1
|
Liu Y, Jiang S, Li Y, Zhao S, Yun Z, Zhao ZH, Zhang L, Wang G, Chen X, Manubens-Gil L, Hang Y, Gong Q, Li Y, Qian P, Qu L, Garcia-Forn M, Wang W, De Rubeis S, Wu Z, Osten P, Gong H, Hawrylycz M, Mitra P, Dong H, Luo Q, Ascoli GA, Zeng H, Liu L, Peng H. Neuronal diversity and stereotypy at multiple scales through whole brain morphometry. Nat Commun 2024; 15:10269. [PMID: 39592611 PMCID: PMC11599929 DOI: 10.1038/s41467-024-54745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
We conducted a large-scale whole-brain morphometry study by analyzing 3.7 peta-voxels of mouse brain images at the single-cell resolution, producing one of the largest multi-morphometry databases of mammalian brains to date. We registered 204 mouse brains of three major imaging modalities to the Allen Common Coordinate Framework (CCF) atlas, annotated 182,497 neuronal cell bodies, modeled 15,441 dendritic microenvironments, characterized the full morphology of 1876 neurons along with their axonal motifs, and detected 2.63 million axonal varicosities that indicate potential synaptic sites. Our analyzed six levels of information related to neuronal populations, dendritic microenvironments, single-cell full morphology, dendritic and axonal arborization, axonal varicosities, and sub-neuronal structural motifs, along with a quantification of the diversity and stereotypy of patterns at each level. This integrative study provides key anatomical descriptions of neurons and their types across a multiple scales and features, contributing a substantial resource for understanding neuronal diversity in mammalian brains.
Collapse
Affiliation(s)
- Yufeng Liu
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Shengdian Jiang
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
- School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Yingxin Li
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Sujun Zhao
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Zhixi Yun
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
- School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Zuo-Han Zhao
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Lingli Zhang
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Gaoyu Wang
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Xin Chen
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Linus Manubens-Gil
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Yuning Hang
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Qiaobo Gong
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Yuanyuan Li
- Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei, Anhui, China
| | - Penghao Qian
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Lei Qu
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
- Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei, Anhui, China
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Wang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhuhao Wu
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | | | - Partha Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hongwei Dong
- Center for Integrative Connectomics, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Qingming Luo
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China
| | - Giorgio A Ascoli
- Volgenau School of Engineering, George Mason University, Fairfax, VA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lijuan Liu
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China.
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
| | - Hanchuan Peng
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Chen J, Yuan Z, Xi J, Gao Z, Li Y, Zhu X, Shi YS, Guan F, Wang Y. Efficient and Accurate Semi-Automatic Neuron Tracing with Extended Reality. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:7299-7309. [PMID: 39255163 DOI: 10.1109/tvcg.2024.3456197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Neuron tracing, alternately referred to as neuron reconstruction, is the procedure for extracting the digital representation of the three-dimensional neuronal morphology from stacks of microscopic images. Achieving accurate neuron tracing is critical for profiling the neuroanatomical structure at single-cell level and analyzing the neuronal circuits and projections at whole-brain scale. However, the process often demands substantial human involvement and represents a nontrivial task. Conventional solutions towards neuron tracing often contend with challenges such as non-intuitive user interactions, suboptimal data generation throughput, and ambiguous visualization. In this paper, we introduce a novel method that leverages the power of extended reality (XR) for intuitive and progressive semi-automatic neuron tracing in real time. In our method, we have defined a set of interactors for controllable and efficient interactions for neuron tracing in an immersive environment. We have also developed a GPU-accelerated automatic tracing algorithm that can generate updated neuron reconstruction in real time. In addition, we have built a visualizer for fast and improved visual experience, particularly when working with both volumetric images and 3D objects. Our method has been successfully implemented with one virtual reality (VR) headset and one augmented reality (AR) headset with satisfying results achieved. We also conducted two user studies and proved the effectiveness of the interactors and the efficiency of our method in comparison with other approaches for neuron tracing.
