira LP, Haugen HJ. Improved visualisation of ACP-engineered osteoblastic spheroids: a comparative study of contrast-enhanced micro-CT and traditional imaging techniques. Biofabrication 2024; 17:015016. [PMID: 39467387 DOI: 10.1088/1758-5090/ad8bf5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
This study investigates osteoblastic cell spheroid cultivation methods, exploring flat-bottom, U-bottom, and rotary flask techniques with and without amorphous calcium phosphate (ACP) supplementation to replicate the 3D bone tissue microenvironment. ACP particles derived from eggshell waste exhibit enhanced osteogenic activity in 3D models. However, representative imaging of intricate 3D tissue-engineered constructs poses challenges in conventional imaging techniques due to notable scattering and absorption effects in light microscopy, and hence limited penetration depth. We investigated contrast-enhanced micro-CT as a methodological approach for comprehensive morphological 3D-analysis of thein-vitromodel and compared the technique with confocal laser scanning microscopy, scanning electron microscopy and classical histology. Phosphotungstic acid and iodine-based contrast agents were employed for micro-CT imaging in laboratory and synchrotron micro-CT imaging. Results revealed spheroid shape variations and structural integrity influenced by cultivation methods and ACP particles. The study underscores the advantage of 3D spheroid models over traditional 2D cultures in mimicking bone tissue architecture and cellular interactions, emphasising the growing demand for novel imaging techniques to visualise 3D tissue-engineered models. Contrast-enhanced micro-CT emerges as a promising non-invasive imaging method for tissue-engineered constructs containing ACP particles, offering insights into sample morphology, enabling virtual histology before further analysis.
Collapse
Affiliation(s)
- Torben Hildebrand
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
- Oral Research Laboratory, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| | - Qianli Ma
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| | - Dagnija Loca
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Kristaps Rubenis
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Janis Locs
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Pulka 3, Riga LV-1007, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Liebert Parreiras Nogueira
- Oral Research Laboratory, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| |
Collapse
|
3
|
Zhu E, Li YR, Margolis S, Wang J, Wang K, Zhang Y, Wang S, Park J, Zheng C, Yang L, Chu A, Zhang Y, Gao L, Hsiai TK. Frontiers in artificial intelligence-directed light-sheet microscopy for uncovering biological phenomena and multi-organ imaging. VIEW 2024; 5:20230087. [PMID: 39478956 PMCID: PMC11521201 DOI: 10.1002/viw.20230087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/18/2024] [Indexed: 11/02/2024] Open
Abstract
Light-sheet fluorescence microscopy (LSFM) introduces fast scanning of biological phenomena with deep photon penetration and minimal phototoxicity. This advancement represents a significant shift in 3-D imaging of large-scale biological tissues and 4-D (space + time) imaging of small live animals. The large data associated with LSFM requires efficient imaging acquisition and analysis with the use of artificial intelligence (AI)/machine learning (ML) algorithms. To this end, AI/ML-directed LSFM is an emerging area for multi-organ imaging and tumor diagnostics. This review will present the development of LSFM and highlight various LSFM configurations and designs for multi-scale imaging. Optical clearance techniques will be compared for effective reduction in light scattering and optimal deep-tissue imaging. This review will further depict a diverse range of research and translational applications, from small live organisms to multi-organ imaging to tumor diagnosis. In addition, this review will address AI/ML-directed imaging reconstruction, including the application of convolutional neural networks (CNNs) and generative adversarial networks (GANs). In summary, the advancements of LSFM have enabled effective and efficient post-imaging reconstruction and data analyses, underscoring LSFM's contribution to advancing fundamental and translational research.
