1
|
Kang I, Talluri BC, Yates JL, Niell CM, Nienborg H. Is the impact of spontaneous movements on early visual cortex species specific? Trends Neurosci 2025; 48:7-21. [PMID: 39701910 PMCID: PMC11741931 DOI: 10.1016/j.tins.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/22/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024]
Abstract
Recent studies in non-human primates do not find pronounced signals related to the animal's own body movements in the responses of neurons in the visual cortex. This is notable because such pronounced signals have been widely observed in the visual cortex of mice. Here, we discuss factors that may contribute to the differences observed between species, such as state, slow neural drift, eccentricity, and changes in retinal input. The interpretation of movement-related signals in the visual cortex also exemplifies the challenge of identifying the sources of correlated variables. Dissecting these sources is central for understanding the functional roles of movement-related signals. We suggest a functional classification of the possible sources, aimed at facilitating cross-species comparative approaches to studying the neural mechanisms of vision during natural behavior.
Collapse
Affiliation(s)
- Incheol Kang
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bharath Chandra Talluri
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jacob L Yates
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Cristopher M Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Hendrikje Nienborg
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Bouvier G, Sanzeni A, Hamada E, Brunel N, Scanziani M. Inter- and Intrahemispheric Sources of Vestibular Signals to V1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624137. [PMID: 39605728 PMCID: PMC11601413 DOI: 10.1101/2024.11.18.624137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Head movements are sensed by the vestibular organs. Unlike classical senses, signals from vestibular organs are not conveyed to a dedicated cortical area but are broadcast throughout the cortex. Surprisingly, the routes taken by vestibular signals to reach the cortex are still largely uncharted. Here we show that the primary visual cortex (V1) receives real-time head movement signals - direction, velocity, and acceleration - from the ipsilateral pulvinar and contralateral visual cortex. The ipsilateral pulvinar provides the main head movement signal, with a bias toward contraversive movements (e.g. clockwise movements in left V1). Conversely, the contralateral visual cortex provides head movement signals during ipsiversive movements. Crucially, head movement variables encoded in V1 are already encoded in the pulvinar, suggesting that those variables are computed subcortically. Thus, the convergence of inter- and intrahemispheric signals endows V1 with a rich representation of the animal's head movements.
Collapse
Affiliation(s)
- Guy Bouvier
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Alessandro Sanzeni
- Department of Computing Sciences, Bocconi University, 20100 Milan, Italy
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Elizabeth Hamada
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Nicolas Brunel
- Department of Computing Sciences, Bocconi University, 20100 Milan, Italy
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Massimo Scanziani
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Stringer C, Pachitariu M. Analysis methods for large-scale neuronal recordings. Science 2024; 386:eadp7429. [PMID: 39509504 DOI: 10.1126/science.adp7429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024]
Abstract
Simultaneous recordings from hundreds or thousands of neurons are becoming routine because of innovations in instrumentation, molecular tools, and data processing software. Such recordings can be analyzed with data science methods, but it is not immediately clear what methods to use or how to adapt them for neuroscience applications. We review, categorize, and illustrate diverse analysis methods for neural population recordings and describe how these methods have been used to make progress on longstanding questions in neuroscience. We review a variety of approaches, ranging from the mathematically simple to the complex, from exploratory to hypothesis-driven, and from recently developed to more established methods. We also illustrate some of the common statistical pitfalls in analyzing large-scale neural data.