Collapse
|
3
|
Zhang L, Huang L, Yuan Z, Hang Y, Zeng Y, Li K, Wang L, Zeng H, Chen X, Zhang H, Xi J, Chen D, Gao Z, Le L, Chen J, Ye W, Liu L, Wang Y, Peng H. Collaborative augmented reconstruction of 3D neuron morphology in mouse and human brains. Nat Methods 2024; 21:1936-1946. [PMID: 39232199 PMCID: PMC11468770 DOI: 10.1038/s41592-024-02401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Digital reconstruction of the intricate 3D morphology of individual neurons from microscopic images is a crucial challenge in both individual laboratories and large-scale projects focusing on cell types and brain anatomy. This task often fails in both conventional manual reconstruction and state-of-the-art artificial intelligence (AI)-based automatic reconstruction algorithms. It is also challenging to organize multiple neuroanatomists to generate and cross-validate biologically relevant and mutually agreed upon reconstructions in large-scale data production. Based on collaborative group intelligence augmented by AI, we developed a collaborative augmented reconstruction (CAR) platform for neuron reconstruction at scale. This platform allows for immersive interaction and efficient collaborative editing of neuron anatomy using a variety of devices, such as desktop workstations, virtual reality headsets and mobile phones, enabling users to contribute anytime and anywhere and to take advantage of several AI-based automation tools. We tested CAR's applicability for challenging mouse and human neurons toward scaled and faithful data production.
Collapse
Affiliation(s)
- Lingli Zhang
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Lei Huang
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Zexin Yuan
- Guangdong Institute of Intelligence Science and Technology, Hengqin, China
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
- School of Future Technology, Shanghai University, Shanghai, China
| | - Yuning Hang
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Ying Zeng
- Guangdong Institute of Intelligence Science and Technology, Hengqin, China
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Kaixiang Li
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Lijun Wang
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Haoyu Zeng
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Xin Chen
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Hairuo Zhang
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Jiaqi Xi
- Guangdong Institute of Intelligence Science and Technology, Hengqin, China
| | - Danni Chen
- Guangdong Institute of Intelligence Science and Technology, Hengqin, China
| | - Ziqin Gao
- Guangdong Institute of Intelligence Science and Technology, Hengqin, China
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Longxin Le
- Guangdong Institute of Intelligence Science and Technology, Hengqin, China
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
- School of Future Technology, Shanghai University, Shanghai, China
| | - Jie Chen
- Guangdong Institute of Intelligence Science and Technology, Hengqin, China
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Wen Ye
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Lijuan Liu
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Yimin Wang
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China.
- Guangdong Institute of Intelligence Science and Technology, Hengqin, China.
| | - Hanchuan Peng
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, China.
| |
Collapse
|
4
|
Reimer ML, Kauer SD, Benson CA, King JF, Patwa S, Feng S, Estacion MA, Bangalore L, Waxman SG, Tan AM. A FAIR, open-source virtual reality platform for dendritic spine analysis. PATTERNS (NEW YORK, N.Y.) 2024; 5:101041. [PMID: 39568639 PMCID: PMC11573899 DOI: 10.1016/j.patter.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/13/2024] [Accepted: 07/16/2024] [Indexed: 11/22/2024]
Abstract
Neuroanatomy is fundamental to understanding the nervous system, particularly dendritic spines, which are vital for synaptic transmission and change in response to injury or disease. Advancements in imaging have allowed for detailed three-dimensional (3D) visualization of these structures. However, existing tools for analyzing dendritic spine morphology are limited. To address this, we developed an open-source virtual reality (VR) structural analysis software ecosystem (coined "VR-SASE") that offers a powerful, intuitive approach for analyzing dendritic spines. Our validation process confirmed the method's superior accuracy, outperforming recognized gold-standard neural reconstruction techniques. Importantly, the VR-SASE workflow automatically calculates key morphological metrics, such as dendritic spine length, volume, and surface area, and reliably replicates established datasets from published dendritic spine studies. By integrating the Neurodata Without Borders (NWB) data standard, VR-SASE datasets can be preserved/distributed through DANDI Archives, satisfying the NIH data sharing mandate.