Collapse
Affiliation(s)
- Enbo Zhu
- Department of Bioengineering, UCLA, California, 90095, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, California, 90095, USA
- Department of Medicine, Greater Los Angeles VA Healthcare System, California, 90073, USA
- Department of Microbiology, Immunology & Molecular Genetics, UCLA, California, 90095, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, UCLA, California, 90095, USA
| | - Samuel Margolis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, California, 90095, USA
| | - Jing Wang
- Department of Bioengineering, UCLA, California, 90095, USA
| | - Kaidong Wang
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, California, 90095, USA
- Department of Medicine, Greater Los Angeles VA Healthcare System, California, 90073, USA
| | - Yaran Zhang
- Department of Bioengineering, UCLA, California, 90095, USA
| | - Shaolei Wang
- Department of Bioengineering, UCLA, California, 90095, USA
| | - Jongchan Park
- Department of Bioengineering, UCLA, California, 90095, USA
| | - Charlie Zheng
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, California, 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, UCLA, California, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, California, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, California, 90095, USA
- Molecular Biology Institute, UCLA, California, 90095, USA
| | - Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, UCLA, California, 90095, USA
| | - Yuhua Zhang
- Doheny Eye Institute, Department of Ophthalmology, UCLA, California, 90095, USA
| | - Liang Gao
- Department of Bioengineering, UCLA, California, 90095, USA
| | - Tzung K. Hsiai
- Department of Bioengineering, UCLA, California, 90095, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, California, 90095, USA
- Department of Medicine, Greater Los Angeles VA Healthcare System, California, 90073, USA
| |
Collapse
|
4
|
Yamashita M, Tamamitsu M, Kirisako H, Goda Y, Chen X, Hattori K, Ota S. High-Throughput 3D Imaging Flow Cytometry of Suspended Adherent 3D Cell Cultures. SMALL METHODS 2024; 8:e2301318. [PMID: 38133483 DOI: 10.1002/smtd.202301318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Indexed: 12/23/2023]
Abstract
3D cell cultures are indispensable in recapitulating in vivo environments. Among the many 3D culture methods, culturing adherent cells on hydrogel beads to form spheroid-like structures is a powerful strategy for maintaining high cell viability and functions in the adherent states. However, high-throughput, scalable technologies for 3D imaging of individual cells cultured on the hydrogel scaffolds are lacking. This study reports the development of a high throughput, scalable 3D imaging flow cytometry platform for analyzing spheroid models. This platform is realized by integrating a single objective fluorescence light-sheet microscopy with a microfluidic device that combines hydrodynamic and acoustofluidic focusing techniques. This integration enabled unprecedentedly high-throughput and scalable optofluidic 3D imaging, processing 1310 spheroids consisting of 28 117 cells min-1. The large dataset obtained enables precise quantification and comparison of the nuclear morphology of adhering and suspended cells, revealing that the adhering cells have smaller nuclei with less rounded surfaces. This platform's high throughput, robustness, and precision for analyzing the morphology of subcellular structures in 3D culture models hold promising potential for various biomedical analyses, including image-based phenotypic screening of drugs with spheroids or organoids.
Collapse
Affiliation(s)
- Minato Yamashita
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Miu Tamamitsu
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hiromi Kirisako
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Yuki Goda
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Xiaoyao Chen
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Kazuki Hattori
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Sadao Ota
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| |
Collapse
|
5
|
Otomo K, Omura T, Nozawa Y, Edwards SJ, Sato Y, Saito Y, Yagishita S, Uchida H, Watakabe Y, Naitou K, Yanai R, Sahara N, Takagi S, Katayama R, Iwata Y, Shiokawa T, Hayakawa Y, Otsuka K, Watanabe-Takano H, Haneda Y, Fukuhara S, Fujiwara M, Nii T, Meno C, Takeshita N, Yashiro K, Rosales Rocabado JM, Kaku M, Yamada T, Oishi Y, Koike H, Cheng Y, Sekine K, Koga JI, Sugiyama K, Kimura K, Karube F, Kim H, Manabe I, Nemoto T, Tainaka K, Hamada A, Brismar H, Susaki EA. descSPIM: an affordable and easy-to-build light-sheet microscope optimized for tissue clearing techniques. Nat Commun 2024; 15:4941. [PMID: 38866781 PMCID: PMC11169475 DOI: 10.1038/s41467-024-49131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Despite widespread adoption of tissue clearing techniques in recent years, poor access to suitable light-sheet fluorescence microscopes remains a major obstacle for biomedical end-users. Here, we present descSPIM (desktop-equipped SPIM for cleared specimens), a low-cost ($20,000-50,000), low-expertise (one-day installation by a non-expert), yet practical do-it-yourself light-sheet microscope as a solution for this bottleneck. Even the most fundamental configuration of descSPIM enables multi-color imaging of whole mouse brains and a cancer cell line-derived xenograft tumor mass for the visualization of neurocircuitry, assessment of drug distribution, and pathological examination by false-colored hematoxylin and eosin staining in a three-dimensional manner. Academically open-sourced ( https://github.com/dbsb-juntendo/descSPIM ), descSPIM allows routine three-dimensional imaging of cleared samples in minutes. Thus, the dissemination of descSPIM will accelerate biomedical discoveries driven by tissue clearing technologies.