Collapse
Affiliation(s)
- Carsen Stringer
- Howard Hughes Medical Institute (HHMI) Janelia Research Campus, Ashburn, VA, USA
| | - Marius Pachitariu
- Howard Hughes Medical Institute (HHMI) Janelia Research Campus, Ashburn, VA, USA
| |
Collapse
|
4
|
Ciceri S, Oude Lohuis MN, Rottschäfer V, Pennartz CMA, Avitabile D, van Gaal S, Olcese U. The Neural and Computational Architecture of Feedback Dynamics in Mouse Cortex during Stimulus Report. eNeuro 2024; 11:ENEURO.0191-24.2024. [PMID: 39260892 PMCID: PMC11444237 DOI: 10.1523/eneuro.0191-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 09/13/2024] Open
Abstract
Conscious reportability of visual input is associated with a bimodal neural response in the primary visual cortex (V1): an early-latency response coupled to stimulus features and a late-latency response coupled to stimulus report or detection. This late wave of activity, central to major theories of consciousness, is thought to be driven by the prefrontal cortex (PFC), responsible for "igniting" it. Here we analyzed two electrophysiological studies in mice performing different stimulus detection tasks and characterized neural activity profiles in three key cortical regions: V1, posterior parietal cortex (PPC), and PFC. We then developed a minimal network model, constrained by known connectivity between these regions, reproducing the spatiotemporal propagation of visual- and report-related activity. Remarkably, while PFC was indeed necessary to generate report-related activity in V1, this occurred only through the mediation of PPC. PPC, and not PFC, had the final veto in enabling the report-related late wave of V1 activity.
Collapse
Affiliation(s)
- Simone Ciceri
- Institute for Theoretical Physics, Utrecht University, Utrecht 3584CC, Netherlands
| | - Matthijs N Oude Lohuis
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam 1098XH, Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden 2333CA, Netherlands
- Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam 1098XG, Netherlands
| | - Cyriel M A Pennartz
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam 1098XH, Netherlands
| | - Daniele Avitabile
- Amsterdam Center for Dynamics and Computation, Mathematics Department, Vrije Universiteit Amsterdam, Amsterdam 1081HV, Netherlands
- Mathneuro Team, Inria Centre at Université Côte d'Azur, Sophia Antipolis 06902, France
- Amsterdam Neuroscience, Systems and Network Neuroscience, Amsterdam 1081HV, Netherlands
| | - Simon van Gaal
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam 1098XH, Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam 1018WT, Netherlands
| | - Umberto Olcese
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 1098XH, Netherlands
- Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam 1098XH, Netherlands
| |
Collapse
|
5
|
Storm JF, Klink PC, Aru J, Senn W, Goebel R, Pigorini A, Avanzini P, Vanduffel W, Roelfsema PR, Massimini M, Larkum ME, Pennartz CMA. An integrative, multiscale view on neural theories of consciousness. Neuron 2024; 112:1531-1552. [PMID: 38447578 DOI: 10.1016/j.neuron.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
How is conscious experience related to material brain processes? A variety of theories aiming to answer this age-old question have emerged from the recent surge in consciousness research, and some are now hotly debated. Although most researchers have so far focused on the development and validation of their preferred theory in relative isolation, this article, written by a group of scientists representing different theories, takes an alternative approach. Noting that various theories often try to explain different aspects or mechanistic levels of consciousness, we argue that the theories do not necessarily contradict each other. Instead, several of them may converge on fundamental neuronal mechanisms and be partly compatible and complementary, so that multiple theories can simultaneously contribute to our understanding. Here, we consider unifying, integration-oriented approaches that have so far been largely neglected, seeking to combine valuable elements from various theories.
Collapse
Affiliation(s)
- Johan F Storm
- The Brain Signaling Group, Division of Physiology, IMB, Faculty of Medicine, University of Oslo, Domus Medica, Sognsvannsveien 9, Blindern, 0317 Oslo, Norway.