Collapse
Affiliation(s)
- Marike L Reimer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Sierra D Kauer
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Curtis A Benson
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Jared F King
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Siraj Patwa
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Sarah Feng
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Maile A Estacion
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Lakshmi Bangalore
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| | - Andrew M Tan
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, US Department of Veterans Affairs, West Haven, CT, USA
| |
Collapse
|
5
|
Gliko O, Mallory M, Dalley R, Gala R, Gornet J, Zeng H, Sorensen SA, Sümbül U. High-throughput analysis of dendrite and axonal arbors reveals transcriptomic correlates of neuroanatomy. Nat Commun 2024; 15:6337. [PMID: 39068160 PMCID: PMC11283452 DOI: 10.1038/s41467-024-50728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
Neuronal anatomy is central to the organization and function of brain cell types. However, anatomical variability within apparently homogeneous populations of cells can obscure such insights. Here, we report large-scale automation of neuronal morphology reconstruction and analysis on a dataset of 813 inhibitory neurons characterized using the Patch-seq method, which enables measurement of multiple properties from individual neurons, including local morphology and transcriptional signature. We demonstrate that these automated reconstructions can be used in the same manner as manual reconstructions to understand the relationship between some, but not all, cellular properties used to define cell types. We uncover gene expression correlates of laminar innervation on multiple transcriptomically defined neuronal subclasses and types. In particular, our results reveal correlates of the variability in Layer 1 (L1) axonal innervation in a transcriptomically defined subpopulation of Martinotti cells in the adult mouse neocortex.
Collapse
Affiliation(s)
| | | | | | | | - James Gornet
- California Institute of Technology, Pasadena, CA, USA
| | | | | | | |
Collapse
|
6
|
Yang R, Xiao T, Cheng Y, Li A, Qu J, Liang R, Bao S, Wang X, Wang J, Suo J, Luo Q, Dai Q. Sharing massive biomedical data at magnitudes lower bandwidth using implicit neural function. Proc Natl Acad Sci U S A 2024; 121:e2320870121. [PMID: 38959033 PMCID: PMC11252806 DOI: 10.1073/pnas.2320870121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/21/2024] [Indexed: 07/04/2024] Open
Abstract
Efficient storage and sharing of massive biomedical data would open up their wide accessibility to different institutions and disciplines. However, compressors tailored for natural photos/videos are rapidly limited for biomedical data, while emerging deep learning-based methods demand huge training data and are difficult to generalize. Here, we propose to conduct Biomedical data compRession with Implicit nEural Function (BRIEF) by representing the target data with compact neural networks, which are data specific and thus have no generalization issues. Benefiting from the strong representation capability of implicit neural function, BRIEF achieves 2[Formula: see text]3 orders of magnitude compression on diverse biomedical data at significantly higher fidelity than existing techniques. Besides, BRIEF is of consistent performance across the whole data volume, and supports customized spatially varying fidelity. BRIEF's multifold advantageous features also serve reliable downstream tasks at low bandwidth. Our approach will facilitate low-bandwidth data sharing and promote collaboration and progress in the biomedical field.
Collapse
Affiliation(s)
- Runzhao Yang
- Department of Automation, Tsinghua University, Beijing100084, China
- Institute of Brain and Cognitive Sciences, Tsinghua University, Beijing100084, China
- Shanghai Artificial Intelligence Laboratory, Shanghai200232, China
| | - Tingxiong Xiao
- Department of Automation, Tsinghua University, Beijing100084, China
| | - Yuxiao Cheng
- Department of Automation, Tsinghua University, Beijing100084, China
| | - Anan Li
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
- Huazhong University of Science and Technology-Suzhou Institute for Brainsmatics, Jiangsu Industrial Technology Research Institute, Suzhou215123, China
| | - Jinyuan Qu
- Department of Automation, Tsinghua University, Beijing100084, China
| | - Rui Liang
- School of Biomedical Engineering, Hainan University, Haikou570228, China
| | - Shengda Bao
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Xiaofeng Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan430074, China
| | - Jue Wang
- Department of Automation, Tsinghua University, Beijing100084, China
| | - Jinli Suo
- Department of Automation, Tsinghua University, Beijing100084, China
- Institute of Brain and Cognitive Sciences, Tsinghua University, Beijing100084, China
- Shanghai Artificial Intelligence Laboratory, Shanghai200232, China
| | - Qingming Luo
- School of Biomedical Engineering, Hainan University, Haikou570228, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing100084, China
- Institute of Brain and Cognitive Sciences, Tsinghua University, Beijing100084, China
| |
Collapse
|
7
|