Collapse
Affiliation(s)
- Kohei Otomo
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Biochemistry II, Juntendo University School of Medicine, Tokyo, Japan
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Takaki Omura
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Neurosurgery, University of Tokyo, Tokyo, Japan
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuki Nozawa
- Biochemistry II, Juntendo University School of Medicine, Tokyo, Japan
| | - Steven J Edwards
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Yukihiko Sato
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuri Saito
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigehiro Yagishita
- Department of Pharmacology and Therapeutics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hitoshi Uchida
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuki Watakabe
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kiyotada Naitou
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Rin Yanai
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Naruhiko Sahara
- Advanced Neuroimaging Center, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Satoshi Takagi
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yusuke Iwata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiro Shiokawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kensuke Otsuka
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Chiba, Japan
| | - Haruko Watanabe-Takano
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Yuka Haneda
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Miku Fujiwara
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takenobu Nii
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Chikara Meno
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Takeshita
- Anatomy and Developmental Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenta Yashiro
- Anatomy and Developmental Biology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Juan Marcelo Rosales Rocabado
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaru Kaku
- Division of Bio-prosthodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tatsuya Yamada
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, USA
| | - Yumiko Oishi
- Department of Meidical Biochemistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Koike
- Department of Meidical Biochemistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yinglan Cheng
- Department of Meidical Biochemistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keisuke Sekine
- Laboratory of Cancer Cell Systems, National Cancer Center Research Institute, Tokyo, Japan
| | - Jun-Ichiro Koga
- The Second Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kaori Sugiyama
- Institute for Advanced Research of Biosystem Dynamics, Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Kenichi Kimura
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Fuyuki Karube
- Lab of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hyeree Kim
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomomi Nemoto
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akinobu Hamada
- Department of Pharmacology and Therapeutics, Fundamental Innovative Oncology Core, National Cancer Center Research Institute, Tokyo, Japan
- Division of Molecular Pharmacology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hjalmar Brismar
- Science for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Etsuo A Susaki
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan.
- Biochemistry II, Juntendo University School of Medicine, Tokyo, Japan.
- Nakatani Biomedical Spatialomics Hub, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
6
|
Tomizawa Y, Wali KH, Surti M, Suhail Y, Kshitiz, Hoshino K. Lightsheet microscopy integrates single-cell optical visco-elastography and fluorescence cytometry of 3D live tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.20.590392. [PMID: 38766194 PMCID: PMC11100606 DOI: 10.1101/2024.04.20.590392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Most common cytometry methods, including flow cytometry, observe suspended or fixed cells and cannot evaluate their structural roles in 3D tissues. However, cellular physical interactions are critical in physiological, developmental, and pathological processes. Here, we present a novel optical visco-elastography that characterizes single-cellular physical interactions by applying in-situ micro-mechanical perturbation to live microtissues under 3D lightsheet microscopy. The 4D digital image correlation (DIC) analysis of ~20,000 nodes tracked the compressive deformation of 3D tissues containing ~500 cells. The computational 3D image segmentation allowed cell-by-cell qualitative observation and statistical analysis, directly correlating multi-channel fluorescence and viscoelasticity. To represent epithelia-stroma interactions, we used a 3D organoid model of maternal-fetal interface and visualized solid-like, well-aligned displacement and liquid-like random motion between individual cells. The statistical analysis through our unique cytometry confirmed that endometrial stromal fibroblasts stiffen in response to decidualization. Moreover, we demonstrated in the 3D model that interaction with placental extravillous trophoblasts partially reverses the attained stiffness, which was supported by the gene expression analysis. Placentation shares critical cellular and molecular significance with various fundamental biological events such as cancer metastasis, wound healing, and gastrulation. Our analysis confirmed existing beliefs and discovered new insights, proving the broad applicability of our method.
Collapse
Affiliation(s)
- Yuji Tomizawa
- Department of Biomedical Engineering, University of Connecticut, CT
| | - Khadija H Wali
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT
| | - Manav Surti
- Department of Biomedical Engineering, University of Connecticut, CT
| | - Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health, Farmington, CT
- Systems Biology Institute, Yale University, West Haven, CT
| | - Kazunori Hoshino
- Department of Biomedical Engineering, University of Connecticut, CT
| |
Collapse
|
7
|
Liu L, Zhang Y, Chen J, He Q, Shen Y, Qu Y, Yang J. Energy-efficient dispersion compensation for digital micromirror device. OPTICS EXPRESS 2024; 32:13946-13954. [PMID: 38859352 DOI: 10.1364/oe.521743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/15/2024] [Indexed: 06/12/2024]
Abstract
Due to the wave nature of light, the diffraction pattern generated by an optical device is sensitive to the shift of wavelength. This fact significantly compromises the digital micromirror device (DMD) in applications, such as full-color holographic display and multi-color fluorescence microscopy. The existing dispersion compensation techniques for DMD involve adding diffractive elements, which causes a large amount of waste of optical energy. Here, we propose an energy-efficient dispersion compensation method, based on a dispersive prism, for DMD. This method simulates the diffraction pattern of the optical fields reflected from the DMD with an angular spectrum model. According to the simulation, a prism and a set of optical components are introduced to compensate for the angular dispersion of DMD-modulated optical fields. In the experiment, our method reduced the angular dispersion, between the 532 nm and 660 nm light beams, by a factor of ∼8.5.