| | - P Christiaan Klink
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Walter Senn
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands
| | - Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan 20122, Italy
| | - Pietro Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France; Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Department of Neurosurgery, Academisch Medisch Centrum, Postbus 22660, 1100 DD Amsterdam, the Netherlands
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan 20157, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan 20122, Italy; Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Matthew E Larkum
- Institute of Biology, Humboldt University Berlin, Berlin, Germany; Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Gelens F, Äijälä J, Roberts L, Komatsu M, Uran C, Jensen MA, Miller KJ, Ince RAA, Garagnani M, Vinck M, Canales-Johnson A. Distributed representations of prediction error signals across the cortical hierarchy are synergistic. Nat Commun 2024; 15:3941. [PMID: 38729937 PMCID: PMC11087548 DOI: 10.1038/s41467-024-48329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
A relevant question concerning inter-areal communication in the cortex is whether these interactions are synergistic. Synergy refers to the complementary effect of multiple brain signals conveying more information than the sum of each isolated signal. Redundancy, on the other hand, refers to the common information shared between brain signals. Here, we dissociated cortical interactions encoding complementary information (synergy) from those sharing common information (redundancy) during prediction error (PE) processing. We analyzed auditory and frontal electrocorticography (ECoG) signals in five common awake marmosets performing two distinct auditory oddball tasks and investigated to what extent event-related potentials (ERP) and broadband (BB) dynamics encoded synergistic and redundant information about PE processing. The information conveyed by ERPs and BB signals was synergistic even at lower stages of the hierarchy in the auditory cortex and between auditory and frontal regions. Using a brain-constrained neural network, we simulated the synergy and redundancy observed in the experimental results and demonstrated that the emergence of synergy between auditory and frontal regions requires the presence of strong, long-distance, feedback, and feedforward connections. These results indicate that distributed representations of PE signals across the cortical hierarchy can be highly synergistic.
Collapse
Affiliation(s)
- Frank Gelens
- Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129-B, 1018 WT, Amsterdam, The Netherlands
- Department of Psychology, University of Cambridge, CB2 3EB, Cambridge, UK
| | - Juho Äijälä
- Department of Psychology, University of Cambridge, CB2 3EB, Cambridge, UK
| | - Louis Roberts
- Department of Psychology, University of Cambridge, CB2 3EB, Cambridge, UK
- Department of Computing, Goldsmiths, University of London, SE14 6NW, London, UK
| | - Misako Komatsu
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| | - Cem Uran
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528, Frankfurt am Main, Germany
- Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525, Nijmegen, The Netherlands
| | - Michael A Jensen
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Robin A A Ince
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, G12 8QB, Scotland, UK
| | - Max Garagnani
- Department of Computing, Goldsmiths, University of London, SE14 6NW, London, UK
- Brain Language Lab, Freie Universität Berlin, 14195, Berlin, Germany
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528, Frankfurt am Main, Germany.
- Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525, Nijmegen, The Netherlands.
| | - Andres Canales-Johnson
- Department of Psychology, University of Cambridge, CB2 3EB, Cambridge, UK.
- Neuropsychology and Cognitive Neurosciences Research Center, Faculty of Health Sciences, Universidad Católica del Maule, 3460000, Talca, Chile.
| |
Collapse
|
7
|
Mazo C, Baeta M, Petreanu L. Auditory cortex conveys non-topographic sound localization signals to visual cortex. Nat Commun 2024; 15:3116. [PMID: 38600132 PMCID: PMC11006897 DOI: 10.1038/s41467-024-47546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
Spatiotemporally congruent sensory stimuli are fused into a unified percept. The auditory cortex (AC) sends projections to the primary visual cortex (V1), which could provide signals for binding spatially corresponding audio-visual stimuli. However, whether AC inputs in V1 encode sound location remains unknown. Using two-photon axonal calcium imaging and a speaker array, we measured the auditory spatial information transmitted from AC to layer 1 of V1. AC conveys information about the location of ipsilateral and contralateral sound sources to V1. Sound location could be accurately decoded by sampling AC axons in V1, providing a substrate for making location-specific audiovisual associations. However, AC inputs were not retinotopically arranged in V1, and audio-visual modulations of V1 neurons did not depend on the spatial congruency of the sound and light stimuli. The non-topographic sound localization signals provided by AC might allow the association of specific audiovisual spatial patterns in V1 neurons.
Collapse
Affiliation(s)
- Camille Mazo
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal.
| | - Margarida Baeta
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Leopoldo Petreanu
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|