Liu M, Wu S, Chen R, Lin Z, Wang Y, Meijering E. Brain Image Segmentation for Ultrascale Neuron Reconstruction via an Adaptive Dual-Task Learning Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2574-2586. [PMID: 38373129 DOI: 10.1109/tmi.2024.3367384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Accurate morphological reconstruction of neurons in whole brain images is critical for brain science research. However, due to the wide range of whole brain imaging, uneven staining, and optical system fluctuations, there are significant differences in image properties between different regions of the ultrascale brain image, such as dramatically varying voxel intensities and inhomogeneous distribution of background noise, posing an enormous challenge to neuron reconstruction from whole brain images. In this paper, we propose an adaptive dual-task learning network (ADTL-Net) to quickly and accurately extract neuronal structures from ultrascale brain images. Specifically, this framework includes an External Features Classifier (EFC) and a Parameter Adaptive Segmentation Decoder (PASD), which share the same Multi-Scale Feature Encoder (MSFE). MSFE introduces an attention module named Channel Space Fusion Module (CSFM) to extract structure and intensity distribution features of neurons at different scales for addressing the problem of anisotropy in 3D space. Then, EFC is designed to classify these feature maps based on external features, such as foreground intensity distributions and image smoothness, and select specific PASD parameters to decode them of different classes to obtain accurate segmentation results. PASD contains multiple sets of parameters trained by different representative complex signal-to-noise distribution image blocks to handle various images more robustly. Experimental results prove that compared with other advanced segmentation methods for neuron reconstruction, the proposed method achieves state-of-the-art results in the task of neuron reconstruction from ultrascale brain images, with an improvement of about 49% in speed and 12% in F1 score.
Collapse
|
8
|
Tecuatl C, Ljungquist B, Ascoli GA. Accelerating the continuous community sharing of digital neuromorphology data. FASEB Bioadv 2024; 6:207-221. [PMID: 38974113 PMCID: PMC11226999 DOI: 10.1096/fba.2024-00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
The tree-like morphology of neurons and glia is a key cellular determinant of circuit connectivity and metabolic function in the nervous system of essentially all animals. To elucidate the contribution of specific cell types to both physiological and pathological brain states, it is important to access detailed neuroanatomy data for quantitative analysis and computational modeling. NeuroMorpho.Org is the largest online collection of freely available digital neural reconstructions and related metadata and is continuously updated with new uploads. Earlier in the project, we released multiple datasets together yearly, but this process caused an average delay of several months in making the data public. Moreover, in the past 5 years, >80% of invited authors agreed to share their data with the community via NeuroMorpho.Org, up from <20% in the first 5 years of the project. In the same period, the average number of reconstructions per publication increased 600%, creating the need for automatic processing to release more reconstructions in less time. The progressive automation of our pipeline enabled the transition to agile releases of individual datasets as soon as they are ready. The overall time from data identification to public sharing decreased by 63.7%; 78% of the datasets are now released in less than 3 months with an average workflow duration below 40 days. Furthermore, the mean processing time per reconstruction dropped from 3 h to 2 min. With these continuous improvements, NeuroMorpho.Org strives to forge a positive culture of open data. Most importantly, the new, original research enabled through reuse of datasets across the world has a multiplicative effect on science discovery, benefiting both authors and users.
Collapse
Affiliation(s)
- Carolina Tecuatl
- Bioengineering Department and Center for Neural Informatics, Structures and Plasticity, College of Engineering and ComputingGeorge Mason UniversityFairfaxVirginiaUSA
| | - Bengt Ljungquist
- Bioengineering Department and Center for Neural Informatics, Structures and Plasticity, College of Engineering and ComputingGeorge Mason UniversityFairfaxVirginiaUSA
| | - Giorgio A. Ascoli
- Bioengineering Department and Center for Neural Informatics, Structures and Plasticity, College of Engineering and ComputingGeorge Mason UniversityFairfaxVirginiaUSA
- Interdisciplinary Program in Neuroscience, College of ScienceGeorge Mason UniversityFairfaxVirginiaUSA
| |
Collapse
|
9
|
Choi YK, Feng L, Jeong WK, Kim J. Connecto-informatics at the mesoscale: current advances in image processing and analysis for mapping the brain connectivity. Brain Inform 2024; 11:15. [PMID: 38833195 DOI: 10.1186/s40708-024-00228-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024] Open
Abstract
Mapping neural connections within the brain has been a fundamental goal in neuroscience to understand better its functions and changes that follow aging and diseases. Developments in imaging technology, such as microscopy and labeling tools, have allowed researchers to visualize this connectivity through high-resolution brain-wide imaging. With this, image processing and analysis have become more crucial. However, despite the wealth of neural images generated, access to an integrated image processing and analysis pipeline to process these data is challenging due to scattered information on available tools and methods. To map the neural connections, registration to atlases and feature extraction through segmentation and signal detection are necessary. In this review, our goal is to provide an updated overview of recent advances in these image-processing methods, with a particular focus on fluorescent images of the mouse brain. Our goal is to outline a pathway toward an integrated image-processing pipeline tailored for connecto-informatics. An integrated workflow of these image processing will facilitate researchers' approach to mapping brain connectivity to better understand complex brain networks and their underlying brain functions. By highlighting the image-processing tools available for fluroscent imaging of the mouse brain, this review will contribute to a deeper grasp of connecto-informatics, paving the way for better comprehension of brain connectivity and its implications.