Collapse
|
8
|
Eleni Karakatsani M, Estrada H, Chen Z, Shoham S, Deán-Ben XL, Razansky D. Shedding light on ultrasound in action: Optical and optoacoustic monitoring of ultrasound brain interventions. Adv Drug Deliv Rev 2024; 205:115177. [PMID: 38184194 PMCID: PMC11298795 DOI: 10.1016/j.addr.2023.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Monitoring brain responses to ultrasonic interventions is becoming an important pillar of a growing number of applications employing acoustic waves to actuate and cure the brain. Optical interrogation of living tissues provides a unique means for retrieving functional and molecular information related to brain activity and disease-specific biomarkers. The hybrid optoacoustic imaging methods have further enabled deep-tissue imaging with optical contrast at high spatial and temporal resolution. The marriage between light and sound thus brings together the highly complementary advantages of both modalities toward high precision interrogation, stimulation, and therapy of the brain with strong impact in the fields of ultrasound neuromodulation, gene and drug delivery, or noninvasive treatments of neurological and neurodegenerative disorders. In this review, we elaborate on current advances in optical and optoacoustic monitoring of ultrasound interventions. We describe the main principles and mechanisms underlying each method before diving into the corresponding biomedical applications. We identify areas of improvement as well as promising approaches with clinical translation potential.
Collapse
Affiliation(s)
- Maria Eleni Karakatsani
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Héctor Estrada
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Shy Shoham
- Department of Ophthalmology and Tech4Health and Neuroscience Institutes, NYU Langone Health, NY, USA
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| |
Collapse
|
9
|
Shi Y, Tabet JS, Milkie DE, Daugird TA, Yang CQ, Ritter AT, Giovannucci A, Legant WR. Smart lattice light-sheet microscopy for imaging rare and complex cellular events. Nat Methods 2024; 21:301-310. [PMID: 38167656 PMCID: PMC11216155 DOI: 10.1038/s41592-023-02126-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
Light-sheet microscopes enable rapid high-resolution imaging of biological specimens; however, biological processes span spatiotemporal scales. Moreover, long-term phenotypes are often instigated by rare or fleeting biological events that are difficult to capture with a single imaging modality. Here, to overcome this limitation, we present smartLLSM, a microscope that incorporates artificial intelligence-based instrument control to autonomously switch between epifluorescent inverted imaging and lattice light-sheet microscopy (LLSM). We apply this approach to two unique processes: cell division and immune synapse formation. In each context, smartLLSM provides population-level statistics across thousands of cells and autonomously captures multicolor three-dimensional datasets or four-dimensional time-lapse movies of rare events at rates that dramatically exceed human capabilities. From this, we quantify the effects of Taxol dose on spindle structure and kinetochore dynamics in dividing cells and of antigen strength on cytotoxic T lymphocyte engagement and lytic granule polarization at the immune synapse. Overall, smartLLSM efficiently detects rare events within heterogeneous cell populations and records these processes with high spatiotemporal four-dimensional imaging over statistically significant replicates.