Collapse
Affiliation(s)
- Yoon Kyoung Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Department of Computer Science and Engineering, Korea University, Seoul, South Korea
| | | | - Won-Ki Jeong
- Department of Computer Science and Engineering, Korea University, Seoul, South Korea
| | - Jinhyun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.
- Department of Computer Science and Engineering, Korea University, Seoul, South Korea.
- KIST-SKKU Brain Research Center, SKKU Institute for Convergence, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
10
|
Cauzzo S, Bruno E, Boulet D, Nazac P, Basile M, Callara AL, Tozzi F, Ahluwalia A, Magliaro C, Danglot L, Vanello N. A modular framework for multi-scale tissue imaging and neuronal segmentation. Nat Commun 2024; 15:4102. [PMID: 38778027 PMCID: PMC11111705 DOI: 10.1038/s41467-024-48146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The development of robust tools for segmenting cellular and sub-cellular neuronal structures lags behind the massive production of high-resolution 3D images of neurons in brain tissue. The challenges are principally related to high neuronal density and low signal-to-noise characteristics in thick samples, as well as the heterogeneity of data acquired with different imaging methods. To address this issue, we design a framework which includes sample preparation for high resolution imaging and image analysis. Specifically, we set up a method for labeling thick samples and develop SENPAI, a scalable algorithm for segmenting neurons at cellular and sub-cellular scales in conventional and super-resolution STimulated Emission Depletion (STED) microscopy images of brain tissues. Further, we propose a validation paradigm for testing segmentation performance when a manual ground-truth may not exhaustively describe neuronal arborization. We show that SENPAI provides accurate multi-scale segmentation, from entire neurons down to spines, outperforming state-of-the-art tools. The framework will empower image processing of complex neuronal circuitries.
Collapse
Affiliation(s)
- Simone Cauzzo
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy.
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy.
| | - Ester Bruno
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - David Boulet
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Core Facility, 75014, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane traffic and diseased brain, 75014, Paris, France
| | - Paul Nazac
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane traffic and diseased brain, 75014, Paris, France
| | - Miriam Basile
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Alejandro Luis Callara
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Federico Tozzi
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Arti Ahluwalia
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Chiara Magliaro
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Lydia Danglot
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Core Facility, 75014, Paris, France.
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane traffic and diseased brain, 75014, Paris, France.
| | - Nicola Vanello
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy.
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy.
| |
Collapse
|
11
|
Hoffmann C, Cho E, Zalesky A, Di Biase MA. From pixels to connections: exploring in vitro neuron reconstruction software for network graph generation. Commun Biol 2024; 7:571. [PMID: 38750282 PMCID: PMC11096190 DOI: 10.1038/s42003-024-06264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Digital reconstruction has been instrumental in deciphering how in vitro neuron architecture shapes information flow. Emerging approaches reconstruct neural systems as networks with the aim of understanding their organization through graph theory. Computational tools dedicated to this objective build models of nodes and edges based on key cellular features such as somata, axons, and dendrites. Fully automatic implementations of these tools are readily available, but they may also be purpose-built from specialized algorithms in the form of multi-step pipelines. Here we review software tools informing the construction of network models, spanning from noise reduction and segmentation to full network reconstruction. The scope and core specifications of each tool are explicitly defined to assist bench scientists in selecting the most suitable option for their microscopy dataset. Existing tools provide a foundation for complete network reconstruction, however more progress is needed in establishing morphological bases for directed/weighted connectivity and in software validation.