Collapse
Affiliation(s)
- Yu Shi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jimmy S Tabet
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Daniel E Milkie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Timothy A Daugird
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chelsea Q Yang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Andrea Giovannucci
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Wesley R Legant
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Krimpenfort LT, Garcia-Collado M, van Leeuwen T, Locri F, Luik AL, Queiro-Palou A, Kanatani S, André H, Uhlén P, Jakobsson L. Anatomy of the complete mouse eye vasculature explored by light-sheet fluorescence microscopy exposes subvascular-specific remodeling in development and pathology. Exp Eye Res 2023; 237:109674. [PMID: 37838300 DOI: 10.1016/j.exer.2023.109674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Eye development and function rely on precise establishment, regression and maintenance of its many sub-vasculatures. These crucial vascular properties have been extensively investigated in eye development and disease utilizing genetic and experimental mouse models. However, due to technical limitations, individual studies have often restricted their focus to one specific sub-vasculature. Here, we apply a workflow that allows for visualization of complete vasculatures of mouse eyes of various developmental stages. Through tissue depigmentation, immunostaining, clearing and light-sheet fluorescence microscopy (LSFM) entire vasculatures of the retina, vitreous (hyaloids) and uvea were simultaneously imaged at high resolution. In silico dissection provided detailed information on their 3D architecture and interconnections. By this method we describe successive remodeling of the postnatal iris vasculature, involving sprouting and pruning, following its disconnection from the embryonic feeding hyaloid vasculature. In addition, we demonstrate examples of conventional and LSFM-mediated analysis of choroidal neovascularization after laser-induced wounding, showing added value of the presented workflow in analysis of modelled eye disease. These advancements in visualization and analysis of the respective eye vasculatures in development and complex eye disease open for novel observations of their functional interplay at a whole-organ level.
Collapse
Affiliation(s)
- Luc Thomas Krimpenfort
- Department of Medical Biochemistry and Biophysics, Div. of Vascular Biology, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Maria Garcia-Collado
- Department of Medical Biochemistry and Biophysics, Div. of Vascular Biology, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Tom van Leeuwen
- Department of Medical Biochemistry and Biophysics, Div. of Molecular Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Filippo Locri
- Department of Clinical Neuroscience, Division of Eye and Vision, St Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, 171 77, Stockholm, Sweden
| | - Anna-Liisa Luik
- Department of Medical Biochemistry and Biophysics, Div. of Vascular Biology, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Antonio Queiro-Palou
- Department of Medical Biochemistry and Biophysics, Div. of Vascular Biology, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Div. of Molecular Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St Erik Eye Hospital, Karolinska Institutet, Eugeniavägen 12, 171 77, Stockholm, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Div. of Molecular Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Jakobsson
- Department of Medical Biochemistry and Biophysics, Div. of Vascular Biology, Karolinska Institutet, Solnavägen 9, 171 77, Stockholm, Sweden.
| |
Collapse
|
11
|
Delage E, Guilbert T, Yates F. Successful 3D imaging of cleared biological samples with light sheet fluorescence microscopy. J Cell Biol 2023; 222:e202307143. [PMID: 37847528 PMCID: PMC10583220 DOI: 10.1083/jcb.202307143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023] Open
Abstract
In parallel with the development of tissue-clearing methods, over the last decade, light sheet fluorescence microscopy has contributed to major advances in various fields, such as cell and developmental biology and neuroscience. While biologists are increasingly integrating three-dimensional imaging into their research projects, their experience with the technique is not always up to their expectations. In response to a survey of specific challenges associated with sample clearing and labeling, image acquisition, and data analysis, we have critically assessed the recent literature to characterize the difficulties inherent to light sheet fluorescence microscopy applied to cleared biological samples and to propose solutions to overcome them. This review aims to provide biologists interested in light sheet fluorescence microscopy with a primer for the development of their imaging pipeline, from sample preparation to image analysis. Importantly, we believe that issues could be avoided with better anticipation of image analysis requirements, which should be kept in mind while optimizing sample preparation and acquisition parameters.
Collapse
Affiliation(s)
- Elise Delage
- CellTechs Laboratory, SupBiotech, Villejuif, France
- Service d’Etude des Prions et des Infections Atypiques, Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris Saclay, Fontenay-aux-Roses, France
| | - Thomas Guilbert
- Institut Cochin, Institut national de la santé et de la recherche médicale (U1016), Centre National de la Recherche Scientifique (UMR 8104), Université de Paris (UMR-S1016), Paris, France
| | - Frank Yates
- CellTechs Laboratory, SupBiotech, Villejuif, France
- Service d’Etude des Prions et des Infections Atypiques, Institut François Jacob, Commissariat à l’Energie Atomique et aux Energies Alternatives, Université Paris Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
12
|
Balasubramanian H, Hobson CM, Chew TL, Aaron JS. Imagining the future of optical microscopy: everything, everywhere, all at once. Commun Biol 2023; 6:1096. [PMID: 37898673 PMCID: PMC10613274 DOI: 10.1038/s42003-023-05468-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
The optical microscope has revolutionized biology since at least the 17th Century. Since then, it has progressed from a largely observational tool to a powerful bioanalytical platform. However, realizing its full potential to study live specimens is hindered by a daunting array of technical challenges. Here, we delve into the current state of live imaging to explore the barriers that must be overcome and the possibilities that lie ahead. We venture to envision a future where we can visualize and study everything, everywhere, all at once - from the intricate inner workings of a single cell to the dynamic interplay across entire organisms, and a world where scientists could access the necessary microscopy technologies anywhere.
Collapse
Affiliation(s)
| | - Chad M Hobson
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Jesse S Aaron
- Advanced Imaging Center; Howard Hughes Medical Institute Janelia Research Campus, Ashburn, VA, 20147, USA.
| |
Collapse
|
13
|
Silic MR, Zhang G. Bioelectricity in Developmental Patterning and Size Control: Evidence and Genetically Encoded Tools in the Zebrafish Model. Cells 2023; 12:cells12081148. [PMID: 37190057 DOI: 10.3390/cells12081148] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Developmental patterning is essential for regulating cellular events such as axial patterning, segmentation, tissue formation, and organ size determination during embryogenesis. Understanding the patterning mechanisms remains a central challenge and fundamental interest in developmental biology. Ion-channel-regulated bioelectric signals have emerged as a player of the patterning mechanism, which may interact with morphogens. Evidence from multiple model organisms reveals the roles of bioelectricity in embryonic development, regeneration, and cancers. The Zebrafish model is the second most used vertebrate model, next to the mouse model. The zebrafish model has great potential for elucidating the functions of bioelectricity due to many advantages such as external development, transparent early embryogenesis, and tractable genetics. Here, we review genetic evidence from zebrafish mutants with fin-size and pigment changes related to ion channels and bioelectricity. In addition, we review the cell membrane voltage reporting and chemogenetic tools that have already been used or have great potential to be implemented in zebrafish models. Finally, new perspectives and opportunities for bioelectricity research with zebrafish are discussed.
Collapse
Affiliation(s)
- Martin R Silic
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| |
Collapse
|
14
|
Shi Y, Tabet JS, Milkie DE, Daugird TA, Yang CQ, Giovannucci A, Legant WR. Smart Lattice Light Sheet Microscopy for imaging rare and complex cellular events. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531517. [PMID: 36945393 PMCID: PMC10028917 DOI: 10.1101/2023.03.07.531517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Light sheet microscopes enable rapid, high-resolution imaging of biological specimens; however, biological processes span a variety of spatiotemporal scales. Moreover, long-term phenotypes are often instigated by rare or fleeting biological events that are difficult to capture with a single imaging modality and constant imaging parameters. To overcome this limitation, we present smartLLSM, a microscope that incorporates AI-based instrument control to autonomously switch between epifluorescent inverted imaging and lattice light sheet microscopy. We apply this technology to two major scenarios. First, we demonstrate that the instrument provides population-level statistics of cell cycle states across thousands of cells on a coverslip. Second, we show that by using real-time image feedback to switch between imaging modes, the instrument autonomously captures multicolor 3D datasets or 4D time-lapse movies of dividing cells at rates that dramatically exceed human capabilities. Quantitative image analysis on high-content + high-throughput datasets reveal kinetochore and chromosome dynamics in dividing cells and determine the effects of drug perturbation on cells in specific mitotic stages. This new methodology enables efficient detection of rare events within a heterogeneous cell population and records these processes with high spatiotemporal 4D imaging over statistically significant replicates.
Collapse
|
15
|
Wang T, Chen Y, Wang B, Wu M. Recent progress of second near-infrared (NIR-II) fluorescence microscopy in bioimaging. Front Physiol 2023; 14:1126805. [PMID: 36895633 PMCID: PMC9990761 DOI: 10.3389/fphys.2023.1126805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Visualizing biological tissues in vivo at a cellular or subcellular resolution to explore molecular signaling and cell behaviors is a crucial direction for research into biological processes. In vivo imaging can provide quantitative and dynamic visualization/mapping in biology and immunology. New microscopy techniques combined with near-infrared region fluorophores provide additional avenues for further progress in vivo bioimaging. Based on the development of chemical materials and physical optoelectronics, new NIR-II microscopy techniques are emerging, such as confocal and multiphoton microscopy, light-sheet fluorescence microscopy (LSFM), and wide-field microscopy. In this review, we introduce the characteristics of in vivo imaging using NIR-II fluorescence microscopy. We also cover the recent advances in NIR-II fluorescence microscopy techniques in bioimaging and the potential for overcoming current challenges.
Collapse
Affiliation(s)
- Tian Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingfu Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|