Collapse
Affiliation(s)
- Cassandra Hoffmann
- Systems Neuroscience Lab, Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Australia.
| | - Ellie Cho
- Biological Optical Microscopy Platform, University of Melbourne, Parkville, Australia
| | - Andrew Zalesky
- Systems Neuroscience Lab, Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Australia
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
| | - Maria A Di Biase
- Systems Neuroscience Lab, Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Australia
- Stem Cell Disease Modelling Lab, Department of Anatomy and Physiology, The University of Melbourne, Parkville, Australia
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
12
|
Qian P, Manubens-Gil L, Jiang S, Peng H. Non-homogenous axonal bouton distribution in whole-brain single-cell neuronal networks. Cell Rep 2024; 43:113871. [PMID: 38451816 DOI: 10.1016/j.celrep.2024.113871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/08/2024] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
We examined the distribution of pre-synaptic contacts in axons of mouse neurons and constructed whole-brain single-cell neuronal networks using an extensive dataset of 1,891 fully reconstructed neurons. We found that bouton locations were not homogeneous throughout the axon and among brain regions. As our algorithm was able to generate whole-brain single-cell connectivity matrices from full morphology reconstruction datasets, we further found that non-homogeneous bouton locations have a significant impact on network wiring, including degree distribution, triad census, and community structure. By perturbing neuronal morphology, we further explored the link between anatomical details and network topology. In our in silico exploration, we found that dendritic and axonal tree span would have the greatest impact on network wiring, followed by synaptic contact deletion. Our results suggest that neuroanatomical details must be carefully addressed in studies of whole-brain networks at the single-cell level.
Collapse
Affiliation(s)
- Penghao Qian
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, State Key Laboratory of Digital Medical Engineering, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu 210096, China; School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Linus Manubens-Gil
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, State Key Laboratory of Digital Medical Engineering, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Shengdian Jiang
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, State Key Laboratory of Digital Medical Engineering, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu 210096, China; School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Hanchuan Peng
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, State Key Laboratory of Digital Medical Engineering, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
13
|
Tecuatl C, Ljungquist B, Ascoli GA. Accelerating the continuous community sharing of digital neuromorphology data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585306. [PMID: 38562736 PMCID: PMC10983892 DOI: 10.1101/2024.03.15.585306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The tree-like morphology of neurons and glia is a key cellular determinant of circuit connectivity and metabolic function in the nervous system of essentially all animals. To elucidate the contribution of specific cell types to both physiological and pathological brain states, it is important to access detailed neuroanatomy data for quantitative analysis and computational modeling. NeuroMorpho.Org is the largest online collection of freely available digital neural reconstructions and related metadata and is continuously updated with new uploads. Earlier in the project, we released multiple datasets together yearly, but this process caused an average delay of several months in making the data public. Moreover, in the past 5 years, >80% of invited authors agreed to share their data with the community via NeuroMorpho.Org, up from <20% in the first 5 years of the project. In the same period, the average number of reconstructions per publication increased 600%, creating the need for automatic processing to release more reconstructions in less time. The progressive automation of our pipeline enabled the transition to agile releases of individual datasets as soon as they are ready. The overall time from data identification to public sharing decreased by 63.7%; 78% of the datasets are now released in less than 3 months with an average workflow duration below 40 days. Furthermore, the mean processing time per reconstruction dropped from 3 hours to 2 minutes. With these continuous improvements, NeuroMorpho.Org strives to forge a positive culture of open data. Most importantly, the new, original research enabled through reuse of datasets across the world has a multiplicative effect on science discovery, benefiting both authors and users.
Collapse
Affiliation(s)
- Carolina Tecuatl
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Bengt Ljungquist
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
| | - Giorgio A. Ascoli
- Bioengineering Department and Center for Neural Informatics, Structures, & Plasticity; College of Engineering and Computing; George Mason University, Fairfax, VA, USA
- Interdisciplinary Program in Neuroscience; College of Science; George Mason University, Fairfax, VA, USA
| |
Collapse
|
14
|
Peng H, Xie P, Xiong F. Meet the authors: Hanchuan Peng, Peng Xie, and Feng Xiong. PATTERNS (NEW YORK, N.Y.) 2024; 5:100912. [PMID: 38264723 PMCID: PMC10801219 DOI: 10.1016/j.patter.2023.100912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
In a recent paper at Patterns, Hanchuan Peng, Peng Xie, and Feng Xiong from Southeast University describe a deep learning method to characterize complete single-neuron morphologies, which can discover neuron projection patterns of diverse cells and learn neuronal morphology representation. In this interview, the authors shared the story behind the paper and their research experience. This interview is a companion to these authors' recent paper, "DSM: Deep sequential model for complete neuronal morphology representation and feature extraction."1.
Collapse
Affiliation(s)
- Hanchuan Peng
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu 210096, China
| | - Peng Xie
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu 210096, China
| | - Feng Xiong
- SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu 210096, China
| |
Collapse
|
15
|
Emissah H, Ljungquist B, Ascoli GA. Bibliometric analysis of neuroscience publications quantifies the impact of data sharing. Bioinformatics 2023; 39:btad746. [PMID: 38070153 PMCID: PMC10733721 DOI: 10.1093/bioinformatics/btad746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023] Open
Abstract
SUMMARY Neural morphology, the branching geometry of brain cells, is an essential cellular substrate of nervous system function and pathology. Despite the accelerating production of digital reconstructions of neural morphology, the public accessibility of data remains a core issue in neuroscience. Deficiencies in the availability of existing data create redundancy of research efforts and limit synergy. We carried out a comprehensive bibliometric analysis of neural morphology publications to quantify the impact of data sharing in the neuroscience community. Our findings demonstrate that sharing digital reconstructions of neural morphology via NeuroMorpho.Org leads to a significant increase of citations to the original article, thus directly benefiting authors. The rate of data reusage remains constant for at least 16 years after sharing (the whole period analyzed), altogether nearly doubling the peer-reviewed discoveries in the field. Furthermore, the recent availability of larger and more numerous datasets fostered integrative applications, which accrue on average twice the citations of re-analyses of individual datasets. We also released an open-source citation tracking web-service allowing researchers to monitor reusage of their datasets in independent peer-reviewed reports. These results and tools can facilitate the recognition of shared data reuse for merit evaluations and funding decisions. AVAILABILITY AND IMPLEMENTATION The application is available at: http://cng-nmo-dev3.orc.gmu.edu:8181/. The source code at https://github.com/HerveEmissah/nmo-authors-app and https://github.com/HerveEmissah/nmo-bibliometric-analysis.
Collapse
Affiliation(s)
- Herve Emissah
- Bioinformatics Program, College of Science, George Mason University, Fairfax, VA 22030, United States
- Center for Neural Informatics, Structures, & Plasticity (CN3) and Bioengineering Department, College of Engineering & Computing, George Mason University, Fairfax, VA 22030, United States
| | - Bengt Ljungquist
- Center for Neural Informatics, Structures, & Plasticity (CN3) and Bioengineering Department, College of Engineering & Computing, George Mason University, Fairfax, VA 22030, United States
| | - Giorgio A Ascoli
- Bioinformatics Program, College of Science, George Mason University, Fairfax, VA 22030, United States
- Center for Neural Informatics, Structures, & Plasticity (CN3) and Bioengineering Department, College of Engineering & Computing, George Mason University, Fairfax, VA 22030, United States
| |
Collapse
|
16
|
Mehta K, Ljungquist B, Ogden J, Nanda S, Ascoli RG, Ng L, Ascoli GA. Online conversion of reconstructed neural morphologies into standardized SWC format. Nat Commun 2023; 14:7429. [PMID: 37973857 PMCID: PMC10654402 DOI: 10.1038/s41467-023-42931-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Digital reconstructions provide an accurate and reliable way to store, share, model, quantify, and analyze neural morphology. Continuous advances in cellular labeling, tissue processing, microscopic imaging, and automated tracing catalyzed a proliferation of software applications to reconstruct neural morphology. These computer programs typically encode the data in custom file formats. The resulting format heterogeneity severely hampers the interoperability and reusability of these valuable data. Among these many alternatives, the SWC file format has emerged as a popular community choice, coalescing a rich ecosystem of related neuroinformatics resources for tracing, visualization, analysis, and simulation. This report presents a standardized specification of the SWC file format. In addition, we introduce xyz2swc, a free online service that converts all 26 reconstruction formats (and 72 variations) described in the scientific literature into the SWC standard. The xyz2swc service is available open source through a user-friendly browser interface ( https://neuromorpho.org/xyz2swc/ui/ ) and an Application Programming Interface (API).
Collapse
Affiliation(s)
- Ketan Mehta
- Center for Neural Informatics, Structures & Plasticity, George Mason University, Fairfax, VA, USA
| | - Bengt Ljungquist
- Center for Neural Informatics, Structures & Plasticity, George Mason University, Fairfax, VA, USA
| | - James Ogden
- Center for Neural Informatics, Structures & Plasticity, George Mason University, Fairfax, VA, USA
| | - Sumit Nanda
- Center for Neural Informatics, Structures & Plasticity, George Mason University, Fairfax, VA, USA
| | - Ruben G Ascoli
- Center for Neural Informatics, Structures & Plasticity, George Mason University, Fairfax, VA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures & Plasticity, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
17
|
Emissah H, Ljungquist B, Ascoli GA. Bibliometric analysis of neuroscience publications quantifies the impact of data sharing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557386. [PMID: 37745378 PMCID: PMC10515804 DOI: 10.1101/2023.09.12.557386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Motivation Neural morphology, the branching geometry of neurons and glia in the nervous system, is an essential cellular substrate of brain function and pathology. Despite the accelerating production of digital reconstructions of neural morphology in laboratories worldwide, the public accessibility of data remains a core issue in neuroscience. Deficiencies in the availability of existing data create redundancy of research efforts and prevent researchers from building on others' work. Data sharing complements the development of computational resources and literature mining tools to accelerate scientific discovery. Results We carried out a comprehensive bibliometric analysis of neural morphology publications to quantify the impact of data sharing in the neuroscience community. Our findings demonstrate that sharing digital reconstructions of neural morphology via the NeuroMorpho.Org online repository leads to a significant increase of citations to the original article, thus directly benefiting the authors. Moreover, the rate of data reusage remains constant for at least 16 years after sharing (the whole period analyzed), altogether nearly doubling the peer-reviewed discoveries in the field. Furthermore, the recent availability of larger and more numerous datasets fostered integrative meta-analysis applications, which accrue on average twice the citations of re-analyses of individual datasets. We also designed and deployed an open-source citation tracking web-service that allows researchers to monitor reusage of their datasets in independent peer-reviewed reports. These results and the released tool can facilitate the recognition of shared data reuse for promotion and tenure considerations, merit evaluations, and funding decisions.
Collapse
Affiliation(s)
- Herve Emissah
- Bioinformatics Program, College of Science, George Mason University
| | - Bengt Ljungquist
- Center for Neural Informatics, Structures, and Plasticity, College of Engineering & Computing, George Mason University
| | - Giorgio A. Ascoli
- Bioinformatics Program, College of Science, George Mason University
- Center for Neural Informatics, Structures, and Plasticity, College of Engineering & Computing, George Mason University
| |
Collapse
|
18
|
Ding L, Zhao X, Guo S, Liu Y, Liu L, Wang Y, Peng H. SNAP: a structure-based neuron morphology reconstruction automatic pruning pipeline. Front Neuroinform 2023; 17:1174049. [PMID: 37388757 PMCID: PMC10303825 DOI: 10.3389/fninf.2023.1174049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023] Open
Abstract
Background Neuron morphology analysis is an essential component of neuron cell-type definition. Morphology reconstruction represents a bottleneck in high-throughput morphology analysis workflow, and erroneous extra reconstruction owing to noise and entanglements in dense neuron regions restricts the usability of automated reconstruction results. We propose SNAP, a structure-based neuron morphology reconstruction pruning pipeline, to improve the usability of results by reducing erroneous extra reconstruction and splitting entangled neurons. Methods For the four different types of erroneous extra segments in reconstruction (caused by noise in the background, entanglement with dendrites of close-by neurons, entanglement with axons of other neurons, and entanglement within the same neuron), SNAP incorporates specific statistical structure information into rules for erroneous extra segment detection and achieves pruning and multiple dendrite splitting. Results Experimental results show that this pipeline accomplishes pruning with satisfactory precision and recall. It also demonstrates good multiple neuron-splitting performance. As an effective tool for post-processing reconstruction, SNAP can facilitate neuron morphology analysis.
Collapse
Affiliation(s)
- Liya Ding
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Xuan Zhao
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Shuxia Guo
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Yufeng Liu
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Lijuan Liu
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Yimin Wang
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, China
| | - Hanchuan Peng
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| |
Collapse
|